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Abstract
Advance payment is an important issue in inventory models. We, see that the policy of
advance payments is of common practice in the today’s market environment. In this paper,
an inventory model with advance payment for a single item has been developed. In this model
the lead time is taken to be stochastic and also there is no shortage. The crisp model has been
developed with these characteristics first. Then the corresponding fuzzy model is formulated.
In the fuzzy model, several inventory parameters involved, are taken as parabolic-flat fuzzy
numbers. So, finally, the model becomes a fuzzy-stochastic model due to the reason that the
lead time is stochastic. The very effective graded mean integration representation method has
been used to convert the fuzzy numbers into the crisp numbers. Then the crispified fuzzy-
stochastic model has been solved using ABC algorithm. Finally, some numerical examples
are presented to illustrate the model and the solution methodology. The effects of change of
different inventory parameters have been studied and are presented both in tabular form and
graphically.

Keywords Inventory model · Fuzzy number · Parabolic-flat fuzzy numbers ·
Fuzzy-stochastic · Advance payment · ABC algorithm

Introduction

In this present business and market scenario, the practice of advance payment is observed as
common practice. It is seen that a wholesaler of some commodities asks for some payment in
part or in full during the placement of the supply order of the commodities from the retailer
or smaller vendor. It is also noticed that, the wholesaler allows certain percentage of discount
on the total purchase cost for that particular order. Sometimes, this discount rate is fixed and
sometimes it depends on the amount of advance payment. Further, there are situations in
which if a retailer gives an extra advance payment, he may get some price discount during
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the final payment. On the other hand, the retailer losses the interest on the amount of money
paid as advance payment for a period of time from the placing of the order till the supply of
the same. Thus, we see that the advance payment is a real life phenomena and the decision
regarding the amount of advance payment to be made has a crucial impact on the total profit
and inventory decisions.

Though, the advance payment is an important part of total profit in the inventory model,
where advance payment is allowed, a few researchers have studied its impact on inventory
modeling. It has been observed that, some of the researchers have attempted to describe the
effect of advance payment on the total profit and inventory decisions. The effect of advance
payment in inventory management both in precise and imprecise environments have been
discussed by few researchers. In the existing literature, several inventorymodels are available
in precise environment and only a few discussions are available in the uncertain environment.
In the precise environment the inventory parameters (like, ordering cost, selling cost, purchase
cost, holding cost, advertisement cost, interest, etc.) controlling the inventory are taken to be
fixed/precise.

However, in real life situations these parameters should be imprecise numbers instead
of fixed real numbers, because the inventory cost and/or interest might fluctuate due to
various reasons. In the imprecise environment, the approaches like, stochastic, fuzzy, fuzzy-
stochastic, interval or combination of these may be used. In the stochastic approach, the
parameters are assumed to be random variables with known probability distributions. In the
fuzzy approach, the parameters, the constraints and the goals are taken to be fuzzy numbers
with known membership functions. Parameters are taken to be interval numbers in case of
interval approach. In the combined approach, some of the parameters are taken in one form
and the rest are taken in the other form.

Till date, only a few researchers have presented different types of inventory problems
involving advance payment.Maiti et al. [1] have presented the inventorymodels with advance
payment with the fixed parameters. In this area, the works of Zhang et al. [2], Maiti et al. [3],
Gupta et al. [4], Priyan et al. [5], Dinagar and Kannan [6], Dutta and Kumar [7] are worth
mentioning. Zhang et al. [2] presented the situation when the buyer is offered a price discount
for the advance payment made by him, even not required by the seller, which can be found
in bricks and tiles factories. Maiti et al. [3] developed an inventory model with stochastic
lead time and price dependent demand incorporating advance payment. Gupta et al. [4] has
contributed an application of genetic algorithm in solving an inventory model with advance
payment and interval valued inventory costs. Priyan et al. [5] developed EOQ models that
focused on advance payment with fuzzy parameters.

A perishable inventory model with stochastic lead-time has been presented by Kalpakam
and Sapan [8]. Also, it is assumed that both in the deterministic and probabilistic models, the
payment is made just after receiving the ordered materials. It is seen that the supplier gives
a credit period for a retailer for stimulating the demand to increase the market share or to
decrease inventories of certain items. The EOQmodelwith permissible delay in payments has
been studied byGoyal [9]. The discounted cash flow in the inventorymodel under trade credit
has been studied by Chung [10]. Aggarwal and Jaggi [11] and Hwang and Shinn [12] have
studied the deterministic inventory model with constant deterioration rate. Shah and Shah
[13] presented a probabilistic inventory model in which delay in payments is allowed. Jamal
et al. [14] extended the inventorymodel in which shortages are involved. Dutta andKumar [7]
have presented a fuzzy inventory model without shortages using trapezoidal fuzzy number.

