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Abstract Role of intuitionistic fuzzy sets (IFSs) in solving multiple attribute decision making
(MADM) problem has been established by many researchers. Depending upon the situation,
we need different types of entropies based on IFSs. In this paper, we have proposed a new
two parametric intuitionistic fuzzy entropy in the settings of IFSs theory. Besides proving
some major properties, the proposed entropy is genuinely compared with some other existing
entropies in literature. Based on the proposed entropy, a new method for solving MADM
problems is introduced. Attribute weights play an eminent role in solving MADM problems.
In this communication, two methods of determining the attribute weights are discussed. First
is when information about attributes is completely unknown and second is when we have
partial information regarding attribute weights. The two methods are effectively explained
with the help of three examples. The attribute weights identification based on the proposed
intuitionistic fuzzy entropy is offered in context of IFSs.
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making · TOPSIS
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Literature Review

Since the time Zadeh [1] introduced the concept of fuzzy set, many theories and approaches
concerning imprecision and vagueness came into existence. Intuitionistic fuzzy sets (IFSs)
proposed by Atanassov [2] are one of the primary generalizations of conventional fuzzy
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set theory. He pointed out the drawbacks of Zadeh’s fuzzy set theory and proved to be
extremely helpful in dealing with uncertainty and vagueness. Entropy is an important concepts
in the study of fuzzy set theory and its extensions to IFSs. For the first time, the idea of
fuzzy entropy was introduced by Zadeh [1]. Then Yager [3], Szmidt and Kacprzyk [4],
Kaufman [5] proposed the various entropies on fuzzy sets. Recently Joshi and Kumar [50]
introduced a new (R, S)-norm fuzzy information measure corresponding to (R, S)-norm
entropy proposed by Joshi and Kumar [49] The notion of intuitionistic fuzzy entropy was
firstly presented by Bustince and Burillo [6] and Szmidt and Kacprzyk [4] introduced a non-
probabilistic type intuitionistic fuzzy entropy. Later, Zhang et al. [7] and Hung [8] suggested
the intuitionistic fuzzy entropy based on the distance measure between IFSs. Vlachos and
Sergiadis [9] generalized the De Luca and Termini’s [10] concept of non-probabilistic entropy
to IFSs. Zeng et al. [11] proposed the intuitionistic fuzzy entropy based on similarity between
IFSs. Chen and Li [12] proposed different kinds of entropies on IFSs.

Pedrycz [13], Yager [14] and Zadeh [15] proved the usefulness of fuzzy sets in tackling
the problems with uncertain information in many fields such as pattern recognition, decision
making and logical reasoning [16]. Also, IFSs have been proved to be useful in handling
the fuzzy MADM problems [16]. In most of the fuzzy MADM problems, the information
provided by experts may not be sufficient to choose the best alternative because the facts
may be fuzzy or uncertain in nature. This may be due to the subjectivity of experts, lack
of knowledge, time or data about problem domain and over all may be due lack of exper-
tise in relevant field. Therefore, the alternatives with uncertainty are represented by IFSs.
However, a large amount of literature is available in solving fuzzy MADM problems using
IFSs, but a very few literature is available on solving fuzzy MADM problems with unknown
attribute weights and partially known attribute weights, in particular. In MADM problems,
the experts must evaluate the various alternatives for different attributes and choose the most
desirable alternative. Attribute weights play an important role in decision making process as
the improper assignment of attribute weights may cause the change in ranking of alterna-
tives. Chen and Li [12] categorized the attribute weights into two parts: subjective weights
and objective weights. Subjective weights are determined only according to the preference
decision makers. The AHP method [17], weighted least squares method [18] and Delphi
method [19] belong to this category. The objective methods determine weights by solving
the mathematical models without considering the decision maker’s preferences. Entropy
method, multi objective programming [20,21], principle element analysis [20] etc. belong to
this category. Since in many practical problems, decision maker’s expertise and experience
matters but when it is difficult to obtain such reliable subjective weights, the use of objective
weights is useful. In general, the attribute weights cannot be represented by crisp numbers.
Entropy method is one of the most representative approaches to solve MADM problems
with unknown or partially known weight information. Chen and Li [12] suggested several
methods to solve MADM problems with unknown attribute weights information. The tradi-
tional entropy method focuses on using the discrimination of data to determine the weights
of attributes. If the attribute can discriminate the data more significantly, we give a higher
weight to the attribute. Dissimilarly, we focus on using the credibility of data to determine
the attribute weights through IF entropy measures. This concept is totally different with the
traditional entropy method, but our method can combine with traditional method. Besides
Szmidt and Kacprzyk [4] proposed a different concept for assessing the IF entropy. However,
in our research, we use Szmidt and Kacprzyk’s concept to measure the IF entropy, because
this concept could measure the whole missing information which might be required to cer-
tainly have. Therefore the traditional entropy is based on the concept of probability and it
could measure the discrimination of attributes while we apply it in MADM. Nevertheless,
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the meaning of IF entropy is different from the traditional entropy, because the IF entropy
represents the credibility of the data while we apply it in MADM.

