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Abstract This paper investigated two warehouse inventory model for a single deteriorating
items under the assumption of shortages and partial backlogging under payments delay and
the effect of inflation and time value for money is also incorporated. Again, two warehouse
capacity (owned and rented) have been considered over the finite horizon planning under
which back-ordering is assumed. When the order quantity becomes higher than the storage
capacity in own warehouse then the system involves two warehouse model. In this model,
excess inventory are stored in rented warehouses which are assumed to charge higher unit
holding costs than owned warehouses. Moreover, in rented warehouse item deteriorates with
higher rates than in owned warehouse. At first own warehouse are filled out by its storage
capacity and the rests are kept in rented warehouse. So, at first, the items in RW decreases
due to demand and deterioration until it reaches to the level zero while on the other hand a
portion on the inventory on OW is depleted due to deterioration only. Then, the inventory
on OW decreases due to demand and deterioration until it reaches to the level zero. Finally,
shortages start and backlogging rate is negative exponential of function waiting time. Here,
the demand is used as exponential function of time and backlogging rate varies negative
exponential function of waiting time. The total cost function is carried out under the effect of
JIT setup cost. Two numerical examples are illustrated for the developed model and sensitivity
analysis has been carried out to identify behaviour of model parameters.
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Introduction

For last twenty years, many researchers have been attracted by the effect of permissible
delay in payments on optimal inventory management. From an economic point of view, such
type of credit policies can be applied to get larger orders since this credit policies results
as an alternative solution of price discounts. In that case the main problem is to decide the
place where the items should get stock. Many researcher have worked considering the effect
of permissible delay in payments for a single warehouse with unlimited capacity. But in a
more practical sense, any warehouse has limited capacity. Hartely [1] developed an inventory
model involving two different warehouses, one of which is owned (OW) while the other is
rented (RW). The items are stored first in OW which has a fixed capacity W and the only
excess units are stored in RW which has higher holding cost than in OW. Goswami and
Chaudhuri [2] designed two-level storage model including both with and without shortages
in which demand was considered as linear increasing function of time. But in this model
deterioration was not taken into account. Sarma [3] first developed a two-warehouse model
for deteriorating items with an infinite replenishment rate and shortages. Other notable papers
in this direction are by Pakkala and Achary [4], Zhou and Yang [5], Lee [6], Yang [7]. Some
most recent research works in this direction are by Jaggi et al. [8], Tiwari et al. [9], Sett et
al. [10].

Again many researchers have been working on the effect of permissible delays in payments
on inventory management during last two decades. Shah [11] considered an inventory model
for exponentially decaying inventory under permissible delay in payment. Aggarwal and
Jaggi [12] developed economic order policies for deteriorating items under the effect of
permissible delay in payments. Then Jamal et al. [13] generalized the model of Aggarwal
and Jaggi considering shortages. Sarkar [14] developed an EOQ model with time varying
deterioration rate in which the effect of delay in payments were also taken into account.
Other numerous papers related to delay in payments are Chung and Liao [15,16], Shinn and
Hwang [17], Huang and Liao [18], Liao [19,20], Chen et al. [21].

Again, in real world problem, deterioration of many items which is defined as the decay,
damage of stored items can not be neglected and as a result of which it decreases usefulness
of the items. Ghare and Schrader [22] were the pioneers to establish an inventory model for
deteriorating items. Covert and Philip [23] extended Ghare and Schrader’s constant deterio-
ration rate to a two parameter weibull distribution. Cheng et. al. [24] developed an inventory
control model for deteriorating items in which trapezoidal type demand and partial backlog-
ging were assumed. Chung and Lin [25] studied trade credit issue in a supply chain model
proposed to determine the order quantity of a deteriorating item. Some other related article
in this direction are Cardenas-Barron [26], Widyadana [27], Chung et. al. [28]. Recently
many researcher have worked on various types of deterioration like probabilistic deteriora-
tion, variable deterioration, deterioration on seasonal product and some most recent works
in this directions are by Sarkar and Sarkar [29], Sarkar and Sarkar [30], Sarkar et al. [31],
sarkar [32], Sarkar et al. [33], Sarkar et al. [34], Wu et al. [35], Sarkar et al. [36], Shah and
Cardenas-Barron [37].

