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Abstract The variation in temperature distribution with time for the case of the fractional
model which models the flow of fluid through a vertical cylinder is considered. This article
provides an insight into the natural convective flow of a viscous fluid through a vertical
heated cylinder using the fractional differential equation with Caputo derivatives. Analytical
solutions for temperature and velocity functions were obtained using Laplace transform and
finite Hankel integral transform methods. Stehfest’s algorithm was used to obtain the inverse
Laplace transforms. Numerical simulations and graphical illustrations were carried out in
order to analyze the influence of the time-fractional derivative on the transport phenomenon.
The significant difference between the fractional fluid flow and ordinary fluid at various time
(t) is unraveled. At the initial time, the flow of fractional fluid is faster than the ordinary fluid.
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Introduction

It is worth noticing within the last few decades that a considerable attention has been devoted
to exploring the heat and/or mass transfer in the flow of various fluids over cylindrical
domains. Considering the relevance of cyclones in the industry, Zhao and Abrahamson [1]
stated that the body of this kind of object may be either conical or cylindrical, or made of
both geometries. Thereafter, heat transfer through cylindrical objects (i.e. domains) has been
pointed out in building machines, materials processing, solar collectors, furnace designs,
heat exchangers, storage tanks, and nuclear designs. Sharma et al. [2], Franke and Hutson
[3], Roschina et al. [4] and Bairi [5] investigated the convection heat transfer in cylindrical
domains by assuming that the density varies according to Boussinesq approximation and the
other thermo-physical fluid properties are constant. In Ref. [2] it is revealed that the intensity
of heat source decays exponentially with time and concluded in Ref. [3] that increase in heat
transfer is based on the heat input required to maintain the inside surface of the cylinder at a
constant temperature. According to the report of Morgan [6] in the year 1975 on the natural
convection from smooth circular cylinders, it is also revealed that there is a wide dispersion
in the results of experiments due to axial heat conduction losses to the supporting structures
of the horizontal cylinders and velocity fields by convective fluid movements. Moreover,
Lemembre and Petit [7] introduced a numerical investigation of heat transfer of the two-
dimensional natural convection laminar flow in cylindrical enclosures of heated lateral walls
at uniform heat flux and cooled at the same heat flux at the top surface by insulating the
bottom surface. The steady natural convection laminar flow in rectangular domains has been
presented by Chen and Humphrey [8]. Kim and Viskanta [9], and Vargas et al. [10] intro-
duced both experimental and numerical investigations to discuss the natural convection steady
flow in two-dimensional Newtonian and incompressible fluid-filled enclosures. Makinde and
Animasaun [11, 12], Animasaun [13] and Koriko et al. [14] discussed three convection fluid
flow modes within the boundary layer. In addition, experimental and numerical investiga-
tions have been introduced by Kee et al. [15] for steady flow natural convection of heat
generating tritium gas in two-dimensional closed vertical cylinders and spheres with their
bounding isothermal walls. For more reports on free convection flow of Cattaneo–Christov
fluid, axisymmetric Powell–Eyring fluid, Jeffrey nanofluid, micropolar flow using a modified
Boussinesq approximation, and unsteady mixed convection MHD; see Refs. [16–23].

