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Abstract This paper comprises of modelling and optimization of a production–distribu-
tion problem with the multi-product. The proposed model combined three well-known
approaches, fuzzy programming, goal programming and interactive programming to develop
an efficient fuzzy goal programming (EFGP) model for multi-objective production distri-
bution problem (MOPDP). In this approach decision maker (DM) decide the goals and
constructed membership functions for each objective, and they changed according to the
iterative decision taken by the DM. The proposed EFGP model for MOPDP attempts to
simultaneously minimize total transportation costs and total delivery time concerning inven-
tory levels, available initial stock at each source, as well as market demand and available
warehouse space at each destination, and the constraint on the total budget. The main aid
of the proposed model is that its offerings an organized outline that enables fuzzy goal
decision-making for solving the MOPDP under an uncertain environment.

Keywords Multi-objective programming · Production–distribution problem · Fuzzy goal
programming · Interactive programming

Introduction

The supply chain (SC) is nowadays considered to be a significant driving factor in gaining
a competitive advantage in turbulent markets. Nevertheless, its efficiency and effectiveness
being threatened by various sources of uncertainty, which may originate from the demand
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side, supply side, manufacturing process and planning and control systems. SC consisting of a
distribution network of the product, i.e., moving of a raw-material from suppliers to manufac-
turers, manufacturers to distributors, distributors to retailers and retailers to customers. The
manufacturer receives raw material from the suppliers, and after processing it into a finished
good, it is supplied to different warehouses and retailers to mark them smoothly reachable to
the trades. Moreover, SC includes two main inter-related processes of (1) production plan-
ning and inventory control that deals with production, storage, and the relation between them,
and (2) logistics and distribution that determine how to transport products to customers and
to recycle them [1]. In the twentieth century, the SC has been gaining importance due to
globalisation in the market which increased competition between the companies. Most of
the companies are obliged to maintain high customer services levels while at the same time
they are trying to reduce transportation cost and maintain firms/companies profit margins.
Traditionally planning, purchasing, manufacturing, marketing and distribution organisations
along the SC operate independently. These bodies have their specific intents, and these are
often contradictory but, there is a need for an approach through which these different func-
tions can be combined; SC is a strategy through which such incorporation can be attained.
The combination of production and distribution environments is considered to be the vital
part of supply chain network (SCN) [2]. To integrate such environments, we consider a multi-
product echelon system with the main aim of minimizing the production cost, inventory cost,
transportation cost and delivery time. This problem includes transporting products from plant
facilities to the warehouse and transporting them from warehouse to retailers.

The major objective of this research is to present a fuzzy multi-objective production–distri-
bution model with multiple products while having multiple plants and multiple warehouses.
The present paper studies a special class SC consisting of minimising production cost, inven-
tory holding cost and delivery time of a product. Here the main goal of the DM is to discover
how many units of the product from start to the endpoint should be distributed so that all the
produced quantity are fully used, and all the demand points are fully satisfied in such a way
that the warehouse utilised fully along with initial stock available in it. Since in real-world
problems, the possible values of coefficients of transportation cost, production cost, inventory
holding cost, shipping time, total budget and demand are often vaguely known to the DM.
Due to unknown market conditions and fluctuations, these costs, budget and demand are
considered as fuzzy and are represented in terms of low, moderate, high and extremely high
uncertainties respectively. Here, the parameters are represented by a trapezoidal fuzzy number
and are transformed into deterministic form through graded mean integration representation
method. An EFGP model has been presented in this paper that is useful in determining
the quantity, shipment cost and inventory of products when parameters are not known with
certainty.

The rest of the manuscript is structured as follows: a brief literature review on the produc-
tion–distribution problem (PDP) is given in Sect. 2. In Sect. 3, mathematical formulation of
the problem with fuzzy coefficient along with its assumptions, the indices, the parameters,
and the decision variables are defined. Section 4 presents the proposed EFGP model for
the problem. In Sect. 5, stepwise step algorithm of the proposed approach has been given. A
mathematical example has been providing in Sect. 6 to show the competence of the presented
method. Finally, in Sects. 7 conclusions are discussed based on the solutions obtained from
numerical examples.
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Literature Review

In this section, we have selected most relevant researchers on PDP. In recent years, academi-
cians and practitioners have been given serious focusing on multi-objective problems which
consist of PDP. There have been various articles in academic journals discussing the use of
mathematical programming in PDP. It includes Martin et al. [3], Chen and Wang [4], Oh and
Karimi [5] considered PDP for the multi-national glass industry, steel industry, and chemical
industry and formulated it as a linear programming problem (LPP) with inventory operations.
Later, Kanyalkar and Adil [6] presented PDP for a multi-product environment. Ryu et al. [7],
Bredstrom and Ronnqvist [8] presented two models separately for production planning and
distribution planning where they also considered multi-product environment. In the same
way, Sarrafha et al. [1] extend his work by considering bi-objective mixed integer non-linear
model for PDP where they have considered network from supplier to retailer. Goetschal-
ckx et al. [9] gave a new dimension by formulating two mixed integers linear programming
(MILP) models consisting of the design phase of SC and PDP with inventory and transport
planning. Sabri and Beamon [10] developed an SCN model that incorporates production,
delivery, and demand and trying to reduce the complication via realistic interpretations. Rizk
et al. [11] formulated a MILP model for PDP consisting of single manufacture and several
supply centres. Jung et al. [12] compared two linear programming problem (LPP) models
based on centralised and decentralised production and transport planning system. Park [13]
suggested MILP model of transportation and production cost for an environment which con-
sists of multi-site with multi-retailer. Gen and Syarif [2] developed a genetic algorithm to
minimize the system cost in such a way that the produced product in the plant should be
distributed to right customers without delay in transportation. Huang et al. [14] identified
the decisions made about selecting production, storage and distribution locations, and they
also considered subcontracting part of production to minimize SCN costs. At the strategic
level, they have acknowledged some aspects related to production level, distribution planning,
transport capabilities, and managing safety inventories. Haq et al. [15] suggested a MILP
model reduce the overall cost of the SCN. Their PDP model was a combination of production
cost, inventory cost and transportation cost to determine the optimal production and distribu-
tion as well as inventory level. Gupta et al. [16] formulated a transportation problem under
certain and uncertain environment. They used fuzziness, multi-choices and randomness for
the presentation of uncertainty in the formulated transportation problem and efficiently used
fuzzy goal programming approach for getting the optimal shipment.