Furthermore, both inflation and time value of money have main effect on financial markets.
Ray and Chaudhuri [38] developed a finite-horizon EOQ model with back ordering and
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varying demand rate whereas the effects of inflation and time value of money were taken
into consideration. Chen [39] considered the situation in which the demand rate is time-
proportional and shortages are fully back ordered. Other articles in this direction come from
Bose et.al. [40], Sarkar et al. [41], Roy and Chaudhuri [42], Sana [43], Roy and Chaudhuri
[44]. Further more many researcher have considered credit policy in their article and some
of which are by Ouyang et al. [45], Wu et al. [46], Chun et al. [47].

Yang [48] developed two-warehouse inventory management problem for perishable prod-
ucts with constant demand rate and back ordering shortages under inflation. Hou [49]
developed an EOQ model over finite planning horizon for perishable products with stock-
dependent demand rate and full back ordering under inflation and time value of money.
Cardenas-Barron et. al. [50] also developed an EOQ model in honor of Ford Whitman Harris
where as Liao and Huang [51] developed a two-warehouse deterministic inventory model
for deteriorating items considering delay in payments and capacity constraints. But in this
model partial backlogging and time value of money were not taken into consideration. Some
recent works relating imperfect production, variable back order, inspection, trade credits and
time dependent back-logging are by Sarkar and Saren [52], Sarkar [53], Sarkar et al. [54],
Tripathi and Chaudhary [55], Das et al. [56], Sarkar et al. [57].

Liao and Huang [51] evaluated a two-warehouse deterministic inventory model for dete-
riorating items considering delay in payments and capacity constraints. But in this model
shortages, partial backlogging and time value of money were not taken into account. In this
article we extended Liao and Huang [51] model by developing a two-warehouse inventory
model for deteriorating items with the consideration of shortages and partial backlogging
under delay in payments and the effect of inflation and time value of money.

Notation and Assumptions

Based on the data of Liao and Huang [49] model, this paper is developed with the following
Notation and Assumptions.

Notation

C0: JIT setup cost per replenishment
D: demand rate per unit time
W : storage capacity of OW
T : length of each replenishment cycle
s: selling price per unit
c: purchasing cost per unit
IR(t): on hand inventory at time t in rented warehouse
IO(t): on hand inventory at time t in own warehouse
h0: holding cost per unit time in OW
hr : holding cost per unit time RW with hr ≥ h0

α: deterioration rate in OW, where 0 < α < 1
β: deterioration rate in RW, where 0 < β < 1 and β > α

tw: time at which the inventory level reaches zero in RW
M : credit period set by the supplier
I0: capital opportunity cost (as a percentage)
Ie: earned interest rate (as a percentage)
Ic: payable interest rate (as a percentage)
H : length of planning horizon
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i : constant inflation rate
r : discount rate, representing the time value of money
R: r− i, representing the net constant discount rate of inflation
t j : time at which the inventory level in jth replenishment cycle drops to zero
Tj : total time that is elapsed up to and including the jth replenishment cycle where T0 = 0,
T1 = T and TN = H
cs : shortage cost per unit time
Im : maximum inventory level at the beginning of each replenishment cycle
Is : maximum shortage quantity at the end of each replenishment cycle
F : fraction of replenishment cycle where the net stock is positive (a decision variable)
N : number of replenishment during the planning horizon, N = H

T
Q: order quantity of the item.

Assumptions

(a) The planning horizon in this model is finite.
(b) The demand rate is a exponential increasing function of time D(t) = aebt , a,b >0. The

deterioration rates are constant.
(c) The owned warehouse (OW) has a fixed capacity of W units.
(d) The rented warehouse (RW) has unlimited capacity.
(e) The items in OW are consumed only after consuming the items kept in RW.
(f) In shortage period [t1,T] the demand De−δ(T−t) at any time t is satisfied whereas the

remaining part of the demand D(1−e−δ(T−t)) remains unsatisfied, where δ is a positive
constant and (T− t) is the waiting time until the next replenishment begins at time T.
So the backlogging rate is De−δ(T−t) which varies as negative exponential function of
waiting time.