An experiment has been performed by Bohn and Anderson [24] to study the model of
heat transfer of natural convection flow between both perpendicular and parallel vertical
walls. They considered three-dimensional cubic enclosure filled with water. Moreover, they
assumed that the cubic enclosure has isothermal sides and adiabatic top and bottom. The
two-dimensional conjugate natural convection laminar flow in an enclosure was introduced
numerically by Liaqat and Baytas [25]. In addition, Kuznetsov and Sheremet [26] investigated
numerically the two-dimensional conjugate convective-conductive heat transfer in a rectan-
gular enclosure due to the local heat and contaminant sources. Fractional calculus can provide
a concise model for the description of the dynamic events. Such a description is important
for gaining an understanding of the underlying multiscale processes. The mathematics of
fractional calculus has been applied successfully in physics, chemistry, and materials science
to describe dielectrics, electrodes and viscoelastic materials over extended ranges of time
and frequency. In heat and mass transfer, for example, the half-order fractional integral is the
natural mathematical connection between thermal or material gradients and the diffusion of
heat or ions. Therefore fractional calculus is being applied to build new mathematical mod-
els. Suitable information on viscoelastic properties of polymer and elastomers is necessary
for an accurate modeling and analysis of structures with dynamic and vibration problems.
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When experimental data is used to correlate with the fractional order model results, it shows
good agreement and has the capability to reproduce the experimental data for given material;
see Sasso et al. [27]. Viscoelastic models based on the noninteger order calculus was intro-
duced by Sloninsky [28]. The mechanical responses predicted by such models were found
to be consistent with the molecular theory of polymers by Bagley and Torvik [29]. Schiessel
and Blumen [30] derived mechanical analogs to fractional derivative elements and models
by assembling numerous springs and dashpots (elastic and viscous terms, respectively) in
series and parallel. The fractional models of increasing complexity were proposed by Song
and Jiang [31] to simulate the rheological behavior of synthetic polymers as well as bio-
logical cells and tissues see Djordjevic et al. [32], Heymans [33], and Liu et al. [34]. For
more details about mathematical models for fractional derivatives applications; see Chatter-
jee [35], Pfitzenreiter [36], and Kawada [37]. Finally, the review of the literature reveals that
natural convective flow with heat transfer of a viscous fluid through a vertical cylinder using
fractional equations with Caputo derivatives is still an open question, hence this study.

Problem Formulation

In this report, unsteady, laminar and incompressible viscous flows through an infinite vertical
cylinder of the radius are considered. Here, the z-axis is taken along the axis of the cylinder in
the vertically upward direction, and the radial coordinate r is taken normal to it. Initially, it is
assumed that the cylinder and the fluid are at the same temperature T∞ and the concentration
on cylinder surface is C∞.

At time t > 0, the temperature and concentration on the cylinder surface are raised to
Tw and Cw, respectively (see Fig. 1). Following Deka et al. [38] and using Boussinesq’s
approximation, the governing equation is of the form

∂2u

∂r2 +
1

r

∂u

∂r
+
gβT

ν
(T − T∞) +

gβC

ν
(C − C∞) � 1

ν

∂u

∂t
; r ∈ (0, r0), t > 0, (1)

∂2T

∂r2 +
1

r

∂T

∂r
− 1

α0

∂T

∂t
� 0; r ∈ (0, r0), t > 0, (2)

∂2C

∂r2 +
1

r

∂C

∂r
− 1

D

∂C

∂t
� 0; r ∈ (0, r0), t > 0, (3)

The appropriate initial and boundary conditions are:

u � 0, T � T∞, C � C∞; r ∈ [0, r0], t � 0,

u � 0, T � Tw, C � Cw; r � r0, t > 0. (4)

where α0 is the thermal diffusivity and D is the mass diffusivity coefficient. Introducing the
following dimensionless variables:

t∗ � tν

r2
0

, r∗ � r

r0
, u∗ � ur0

ν
, T ∗ � T − T∞

Tw − T∞
, C∗ � C − C∞

Cw − C∞
, Pr � ν

α0
, Sc � ν

D
,

Gr � gβT (Tw − T∞)r3
0

ν2 , Gm � gβC (Cw − C∞)r3
0

ν2 , (5)

where Pr is the Prandtl number, Sc is the Schmidt number, Gr is the thermal Grashof number
and Gm is the solutal Grashof number. The governing Eqs. (1)–(4) reduce to

∂u (r, t)

∂t
� ∂2u (r, t)

∂r2 +
1

r

∂u (r, t)

∂r
+ GrT (r, t) + GmC (r, t) ; r ∈ (0, 1), t > 0, (6)
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Fig. 1 The physical model

∂T (r, t)

∂t
� 1

Pr

(
∂2T (r, t)

∂r2 +
1

r

∂T (r, t)

∂r

)
; r ∈ (0, 1), t > 0, (7)

∂C (r, t)

∂t
� 1

Sc

(
∂2C (r, t)

∂r2 +
1

r

∂C (r, t)

∂r

)
; r ∈ (0, 1), t > 0, (8)

u (r, 0) � 0, T (r, 0) � 0 C(r, 0) � 0; r ∈ [0, 1], (9)

u (1, t) � 0; T (1, t) � 1, C(1, t) � 1, t > 0. (10)

In order to develop a fractional model following Lorenzo and Hartley [39], the ordinary
time-derivative is replaced with Caputo derivative of fractional order α for 0 < α < 1. This
leads to