The works referred so far for solving the PDP assume that the parameters of the problem
are known precisely. However, there may be a situation when some vagueness present in
the model in a precise manner. It includes, Jindal et al. [17] proposed fuzzy MILP-SCN for
maximizing the profit of the whole system in an ambiguous environment. They considered
a situation of multi-product with some capacitated restrictions on the network. The main
aim of their model is to decide the optimal distribution of products at each source, quan-
tity of products to be refurnished again, and amount of product to take on board from an
external vendor. Selim et al. [18] developed a multi-objective linear programming model
to collaborate PDP in SCN. A fuzzy goal programming (FGP) approach was considered to
achieve DM imprecise aspiration levels. Chen and Lee [19] formulated mixed-integer non-
linear programming (MINLP) model for a multi-stage PDP with vagueness in demands and
product prices. Aliev et al. [20] presented fully fuzzy LPP model for PDP and considered
uncertainties in both the objective function and the decision variables respectively. Tang et al.
[21] formulated a novel model for PDP which is a combination of quadratic and linear pro-
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gramming problem. The main aim of their proposed work is to minimize the total cost of
the system including inventory holding cost with vague demands and supplies. Bilgen [22]
presented a model formulation for assignments of products to production lines which inte-
grate the production and distribution plans by considering vagueness in the available costs.
He implements his proposed approach in the consumer goods industry consisting of multiple
manufacturers, multiple production lines and multiple distributions. Also, Sel and Bilgen
[23] formulated MILP model for a PDP and considered a case study of soft drink industry
for the illustration of their proposed work. Their proposed work considers the formulation
of single objective function which includes production cost, minor and major setup cost,
transportation cost, inventory and backorder cost. Jamalnia and Soukhakian [24] formulated
fuzzy multi-objective non-linear programming (MONLP) model for PDP in a qualitative and
quantitative environment. They proposed a quantitative objective function optimizing the
total production costs, costs of changes in workforce levels, transportation and back ordering
costs, and a qualitative objective function optimizing the total customer pleasure. Two objec-
tives are optimized regarding the inventory level, demand, labour level, machines capacity
and warehouse space. Roghanian et al. [25] constructed bi-level stochastic model for PDP
with multi-levels. The formulated stochastic model is first transformed into the deterministic
form using the chance-constrained technique, and then fuzzy programming techniques are
applied to get the compromise solution. Liang [26] presented MOPDP in a fuzzy environment
and the main aim of the presented model is to minimize the total production and transporta-
tion costs, a total number of rejected items and total delivery time with subject to available
production capacities, allocation flexibility and budget constraints at each source, as well
as forecast demand and warehouse space at each destination. Liang and Cheng [27] applied
fuzzy sets theory to integrate manufacturer decision making in distribution planning under
uncertain environment. To do so, a fuzzy multi-objective linear programming model was
developed to simultaneously minimize the total costs and total delivery time in an SC with
reference to inventory levels, available machine capacity and labour levels at each source,
as well as market demand and available warehouse space at each destination. They used
a well-known FGP approach given by Hannan [28] to solve the constructed mathematical
model. Gholamian et al. [29] formulated fuzzy multi-objective MINLP model to address
a comprehensive multi-site, multi-period and multi-product PDP under uncertainty. Garai
et al. [30] adopted the concept of intuitionistic fuzzy set theory for presenting the uncertainty
in PDP and used T-sets optimization technique for solving the formulated problem. Peidro
et al. [31] considered a real case study of multi-product manufacturer automobile industry
and formulated PDP as a fuzzy linear programming model to integrate planning activities
into a system. The relevant literature related to the work done in this paper is summarised in
a tabular form in Table 1.

Before formulating the problem of interest, we have noticed that all the models that have
been formulated for production–distribution and modelled under different scenarios. From
the Table 1, we have seen that almost authors considered production cost, transportation cost
and inventory cost in their formulated models. Whereas Sarrafha et al. [1], Goetschalckx et al.
[9], Peidro et al. [31], and Latpate and Bajaj [32] have considered the delivery time taken into
account in their modelling, which is also the most influential factor of production–distribution.
We have also noticed that almost authors formulated production–distribution problem with
deterministic parameters. Motivated by such studies, we have formulated the multi-objective
optimization model for production–distribution problem under fuzziness environment, which
is an extended model of Latpate and Bajaj [32].

We have considered multiple products, multiple plants and multiple warehouses with some
modification in the objective functions and constraints under fuzzy environment. An efficient
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Table 1 Shared process information of the reviewed works

Authors Shared process information

Production cost Inventory cost Transportation cost Delivery time

Aliev et al. [20] × ×
Bilgen [22] × × ×
Sel and Bilgen [23] × × ×
Bredstrom and Ronnqvist [8] × ×
Chen and Lee [19] × × ×
Chen and Wang [4] × × ×
Garai et al. [30] × × ×
Gen and Syarif [2] × ×
Gholamian et al. [29] × × ×
Goetschalckx et al. [9] × × × ×
Jamalnia and Soukhakian [24] × ×
Haq et al. [15] × × ×
Jindal et al. [17] × ×
Jung et al. [12] × ×
Kanyalkar and Adil [6] × ×
Liang [26] × × ×
Liang and Cheng [27] × ×
Martin et al. [3] × ×
Oh and Karimi [5] × × ×
Park [13] × × ×
Peidro et al. [31] × × × ×
Rizk et al. [11] × × ×
Roghanian et al. [25] × ×
Ryu et al. [7] × ×
Sabri and Beamon [10] × × ×
Latpate and Bajaj [32] × × × ×
Sarrafha et al. [1] × × × ×
Tang et al. [21] × ×
× indicate the use of methodology used in the paper
Sel and Bilgen [23]

solution procedure of fuzzy goal programming has developed for obtaining the compromise
solution for the model.