Sarkar and Saren [15] have presented an inventory model in which partial trade-credit
policy is considered along with exponential deterioration. Roy chowdhury et al. [16] have
presented an optimal inventory replenishment model for perishable items where demand is
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time quadratic and also with partially backlogged along with shortages in all cycles. An
EOQ model under the condition of permissible delay in payment in which the demand rate
is continuous function of time and holding cost is exponentially increased function along
with shortages for the completely backlogged cycles have been developed by Rajan and
Uthayakumar [17]. Cardenas-Barron et al. [18] have extensively discussed and produced
the EOQ model. Tripathi et al. [19] have established an inventory model with exponential
time-dependent deterioration for cases with and without shortages. De and Mahata [20] have
introduced the fuzzy back-order model with cloudy fuzzy demand. Mishra [21] presented
the inventory model with price dependent demand and Weibull deterioration in precise envi-
ronment. The price sensitive demand for optimal order policy has been discussed by Tripathi
[22]. Tripathi and Chaudhury [23] further studied the model with inflation, Weibull dete-
rioration and trade credits. An EOQ model for spoilage products has been considered by
Tripathi [24]. The fuzzy impreciseness is considered for imperfect production and repair
model with time dependent demand by Jain et al. [25]. The model of permissible delay in
payment has been done for deteriorating item in which retailer’s joint ordering, pricing and
preservation technology investment policies are utilized in [26]. The two warehouse model
has been developed for deterioration, capacity constraints and back ordering under financial
consideration [27]. Recently, Das and Roy [28] have nicely developed the imprecise EOQ
model for non-instantaneous deteriorating items in interval environment. Also an model with
imperfect production and risk is presented by Patra [29]. The advance cash credit payments is
considered in the model developed for perishable items [30]. Mishra et al. [21,31] discussed
a model under demand which is dependent on both of price and stock. A good attempt has
been seen in the work of Teng et al. [32] in which they have presented a model with lot size
expiration and advance payments.

In this paper, we are the first to introduce the fuzzy-stochastic approach in the inventory
modeling. In this work, we have considered an inventory modeling in the fuzzy-stochastic
environment, where the lead time is taken to be a random variable whose distribution is
normal. The inventory control parameters like, purchasing cost, ordering cost, selling price,
holding cost, etc. are taken as fuzzy numbers with parabolic-flat membership function. Thus
the model extended to a fuzzy-stochastic model and hence the model becomes more realistic
in terms of the uncertainty prevailing in the real life situations.

Here, we have presented inventorymodelwith no shortages andwith uniformdemand both
in crisp and fuzzy-stochastic environments. The very effective defuzzification method, the
graded mean integration technique to transform the fuzzy-stochastic model into defuzzified
stochastic model is used. After that, we have implemented the artificial bee colony algorithm
(ABC algorithm) for the said inventory model to find the optimum profit and optimal order
quantity.

The whole paper is organized in several sections. The necessary assumptions and useful
notations are described in “Assumption and Notations” section. Some elementary definitions
relating fuzzy numbers are given in “Some Definitions” section. In “Mathematical Formu-
lation” section, the mathematical formulation of the model in different environments are
presented. “Optimization Technique” section covers the optimization technique using ABC
algorithm for solving these models. The numerical examples along with the result analysis
are given in “Numerical Examples and Result Analysis” section and final conclusion and
future prospect of our work is drawn in “Conclusion” section.
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Assumption and Notations

Assumptions:
To develop the fuzzy-stochastic inventory model in this work the following assumptions are
considered

(i) advance payment is allowed
(ii) no shortages are occurring in the model.
(iii) the lead time is taken to be stochastic having normal distribution
(iv) the demand rate is constant
(v) the fuzzy parameters are considered to be parabolic-flat fuzzy numbers
(vi) time horizon is finite
(vii) finite number of replenishments

Notations:

TL Lead time which is a random variable with distribution N (m, σ 2)

tl Real variable corresponding to r.v. TL
f (TL) Density function of TL
F(TL) Distribution function of TL
m Mean of TL when it follows normal distribution
σ Standard deviation of TL
TH Time horizon
n Number of replenishment to be made during the prescribed time horizon