Dα
t u (r, t) � ∂2u (r, t)

∂r2 +
1

r

∂u (r, t)

∂r
+ GrT (r, t) + GmC (r, t) ; r ∈ (0, 1), t > 0,

(11)

Dα
t T (r, t) � 1

Pr

(
∂2T (r, t)

∂r2 +
1

r

∂T (r, t)

∂r

)
; r ∈ (0, 1), t > 0, (12)

Dα
t C (r, t) � 1

Sc

(
∂2C (r, t)

∂r2 +
1

r

∂C (r, t)

∂r

)
; r ∈ (0, 1), t > 0, (13)

where Dα
t u(y, t)—the Caputo derivative of fractional order of the function u(r, t) is given

as:

Dα
t u(r, t) �

⎧⎨
⎩

1
Γ (1−α)

t∫
0

u′(r,τ )
(t−τ )α dτ 0 ≤ α < 1

u′(r, t), α � 1
, (14)

where Γ (·) is the Gamma function.
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Method of Solution

Applying the Laplace transform to Eq. (12) and using the initial and boundary conditions
Eqs. (9) and (10), leads to the following transformed problem:

qα T̄ (r, q) � 1

Pr

(
∂2

∂r2 +
1

r

∂

∂r

)
T̄ (r, q), (15)

T̄ (1, q) � 1

q
, (16)

where T̄ (r, q) is the Laplace transform of the function T (r, t) and q is the transform variable.
Applying the finite Hankel transform of order zero to Eq. (15) and using condition Eq. (16).
This leads to

T H (rn, q) � rn J1(rn)

Pr

1

q
(
qα + r2

n
Pr

) , (17)

where T̄H (rn, q) � ∫ 1
0 r T̄ (r, q)J0(rrn)dr is the finite Hankel transform of the function

T̄ (r, q), rn, n � 0, 1, . . . are the positive roots of the equation J0(x) � 0, J0 being the
Bessel function of first kind and zero order. Equation (17) can be written in the equivalent
form as

T̄ (rn, q) � J1(rn)

rn

1

q
− J1(rn)

rn

qα−1

qα + r2
n

Pr

. (18)

Taking the inverse Laplace transform of Eq. (18), leads to

TH (rn, t) � J1(rn)

rn
− J1(rn)

rn
Rα,α−1

(
t,−r2

n

Pr

)
, (19)

where Rσ,ν(t, a) � L−1
{

qν

qσ −a

}
� ∑∞

m�0
amt (m+1)σ−ν−1

Γ [(m+1)σ−ν] ; Re(σ − ν) > 0, is the Loren-

zo–Hartley’s function [38]. Taking the inverse Hankel transform. Leads to

T (r, t) � 1 − 2
∞∑
n�1

J0(rrn)

rn J1(rn)
Rα,α−1

(
t,−r2

n

Pr

)
; 0 < α < 1. (20)

For the case when α � 1, easy to deduce that R1,0

(
t,− r2

n
Pr

)
� exp

(
− r2

n
Pr t

)
, so the temper-

ature profile become

T (r, t) � 1 − 2
∞∑
n�1

J0(rrn)

rn J1(rn)
exp

(
−r2

n

Pr
t

)
; α � 1. (21)

In the same line as the temperature distribution, the species concentration is obtained as

C(r, t) � 1 − 2
∞∑
n�1

J0(rrn)

rn J1(rn)
Rα,α−1

(
t,− r2

n

Sc

)
; 0 < α < 1, (22)

C(r, t) � 1 − 2
∞∑
n�1

J0(rrn)

rn J1(rn)
exp

(
− r2

n

Sc
t

)
; α � 1, (23)
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with Laplace and finite Hankel transform

C̄H (rn, q) � rn J1(rn)

Sc

1

q
(
qα + r2

n
Sc

) , (24)

that will be used to obtaining the velocity field. Applying the Laplace transform to Eq. (11),
using the initial and boundary conditions (9) and (10), leads to

qα ū(r, q) � ∂2ū(r, q)

∂r2 +
1

r

∂ ū(r, q)

∂r
+ GrT̄ (r, q) + GmC̄(r, q), (25)

ū(1, q) � 0. (26)

Applying finite Hankel transform to Eq. (25), using boundary condition (26) and Eqs. (17),
(24), leads to