From the above discussion, role of intuitionistic fuzzy sets in solving MADM problems
can be easily estimated. Depending upon the situation, there is a need to develop such mea-
sures which not only satisfy the requirement but are also the generalized forms of the existing
measures. Apart from this, they should be quite efficient and have consistent performance
also. The role of parameters in any information measure is very important. For example, in
any problem related with environment, different parameters may represent different environ-
mental factors like humidity, temerature, pressure etc. Thus, the presence of parameters make
an information measure more suitable from application view point. Inspired by this, our main
emphasis will be on to develop the new information measures and MADM methods based
on them to solve the problems containing multiple attributes. The present communication is
a sequel in this direction.

This paper is managed as follows. After the introductory section, basic concepts and defi-
nitions of the theory of fuzzy sets and intuitionistic fuzzy sets are discussed in “Preliminaries”
section. “A New Parametric Intuitionistic Fuzzy Entropy” section is devoted to the introduc-
tion of a new intuitionistic fuzzy entropy, establishing its validity and discussing some of
its mathematical properties. In “A Comparison with Other Existing Measures” section, the
performance of proposed measure is compared some existing measures in literature. A new
multiple attribute decision making (MADM) method is proposed by using the concept of
TOPSIS in “The New MADM Method Using Proposed IF Entropy” section. In “Numerical
Examples” section, the proposed MADM method is explained with the help of numerical
examples. Finally, the paper is concluded in “Concluding Remarks” section.

Preliminaries

Now, we introduce some basic definitions and concepts regarding fuzzy sets and IFSs.

Definition 2.1 (See [1]) Let X = (z1, z2, . . . , zn) be a finite universe of discourse. A fuzzy
set G is given by

G = {〈zi , μG(zi )〉/zi ∈ X}, (1)

where μG : X → [0, 1] is the membership function of G. The number μG(zi ) defines the
belongingness degree of zi ∈ X in G.

Definition 2.2 A fuzzy set G̃ is called a sharpened version of fuzzy set G if it satisfies the
following conditions:

μG̃(zi ) ≤ μG(zi ), if μG(zi ) ≤ 0.5; ∀i
and

μG̃(zi ) ≥ μG(zi ), if μG(zi ) ≥ 0.5; ∀i.
De Luca and Termini [10] axiomatized the fuzzy entropy and the axioms proposed by him
are widely acclaimed as a criterion to define any fuzzy entropy. In fuzzy set theory, the
fuzzy entropy is a measure of fuzziness which represent the average amount of difficulty or
ambiguity in guessing that a particular element belongs to the set or not.

Definition 2.3 (See [10]). A measure of fuzziness in a fuzzy set should satisfy atleast the
following axioms:
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P1 (Sharpness) H(G) is minimum if and only if G is a crisp set, i.e., μG(zi ) = 0 or 1 for
all zi ∈ X .

P2 (Maximality) H(G) is maximum if and only if G is most fuzzy set, i.e., μG(zi ) = .5; for
all zi ∈ X .

P3 (Resolution) H(G) ≥ H(G̃), where G̃ is the sharpened version of G.
P4 (Symmetry) H(G) = H(Gc), where Gc is the complement of G, i.e., μGc (zi ) = 1 −

μG(zi ) for all zi ∈ X .

Since μG(zi ) and (1 − μG(zi )) represent the same degree of fuzziness, then, De Luca and
Termini [10] defined fuzzy entropy for a fuzzy set G as:

H(G) = − 1

n

n∑

i=1

[
μG(zi ) log(μG(zi )) + (1 − μG(zi ) log(1 − μG(zi ))

]
. (2)

Later on, Bhandari and Pal [22] made a survey of information measures on fuzzy sets.
Corresponding to Renyi’s entropy [23], they introduced a new measure of fuzzy entropy as:

Hα(G) = 1

n(1 − α)

n∑

i=1

log
[
μG(zi )

α + (1 − μG(zi ))
α
] ; α 	= 1, α > 0. (3)

Zadeh’s [1] idea of fuzzy sets was extended to intuitionistic fuzzy sets by Atanassov [2] as:

Definition 2.4 (See [2]) An intuitionistic fuzzy set G in a finite universe of discourse X =
(z1, z2, . . . , zn) is given by

G = {〈zi , μG(zi ), νG(zi )〉/zi ∈ X
}
, (4)

where μG : X → [0, 1], νG : X → [0, 1] satisfying 0 ≤ μG(zi ) + νG(zi ) ≤ 1, ∀zi ∈ X .
Here μG(zi ) and νG(zi ), respectively, denotes the degree of membership and degree of non-
membership of zi ∈ X to the set G. For each IFS G in X , πG(zi ) = 1−μG(zi )−νG(zi ), zi ∈
X represents the hesitancy degree of zi ∈ X and is also called intuitionistic index. Obviously,
if πG(zi ) = 0 then IFS becomes fuzzy set. Thus, the fuzzy sets are particular cases of IFSs.