Mathematical Model of MOPDP

Production–distribution planning is the most important measure in SCN. To solve this inte-
grated PDP, we have considered an SCN with some suppliers, plants, distribution centres,
warehouses and retailers in fixed locations. In SCN of this study, the used raw materials of
products are supplied from suppliers to plants, and various products produced by each plant if
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produced in the related period, are transferred to various distributors. Here, a distributor can
be understood as a logistics warehouse delivering finished products from a plant to a retailer.
In this research, the allocation between distribution centres to retailers is considered to obtain
the suitable amount of quantity to be distributed. The problem is to meet the production and
distribution requirements at minimum costs of production, distribution and inventory, subject
to various resource constraints. Minimization of total shipping cost, inventory holding cost
and delivery time of products to retailers, are the objective functions of the model. We take
on that minimizing delivery times between the shipments may lead to a decrease in the total
cost of the network. The assumptions, notations and mathematical formulation for this SCN
are presented below:

Nomenclature

Indices
i—index of the product, {i � 1, 2, . . . , I }
j—index of the plant, { j � 1, 2, . . . , J }
l—index of the customer, {l � 1, 2, . . . , L}
Parameters
Vi j—Plant warehouse space required for product i in plant j
U j—Maximum plant warehouse space available for product j
B—Total Budget
dil—Demand for the product i from customer l
Pi j—Per unit production cost for product i at plant j
Ii j—Per unit inventory holding cost for product i at plant j
Si jl—Per unit shipping cost of product i from plant j to customer l
Ti jl—Per unit delivery time of product i from plant j to customer l
Wi j—Initial inventory of a product i at plant j
Decision variable
qi j—Amount of product i produced at plant j
yi j—Inventory of a product i at plant j
ai jl—The amount of product i shipped from plant j to customer l.

The modified model with objective functions and constraints are formulated as follows:
The objective function (1) that minimizes production and inventory cost of PDP is given

by

Min Z1 �
I∑

i�1

J∑

j�1

Pi jqi j +
I∑

i�1

J∑

j�1

Ii j yi j (1)

The objective function (2) that minimizes the delivery time of PDP is given by

Min Z2 �
I∑

i�1

J∑

j�1

L∑

l�1

Ti jlai jl (2)

The objective function (3) that minimizes shipping cost of PDP is given by

Min Z3 �
I∑

i�1

J∑

j�1

L∑

l�1

Si jlai jl (3)

Subject to constraint

Wi j + qi j −
L∑

l�1

ai jl � yi j , ∀i, j (4)
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Constraint Eq. (4) puts restrictions on inventory balance that assures the supply of an item,
at each plant is either held in inventory or shipped to a customer to meet demand.

J∑

j�1

ai jl � dil , ∀i, l (5)

Constraint Eq. (5) puts restrictions on total demand from the customer.

I∑

i�1

Vi j yi j � Uj , ∀i (6)

Constraint Eq. (6) puts restrictions on godown space availability.

I∑

i�1

J∑

j�1

Pi j qi j +
I∑

i�1

J∑

j�1

Ii j yi j +
I∑

i�1

J∑

j�1

L∑

l�1

Si jlai jl ≤ B, ∀i, j, l (7)

Constraint Eq. (7) puts restrictions on a total available budget.

qi j , yi j , ai jl ≥ 0 ∀i, j, l (8)

Constraint Eqs. (8) enforce the non-negativity restriction on the decision variables.
In the above-discussed MOPDP, the input parameters are expected to take deterministic

or known values, but in most of the real-world circumstances these may take vague value for
some probable reasons as listed below:

• The production cost of an item may vary due to change in the cost of raw-materials,
unexpected labour charges, sudden break down of the machines, use of more generators
and soon.

• The cost of shipping one unit from plants to customers may vary from the predetermined
shipping cost.

• Time is taken for transporting the units also varies from the predetermined time.
• Total budget allocated for the production distribution may change as the shipping cost, and

holding cost varies.

Such vagueness in the critical information cannot be captured in a deterministic problem.
Thus the optimal results obtained from this deterministic formulation may not serve the real
purpose of modelling the problem. Due to this, we have considered the model with impre-
cise information. In light of the above-discussed possible situations in MOPDP, the fuzzy
formulation of the problem by replacing the deterministic parameter Pi j , Si jl , Ti jl , Ii j & B
of the stated problem with fuzzy numbers is conventionally expressed as

Model (1)

Min Zk �
I∑

i�1

J∑

j�1

P̃i j qi j +
I∑

i�1

J∑

j�1

Ĩi j yi j ,
I∑

i�1

J∑

j�1

L∑

l�1

T̃i jl ai jl ,
I∑

i�1

J∑

j�1

L∑

l�1

S̃i jl ai jl , k � 1, 2, 3

subject to constraint

Wi j + qi j −
L∑

l�1

ai jl � yi j , ∀i, j

J∑

j�1

ai jl � dil , ∀i, l
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I∑

i�1

Vi j yi j � Uj , ∀i

I∑

i�1

J∑

j�1

P̃i j qi j +
I∑

i�1

J∑

j�1

Ĩi j yi j +
I∑

i�1

J∑

j�1

L∑

l�1

S̃i jl ai jl ≤ B̃, ∀i, j, l

qi j , yi j , ai jl ≥ 0 ∀i, j, l & k � 1, 2, 3

Where all the fuzzy parameter in Problem (1) are considered as the trapezoidal fuzzy
number, and it can be transformed into crisp form by using the ranking function given by
Vahidi & Rezvani [33]. The problem can be re-written as:

Model (2)