ūH (rn, q) � Gr

Pr

rn J1(rn)

q
(
qα + r2

n
Pr

) (
qα + r2

n

) +
Gm

Sc

rn J1(rn)

q
(
qα + r2

n
Sc

) (
qα + r2

n

) , (27)

where ūH (rn, q) � ∫ 1
0 r ūH (r, q)J0(rrn)dr is the finite Hankel transform of the function

ū(r, q).
Equation (27), can be written in the following equivalent form

ūH (rn, q) � N J1(rn)

rn

1

q
(
qα + r2

n

) − Gr J1(rn)

rn

qα−1(
qα + r2

n
Pr

) 1(
qα + r2

n

) − GmJ1(rn)

rn

qα−1(
qα + r2

n
Sc

) 1(
qα + r2

n

) ,

(28)

where N � Gr + Gm.
Taking inverse Laplace transform of the Eq. (28), leads to

uH (rn, q) � N J1(rn)

rn
H (t) ∗ Fα(t,−r2

n ) − Gr J1(rn)

rn
Rα, α−1

(
t,−r2

n

Pr

)
∗ Fα(t,−r2

n )

− GmJ1(rn)

rn
Rα, α−1

(
t,− r2

n

Sc

)
∗ Fα(t,−r2

n ), (29)

where H (t) is Heaviside unit step function, L−1
{

1
qa+b

}
� Fa(−b, t) � ∑∞

n�0
(−b)n t (n+1)a−1

Γ [(n+1)a]

is the Robrtnov and Hartley’s function Ref. [38] and “*” represents the convolution product.
Inverting the Hankel transform leads to

u(r, t) � 2
∞∑
n�1

J0(rrn)

J 2
1 (rn)

uH (rn, t),

� 2
∞∑
n�1

J0(rrn)

rn J1(rn)

⎡
⎣ N H (t) ∗ F(t,−r2

n ) − Gr Rα, α−1

(
t,− r2

n
Pr

)
∗ F(t,−r2

n )

−Gm Rα, α−1

(
t,− r2

n
Sc

)
∗ F(t,−r2

n ),

⎤
⎦ .

(30)

In the case α � 1, F1(t,−a0) � R1, 0(t,−a0) � e−a0t .

Semi-analytical Solution

Given that the velocity expression Eq. (30) is complicated, therefore, difficult to use in
numerical calculations, in this section a semi-analytical solution for the velocity field is
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presented. It is observed that, the temperature and concentration are solutions of the partial
differential equation

k0D
α
t w(r, t) � ∂2w(r, t)

∂r2 +
1

r

∂w(r, t)

∂r
, (31)

along with the initial and boundary conditions

w(r, 0) � 0, w(1, t) � 1. (32)

The temperature and concentration solutions are corresponding to k0 � Pr, and k0 � Sc,
respectively. By applying the Laplace transform with respect to t to Eq. (31), the transformed
problem can be written in the equivalent form:

r2w̄′′(r, q) + rw̄′(r, q) −
(
r
√
k0qα

)2
w̄(r, q) � 0, (33)

w̄(1, q) � 1

q
. (34)

Equation (33) is a modified Bessel equation with the general solution (bounded for r ∈ [0, 1])

w̄(r, q) � C1 I0
(
r
√
k0qα

)
,

where I0(·) is the modified Bessel function of first kind and order zero. Using the boundary
condition (34), the solution of Eqs. (33)–(34) is of the form

w̄(r, q) � 1

q

I0
(
r
√
k0qα

)
I0

(√
k0qα

) . (35)

Now, using Eq. (35) into Eq. (25) the transform problem of the velocity function is of the
form

qα ū(r, q) � ∂2ū(r, q)

∂r2 +
1

r

∂ ū(r, q)

∂r
+
Gr

q

I0
(
r
√

Pr qα
)

I0
(√

Pr qα
) +

Gm

q

I0
(
r
√
Scqα

)
I0

(√
Scqα

) , (36)

ū(1, q) � 0. (37)

A particular solution of Eq. (36) is

ū p(r, q) � Gr

1 − Pr

I0
(
r
√

Pr qα
)

qα+1 I0
(√

Pr qα
) +

Gm

1 − Sc

I0
(
r
√
Scqα

)
qα+1 I0

(√
Scqα

) , Pr 	� 1, Sc 	� 1,

(38)

The general solution bounded for r ∈ [0, 1] is

ū(r, q) � C2 I0
(
r
√
qα

)
+ ū p(r, q). (39)

By using the boundary condition Eq. (37), the Laplace transform of the velocity field is of
the form

ū(r, q) � 1

qα+1

[
Gr

1 − Pr

I0
(
r
√

Pr qα
)

I0
(√

Pr qα
) +

Gm

1 − Sc

I0
(
r
√
Scqα

)
I0

(√
Scqα

) −
(

Gr

1 − Pr
+

Gm

1 − Sc

)
I0

(
r
√
qα

)
I0

(√
qα

)
]

.