Definition 2.5 (See [24]). Let I FS(X) denote the family of all IFSs in the universe X and
let G, H ∈ I FS(X) be given by

G = {〈zi , μG(zi ), νG(zi )〉/zi ∈ X},
H = {〈zi , μH (zi ), νH (zi )〉/zi ∈ X}. (5)

Then usual set operations and relations are defined as follows:

(i) G ⊆ H if and only if μG(zi ) ≤ μH (zi ) and νG(zi ) ≥ νH (zi ) for all zi ∈ X ;
(ii) G = H if and only if G ⊆ H and H ⊆ G;

(iii) Gc = {〈zi , νG(zi ), μG(zi )〉/zi ∈ X};
(iv) G ∩ H = {〈μG(zi ) ∧ μH (zi ) and νG(zi ) ∨ νH (zi )〉/zi ∈ X};
(v) G ∪ H = {〈μG(zi ) ∨ μH (zi ) and νG(zi ) ∧ νH (zi )〉/zi ∈ X}.

Szmidt and Kacprzyk [25] first formulated the axioms for intuitionistic fuzzy entropy
measure as an extension of De Luca and Termini [10] for fuzzy sets. The set of axioms of
intuitionistic fuzzy entropy measure is:

Definition 2.6 (See [25]). An entropy on I FS(X) is a real-valued function E : I FS(X) →
[0, 1], which satisfies the following axioms:
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(IFS1) E(G) = 0 if and only ifG is a crisp set, i.e., μG(zi ) = 0, νG(zi ) = 1 or μG(zi ) = 1,
νG(zi ) = 0 for all zi ∈ X .

(IFS2) E(G) = 1 if and only if μG(zi ) = νG(zi ) for all zi ∈ X .
(IFS3) E(G) ≤ E(H) if and only if G ⊆ H , i.e., if μG(zi ) ≤ μH (zi ) and νG(zi ) ≥

νH (zi ) for μH (zi ) ≤ νH (zi ), or if μG(zi ) ≥ μH (zi ) and νG(zi ) ≤ νH (zi ), for
μH (zi ) ≥ νH (zi ) for any zi ∈ X .

(IFS4) E(G) = E(Gc).

Definition 2.7 (See [26]). Let G = {〈zi , μG(zi ), νG(zi )〉/zi ∈ X} and H = {〈zi , μH (zi ),
νH (zi )〉/zi ∈ X} be two IFSs with the weight of zi is ui . Then the weighted Hamming
Distance measure of G and H is defined as follows:

s(G, H) = 1

2

n∑

i=1

ui (|μG(zi ) − μH (zi )| + |νG(zi ) − νH (zi )| + |πG(zi ) − πH (zi )|). (6)

Throughout this paper, I FS(X) and FS(X) will represent the set of all intuitionistic fuzzy
sets and set of all fuzzy sets respectively.

With these ideas in mind, we now introduce a new parametric intuitionistic fuzzy entropy
on IFSs with α and β as parameters.

A New Parametric Intuitionistic Fuzzy Entropy

In the following, we will borrow an entropy Hβ
α (A) to a probability distribution A =

{p1, p2, . . . , pn} with
∑n

i=1 pi = 1 for which

Hβ
α (A) = 1

21−α − 21−β

[(
n∑

i=1

pα
i

)
−
(

n∑

i=1

pβ
i

)]
(7)

where α > 1 and 0 < β < 1 or 0 < α < 1 and β > 1, which is studied by Sharma and
Taneja [27].

Corresponding to (7), we then propose families of fuzzy entropy of an IFS G with

Eβ
α (G) = 1

n
(
21−α − 21−β

)

×
n∑

i=1

[(
(μG(zi )

α + νG(zi )
α) × (μG(zi ) + νG(zi ))

1−α + 21−απG(zi )
)

− ((μG(zi )
β + νG(zi )

β) × (μG(zi ) + νG(zi ))
1−β + 21−βπG(zi )

) ];
if α, β > 0; either α > 1, β < 1 or α < 1, β > 1, (8)

Particular Cases

1. If β = 1, then (8) becomes

E1
α(G) = 1

n
(
21−α − 1

)
n∑

i=1

[ (
μG(zi )

α + νG(zi )
α) × (μG(zi )

+ νG(zi ))
1−α + 21−απG(zi )

)− 1
]
, (9)

which is an intuitionistic fuzzy entropy of order-α studied by Joshi and Kumar [28].
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2. If α = 1, β → 1 or β = 1, α → 1, then (8) becomes

Eβ
α (G) = − 1

n

n∑

i=1

[
μG(zi ) log(μG(zi )) + νG(zi ) log(νG(zi ))

− (1 − πG(zi )) log(1 − πG(zi )) − πG(zi )
]
. (10)

which is studied by Vlachos and Sergiadis [9].
3. If πG(zi ) = 0, (8) becomes an ordinary fuzzy entropy as:

Eβ
α (G) = 1

n
(
21−α − 21−β

)
n∑

i=1

{(
μG(zi )

α + (1 − μG(zi ))
α
)

(
μG(zi )

β + (1 − μG(zi ))
β
) }

. (11)

4. If πG(zi ) = 0 and β = 1 then (8) becomes a parametric fuzzy entropy with α as a
parameter:

E1
α(G) = 1

n
(
21−α − 1

)
n∑

i=1

{(
μG(zi )

α + (1 − μG(zi ))
α
)− 1

}
, (12)

which is an entropy slightly different from Hooda [29].