TH
Q Order quantity
Qr Reorder level
q Inventory level at time t
Tc Cycle length
Ocost Ordering cost per order
˜Ocost Fuzzy ordering cost per order
Pdgw(˜Ocost ) Defuzzified ordering cost per order
Pcost Unit purchase cost
˜Pcost Fuzzy unit purchase cost
Pdgw(˜Pcost ) Defuzzified unit purchase cost
Hcost Holding cost per unit time per unit item
˜Hcost Fuzzy holding cost per unit time per unit item
Pdgw(˜Hcost ) Defuzzified holding cost per unit time per unit item
Sprice Unit selling price
˜Sprice Fuzzy unit selling price
Pdgw(˜Sprice) Defuzzified unit selling price
D Constant demand rate
˜D Fuzzy constant demand rate
Pdgw(˜D) Defuzzified constant demand rate
AP Advance payment of purchasing quantities
˜AP Fuzzy advance payment of purchasing quantities
Pdgw(˜AP ) Defuzzified advance payment of purchasing quantities
L p Interest on loan from bank
IPD Percentage of discount on unit purchase cost
˜IPD Fuzzy percentage of discount on unit purchase cost
Pdgw(˜IPD) Defuzzified percentage of discount on unit purchase cost
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IP A Percentage of AP with respect to total purchase cost per cycle
˜IP A Fuzzy percentage of AP with respect to total purchase cost per cycle
Pdgw(˜IP A) Defuzzified percentage of AP with respect to total purchase cost per cycle
IP I The prevailing interest rate
˜IP I Fuzzy prevailing interest rate
Pdgw(˜IP I ) Defuzzified prevailing interest rate
Z Total profit over the planning horizon TH
˜Z Total fuzzy profit over the planning horizon TH
Pdgw(˜Z) Total defuzzified profit over the planning horizon TH
Z∗ Optimum profit
˜Z∗ Fuzzy optimum profit
Pdgw(˜Z∗) Defuzzified optimum profit
Q∗ Optimum order quantity
˜Q∗ Fuzzy optimum order quantity
Pdgw(˜Q∗) Defuzzified optimum order quantity

Some Definitions

Definition 1 A fuzzy set Ã in a universe of discourse X is defined as the set of pairs: Ã =
{(x, μ Ã(x)) : x ∈ X}, where μ Ã : X → [0, 1] is a mapping called the membership function
or grade of membership of x ∈ Ã.

Definition 2 The α − cut of Ã is defined by Aα = {x : μ Ã(x) = α, α ≥ 0}.

Definition 3 A fuzzy set Ã is called convex if and only if for all x1, x2 ∈ X , μ Ã(λx1 +
(1 − λ)x2) ≥ min{μ Ã(x1), μ Ã(x2)}, where λ ∈ [0, 1].

Definition 4 A fuzzy set Ã is called a normal fuzzy set if there exists at least one x ∈ X such
that μ Ã(x) = 1.

Definition 5 A fuzzy number is a fuzzy subset of the real line which is both normal and
convex. For a fuzzy number Ã, its membership function can be denoted by

μ
˜A(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

L(x), if x < m

1, if m ≤ x ≤ n

R(x), if x > n.

where L(x) and R(x) are the left and right shape functions respectively.

Definition 6 The parabolic-flat fuzzy number (PfFN) denoted by Ã = (a1, a2, a3, a4) is
defined by its continuous membership function (Fig. 1) as;

μ
˜A(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1 − (a2−x)2

(a2−a1)2
if a1 ≤ x ≤ a2

1 if a2 ≤ x ≤ a3

1 − (x−a3)2

(a4−a3)2
if a3 ≤ x ≤ a4

0 otherwise.
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Definition 7 (Arithmetic operations) The arithmetic operations between parabolic-flat fuzzy
numbers are given below. Let us consider Ã1 = (a1, a2, a3, a4) and Ã2 = (b1, b2, b3, b4) be
two parabolic-flat fuzzy numbers. Then, the addition of Ã1 and Ã2 is defined as

Ã1 ⊕ Ã2 = (a1 + b1, a2 + b2, a3 + b3, a4 + b4)

The subtraction of Ã2 from Ã1 is given by

Ã1 � Ã2 = (a1 − b4, a2 − b3, a3 − b2, a4 − b1)

The multiplication of Ã1 and Ã2 is given by

Ã1 ⊗ Ã2 = (a1 ⊗ b1, a2 ⊗ b2, a3 ⊗ b3, a4 ⊗ b4)

The division of Ã1 by Ã2 is defined as

Ã1(÷) Ã2 =
(

a1
b4

,
a2
b3

,
a3
b2

,
a4
b1

)

, where bi 
= 0, i = 1, 2, 3, 4

If k 
= 0 is a scalar and Ã = (a1, a2, a3, a4) then k Ã is defined as

k Ã =
{

(ka1, ka2, ka3, ka4), if k > 0
(ka4, ka3, ka2, ka1) if k < 0.