(g) Single deteriorating type of product has been considered.
(h) The inventory level at the end of the planning horizon will be zero.
(i) The cost factors are deterministic, but will be inflated under constant inflation rate.
(j) The number of replenishment are restricted to integer one.
(k) The inventory costs (including holding cost and deterioration cost) in RW are higher

than those in OW. That is hr + βc > h0 + αc.
(l) The last order is only being placed to satisfy the shortage of last period.

Mathematical Formulation

The problem which we have discussed here is how retailers know whether or not to rent RW
to hold the items. If the order quantity Q ≤ W then it is not necessary to rent the warehouse.
But if Q > W then W units are stored in OW and the remainder is dispatched in RW. Here
we shall denote ta = 1

α+b log(1+ (α+b)W
a ) (see “Appendix A”). The inequality Q > W holds

if and only if ta < t1 and then the situation of two warehouse inventory system will arise.

Development of Two-Warehouse Model (ta < t1)

If Q > W , the the system involves two warehouse model. At first W units are stored in OW
and the rests are kept in RW. So, during the time interval (0,tw) the items in RW decreases
due to demand and deterioration until it reaches to the level zero. Again on the other hand a
portion on the inventory on OW is depleted due to deterioration only. Then, during (tw, t1)
the inventory on OW decreases due to demand and deterioration. After t = t1 shortages
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Fig. 1 Pictorial representation of the inventory cycle

start and backlogging rate is negative exponential function of waiting time. The pictorial
representation of the above inventory system can be represented by Fig. 1.

This bahaviour can be represented by following four differential equations:

d IR(t)

dt
+ β IR(t) = −aebt , 0 ≤ t ≤ tw (1)

d I0(t)

dt
= −α I0(t), 0 ≤ t ≤ tw (2)

d I (t)

dt
+ α I (t) = −aebt , tw ≤ t ≤ t1 (3)

d I (t)

dt
= −aebt e−δ(T−t), t1 ≤ t ≤ T (4)

with initial and boundary condition

IR(tw) = 0 = I (t1), I0(0) = W, (5)

The solution of the differential equations (1)–(4) subject to the condition (5) are given by

IR(t) = a

β + b
(eβ(tw−t)+btw − ebt ), 0 ≤ t ≤ tw (6)

I0(t) = We−αt , 0 ≤ t ≤ tw (7)

I (t) = a

α + b
(eα(t1−t)+bt1 − ebt ), tw ≤ t ≤ t1 (8)

IR(t) = ae−δT

b + δ
(e(b+δ)t1 − e(b+δ)t ), t1 ≤ t ≤ T (9)

The maximum inventory at the beginning of each cycle

Im = IR(0) + I0(0)

= a

β + b
(e(β+b)tw − 1) + W (10)
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The maximum shortage at the end of each cycle

Is = −I (T )

= a

δ + b
(ebT − eδ(t1−T )+bt1) (11)

JIT Setup Cost
Since the number of replenishment or period is N, so the JIT setup cost over the planning

horizon under consideration of inflation and time value of money is

CSET =
N∑

j=0

C0
a(ebT − 1)

bIm
e−J RT

= C0
a(ebT − 1)

bIm

(
e− N+1

N RH − 1

e− RH
N − 1

)
(12)

Holding Cost
Holding cost in RW

CRW = hr

∫ tw

0
IR(t)dt

= ahr
β + b

{
1

b
(1 − ebtw ) + 1

β
(e(β+b)tw − ebtw )

}
(13)

Holding cost in OW

COW = h0

{∫ tw

0
I0(t)dt +

∫ t1

tw
I0(t)dt

}

= h0W

α
(1 − e−αtw ) + h0a

α + b

{
1

α
(eα(t1−tw)+bt1 − ebt1) + 1

b
(ebtw − ebt1)

}
(14)

Total holding cost

CTOT = CRW + COW

= ahr
bβ(β + b)

{
β(1 − ebtw ) + b(e(β+b)tw − ebtw )