(40)

Even if the analytical form of the inverse Laplace transform of function ū(r, q) can be obtained
(using the residue theorem, for example), in this study the Stehfest’s algorithm Refs. [40–42]

123



80 Page 8 of 18 Int. J. Appl. Comput. Math (2018) 4:80

Table 1 Numerical values of the Eqs. (30) and (41) at α � 0.5, Pr � 2, Sc � 1.5,Gr � 1.4 and Gm � 2.5
for different values of time t

r t = 0.2 t = 0.3 t = 0.8

Eq. (30) Eq. (41) Eq. (30) Eq. (41) Eq. (30) Eq. (41)

0 0.48436 0.48458 0.63626 0.63648 0.70269 0.70271

0.1 0.48111 0.48131 0.63108 0.63127 0.69666 0.69664

0.2 0.47114 0.47132 0.61539 0.61552 0.67843 0.67832

0.3 0.45394 0.45407 0.58879 0.5888 0.64765 0.64741

0.4 0.42857 0.42862 0.55058 0.55043 0.60373 0.60333

0.5 0.39372 0.39367 0.49975 0.49943 0.54584 0.54527

0.6 0.34767 0.34748 0.43502 0.43454 0.4729 0.47213

0.7 0.28821 0.2879 0.35476 0.35418 0.38355 0.38277

0.8 0.21267 0.2123 0.25705 0.25649 0.2762 0.27551

0.9 0.11792 0.11755 0.13963 0.13927 0.14902 0.1486

1 0 0 0 0 0 0

is adopted for numerical inversion of the Laplace transform, namely, the velocity field u(r, t)
is approximated by

u(r, t) ≈ ln(2)

t

2p∑
j�1

k j ū

(
r, j

ln(2)

t

)
, (41)

where k j � (−1) j+p
∑min( j,p)

i�
[
j+1
2

] i p(2i)!
(p−i)!i!(i−1)!( j−i)!(2i− j)! , p is a positive integer number,

[
j+1
2

]

is the integer part of the real number j+1
2 and min( j, p) � 1

2 [i + j − |i − j |]. In order to
verify the numerical results, the values obtaining with Eqs. (30) and (41) are presented in
Table 1. It is observed that there is a good agreement between results obtained with both
formulas. Also, the absolute errors for different numbers of terms in the series solution are
given in Table 2.

Numerical Results and Discussion

In this paper we have studied convective flows of the unsteady, laminar and incompressible
viscous flow through an infinite vertical cylinder with constant temperature and concentration
on the surface. The fluid temperature, concentration and velocity fields are obtained as solu-
tions of the fractional differential equations with time-fractional derivatives of Caputo type.
Numerical results obtained with the software Mathcad are presented in graphical illustrations.
Especially, we studied the influence of the fractional parameter α on the fluid temperature
and velocity to compare it with the ordinary case α � 1. In Figs. 2 and 3, the graphs of
dimensionless temperature versus r, for the variation of fractional parameter α, and consider
the different values of time t are illustrated. Form Fig. 2, it is clear that the temperature of the
fluid is decreases by increasing the value of α. But the temperature of the fluid is increasing
with increasing time t and the temperature difference is decrease and we consider this is a
small time. Figure 3 is sketch to study the effect of fractional parameter α, for larger values of
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Table 2 Absolute errors for values of velocity given by Eqs. (30) and (41)