Min Zk �

⎛

⎜⎜⎜⎜⎜⎜⎝

I∑

i�1

J∑

j�1

( m Pi j + 2n Pi j + 2α Pi j + β Pi j
6

)
qi j +

I∑

i�1

J∑

j�1

( m Ii j + 2n Ii j + 2α Ii j + β Ii j
6

)
yi j ,

I∑

i�1

J∑

j�1

L∑

l�1

( mTi jl + 2nTi jl + 2αTi jl + βTi jl
6

)
ai jl ,

I∑

i�1

J∑

j�1

L∑

l�1

(m Si jl + 2n Si jl + 2α Si jl + β Si jl
6

)
ai jl

⎞

⎟⎟⎟⎟⎟⎟⎠

subject to constraint

Wi j + qi j −
L∑

l�1

ai jl � yi j , ∀i, j

J∑

j�1

ai jl � dil , ∀i, l

I∑

i�1

Vi j yi j � Uj , ∀i

I∑

i�1

J∑

j�1

(m Pi j + 2n Pi j + 2α Pi j + β Pi j
6

)
qi j +

I∑

i�1

J∑

j�1

(m Ii j + 2n Ii j + 2α Ii j + β Ii j
6

)
yi j

+
I∑

i�1

J∑

j�1

L∑

l�1

(m Si jl + 2n Si jl + 2αSi jl + β Si jl
6

)
ai jl ≤

( m B + 2n B + 2αB + β B

6

)
∀i, j, l

qi j , yi j , ai jl ≥ 0 ∀i, j, l

Optimization Method for MOPDP: Proposed Approach

Fuzzy programming, goal programming and interactive programming is a powerful and
flexible technique that can apply to a variety of decision-making problems involving mul-
tiple objectives. Several contributions have reported in the literature on goal programming,
fuzzy programming, and interactive programming approach [34–40]. In all these literature
an efficient methodology is developed for solving multi-objective programming problems by
employing the FGP approach. Singh et al. [39] developed a fuzzy efficient interactive goal
programming approach by extending the goal programming approach given by Waeil and
Lee [40] for solving the multi-objective transportation problem. Motivated by such studies
and after doing some manipulations in FGP approach, the proposed approach can be stated
as with linear membership function μk(Zk(X )) [40] for the kth objective function as follows:

123



Int. J. Appl. Comput. Math (2018) 4:76 Page 9 of 19 76

For the fuzzy-min, the linear membership function is defined as:

μk(Zk(X )) �
⎧
⎨

⎩

1, i f Zk(X ) ≤ lk
Uk−Zk (X )
Uk−lk

, i f lk ≤ Zk(X ) ≤ Uk

0, i f Zk(X ) ≥ Uk

(9)

For the fuzzy-max, the linear membership function is defined as

μk(Zk(X )) �
⎧
⎨

⎩

1, i f Zk(X ) ≤ lk
Zk (X )−lk
Uk−lk

, i f lk ≤ Zk(X ) ≤ Uk

0, i f Zk(X ) ≥ Uk

(10)

where Uk & lk is the upper and lower tolerance limit of the objective function. The general
aggregation function μD : S → [0, 1] can be defined as

μD(X ) � μD{μ1(Z1(X )), μ2(Z2(X )), μ3(Z3(X )), . . . , μK (ZK (X ))} (11)

Once the decision vector D is known, we define X∗ ∈ S to be an optimal decision if
μD(X∗) � max μD(X ) ∀X ∈ S. Another possibility could be to choose a λk ∈ [0, 1] and
determine all point x∗ ∈ S for which μD(X∗) ≥ λ. This decision X∗ will have at least
one lambda degree of membership grades. Following the fuzzy decision together with linear
membership function, a fuzzy optimization model of MOPDP can be written as:

Max Min μk(Zk(X )), k � 1, 2, . . . , K

subject to constraint

Wi j + qi j −
L∑

l�1

ai jl � yi j , ∀i, j

J∑

j�1

ai jl � dil , ∀i, l

I∑

i�1

Vi j yi j � Uj , ∀i

I∑

i�1

J∑

j�1

P̃i j qi j +
I∑

i�1

J∑

j�1

Ĩi j yi j +
I∑

i�1

J∑

j�1

L∑

l�1

S̃i jlai jl ≤ B̃, ∀i, j, l

qi j , yi j , ai jl ≥ 0 ∀i, j, l
By introducing an auxiliary variable for each objective functions λk , the above problem

can be re-stated as:

Max λk, k � 1, 2, . . . , K

subject to constraint

λk ≤ μk(Zk(X )), k � 1, 2, 3

Wi j + qi j −
L∑

l�1

ai jl � yi j , ∀i, j

J∑

j�1

ai jl � dil , ∀i, l
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I∑

i�1

Vi j yi j � Uj , ∀i

I∑

i�1

J∑

j�1

P̃i j qi j +
I∑

i�1

J∑

j�1

Ĩi j yi j +
I∑

i�1

J∑

j�1

L∑

l�1

S̃i jlai jl ≤ B̃, ∀i, j, l

qi j , yi j , ai jl ≥ 0 ∀i, j, l
In the above formulation, constraints λk ≤ μk(Zk(X )) can be reduced to the following

form:

λk(Uk − LK ) + Zk(X ) ≤ Uk, k � 1, 2, . . . , K (12)

In many situations, a DM may not be able to determine precisely the relative importance
of the goals, i.e., they minimize undesired deviations from target values. The elementary
approach for EFGP is to set up a precise goal gk for each Zk(X ), k � 1, 2, . . . , K ; then
the total deviation from the quantified goals

∑K
k�1 |dk | is to be minimized, where dk is the

deviation from the set numeric goal gk . For formulating the absolute values, dk can split
into positive and negative parts such that |dk |� d+

k − d−
k , with d+

k ≥ 0 and d+
k , d−

k � 0.
These negative deviations d−

k are known as underachievement and positive deviation d+
k are

known as over-achievement from the goal respectively. For, EFGP model let us introduce the
positive and negative deviations d+

k and d−
k respectively to the above problem, as follows:

(Zk(x) − gk)wk − (Uk − gk)d+
k + (Uk − gk)d−

k � 0, k � 1, 2, . . . , K (13)

Using Eqs. (9)–(13), the FEGP model for MOPDP can be formulated as:

Max wkλk, k � 1, 2, . . . , K

subject to constraint

λk ≤ μk(Zk(X )), k � 1, . . . , s − 1

λk ≤ μk(Zk(X∗)), k � s, s + 1, . . . , K

(Zk(X ) − gk)wk − d+
k + d−

k � 0, k � 1, . . . , s − 1

(Zk(X∗) − gk)wk − d+
k + d−

k � 0, k � s, s + 1, . . . , K

Wi j + qi j −
L∑

l�1

ai jl � yi j , ∀i, j

J∑

j�1

ai jl � dil , ∀i, l

I∑

i�1

Vi j yi j � Uj , ∀i

I∑

i�1

J∑

j�1

P̃i j qi j +
I∑

i�1

J∑

j�1

Ĩi j yi j +
I∑

i�1

J∑

j�1

L∑

l�1

S̃i jlai jl ≤ B̃, ∀i, j, l

qi j , yi j , ai jl ≥ 0 ∀i, j, l
Here, wk � 1

uk−gk
, k � 1, 2, . . . , K are the relative weights attached to each objective

functions. Where k � 1, . . . , s − 1 are the objective functions for which decision makers are
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satisfied and k � s, s + 1, . . . , K are the objective functions for which decision makers need
improvement.

Model Algorithm

The solution procedure for solving MOPDP is summarised in the following steps:
Step 1 Solve the stated problem as a single objective problem using only one objective at

a time and ignoring the other objective functions. The solutions thus obtained are considered
to be ideal solutions for the objectives.

Step 2 The ideal solutions of each objective function is then used to calculate the value
of all other objectives. Find the goal level for each objective function by calculating the
maximum and a minimum value of the kth objective function. Now, we obtain the upper and
lower tolerance limits for each objective function, i.e.Uk � Max (Zk) and Lk � Min (Zk);
k =1,2,…, K.

Step 3 Set up the linear membership function for the given objective functions as defined
in Sect. 5.

Step 4 Construct the fuzzy programming model using the membership function and solve
it for the desired allocation.

Step 5 Then the decision maker decides, whether he accepts the solution or not. If not, go
to Step 6. Otherwise, go to Step 4.

Step 6 If the DM is moderately happy with the obtained solution and needs perfection or
changes in the value of some objective function then replace the upper bound with the new
value of objective function respectively. Keep the old one as same it is.

Step 7 Construct another membership function by introducing the deviational variables
and add it to the fuzzy programming model and solve it using optimizer software LINGO
16.0. After solving the model, we get the most preferred fuzzy efficient and compromise
solution for MOPDP.

Numerical Case Study

Given illustrating the proposed method, we consider the modelling and optimization of
production of two types of products at different locations. Let us define the vagueness in
shipping cost, inventory holding cost and production cost delivery time and customer demand
in the form of the linguistic variable low, moderate, high and extremely high respectively and
can be expressed as:

Product-I
Table 2 provides the information of shipping cost from different manufacturer locations

to different customer’s locations.
Table 3 provides the information of delivery time from different manufacturer locations

to different customer’s locations.
Table 4 provides the information of customer’s demand from various locations.
Table 5 provides the manufacturer information with inventory holding cost and production

cost along with original available stock and space required per product.
Product-II
Table 6 provides the information of shipping cost from different manufacturer locations

to different customer’s locations.
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Table 2 Shipping cost

Manufacturer Customer’s locations

Pune Ahmedabad Bangalore Delhi

(Low, moderate, high, extremely high)

Indore (0.6, 1.6, 2.6, 4.0) (1.6, 2.6, 3.6, 5.0) (3.9, 4.9, 5.9, 7.0) (1.7, 2.7, 3.7, 5.0)

Nagpur (1.1, 2.1, 3.1, 4.5) (5.4, 6.4, 7.4, 9.0) (1.4, 2.4, 3.4, 5.0) (1.4, 2.4, 3.4, 5.0)

Jaipur (1.6, 2.6, 3.6, 5.0) (4.3, 5.3, 6.3, 7.5) (2.3, 3.3, 4.3, 6.5) (1.4, 2.4, 3.4, 4.5)

Transportation cost in thousands of rupees

Table 3 Delivery time

Manufacturer Customer locations

Pune Ahmedabad Bangalore Delhi

(Low, moderate, high, extremely high)

Indore (14, 24, 34, 50) (33, 43, 53, 70) (11, 21, 31, 45) (24, 34, 44, 60)

Nagpur (14, 24, 34, 45) (23, 33, 43, 55) (14, 24, 34, 50) (21, 31, 41, 55)

Jaipur (24, 34, 44, 55) (24, 34, 44, 55) (16, 26, 36, 50) (13, 23, 33, 45)

Delivery time in hours

Table 4 Customer demand

Customer locations Pune Pune Pune Pune

(Low, moderate, high, extremely high)

Demand (15, 25, 35, 50) (15, 25, 35, 50) (24, 34, 44, 60) (28, 38, 48, 60)

Demand in thousand units

Table 5 Manufacturer information

Manufacturer Inventory holding
cost

Production cost Initial stock Space required per
product

(Low, moderate, high, extremely high)

Indore (0.1, 0.4, 0.8, 1.4) (3.6, 4.6, 5.6, 7.0) 10 0.3

Nagpur (0.2, 0.5, 0.9, 1.5) (2.5, 3.5, 4.5, 6.0) 12 0.3

Jaipur (0.3, 0.6, 1.0, 1.6) (3.4, 4.4, 5.4, 7.0) 15 0.3

Inventory holding cost and production cost in thousands of rupees; initial stock in thousand units; space in sq.
ft

Table 7 provides the information of delivery time from different manufacturer locations
to different customer’s locations.