}
+ h0

bα(α + b)
{b(α + b)W

(1 − e−αtw ) + ab(eα(t1−tw)+bt1 − ebt1) + aα(ebtw − ebt1)
}

(15)

Total holding cost over planning horizon under inflation and time value of money consider-
ation is

CHOL =
N−1∑

J=0

[
ahr

bβ(β + b)
{β(1 − ebtw ) + b(e(β+b)tw − ebtw )} + h0

bα(α + b)
{b(α + b) W

(1 − e−αtw ) + ab(eα(t1−tw)+bt1 − ebt1) + aα(ebtw − ebt1)}
]
e−J RT

=
[

ahr
bβ(β + b)

{β(1 − ebtw ) + b(e(β+b)tw − ebtw )} + h0

bα(α + b)
{b(α + b)W

(1 − e−αtw ) + ab(eα(t1−tw)+bt1 − ebt1) + aα(ebtw − ebt1)}
] [

e−RH − 1

e
−RH
N − 1

]
(16)
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Now T = H
N and t1 = FH

N yields to:

CHOL =
[

ahr
bβ(β + b)

{
β(1 − ebtw ) + b(e(β+b)tw − ebtw )

}
+ h0

bα(α + b)

×
{
b(α + b)W (1 − e−αtw ) + ab

(
e
α
(
FH
N −tw

)
+b FH

N − eb
FH
N

)

+ aα
(
ebtw − eb

FH
N

)}][
e−RH − 1

e
−RH
N − 1

]
(17)

Shortage Cost
Average shortage S should be determined at first.

S = 1

2

∫ T

t1

a

δ + b

(
ebT − eδ(t1−T )+bt1

)
dt (18)

T = H
N and t1 = FH

N yields to:

S = a

2(δ + b)

(
e
bH
N − e

δ
(
FH
N − H

N

)
+b FH

N

) (
H

N
− FH

N

)
(19)

Total shortage cost over planning horizon under time value of money and inflation is

CSHO =
N−1∑

J=0

cse
−J RT S

= acs
2(δ + b)

(
e
bH
N − e

δ
(
FH
N − H

N

)
+b FH

N

)(
H

N
− FH

N

) [
e−RH − 1

e
−RH
N − 1

]
(20)

Purchasing Cost
The purchasing cost of jth cycle Cpj is being calculated at first. T = H

N and t1 = FH
N

yields to:

Cpj =
{

ca

β + b
(e(β+b)tw − 1) + cW

}
+

{
ca

δ + b

(
e
bH
N − e

δ
(
FH
N − H

N

)
+b FH

N

)
e

−RH
N

}
(21)

Total purchasing cost over the planning horizon under inflation and time value of money is

CPUR =
N−1∑

J=0

Cpj e
−J RT

=
{

ca

β + b
(e(β+b)tw − 1) + cW

} [
e−RH − 1

e
−RH
N − 1

]

+
{

ca

δ + b

(
e
bH
N − e

δ
(
FH
N − H

N

)
+b FH

N

)
e

−RH
N

} [
e−RH − 1

e
−RH
N − 1

]
(22)

Interest Earned and Charged (M < tw < t1)
Since M < tw < t1, the retailer sells the items and continues to accumulate sales revenue

and earns interest with rate Ie during time 0 to M. Again, the retailer starts paying interest
for the items in stock after time M with rate Ip .

Interest earned:
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As the items are sold, so the sales revenue is used to earn interest. At the beginning of
the time interval, the back ordered quantity which is Is , should be replenished first and the
maximum accumulated sold until M is equal to

∫ M
0 Dtdt . T = H

N and t1 = FH
N yields to:

I E = Ies

[
IsM +

∫ M

0
Dtdt

]

= Ies

[
a

δ + b

(
e
bH
N − e

δ
(
FH
N − H

N

)
+b FH

N

)
M + a

b2

(
MbebM − ebM + 1

)]
(23)

Total interest earned over the planning horizon under inflation and time value of money is

T I E =
N−1∑

J=0

I Ee−J RT

= Ies

[
a

δ + b

(
e
bH
N − e

δ
(
FH
N − H

N

)
+b FH

N

)
M + a

b2

(
MbebM − ebM + 1

)]