r n=100 n= 1000

Eq. (30) Eq. (41) |Eqs. (30)–(41)| Eq. (30) Eq. (41) |Eqs. (30)–(41)|

0 0.63626 0.63648 2.188×10−4 0.63626 0.63648 2.16×10−4

0.1 0.63108 0.63127 1.928×10−4 0.63108 0.63127 1.925×10−4

0.2 0.61539 0.61552 1.225×10−4 0.61539 0.61552 1.223×10−4

0.3 0.58879 0.5888 8.263×10−6 0.58879 0.5888 8.039×10−6

0.4 0.55053 0.55043 1.433×10−4 0.55058 0.55043 1.436×10−4

0.5 0.49975 0.49943 3.154×10−4 0.49975 0.49943 3.157×10−4

0.6 0.43502 0.43454 4.782×10−4 0.43502 0.43454 4.784×10−4

0.7 0.35476 0.35418 5.823×10−4 0.35476 0.35418 5.826×10−4

0.8 0.25705 0.25649 5.634×10−4 0.25705 0.25649 5.638×10−4

0.9 0.13963 0.13927 3.638×10−4 0.13963 0.13927 3.646×10−4

1 0 0 0 0 0 0

the time t. In this case, the fluid temperature decreases if the fractional parameter decreases.
Note that, for small values of the time t the heat transfer decreases at small values of the frac-
tional parameter, but, the heat transfer increases at larger values of the time t and decreasing
values of the fractional parameter. These aspects are well highlighted by the curves plotted in
Fig. 4. The effect of Prandtl number Pr, on dimensionless temperature, for different values
of time t is graphically studied in Fig. 5. As expected, for increasing values of the Prandtl
number the temperature decreases, because, for large values of Prandtl number, the momen-
tum diffusivity dominates so, the thermal diffusivity is small. The influence of the fractional
parameter on the fluid velocity was analyzed in Figs. 6, 7 and 8. At small values of the time
t, the velocity of fluids modeled by fractional derivatives is bigger than velocity of ordinary
fluid. At larger values of the time t, the fractional fluids flow slower than the ordinary fluid.
Comparing the numerical values of velocity, obtained with both solutions, it is found a good
agreement (see Table 1). In order to analyze the influence of the time-fractional derivative on
the fluid flow parameter, numerical results are extracted from the analytical expressions and
are illustrated through graphs. It is found that fluids modeled with the fractional differential
equations, behave differently from ordinary fluids. At large values of time, the fractional
fluid model flows slower than the ordinary fluid model, while at small values of time, the
fractional fluid model flows faster than the ordinary fluid model.

Conclusion

In this paper we studied the convective flow with heat and mass transfer of a viscous fluid
modeled by fractional differential equations with Caputo derivatives, through a vertical cylin-
der. Closed forms of the analytical solutions for temperature, concentration and velocity fields
are obtained using the Laplace transform and finite Hankel transform. These solutions are
expressed by the generalized functions R-Lorenzo–Hartley functions and T-Robotnov’s func-
tions. Semi-analytical solutions were obtained by coupling the Laplace transform with Bessel
equation. For semi-analytical solutions, the inverse Laplace transform was obtained by the
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Fig. 2 Profiles of dimensionless temperature versus r , for α variation with Pr � 3 and different values of time
t

Stehfest’s numerical algorithm. Numerical simulations and graphical illustrations are carried
out in order to analyze the influence of the time-fractional derivative on the flow parameters.
The significant difference between the fractional fluid flow and ordinary fluid is unraveled.
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Fig. 3 Profiles of dimensionless temperature versus r , for α variation with Pr � 3 and different values of time
t
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Fig. 4 Profiles of dimensionless temperature versus t , for α variation with Pr � 3 and different values of time
r
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Fig. 5 Profiles of dimensionless temperature versus r , for Pr variation with α � 0.4 and different values of
time t
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Fig. 6 Profiles of dimensionless velocity versus r , for α variation with Pr � 2, Sc � 1.5,Gr � 1.5,Gm �
2.5, and different values of time t
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Fig. 7 Profiles of dimensionless velocity versus r , for α variation with Pr � 2, Sc � 1.5,Gr � 1.5,Gm �
2.5, and different values of time t
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Fig. 8 Profiles of dimensionless velocity versus t , for α variation with Pr � 2, Sc � 1.5,Gr � 1.5,Gm �
2.5, and different values of time r
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At the initial time, the flow of fractional fluid is faster than the ordinary fluid. The temperature
distribution in the flow of fractional fluid (0.1 ≤ α < 1) at the initial time (0.1 ≤ t ≤ 0.3) is
more substantial than that of the ordinary fluid (α � 1). Reverse is the case at future values
of time 0.7 ≤ t ≤ 0.9.
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