Definition 8 (Graded mean integration representation method for defuzzification) For the
generalized fuzzy number ˜A with membership function μ

˜A, according to Chen and Hsieh
[33], Mahato and Bhunia [34], the Graded Mean Integral Value Pdgw(˜A) of ˜A is given by

Pdgw(˜A) =
∫ 1
0 [x(1 − w)L−1(x) + wR−1(x)]dx

∫ 1
0 xdx

= 2
∫ 1

0
[x(1 − w)L−1(x) + wR−1(x)]dx

where the pre-assigned parameter w ∈ [0,1] refers to the degree of optimism. Here, w = 1
represents an optimistic point of view, w = 0 represents a pessimistic point of view and
w = 0.5 indicates a moderately optimistic decision maker’s point of view.

For parabolic-flat fuzzy number, we have

L−1(x) = a2 − (a2 − a1)
√

(1 − x), R−1(x) = a3 + (a4 − a3)
√

(1 − x)

Now, the Graded Mean Integral Value (GMIV) of ˜A

= 2
∫ 1

0
[x(1 − w)(a2 − (a2 − a1)

√

(1 − x)) + w(a3 + (a4 − a3)
√

(1 − x))]dx

= (1 − w)

15
(8a1 + 7a2) + w

15
(7a3 + 8a4)

Taking w = 0.5, we get

Pdgw(˜A) = 1

30
(8a1 + 7a2 + 7a3 + 8a4)
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Mathematical Formulation

We have considered an inventory model in which the business starts with an inventory level
of Q units of the item under consideration. Let t j ( j = 1, 2, . . . , n − 1) denotes the time
of reorder at the starting of the j th cycle. The new order is given only when the inventory
level reaches to the reorder level Qr . After receiving the items, they are kept in store and the
demand of the customers is fulfilled accordingly. In the inventory system at most one order
will remain outstanding at any time because, it is assumed that installation stock will always
exceeds the reorder level after the arrival of an order. The order for the (j+1)th renewable
cycle is placed as soon as the stock level reaches to the reorder level Qr at t = t j+1. Thus,
there are n ordering points at t = 0, t = t j ( j = 1, 2, . . . , n − 1) in the time horizon [0, TH ].
The lead time TL between the placement and receipt of an order is a random variable and is
taken to follow normal distribution. The inventory system is presented in Fig. 2.

Crisp-Stochastic Model

The differential equation of the inventory system is given by

dq(t)

dt
= −D,

with the initial conditions,

q(0) = Q = DTc, t1 = Q − Qr

D
, q(t j ) = Qr , j = 1, 2, . . . ., n

Total holding cost

HTot = Hcost

⎛

⎝

∫ t1

0
qdt +

n−1
∑

j=1

∫ t j+TL

t j
qdt +

n−1
∑

j=1

∫ t j+1

t j+TL
qdt +

∫ TH

tn
qdt

⎞

⎠

= Hcost (

∫ Qr

Q
−qdq

D
+ (n − 1)

∫ Qr−DTL

Qr

− qdq

D

+(n − 1)
∫ Qr

Q+Qr−DTL
− qdq

D
+

∫ 0

Qr

−qdq

D
)

= Hcost

2D
[nQ2 + 2(n − 1)Q(Qr − DTL)] (1)

where Q = DTH
n and Ap = IP A(1 − IPD)QPcost

E(HTot ) = Hcost

2D

∫ ∞

0
[nQ2 + 2(n − 1)Q(Qr − DTL)] f (TL)dTL

= Hcost

2D

[∫ ∞

0

{

nQ2 + 2(n − 1)QQr
}

f (TL)dTL −
∫ ∞

0
{2(n − 1)QDTL } f (TL)dTL

]

= Hcost

2D
[(nQ2 + 2(n − 1)QQr )I1 − 2(n − 1)QDI2]

where I1 = ∫ ∞
0 f (TL)dTL and I2 = ∫ ∞

0 TL f (TL)dTL
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The total profit over the planning horizon TH Z = <Sales revenue>−<Purchase cost >

−<Expected interest> − <Ordering cost> − <Expected holding cost>

= nSpriceQ − nQPcost (1 − IPD) − (n − 1)E(L p) − nOcost

−Hcost

2D
[(nQ2 + 2(n − 1)QQr )I1 − 2(n − 1)QDI2]