×
[
e−RH − 1

e
−RH
N − 1

]
(24)

Interest charged
Interest payable is

IC = Icc
∫ t1

M
I (t)dt

= Icc

{∫ tw

M
IR(t)dt +

∫ tw

M
I0(t)dt +

∫ t1

tw
I (t)dt

}

= Icc

[
a

(β + b)βb

{
b

(
eβ(tw−M)+btw − ebtw

)
+ β

(
ebM − ebtw

)}
+ W

α

(
e−αM

−e−αtw
) + a

(α + b)αb

{
b

(
eα(t1−tw)+bt1 − ebt1

)
+ α

(
ebtw − ebt1

)}]
(25)

Total interest payable over the planning horizon under inflation and time value money is
(putting T = H

N and t1 = FH
N )

T IC =
N−1∑

J=0

ICe−J RT

= Icc

[
a

(β + b)βb

{
b

(
eβ(tw−M)+btw − ebtw

)
+ β

(
ebM − ebtw

)}

+W

α

(
e−αM − e−αtw

)
+ a

(α + b)αb

{
b

(
e
α
(
FH
N −tw

)
+b FH

N

− eb
FH
N

)
+ α

(
ebtw − eb

FH
N

)}] [
e−RH − 1

e
−RH
N − 1

]
(26)

So the total cost function is

TC(F) = CSET + CHOL + CSHO + CPUR + T IC − T I E

= C0
a(eb

H
N − 1)

bIm

(
e− N+1

N RH − 1

e− RH
N − 1

)
+

[
ahr

bβ(β + b)

{
β(1 − ebtw ) + b

(
e(β+b)tw
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− ebtw
)}

+ h0

bα(α + b)

{
b(α + b)W (1 − e−αtw ) + ab

(
e
α
(
FH
N −tw

)
+b FH

N

− eb
FH
N

)
+ aα

(
ebtw − eb

FH
N

)}
+ acs

2(δ + b)

(
e
bH
N − e

δ
(
FH
N − H

N

)
+ bFH

N

)

(
H

N
− FH

N

)
+

{
ca

β + b

(
e(β+b)tw − 1

)
+ cW

}
+

{
ca

δ + b

(
e
bH
N

− e
δ
(
FH
N − H

N

)
+b FH

N

)
e

−RH
N

}
+ Icc

[
a

(β + b)βb

{
b

(
eβ(tw−M)+btw − ebtw

)
+ β

(ebM − ebtw )
}

+ W

α

(
e−αM − e−αtw

)
+ a

(α + b)αb

{
b

(
e
α
(
FH
N −tw

)
+b FH

N

− eb
FH
N

)
+ α

(
ebtw−eb

FH
N

)}]
− Ies

{
a

δ + b

(
e
bH
N − e

δ
(
FH
N − H

N

)
+b FH

N

)
M

+ a

b2

(
MbebM − ebM + 1

)}] [
e−RH − 1

e
−RH
N − 1

]
(27)

Notably, the values of I0(tw) and I (tw) should coincide and thus
I0(tw) = We−αtw = a

α+b (eα(t1−tw)+bt1 − ebtw )

Therefore we get

tw = 1
b log

ae(α+b)t1 −(α+b)W
a

Since, the total cost function is very large in volume and too much complex to differentiate
by hand, so we solved it numerically by Mathematica Software. So the sufficient condition

for ∂2TC(F)

∂F2 > 0 must be satisfied.

Numerical Example

To illustrate the proposed model, we consider the two examples given below.

Example 1 Let us take the parameter values in the inventory system as h0 = $0.2, hr = $0.5,
cs = $0.3, c = $5, C0 = $50, W = 30, α = 0.02, β = 0.8, R = 0.5, H = 3, N = 7, δ = 0.9, Ic=
$0.1, Ie= $0.06, M = 1

12 , a = 300, b = 2, s = $5 in appropriate units. The optimal solution is
TC(F∗) = 4045.14, F∗ = 0.438 (Fig. 2).