Now, a very natural question that arises in mind “Is the entropy measure proposed, rea-
sonable?”. We answer this question in the following theorem by showing that the proposed
entropy measure obey the axioms (IFS1–IFS4).

Theorem 3.1 The measure Eβ
α (G) is a valid entropy measure for IFSs; i.e., it satisfies all

the axioms given in definition (2.6).

Proof (IFS1) Let G be the crisp set having membership values either 0 or 1 for all zi ∈ X .
Then from (8), we have Eβ

α (G) = 0.
Conversely, if Eβ

α (G) = 0, then

1

n
(
21−α − 21−β

)
n∑

i=1

[(
(μG(zi )

α + νG(zi )
α) × (μG(zi ) + νG(zi ))

1−α + 21−απG(zi )
)

− (
(μG(zi )

β + νG(zi )
β) × (μG(zi ) + νG(zi ))

1−β + 21−βπG(zi )
) ] = 0. (13)

Since α 	= β, this implies
(
(μG(zi )

α + νG(zi )
α) × (μG(zi ) + νG(zi ))

1−α + 21−απG(zi )
)

= (μG(zi )
β + νG(zi )

β) × (μG(zi ) + νG(zi ))
1−β + 21−βπG(zi )

)
. (14)

Therefore (14) will hold only if μG(zi ) = 0, νG(zi ) = 1 or μG(zi ) = 1, νG(zi ) = 0 for
all zi ∈ X .

Hence Eβ
α (G) = 0 if and only if G is a crisp set. This proves (IFS1).

(IFS2) Eβ
α (G) = 1 if and only if μG(zi ) = νG(zi ) ∀zi ∈ X.

First let μG(zi ) = νG(zi ) for all zi ∈ X in (8),

⇒ 1

n
(
21−α − 21−β

)
n∑

i=1

(
21−α − 21−β

) = 1.

Conversely, let Eβ
α (G) = 1,
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⇒
(
(μG(zi )

α + νG(zi )
α) × (μG(zi ) + νG(zi ))

1−α + 21−απG(zi )
)

− ((μG(zi )
β + νG(zi )

β) × (μG(zi ) + νG(zi ))
1−β + 21−βπG(zi )

) = (21−α − 21−β
)
,

(15)

which implies
(
μG(zi )

α + νG(zi )
α
)× (μG(zi ) + νG(zi ))

1−α + 21−απG(zi ) = 21−α (16)

and (
μG(zi )

β + νG(zi )
β
)× (μG(zi ) + νG(zi ))

1−β + 21−βπG(zi ) = 21−β . (17)

From (16), we get

(μG(zi ) + νG(zi ))
1−α ×

[
μG(zi )α + νG(zi )α

2
−
(

μG(zi ) + νG(zi )

2

)α]
= 0. (18)

Therefore (18) will hold only if either

μG(zi ) + νG(zi ) = 0 ⇒ μG(zi ) = νG(zi ) = 0 ∀zi ∈ X, (19)

or [
μG(zi )α + νG(zi )α

2
−
(

μG(zi ) + νG(zi )

2

)α]
= 0. (20)

Now consider the following function:

f (t) = t z where t ∈ [0, 1]. (21)

On differentiating with respect to t , (21) gives

f ′(t) = zt z−1,

f ′′(t) = z(z − 1)t z−2. (22)

Since f ′′(t) > 0 for z > 1 and f ′′(t) < 0 for z < 1. Therefore, f (t) is convex for z > 1 and
concave for z < 1. Therefore, for any two points t1 and t2 in [0, 1], the following inequalities
hold:

f (t1) + f (t2)

2
− f

(
t1 + t2

2

)
≥ 0 for z > 1, (23)

f (t1) + f (t2)

2
− f

(
t1 + t2

2

)
≤ 0 for z < 1, (24)

with equality only for t1 = t2. Therefore, from (21), (22), (23), (24), we conclude that (20)
will hold only if μG(zi ) = νG(zi ) for all zi ∈ X . Similarly, we may prove it for (17).