= nSpriceQ − nQPcost (1 − IPD) − (n − 1)IP A(1 − IPD)QPcost IP I I2 − nOcost

−Hcost

2D
[(nQ2 + 2(n − 1)QQr )I1 − 2(n − 1)QDI2] (2)

where the interest is L p = APTL IP I = IP A(1 − IPD)QPcost TL IP I and the expected
interest,

E(L p) =
∫ ∞

0
ApTL IP I f (TL)dTL

= IP A(1 − IPD)QPcost IP I

To find optimum order quantity, let us take

dZ

dQ
= 0

⇒ nSprice − nPcost (1 − IPD) − (n − 1)IP I I2(1 − IPD)Pcost IP A

−Hcost

2D
[(2nQ + 2(n − 1)Qr )I1 − 2(n − 1)DI2] = 0

Also, d2Z
dQ2 = −Hcost

D nI1 < 0,
Therefore, the optimum order quantity is obtained as

Q∗ = D

nI1Hcost
[nSprice − nPcost (1 − IPD)

+(n − 1)Pcost (1 − IPD)IP I I2 IP A] + (n − 1)

nI1
(DI2 − Qr I1) (3)

Total optimum profit

Z∗ = nSpriceQ
∗ − nQ∗Pcost (1 − IPD) − (n − 1)IP A(1 − IPD)Q∗Pcost IP I I2

−nOcost − Hcost

2D
[(nQ∗2 + 2(n − 1)Q∗Qr )I1 − 2(n − 1)Q∗DI2] (4)

Fuzzy-Stochastic Model

The differential equation of the inventory system is given by

dq̃(t)

dt
= −˜D,

with the initial conditions,

q̃(0) = ˜Q = ˜DTc,˜t1 = ˜Q − ˜Qr

˜D
, q̃(t j ) = Qr , j = 1, 2, . . . ., n

Total fuzzy-stochastic holding cost is

˜HTot = ˜Hcost

2˜D
[n˜Q2 ⊕ 2(n − 1)˜Q ⊗ (Qr � ˜DTL)] (5)
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where

˜Q = ˜DTH
n

and

˜Ap = ˜IP A ⊗ (1 − ˜IPD) ⊗ ˜Q ⊗ ˜Pcost

Total fuzzy-stochastic profit over the planning horizon TH

˜Z = n˜Sprice ⊗ ˜Q � n˜Q ⊗ ˜Pcost ⊗ (1 − ˜IPD) � (n − 1)˜IP A ⊗ (1 − ˜IPD) ⊗
˜Q ⊗ ˜Pcost ⊗ ˜IP I I2 � n˜Ocost

� ˜Hcost

2˜D
[(n˜Q2 ⊕ 2(n − 1)˜QQr )I1 � 2(n − 1)˜Q ⊗ ˜DI2] (6)

The fuzzy-stochastic optimum order quantity

˜Q∗ = ˜D

nI1 ˜Hcost
[n˜Sprice − n˜Pcost ⊗ (1 − ˜IPD)

⊕(n − 1)˜Pcost ⊗ (1 − ˜IPD) ⊗ ˜IP I I2 ⊗ ˜IP A] + (n − 1)

nI1
(˜DI2 − Qr I1) (7)

Total fuzzy-stochastic optimum profit

˜Z∗ = n˜Sprice ⊗ ˜Q∗ � n˜Q∗ ⊗ ˜Pcost ⊗ (1 − ˜IPD) � (n − 1)˜Ap ⊗ ˜IP I I2 � n˜Ocost

� ˜Hcost

2˜D
[(n˜Q∗2 ⊕ 2(n − 1)˜Q∗Qr )I1 � 2(n − 1)˜Q∗ ⊗ ˜DI2] (8)

Defuzzified-Stochastic Model

The differential equation of the inventory system is given by

dPdgw(̃q)(t)

dt
= −Pdgw(˜D),

with the initial conditions,

Pdgw(̃q(0)) = Pdgw(˜Q) = Pdgw(˜D)Tc, t1 = Pdgw(˜Q) − Qr

Pdgw(˜D)

Total defuzzified-stochastic holding cost is

Pdgw( ˜HTot ) = Pdgw( ˜Hcost )

2Pdgw(˜D)
[nPdgw(˜Q2) + 2(n − 1)Pdgw(˜Q)(Qr − Pdgw(˜D)TL)] (9)

where

Pdgw(˜Q) = Pdgw(˜D)TH
n

and

Pdgw(˜Ap) = Pdgw(˜IP A)(1 − Pdgw(˜IPD))Pdgw(˜Q)Pdgw(˜Pcost )