T = H
N = 3

7 , Tw = 0.115, ta = 0.091, Im = 70.783, Ib = 122.533, t1 = F∗T = 0.188.
In this case, some other numerical examples have been prepared based on changing α, β,

R, M with different values of N and taking one parameter at a time and keeping the remaining
parameters at their original levels. The result of this numerical analysis are shown in Table 1.

Example 2 Let us take the parameter values in the inventory system as h0 = $0.2, hr = $0.5,
cs = $0.3, c = $5, C0 = $150, W = 30, α = 0.02, β = 0.8, R = 0.3, H = 5, N = 9, δ = 0.9, Ic=
$0.1, Ie= $0.08, M = 1

15 , a = 200, b = 2, s = $7 in appropriate units. The optimal solution is
TC(F∗)=6357.7, F∗ = 0.638 (Figs. 3, 4, 5).

T = H
N = 5

9 , Tw = 0.278, ta = 0.131, Im = 114.08, Ib = 92.57, t1 = F∗T = 0.354.
In this case, some other numerical examples have been prepared based on changing α, β,

R, M with different values of N and taking one parameter at a time and keeping the remaining
parameters at their original levels. The result of this numerical analysis are shown in Table 2.
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Fig. 2 Total cost function TC versus F of Example 1

Table 1 Some numerical examples on the data set of Example 1

Parameter Values Different values of N F∗ t∗1 t∗w ta TC(F∗)

α 0.05 7 0.429 0.184 0.113 0.091 4054.95

0.05 6 0.387 0.194 0.124 0.091 4243.13

β 0.7 7 0.441 0.189 0.117 0.091 4042.23

0.7 6 0.397 0.199 0.128 0.091 4231.59

R 0.4 7 0.450 0.193 0.121 0.091 4558.19

0.4 6 0.404 0.202 0.132 0.091 4783.3

M 1
14 7 0.437 0.187 0.115 0.091 4048.34
1

14 6 0.394 0.197 0.126 0.091 4237.81

Fig. 3 Total cost function TC versus F of Example 2
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Fig. 4 Showing some best results of Example 1

Fig. 5 Showing some best results of Example 2
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Table 2 Some numerical examples on the data set of Example 2

Parameter Values Different values of N F∗ t∗1 t∗w ta TC(F∗)

α 0.0 4 9 0.629 0.349 0.275 0.131 6377.24

0.04 8 0.580 0.363 0.291 0.131 6700.62

β 0.6 9 0.659 0.366 0.292 0.131 6320.44

0.6 8 0.607 0.412 0.345 0.131 6647.58

R 0.1 9 0.671 0.373 0.300 0.131 9545.05

0.1 8 0.618 0.386 0.315 0.131 10079.3

M 1
18 9 0.637 0.354 0.277 0.131 6363.79
1

18 8 0.588 0.368 0.293 0.131 6689.41

Table 3 Sensitivity analysis of Examples 1 and 2

Parameter % change in
the parameter

F∗ % change in
TC(F∗) Example 1

F∗ %change in
TC(F∗) Example 2

ho + 50 0.437 0.045 0.637 0.075

+ 20 0.437 0.018 0.637 0.038

− 20 0.438 − 0.018 0.638 − 0.038

− 50 0.438 − 0.045 0.638 − 0.075

hr + 50 0.436 0.059 0.633 0.239

+ 20 0.437 0.024 0.636 0.096

− 20 0.438 − 0.024 0.639 − 0.097

− 50 0.440 − 0.060 0.642 − 0.246

α + 50 0.435 0.082 0.633 0.155

+ 20 0.436 0.033 0.636 0.062

− 20 0.439 − 0.033 0.639 − 0.063

− 50 0.441 − 0.084 0.642 − 0.159

β + 50 0.425 0.263 0.604 0.967

+ 20 0.432 0.110 0.623 0.415

− 20 0.444 − 0.116 0.655 − 0.462

− 50 0.454 − 0.307 0.687 − 1.27

C0 + 50 0.507 6.83 0.716 10.08

+ 20 0.468 2.89 0.672 4.27

− 20 0.403 − 3.18 0.596 − 4.69

− 50 0.335 − 8.79 0.515 − 12.94

R + 50 0.413 − 23.58 0.618 − 22.43

+ 20 0.427 − 10.64 0.629 − 10.10

− 20 0.450 12.68 0.646 12.01

− 50 0.471 36.60 0.662 34.60

cs + 50 0.440 0.220 0.639 0.110

+ 20 0.439 0.088 0.638 0.045

− 20 0.437 − 0.089 0.637 − 0.045

− 50 0.435 − 0.222 0.636 − 0.112
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Table 3 continued