(IFS3). Eβ
α (G) ≤ Eβ

α (H) if and only if G ⊆ H , i.e., if μG(zi ) ≤ μH (zi ) and νG(zi ) ≥
νH (zi ) for μH (zi ) ≤ νH (zi ), or if μG(zi ) ≥ μH (zi ) and νG(zi ) ≤ νH (zi ), for μH (zi ) ≥
νH (zi ) for any zi ∈ X .

To prove (8) satisfies (IFS3), it suffices to prove that the function

f (x, y) = 1(
21−α − 21−β

)
{ [

(xα + yα)(x + y)1−α + 21−α(1 − x − y)
]

− [(xβ + yβ)(x + y)1−β + 21−β(1 − x − y)
] }

, (25)
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where x, y ∈ [0, 1], is an increasing function with respect to x and decreasing function with
respect to y. Taking partial derivatives of f with respect to x and y, respectively, we get

∂ f (x, y)

∂x
=
[

(1 − α)(xα + yα)(x + y)−α + α(x + y)1−αxα−1 − 21−α

(
21−α − 21−β

)
]

−
[

(1 − β)(xβ + yβ)(x + y)−β + β(x + y)1−βxβ−1 − 21−β

(
21−α − 21−β

)
]

(26)

and

∂ f (x, y)

∂y
=
[

(1 − α)(xα + yα)(x + y)−α + α(x + y)1−α yα−1 − 21−α

(
21−α − 21−β

)
]

−
[

(1 − β)(xβ + yβ)(x + y)−β + β(x + y)1−β yβ−1 − 21−β

(
21−α − 21−β

)
]

(27)

For critical points of f , we put ∂ f (x, y)/∂x = 0 and ∂ f (x, y)/∂y = 0. This gives

x = y. (28)

From (26), (27) and (28), we get

∂ f (x, y)

∂x
≥ 0 when x ≤ y, α < 1, β > 1 and also for α > 1, β < 1, (29)

∂ f (x, y)

∂y
≤ 0 when x ≥ y, α < 1, β > 1 and also for α > 1, β < 1, (30)

for all x, y ∈ [0, 1]. Thus f (x, y) is an increasing function of x and decreasing function of
y.

Now, let us consider the two sets G, H ∈ I FS(X) such that G ⊆ H . Let the finite
universe of discourse X = {z1, z2, . . . , zn} be partitioned into two disjoint sets X1 and X2

with X = X1 ∪ X2.
Further, let us suppose that all zi ∈ X1 be dominated by the condition

μG(zi ) ≤ μH (zi ) ≤ νH (zi ) ≤ νG(zi ), (31)

and for all zi ∈ X2,
μG(zi ) ≥ μH (zi ) ≥ νH (zi ) ≥ νG(zi ). (32)

Thus, from the monotonicity of the function f and (8), we obtain that Eβ
α (G) ≤ Eβ

α (H)

when G ⊆ H .
(IFS4) Eβ

α (G) = Eβ
α (Gc).

We know that Gc = {〈zi , νG(zi ), μG(zi )〉/zi ∈ X} for zi ∈ X and

μGc (zi ) = νG(zi ), νGc (zi ) = μG(zi ). (33)

Thus from (8), we have
Eβ

α (G) = Eβ
α (Gc). (34)

Therefore, Eβ
α (G) is a valid intuitionistic fuzzy entropy measure. ��

The proposed measure (8) also satisfies the following additional properties.
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Theorem 3.2 Let G and H be two intuitionistic fuzzy sets defined in X = {z1, z2, . . . , zn},
where G = {〈zi , μG(zi ), νG(zi )〉/zi ∈ X}, H = {〈zi , μH (zi ), νH (zi )〉/zi ∈ X}, such that
for all zi ∈ X either G ⊆ H or H ⊆ G; then

Eβ
α (G ∪ H) + Eβ

α (G ∩ H) = Eβ
α (G) + Eβ

α (H). (35)

Proof Let us separate X into two parts X1 and X2, such that

X1 = {zi ∈ X : G ⊆ H}, X2 = {zi ∈ X : G ⊇ H}. (36)

This implies that for each zi ∈ X1,

μG(zi ) ≤ μH (zi ), νG(zi ) ≥ νH (zi ), (37)

and for each zi ∈ X2,

μG(zi ) ≥ μH (zi ), νG(zi ) ≤ νH (zi ). (38)

From (8), we have,

Eβ
α (G ∪ H) = 1

n
(
21−α − 21−β

)
n∑

i=1

{[
(μG∪H (zi )

α + νG∪H (zi )
α) × (μG∪H (zi )

+ νG∪H (zi ))
1−α + 21−απG∪H (zi )

]

−
[
(μG∪H (zi )

β + νG∪H (zi )
β) × (μG∪H (zi ) + νG∪H (zi ))

1−β + 21−βπG∪H (zi )
]}

;

= 1

n
(
21−α − 21−β

)
{∑

X1

([
(μH (zi )

α + νH (zi )
α) × (μH (zi )

+ νH (zi ))
1−α + 21−απH (zi )

]

−
[
(μH (zi )