The total defuzzified profit over the planning horizon TH
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Pdgw(˜Z) = nPdgw(˜Sprice)Pdgw(˜Q) − nPdgw(˜Q)Pdgw(˜Pcost )(1 − Pdgw(˜IPD))

−(n − 1)Pdgw(˜IP A)(1 − Pdgw(˜IPD))Pdgw(˜Q)Pdgw(˜Pcost )Pdgw(˜IP I )I2

−nPdgw(˜Ocost ) − Pdgw( ˜Hcost )

2Pdgw(˜D)

[(nPdgw(˜Q2) + 2(n − 1)Pdgw(˜Q)Qr )I1

−2(n − 1)Pdgw(˜Q)Pdgw(˜D)I2] (10)

Total defuzzified-stochastic optimum order quantity

Pdgw(˜Q∗) = Pdgw(˜D)

nI1Pdgw( ˜Hcost )
[nPdgw(˜Sprice) − nPdgw(˜Pcost )(1 − Pdgw(˜IPD))

+(n − 1)Pdgw(˜Pcost )(1 − Pdgw(˜IPD))Pdgw(˜IP I I2Pdgw(˜IP A)]
+ (n − 1)

nI1
(Pdgw(˜D)I2 − Qr I1) (11)

Total defuzzified-stochastic optimum profit

Pdgw(˜Z∗) = nPdgw(˜Sprice)Pdgw(˜Q∗) − nPdgw(˜Q∗)Pdgw(˜Pcost )(1 − Pdgw(˜IPD))

−(n − 1)Pdgw(˜Ap)Pdgw(˜IP I )I2 − nPdgw(˜Ocost ) − Pdgw( ˜Hcost )

2Pdgw(˜D)

[(nPdgw(˜Q∗2) + 2(n − 1)Pdgw(˜Q∗)Pdgw(˜Qr ))I1

−2(n − 1)Pdgw(˜Q∗)Pdgw(˜D)I2] (12)

Optimization Technique

The artificial bee colony (ABC) algorithm is a swarm based meta-heuristic algorithm which
was introduced by Karaboga [35,36] in 2005 for optimizing numerical problems. It was
influenced by the intelligent foraging behavior of honey bees.

ABC algorithm can be used for unconstrained as well as constrained optimization prob-
lems [37].

In ABC algorithm, the colony of artificial bees contains three groups of bees
(i)Employed bees: Employed bees are those bees which are associated with specific food

source. For every food source there is only one employed bee. In other words, The number of
employed bees is equal to the number of solutions. The number of employed bees search the
environment randomly to find a food source , i.e., the ABC creates a randomly distributed
initial population of Ps solutions, where Ps denote the size of population.

(ii) Onlooker bees: Onlooker bees are those bees which are watching the dance of
employed bees within the hive to choose a food source.

(iii) Scout bees: Scout bees are those bees which are searching for food sources randomly.
The employed bee whose food source has been exhausted becomes a scout bee.

The general scheme of ABC algorithm is as follows:
(i) Initialization phase:At the 1st step, the bees search the environment randomly to find

a food source i.e., the ABC creates a randomly distributed initial population of Ps solutions.
Each solution xi is a m-dimensional vector (i.e., xi = xi,1, xi,2, . . . xi,m), which are to be
optimized so as to maximize equation (13) might be used for initialization purposes [38].

Xi, j = Xmin
i + rand(0, 1)(Xmax

i − Xmin
j ) (13)
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where i = 1, 2, . . . , Ps, j = 1, 2, . . . ,m; Xmin
j = Lower bound of the food source position

in dimension j; Xmax
i = Upper bound of the food source position in dimension i.

(ii) Employed bees phase: Employed bees search for more profitable new food sources
within the neighborhood of the food source in their memory using the following expression
(14) [38]

Vi, j = Xi, j + φi j (Xi, j − Xk, j ) (14)

where k = 1, 2, . . . , Ps, j = 1, 2, . . . ,m; k and j are randomly generated and k must be
different from i; φi j is a random number between [−1, 1].