Parameter % change in
the parameter

F∗ % change in
TC(F∗) Example 1

F∗ %change in
TC(F∗) Example 2

δ + 50 0.416 − 2.36 0.619 − 1.29

+ 20 0.428 − 0.947 0.630 − 0.513

− 20 0.448 0.947 0.645 0.507

− 50 0.464 2.36 0.658 1.25

Ic + 50 0.436 0.055 0.633 0.288

+ 20 0.437 0.022 0.636 0.116

− 20 0.438 − 0.022 0.639 − 0.117

− 50 0.439 − 0.056 0.642 − 0.294

Ie + 50 0.437 − 0.170 0.637 − 0.149

+ 20 0.437 − 0.068 0.637 − 0.059

− 20 0.438 0.068 0.638 0.059

− 50 0.438 0.170 0.638 0.148

a + 50 0.366 42.15 0.550 38.59

+ 20 0.404 17.04 0.597 15.70

− 20 0.483 − 17.36 0.691 − 16.18

− 50 0.595 − 44.35 0.817 − 41.85

b + 50 0.443 25.27 0.618 32.88

+ 20 0.440 9.22 0.629 11.69

− 20 0.435 − 8.20 0.647 − 10.09

− 50 0.430 − 18.83 0.663 − 22.69

Sensitivity Analysis

Using the numerical Examples 1 and 2 the sensitivity of the decision variable F∗ and the
total cost function TC(F∗) to changes in each of the 12 parameters ho, hr , α, β, C0, R,
cs , δ, Ic,Ie, a, b is examined in Table 3. The sensitivity analysis is performed by changing
each of the parameters by −50, −20, + 20 and + 50 %, taking one parameter at a time and
keeping the remaining parameters unchanged. It is observed that parameters C0, R, a and b
are highly sensitive and the parameters ho, hr , α, β, cs , δ, Ic, Ie are slightly sensitive on total
cost TC(F∗). Again, the total cost function TC(F∗) increases or decreases as the parameters
ho, hr , α, β, C0, cs , Ic, a, b increases or decreases whereas the other parameters have reverse
effect on total cost function.

Conclusions

Practically, we see that credit policies is an attractive feature in inventory management in
order to purchase more items than in a rented warehouse capacity. Thus our research work
deals with the optimal replenishment cycle for a two warehouse inventory model where
delay in payment is permissible. Some realistic features like effect of inflation and time value
of money, different deterioration rate in OW and RW, shortages and partial backlogging are
investigated. Also, holding cost in RW has been assumed higher than in OW. The present value
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of total cost during planning horizon under exponential increasing demand in this inventory
system has been developed. Finally, the proposed model has been illustrated through several
numerical examples and sensitivity analysis.

1. We could extend this model considering time-price or quadratic price dependent demand
or stochastically fluctuating demand pattern.

2. We could extend this model again by considering fuzzy, fuzzy-stochastic environment
and other asMonday, February 5, 2018 at 11:22 amsumption.
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suggestions which greatly improved the content of the article.

Appendix A

From Eq. (3) we obtain order quantity Q = I (0) = a
α+b (e(α+b)t1 −1) and if the order quantity

Q ≤ W then it is unnecessary to rent any warehouse. Thus a
α+b (e(α+b)t1 − 1) ≤ W implies

t1 ≤ 1
α+b log(1 + (α+b)W

a ). For simplicity, let ta = 1
α+b log(1 + (α+b)W

a ). The inequality
Q ≤ W holds if and only if ta ≥ t1. Therefore, the inequality Q > W holds if and only if
ta < t1 which implies that there are W units of items stored in OW and the remainder are
despatched in RW.
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