Table 8 provides the information of customer’s demand from various locations.
Table 9 provides the manufacturer information with inventory holding cost and production

cost along with original available stock and space required per product.
Table 10 provides the manufacturer information with total available storage space in

different locations.
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Table 6 Shipping cost

Manufacturer Customer locations

Pune Ahmedabad Bangalore Delhi

(Low, moderate, high, extremely high)

Indore (2.3, 3.3, 4.3, 5.5) (3.4, 4.4, 5.4, 7.0) (5.3, 6.3, 7.3, 9.0) (2.1, 3.1, 4.1, 6.5)

Nagpur (2.4, 3.4, 4.4, 6.0) (4.5, 5.5, 6.5, 8.0) (5.0, 6.0, 7.0, 8.5) (6.1, 7.1, 8.1, 9.5)

Jaipur (3.4, 4.4, 5.4, 7.0) (5.5, 6.5, 7.5, 9.0) (7.3, 8.3, 9.3, 11.0) (3.3, 4.3, 5.3, 6.5)

Transportation cost in thousands of rupees

Table 7 Delivery time

Manufacturer Customer locations

Pune Ahmedabad Bangalore Delhi

(Low, moderate, high, extremely high)

Indore (9, 19, 29, 45) (26, 36, 46, 60) (23, 33, 43, 60) (20, 30, 40, 55)

Nagpur (18, 28, 38, 50) (38, 48, 58, 70) (23, 33, 43, 55) (42, 52, 62, 75)

Jaipur (22, 32, 42, 55) (38, 48, 58, 70) (28, 38, 48, 60) (9, 19, 29, 42)

Delivery time in hours

Table 8 Customer demand

Customer locations Pune Pune Pune Pune

(Low, moderate, high, extremely high)

Demand (13, 23, 33, 50) (15, 25, 35, 50) (20, 30, 40, 60) (30, 40, 50, 65)

Demand in thousand units

Table 9 Manufacturer information

Manufacturer Inventory holding
cost

Production cost Initial stock Space required Per
product

(Low, moderate, high, extremely high)

Indore (0.4, 0.8, 1.2, 1.8) (4.4, 5.4, 6.4, 8.0) 15 0.6

Nagpur (0.3, 0.7, 1.1, 1.7) (7.0, 8.0, 9.0, 10.5) 17 0.6

Jaipur (0.5, 0.9, 1.3, 1.9) (3.3, 4.3, 5.3, 7.5) 14 0.6

Inventory holding cost and production cost in thousands of rupees; initial stock in thousand units; space in sq.
ft

Table 10 Total available storage
space

Manufacturer Indore Nagpur Jaipur

Available
Space (Sq.
ft.)

5000 2000 3000

Total available space in sq. ft
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The total available imprecise budget for the production–distribution is Rs. (150,000,
250,000, 350,000, 500,000). In Sect. 3, we have prepared our MOPDP model, and some
of its parameters are considered to be fuzzy. Value of all the parameters of the formulated
MOPDP model is given in Tables 2, 3, 4, 5, 6, 7, 8, 9 and 10. Before formulating the model,
we have found out the equivalent crisp form of all the considered fuzzy parameters. After
getting all the crisp value of parameters, the formulated MOPDP is given below:

Formulated problem

Min Z1 � 5.17q11 + 4.08q12 + 5.00q13 + 6.00q21 + 8.58q22 + 5.00q23

+ 0.65y11 + 0.75y12 + 0.85y13 + 1.03y21 + 0.93y22 + 1.13y23

Min Z2 � 30.00a111 + 49.17a112 + 26.67a113 + 40.00a114 + 29.17a121

+ 38.33a122 + 30.00a123 + 36.67a124 + 39.17a131 + 39.17a132

+ 31.67a133 + 28.33a134 + 25.00a211 + 41.67a212 + 37.17a213

+ 35.83a214 + 33.33a221 + 53.33a222 + 38.33a223 + 57.50a224

+ 37.50a231 + 53.33a232 + 43.33a233 + 24.50a234

Min Z3 � 2.17a111 + 3.17a112 + 5.42a113 + 3.25a114 + 2.67a121 + 7.00a122

+ 3.00a123 + 3.00a124 + 3.17a131 + 5.83a132 + 4.00a133 + 2.92a134

+ 3.83a211 + 5.00a212 + 6.93a213 + 3.83a214 + 4.00a221 + 6.08a222

+ 6.58a223 + 7.67a224 + 5.00a231 + 7.08a232 + 8.92a233 + 4.83a234

subject to constraint

− q11 + a111 + a112 + a113 + a114 + y11 � 10

− q12 + a121 + a122 + a123 + a124 + y12 � 12

− q13 + a131 + a132 + a133 + a134 + y13 � 15

− q21 + a211 + a212 + a213 + a214 + y21 � 15

− q22 + a221 + a222 + a223 + a224 + y22 � 17

− q23 + a231 + a232 + a233 + a234 + y23 � 14

a111 + a121 + a131 � 30.8333

a112 + a122 + a132 � 30.8333

a113 + a123 + a133 � 40.0000

a114 + a124 + a134 � 43.3333

a211 + a221 + a231 � 29.1667

a212 + a222 + a232 � 30.8333

a213 + a223 + a233 � 36.6667

a214 + a224 + a234 � 45.8333

0.3y11 + 0.6y21 � 5000

0.3y12 + 0.6y22 � 2000

0.3y13 + 0.6y23 � 3000

5.17q11 + 4.08q12 + 5.00q13 + 6.00q21 + 8.58q22 + 5.00q23

+ 0.65y11 + 0.75y12 + 0.85y13 + 1.03y21 + 0.93y22 + 1.13y23

+ 2.17a111 + 3.17a112 + 5.42a113 + 3.25a114 + 2.67a121 + 7.00a122

+ 3.00a123 + 3.00a124 + 3.17a131 + 5.83a132 + 4.00a133 + 2.92a134
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+ 3.83a211 + 5.00a212 + 6.93a213 + 3.83a214 + 4.00a221 + 6.08a222

+ 6.58a223 + 7.67a224 + 5.00a231 + 7.08a232 + 8.92a233 + 4.83a234 ≤ 308333.3333

Each objective of the formulated MOPDP is solved separately by using the optimising
software LINGO 16.0, the values of the objective function are