(iii) Onlooker bees phase: employed bees share their food-source information with
onlooker bees in the nearby hive. Then the onlooker bees choose a food source depend-
ing on the probability value calculated by the Eq. (15)

pi = 0.9 ∗ fi
fbest

+ 0.1 (15)

where, fi denote the fitness value of solution Xi .
The fitness value of the solution is calculated for maximization problems using the fol-

lowing formula

fi =

⎧

⎪

⎨

⎪

⎩

1 + | f (xi )|, if f (xi ) < 0

1

1 + f (xi )
, if f (xi ) ≥ 0,

(16)

where f (Xi ) denotes the objective function values of the decision vector Xi . After choosing
the food source Xi probabilistically, onlooker bee randomly chooses a neighborhood source
Vi and determine its fitness value by using the Eq. (16). Then in the onlooker bee phase, a
greedy selection is applied between Xi and Vi .

(iv)Scout bees phase:The employed beeswhose solution can’t be improved continuously
through predetermined number of trials is called ’limit’ or ’abandonment criteria’, become
scouts and their solutions are abandoned. Then the scout bees go for a new food source using
the Eq. (17) (Xiang and An [38]).

Xi, j = Xmin
j + rand(0, 1)(Xmax

j − Xmin
j ) (17)

where j = 1, 2, . . . , m.
(v) Termination criteria:Memorize the best solution achieved so far until requirements

are met, i.e., the number of iterations becomes equal to maximum cycle number (MCN).
In this work, the ABC algorithm is developed using C-programming language.
The computational procedure of ABC algorithm is given below:

Step-1: Initialize the population size Ps and the solutions Xi, j using Eq. (13); where
i = 1, 2, . . . , Ps, j = 1, 2, . . . ,m,m being the dimension size.
Step-2: Evaluate the fitness value of the i th solution using Eq. (16).
Step-3: Set iteration = 1
Step-4: Compute new solution Vi for the employed bees by using (13) and then evaluate
them as Vi, j = Xi, j + φi j (Xi, j − Xk, j ), where i, k = 1, 2, . . . , Ps, j = 1, 2, . . . ,m k
and j are randomly generated and k must be different from i, φi j is a random number
between [-1,1].
Step-5: Apply the greedy selection process for the employed bees.
Step-6: If the solution is not better, then assign trial= 1 ; otherwise, trial= 0.

123



107 Page 12 of 19 Int. J. Appl. Comput. Math (2018) 4 :107

Step-7: Compute the probability of being selected for the food source by Eq. (14) where
fi is the objective function value for i = 1, 2, . . . , Ps .
Step-8: Produce the new solutions for the onlooker bees from the ith solution, which is
selected depending on pi , then evaluate them.
Step-9: Employ the greedy selection on the onlooker bees.
Step-10: Determine the abandoned solution for the scout, if it exists, and replace it with
a new solution obtained randomly using (13).
Step-11: Store the best solution obtained so far.
Step-12: If iteration< MCN , set iteration=iteration+1 and go to step-4.
Step-13: Print the best solution.
Step-14: Stop.

Numerical Examples and Result Analysis

We have considered the inventory model with advance payments, without shortage with
constant demand. The lead time is taken to be stochastic having normal distribution. The
example has been considered in two environments -

(i) The crisp environment inwhich all the controlling parameters are taken as crisp numbers
and the lead time is stochastic. The input values of the parameters are given in Table 1.

(ii) The fuzzy-stochastic environment in which some of the controlling parameters
(Pcost , Ocost , Sprice, Hcost , D, IPD, IP I , IP A) are taken as parabolic-flat fuzzy numbers
with stochastic lead time. The input data along with their defuzzified values in this case
are given in Table 2.

In this work, the parameters have been taken as parabolic-flat fuzzy numbers. Thus, the
precisemodel has been converted to the fuzzymodelwith parabolic-flatmembership function.
After deducing the fuzzy model, the graded mean integration representation method for
defuzzification is applied to defuzzify the fuzzy parameters. The defuzzified model with
uniform demand is solved using ABC algorithm coded in C programming language. The
optimality for optimal order quantity and corresponding profit have been deduced and shown
in the table and in figure.

In the fuzzy-stochastic environment, the problem of the crisp model has been converted
to the corresponding fuzzy-stochastic model and is given by the Eqs. (5)–(6).

Also the optimal order quantity and optimal profit of the both crisp and fuzzy-stochastic
environment, have been calculated and are presented in Table 3.