β + νH (zi )
β) × (μH (zi ) + νH (zi ))

1−β + 21−βπH (zi )
])

+
∑

X2

([
(μG(zi )

α + νG(zi )
α) × (μG(zi ) + νG(zi ))

1−α + 21−απG(zi )
]

−
[
(μG(zi )

β + νG(zi )
β) × (μG(zi ) + νG(zi ))

1−β + 21−βπG(zi )
])}

. (39)

Similarly,

Eβ
α (G ∩ H)

= 1

n
(
21−α − 21−β

)
{∑

X1

([
(μG(zi )

α + νG(zi )
α) × (μG(zi )

+ νG(zi ))
1−α + 21−απG(zi )

]

−
[
(μG(zi )

β + νG(zi )
β) × (μG(zi ) + νG(zi ))

1−β + 21−βπG(zi )
])

+
∑

X2

([
(μH (zi )

α + νH (zi )
α) × (μH (zi ) + νH (zi ))

1−α + 21−απH (zi )
]

−
[
(μH (zi )

β + νH (zi )
β) × (μH (zi ) + νH (zi ))

1−β + 21−βπH (zi )
])}

. (40)
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From (39) and (40),

Eβ
α (G ∪ H) + Eβ

α (G ∩ H) = Eβ
α (G) + Eβ

α (H). (41)

This proves the theorem.
Corollary For any G ∈ I FS(X) and its complement Gc,

Eβ
α (G) = Eβ

α (Gc) = Eβ
α (G ∪ Gc) = Eβ

α (G ∩ Gc). (42)

��
Theorem 3.3 The measure Eβ

α (G) attains maximum value when the set is most intuitionistic
fuzzy set and minimum value when the set is crisp set. Also, these values do not contain α

and β.

Proof It has already been proved that in properties IFS3 and IFS4 in Theorem (3.1) that
Eβ

α (G) attains maximum value if and only if G is most intuitionistic fuzzy set, i.e., μG(zi ) =
νG(zi ), for all zi ∈ X and minimum value when G is a crisp set, i.e., μG(zi ) = 1; νG(zi ) = 0
or μG(zi ) = 0; νG(zi ) = 1 . Therefore, it is sufficient to prove that the minimum and
maximum values are free of α and β.

Suppose G be the most intuitionistic fuzzy set; i.e., μG(zi ) = νG(zi ), for all zi ∈ X . Then
from (8),

Eβ
α (G) = 1

n
(
21−α − 21−β

)
n∑

i=1

{[
(μG(zi )

α + νG(zi )
α) × (μG(zi )

+ νG(zi ))
1−α + 21−απG(zi )

]

−
[
(μG(zi )

β + νG(zi )
β) × (μG(zi ) + νG(zi ))

1−β + 21−βπG(zi )
]}

; (43)

⇒ 1

n
(
21−α − 21−β

)
n∑

i=1

(
21−α − 21−β

) = 1, (44)

which does not contain α and β.
On the other hand, if G is a crisp set, i.e., μG(zi ) = 1 and νG(zi ) = 0 or μG(zi ) = 0

and νG(zi ) = 1, for all, zi ∈ X then Eβ
α (G) = 0 for all values of α and β. This proves the

theorem. ��
Now, we demonstrate the performance of proposed (α, β)-norm intuitionistic fuzzy

entropy by comparing with other existing measures of intuitionistic fuzzy entropy in lit-
erature.

A Comparison with Other Existing Measures

Let G = {〈zi , μG(zi ), νG(zi )〉/zi ∈ X} be an intuitionistic fuzzy set in X = {z1, z2, . . . , zn}.
For any positive real number n, [30] defined an intuitionistic fuzzy set Gn as follows:

Gn = {〈zi , [μG(zi )]n, 1 − [1 − νG(zi )]n〉/zi ∈ X}. (45)

Let us assume an intuitionistic fuzzy set G in X = {6, 7, 8, 9, 10} defined by [30] as:

G = {(6, 0.1, 0.8), (7, 0.3, 0.5), (8, 0.6, 0.2), (9, 0.9, 0.0), (10, 1.0, 0.0)}. (46)
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Based on the characterization of linguistic variables, suggested by [30], we compare the
performance of proposed measure with some existing measures of intuitionistic fuzzy entropy
suggested by various researchers as:

1. Burillo and Bustince’s entropy (EBB)[6];
2. Zeng and Li’s entropy (EZL) [31];
3. Szmidt and Kacprzyk’s entropy (ESK )[25];
4. Vlachos and Sergiadis entropy (ESV ) [9]:
5. Zhang and Jiang’s IF entropy (EZ J ) [32];
6. Hung and Yang’s entropy (E2

hc and E1/2
r ) [33];

7. Ye’s IF entropy measure (EY )[34];
8. Wei et al. entropy measure (EWei ) [35];
9. Verma and Sharma’s exponential intuitionistic fuzzy entropy measure (EV S) [36];