Z1(q1
i j , a

1
i jl , y

1
i j ) � 121780.60, Z2(q1

i j , a
1
i jl , y

1
i j ) � 10436.42, Z3(q1

i j , a
1
i jl , y

1
i j ) � 1492.39,

Z1(q2
i j , a

2
i jl , y

2
i j ) � 122433.50, Z2(q2

i j , a
2
i jl , y

2
i j ) � 8875.16, Z3(q2

i j , a
2
i jl , y

2
i j ) � 1382.81,

Z1(q3
i j , a

3
i jl , y

3
i j ) � 122600.10, Z2(q3

i j , a
3
i jl , y

3
i j ) � 9929.94, Z3(q3

i j , a
3
i jl , y

3
i j ) � 1093.84

The upper and lower bounds of each objective function can be expressed as follows:

121780.60 ≤ Z1 ≤ 122600.10, 8875.16 ≤ Z2 ≤ 10436.42, 1093.84 ≤ Z3 ≤ 1492.39

The membership function of the objectives functions respectively can be constructed as:

μ1(Z1(X )) �
⎧
⎨

⎩

1, i f Z1(X ) ≤ 121780.60
122600.10−Z1(X )

819.50 , i f 121780.60 < Z1(X ) < 122600.10
0, i f Z1(X ) ≥ 122600.10

μ2(Z2(X )) �
⎧
⎨

⎩

1, i f Z2(X ) ≤ 8875.16
10436.42−Z2(X )

1561.26 , i f 8875.16 < Z2(X ) < 10436.42
0, i f Z2(X ) ≥ 10436.42

μ3(Z3(X )) �
⎧
⎨

⎩

1, i f Z3(X ) ≤ 1093.84
1492.39−Z3(X )

398.55 , i f 1093.84 < Z3(X ) < 1492.39
0, i f Z3(X ) ≥ 1492.39

By Combining all the membership functions, the above-formulated problem takes the
following form:

Max � λ1 + λ2 + λ3

subject to constraint of formulated problem

5.17q11 + 4.08q12 + 5.00q13 + 6.00q21 + 8.58q22 + 5.00q23 + 0.65y11 + 0.75y12

+ 0.85y13 + 1.03y21 + 0.93y22 + 1.13y23 ≤ 122600.10 − 819.50λ1

30.00a111 + 49.17a112 + 26.67a113 + 40.00a114 + 29.17a121 + 38.33a122 + 30.00a123

+ 36.67a124 + 39.17a131 + 39.17a132 + 31.67a133 + 28.33a134 + 25.00a211 + 41.67a212

+ 37.17a213 + 35.83a214 + 33.33a221 + 53.33a222 + 38.33a223 + 57.50a224 + 37.50a231

+ 53.33a232 + 43.33a233 + 24.50a234 ≤ 10436.42 − 1561.26λ2

2.17a111 + 3.17a112 + 5.42a113 + 3.25a114 + 2.67a121 + 7.00a122 + 3.00a123 + 3.00a124

+ 3.17a131 + 5.83a132 + 4.00a133 + 2.92a134 + 3.83a211 + 5.00a212 + 6.93a213 + 3.83a214

+ 4.00a221 + 6.08a222 + 6.58a223 + 7.67a224 + 5.00a231 + 7.08a232 + 8.92a233

+ 4.83a234 ≤ 1492.39 − 398.55λ3

0 ≤ λi ≤ 1, i � 1, 2, 3
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The above-formulated problem is solved by using the optimising software LINGO16.0;
we have Z1 � 121926.00, with the value of λ1 � 0.8225615 that mean, we reach the
achievement level of 82%. Z2 � 9342.56, with the value of λ2 � 0.7006289 that mean, we
reach the achievement level of 70%.Z3 � 1167.93, with the value of λ3 � 0.8141164 that
mean, we reach the achievement level of 81%.

DM assumes that the second objective function does not minimize efficiently and it further
needs more improvement. Again, the upper and lower bounds of each objective function can
be expressed as follows:

121780.60 ≤ Z1 ≤ 122600.10, 8875.16 ≤ Z2 ≤ 9342.56, 1093.84 ≤ Z3 ≤ 1492.39

Based on the modification, the relative weights of the objective functions considered by
the decision maker are w1 � 0.0012, w2 � 0.0021 and w3 � 0.0025, then using (5), the
above-formulated problem is developed as follows:

Max � 0.0012λ1 + 0.0021λ2 + 0.0025λ3

subject to constraint of formulated problem

5.17q11 + 4.08q12 + 5.00q13 + 6.00q21 + 8.58q22 + 5.00q23 + 0.65y11 + 0.75y12

+ 0.85y13 + 1.03y21 + 0.93y22 + 1.13y23 ≤ 122600.10 − 819.50λ1

30.00a111 + 49.17a112 + 26.67a113 + 40.00a114 + 29.17a121 + 38.33a122 + 30.00a123

+ 36.67a124 + 39.17a131 + 39.17a132 + 31.67a133 + 28.33a134 + 25.00a211

+ 41.67a212 + 37.17a213 + 35.83a214 + 33.33a221 + 53.33a222 + 38.33a223

+ 57.50a224 + 37.50a231 + 53.33a232 + 43.33a233 + 24.50a234

≤ 9342.56 − 467.40λ2

2.17a111 + 3.17a112 + 5.42a113 + 3.25a114 + 2.67a121 + 7.00a122 + 3.00a123 + 3.00a124

+ 3.17a131 + 5.83a132 + 4.00a133 + 2.92a134 + 3.83a211 + 5.00a212 + 6.93a213

+ 3.83a214 + 4.00a221 + 6.08a222 + 6.58a223 + 7.67a224 + 5.00a231 + 7.08a232

+ 8.92a233 + 4.83a234 ≤ 1492.39 − 398.55λ3

(5.17q11 + 4.08q12 + 5.00q13 + 6.00q21 + 8.58q22 + 5.00q23 + 0.65y11 + 0.75y12

+ 0.85y13 + 1.03y21 + 0.93y22 + 1.13y23 − 121780.60) × 0.0012 − 819.50d+
1

+ 819.50d−
1 � 0

(30.00a111 + 49.17a112 + 26.67a113 + 40.00a114 + 29.17a121 + 38.33a122 + 30.00a123