Table 1 Crisp input data (with
m = 0.5, σ = 0.4, n = 5, I1 =
0.8967, I2 = 0.5229)

Parameters Values

Pcost 9.97

Ocost 25.55

Sprice 34

IP A 1.4

IP I 0.07

IPD 0.40

D 60

Hcost 2.75

Qr 100
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Table 2 Fuzzy input data Parameters Fuzzy values Defuzzified values

˜Pcost (9.93, 9.95, 9.98, 9.99) 9.96
˜Ocost (25.2, 25.4, 25.6, 25.8) 25.5
˜Sprice (33.9, 33.8, 34.2, 34.3) 34.05

˜Hcost (2.72, 2.74, 2.76, 2.78) 2.75
˜IPD (0.4, 0.4, 0.4, 0.4) 0.4
˜IP A (1.4, 1.4, 1.4, 1.4) 1.4
˜IP I (0.07, 0.07, 0.07, 0.07) 0.07
˜D (60, 60, 60, 60) 60

Table 3 Optimum order quantity
and optimum profit

Data type Crisp Fuzzy

Q∗ 621.88 625.05

Z∗ 39,714.35 40,015.06

Table 4 Sensitivity analysis w.r.t.
n

n Q∗ Z∗

5 625.05 40,015.06

10 617.80 78,177.66

15 615.38 116,347.46

20 614.17 154,519.07

25 613.44 192,691.40

30 612.96 230,864.09

Table 5 Sensitivity analysis w.r.t. D and Qr (decreasing)

Parameters Values 40% decrease 30% decrease 20% decrease 10% decrease

D 60 36 42 48 54

Q∗ 625.05 343.03 413.53 484.04 554.54

Z∗ 40,015.06 20,023.12 24,974.13 29,964.29 34,980.54

Qr 100 60 70 80 90

Q∗ 625.05 657.05 649.05 641.05 633.05

Z∗ 40,015.06 44,230.54 43,156.94 42,096.50 41,049.20

Table 6 Sensitivity analysis w.r.t. D and Qr (increasing)

Parameters Values 40% increase 30% increase 20% increase 10% increase

D 60 84 78 72 66

Q∗ 625.05 907.07 836.56 766.06 695.55

Z∗ 40,015.06 60,257.50 55,186.05 50,120.62 45,062.86

Qr 100 140 130 120 110

Q∗ 625.05 593.05 601.05 609.05 617.05

Z∗ 40,015.06 36,010.00 36,991.53 37,986.22 38,994.06
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Fig. 1 Parabolic-flat fuzzy
number

Fig. 2 Instantaneous state of inventory system

The sensitivity analysis of the profits have been carried out with respect to the number of
replenishment (n), reorder level (Qr ), demand rate (D) and are presented in the Tables 4, 5
and 6.

From Fig. 3, it is observed that the the optimum order quantity is decreasing while number
of replenishments is varied from 5 to 60.

It is clear from Fig. 4 that optimum profit is strictly increasing as the number of replen-
ishments is increased.

The sensitivities of Q∗ and Z∗ with respect to the demand rate are shown in Table 5
(decreasing case) and Table 6 (increasing case) and these are also shown in Figs. 5 and 6,
from where we easily find that both of Q∗ and Z∗ are strictly increasing with D increasing.

Also, from Tables 5 and 6 we can see the behaviors of Q∗ and Z∗ with respect to reorder
level Qr and from Figs. 7 and 8 it is observed that both of the optimum order quantity and
optimum profit are decreasing functions of Qr .
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Fig. 3 Sensitivity analysis of Q∗ w.r.t. n

Fig. 4 Sensitivity analysis of Z∗ w.r.t. n
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Fig. 5 Sensitivity analysis of Q∗ w.r.t. D

Fig. 6 Sensitivity analysis of Z∗ w.r.t. D
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Fig. 7 Sensitivity analysis of Q∗ w.r.t. Qr

Fig. 8 Sensitivity analysis of Z∗ w.r.t. Qr
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Conclusions

In this paper, we have considered the effect of advance payment in an inventorymodelwithout
shortage in fuzzy environment along with stochastic lead time. Here, we have considered the
demand as constant. Also, in both the crisp-stochastic and fuzzy-stochastic models we have
found the profits, the optimum order quantities and the optimum profits. In the fuzzy model,
we have taken the parabolic-flat fuzzy numbers to represent the inventory parameters. We
have used the graded mean integration representation method of defuzzification to defuzzify
the fuzzy-stochastic model and then the defuzzified-stochastic model has been solved using
ABC algorithm which is coded in C programming language.

We have described the model in fuzzy-stochastic environment to make it more realistic
and have explained with numerical data along with the effects of different parameters on the
profit. There is a lot of scope to consider the other inventory models in different environ-
ments like, stochastic, interval, fuzzy (with membership function other than parabolic-flat
fuzzy number). One may use some evolutionary algorithms or programming softwares like,
MATLAB, Mathematica, etc. to solve the inventory models.
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