10. Wei et al. (EW ) [35];
11. Wang and Wang entropy (EWW ) [37];
12. Liu and Ren intuitionistic fuzzy entropy (ELR) [38];

Hung and Yang [33] and Hwang and Yang [39] established that the entropy measures of
IFSs are supposed to satisfy the following requirement for good performance:

E(G1/2) > E(G) > E(G2) > E(G3) > E(G4). (47)

Computed numerical values of different entropy measures are tabulated in Table 1.
On analyzing the Table 1, we get the following results:

EBB(G1/2) < EBB(G) < EBB(G2) < EBB(G3) < EBB(G4);
EZL(G1/2) > EZL(G) > EZL(G2) > EZL(G3) > EZL(G4);

Table 1 Numerical Values of the
various entropy measures under
G1/2, G, G2, G3 and G4

G1/2 G G2 G3 G4

EBB 0.0923 0.1200 0.1320 0.1344 0.1360

EZL 0.3788 0.3600 0.3160 0.2320 0.1911

ESK 0.3194 0.3073 0.3010 0.2121 0.1758

ESV 0.5067 0.4931 0.3746 0.2969 0.2476

EZ J 0.2486 0.2117 0.2261 0.0949 0.0457

E2
hc 0.3276 0.3400 0.2903 0.2525 0.2258

E1/2
r 0.6609 0.6809 0.6045 0.5216 0.4567

EWei 0.5016 0.4939 0.3953 0.3330 0.2938

EY 0.5016 0.4939 0.3953 0.3330 0.2938

EV S 0.5106 0.5054 0.4065 0.3438 0.3044

EW 0.8660 0.8685 0.8437 0.8263 0.8147

EWW 0.3645 0.3564 0.3339 0.2512 0.2142

ELR 0.3686 0.3633 0.3407 0.2643 0.2313

Eβ=0.5
α=2 0.5085 0.4955 0.3770 0.3233 0.3039

Eβ=0.5
α=9 0.5477 0.5426 0.4071 0.3312 0.3033

Eβ=.2
α=5 0.5363 0.5291 0.4273 0.3722 0.3469

Eβ=8
α=0.25 0.5529 0.5491 0.4333 0.3640 0.3336
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ESK (G1/2) > ESK (G) > ESK (G2) > ESK (G3) > ESK (G4);
ESV (G1/2) > ESV (G) > ESV (G2) > ESV (G3) > ESV (G4);
EZ J (G

1/2) > EZ J (G) < EZ J (G
2) > EZ J (G

3) > EZ J (G
4);

E2
hc(G

1/2) < E2
hc(G) > E2

hc(G
2) > E2

hc(G
3) > E2

hc(G
4);

E1/2
r (G1/2) < E1/2

r (G) > E1/2
r (G2) > E1/2

r (G3) > E1/2
r (G4);

EWei (G
1/2) > EWei (G) > EWei (G

2) > EWei (G
3) > EWei (G

4);
EY (G1/2) > EY (G) > EY (G2) > EY (G3) > EY (G4);
EV S(G

1/2) > EV S(G) > EV S(G
2) > EV S(G

3) > EV S(G
4);

EW (G1/2) < EW (G) > EW (G2) > EW (G3) > EW (G4);
EWW (G1/2) > EWW (G) > EWW (G2) > EWW (G3) > EWW (G4);
ELR(G1/2) > ELR(G) > ELR(G2) > ELR(G3) > ELR(G4);
Eβ

α (G1/2) > Eβ
α (G) > Eβ

α (G2) > Eβ
α (G3) > Eβ

α (G4).

Thus, from the above analysis, we find that EZL , ESK , ESV , EWei , EW , EV S , EWW , ELR

and Eβ
α follows the sequence (47) whereas EBB , EZ J , E2

hc, E
1/2
r and EW do not follow the

sequence. This means, that performance of EZL , ESK , ESV , EWei , EY , EV S , EWW , ELR

and Eβ
α is better than that of EBB , EZ J , E2

hc, E
1/2
r and EW .

Let us take one more example from Hung and Yang [33] for further comparison.
To analyze how different IFSs “LARGE” in X affect the above entropy measures, we

reduce the hesitancy degree of “8” which is the middle point of X . First, suppose that

“Large′′ = G1 = {(6, 0.1, 0.8), (7, 0.3, 0.5), (8, 0.5, 0.4), (9, 0.9, 0.0), (10, 1.0, 0.0)}.