+ 36.67a124 + 39.17a131 + 39.17a132 + 31.67a133 + 28.33a134 + 25.00a211

+ 41.67a212 + 37.17a213 + 35.83a214 + 33.33a221 + 53.33a222 + 38.33a223

+ 57.50a224 + 37.50a231 + 53.33a232 + 43.33a233 + 24.50a234 − 8875.16)

× 0.0021 − 467.40d+
2 + 467.40d−

2 � 0

(2.17a111 + 3.17a112 + 5.42a113 + 3.25a114 + 2.67a121 + 7.00a122 + 3.00a123 + 3.00a124

+ 3.17a131 + 5.83a132 + 4.00a133 + 2.92a134 + 3.83a211 + 5.00a212 + 6.93a213 + 3.83a214

+ 4.00a221 + 6.08a222 + 6.58a223 + 7.67a224 + 5.00a231 + 7.08a232 + 8.92a233 + 4.83a234

− 1093.84) × 0.0025 − 398.55d+
3 + 398.55d−

3 � 0

0 ≤ λi ≤ 1, i � 1, 2, 3 and

d+
1 , d−

1 , d+
2 , d−

2 , d+
3 , d−

3 ≥ 0
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Table 11 Optimal solution for different values of demand quantity

S.No. Demand(Product I; Product II) Solution (Z1, Z2, Z3)

1 (40, 40, 50, 50; 30, 30, 40, 40) (121, 910.90, 9916.900, 1190.90)

2 (50, 50, 60, 60; 40, 40, 50, 50) (122,274.10, 12,425.30, 1495.90)

3 (60, 60, 70,70; 50,50,60,60) (122,637.30, 14,933.70, 1800.90)

4 (70, 70, 80, 80; 60, 60, 70, 70) (123,000.50, 17,442.10, 2105.90)

5 (75, 75, 85, 85; 65, 65, 75, 75) (123,182.10, 18,696.30, 2258.40)

6 (80, 80, 90, 90; 70, 70, 80, 80) (123,363.70, 19,950.50, 2410.90)

7 (85, 85, 90, 90; 75, 75, 85, 85) (123,545.30, 21,204.70, 2563.40)

8 (40, 40, 45, 45; 80, 80, 70, 70) (122,670.10, 14,825.50, 1915.10)

9 (35, 35, 40, 40; 85, 85, 75, 75) (122,688.50, 14,854.70, 1955.00)

10 (30, 30, 50, 50; 90, 90, 95, 95) (122,979.30, 16,633.95, 2239.85)

Using the optimising software LINGO 16.0 on the above deterministic model, we obtain
the optimal allocations which are as follows:

q11 � 7.50, q12 � 67.50, q13 � 25.50, q21 � 8366.493, q22 � 3316.33, q23 � 5047, a112 � 17.50,

a113 � 27, a121 � 27.50, a123 � 26.50, a124 � 25.50, a134 � 31, a211 � 26, a212 � 16, a213 � 33,

a234 � 36, y21 � 8333.33, y22 � 3333.33, y23 � 5000

Let us suppose that the decision maker accepts this solution and considers it the preferred
compromise solution.

Z1 � 121831.70 with the value of λ1 � 0.815652 that mean, we reach the achievement
level of81% with deviation from the goal is d1 = 0.0069994.

Z2 � 9000.96, with the value of λ2 � 0.7308599 that mean, we reach the achievement
level of 73% with deviation from the goal is d2 = 0.0041157.

Z3 � 1103.47, with the value of λ3 � 0.7476309 that mean we reach the achievement
level of74% with deviation from the goal is d3 = 0.0058303.

Therefore, this solution satisfies all the termination conditions of the EFGP approach, and
it becomes the satisfactory solution to the DM. We have also considered a situation when
there is some deviation in demand units of product I and product II respectively. Some try-outs
have been executed to inspect the sensitivity of overall demand of products on the objective
functions. These try-outs have shown that as the demand varies for both the products up to
finite lower and upper limits, gives the global optimal and feasible results (Table 11).

Conclusion

Production and distribution system are connected and interrelated to each other. The produc-
tion of product quantity is entirely always depending on the amount of demand raised by
the customers. It is crucial that all products manufactured in the system should be shipped
to retailers or stored at storage points in the system. This paper develops a multi-objective
optimization model for an SCN involving suppliers, factories, distribution centres and retail-
ers. The nature of the logistic decisions is so strategic about to procurement of raw materials
from suppliers, production of finished products at factories, distribution of finished product
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store retailers via distribution centres, and the storage of raw materials and end products at
factories and distribution centres.

These days some researchers have shown interest in the area of fuzzy SCN, and various
attempts have been made to study the solution of these types of problems. When vagueness
exists in the above-defined PDP, it is not always possible to find the optimal or efficient
solution for the multi-objective optimization problem. In this situation, decision maker trying
to find the compromise solution using a fuzzy set theoretic approach which is acceptable to
the decision maker. Therefore to overcome the shortcomings of the existing methods we
introduced a new formulation of PDP involving trapezoidal fuzzy numbers for the shipping
costs, inventory holding cost and delivery time of the products. We proposed an EFGP
approach for solving fuzzy MOPDP by the help of graded mean integration representation
method which has been used to get the crisp value of the fuzzy parameters. In our proposed
method, after determining the fuzzy goals of the decision-making problem, a satisfactory
solution is efficiently derived by updating the minimal satisfactory levels of decision makers
with considerations of the overall satisfactory solution.

The solution procedure of proposed approach is straightforward, efficient and it is believed
that by adopting the proposed approach, the company’s profits will soar and helps to achieve
sufficient savings in the SCN. It is believed that the present study will increase the interest
in handling multi-objective optimization problems more to other interested researchers and
practitioners. In our future works, we will try to develop the solution algorithm for more
large scale and complex situations of SCN problems.

Funding Funding was provided by University Grant Commission (UGC), INDIA [UGC start-up Grant No.
F.30-90/2015 (BSR)].
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