To compare the different entropy measures, we use IFSs G
1
2
1 , G1, G2

1, G3
1 and G4

1. The
comparison results are presented in the Table 2.

Analysis of above table gives,

EZL(G1/2
1 ) < EZL(G1) > EZL(G2

1) > EZL(G3
1) > EZL(G4

1);
ESK (G1/2

1 ) < ESK (G1) > ESK (G2
1) > ESK (G3

1) > ESK (G4
1);

ESV (G1/2
1 ) > ESV (G1) > ESV (G2

1) > ESV (G3
1) > ESV (G4

1);
EZ J (G

1/2
1 ) < EZ J (G1) > EZ J (G

2
1) > EZ J (G

3
1) > EZ J (G

4
1);

EWei (G
1/2
1 ) > EWei (G1) > EWei (G

2
1) > EWei (G

3
1) > EWei (G

4
1);

EV S(G
1/2
1 ) > EV S(G1) > EV S(G

2
1) > EV S(G

3
1) > EV S(G

4
1);

EWW (G1/2
1 ) < EWW (G1) > EWW (G2

1) > EWW (G3
1) > EWW (G4

1);
ELR(G1/2

1 ) < ELR(G1) > ELR(G2
1) > ELR(G3

1) > ELR(G4
1);

Eβ
α (G1/2

1 ) > Eβ
α (G1) > Eβ

α (G2
1) > Eβ

α (G3
1) > Eβ

α (G4
1).

From the above analysis, we observe that EZL , ESK , EZ J , EWW and ELR do not follow the
pattern (47) but ESV , EWei , EV S and Eβ

α follow the pattern (47). Thus the performance of
ESV , EWei , EV S and Eβ

α is better than EZL , ESK , EZ J , EWW and ELR .
Now, we consider an another IFS “LARGE” in X from Hung and Yang [33] defined as:

G2 = {(6, 0.1, 0.8), (7, 0.3, 0.5), (8, 0.5, 0.5), (9, 0.9, 0.0), (10, 1.0, 0.0)}.
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Table 2 Numerical Values of the
various IF entropies under G1/2

1 ,

G1, G2
1, G3

1 and G4
1

G1/2
1 G1 G2

1 G3
1 G4

1

EZL 0.4156 0.4200 0.2380 0.1546 0.1217

ESK 0.3446 0.3740 0.1970 0.1309 0.1094

ESV 0.4076 0.3923 0.2720 0.1920 0.1488

EZ J 0.2851 0.3050 0.1042 0.0383 0.0161

E2
hc 0.3276 0.3400 0.2903 0.2525 0.2258

E1/2
r 0.6609 0.6809 0.6045 0.5216 0.4567

EZ J 0.3786 0.3810 0.3160 0.2700 0.2403

EWei 0.5454 0.5253 0.3635 0.2591 0.2051

EV S 0.5530 0.5343 0.3772 0.2734 0.2169

EWW 0.3911 0.4142 0.2456 0.1725 0.1428

ELR 0.3940 0.4186 0.2533 0.1821 0.1547

Eβ=0.1
α=5 0.5765 0.5584 0.4618 0.4101 0.3854

Eβ=8
α=.3 0.5849 0.5585 0.4264 0.3504 0.3180

Eβ=.01
α=10 0.6023 0.5907 0.5189 0.4804 0.4693

Eβ=9
α=0.26 0.5901 0.5659 0.4388 0.3621 0.3280

Table 3 Numerical Values of the
various IF entropies under G1/2

2 ,

G2, G2
2, G3

2 and G4
2

G1/2
2 G2 G2

2 G3
2 G4

2

EZL 0.4291 0.4400 0.2160 0.1364 0.1082

ESK 0.3518 0.4073 0.1677 0.1101 0.0950

ESV 0.4119 0.3873 0.2568 0.1764 0.1362

EZ J 0.3786 0.3810 0.3160 0.2700 0.2403

EWei 0.5579 0.5274 0.3433 0.2335 0.1830

EV S 0.5648 0.5362 0.3582 0.2477 0.1939

EWW 0.3982 0.4409 0.2167 0.1480 0.1239

ELR 0.4007 0.4450 0.2236 0.1568 0.1352

Eβ=9
α=0.1 0.6001 0.5782 0.4786 0.4178 0.3894

Eβ=2
α=0.16 0.5798 0.5583 0.4600 0.4038 0.3733

Eβ=0.75
α=9 0.5930 0.5532 0.3979 0.3164 0.2888

Eβ=0.9
α=2 0.5501 0.5045 0.3428 0.2799 0.2621

In G2, the hesitancy degree of “8” is reduced to zero. Based on this, we calculate the
following Table 3:

On analyzing above table, we observe that

EZL(G1/2
2 ) < EZL(G2) > EZL(G2

2) > EZL(G3
2) > EZL(G4

2);
ESK (G1/2

2 ) < ESK (G2) > ESK (G2
2) > ESK (G3

2) > ESK (G4
2);

ESV (G1/2
2 ) > ESV (G2) > ESV (G2

2) > ESV (G3
2) > ESV (G4

2);
EZ J (G

1/2
2 ) < EZ J (G2) > EZ J (G

2
2) > EZ J (G

3
2) > EZ J (G

4
2);
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Table 4 Numerical values of six entropies

ESV EZ J EWei EW EWW EV S Eβ=0.2
α=9 Eβ=.8

α=13 Eβ=3
α=.15

G3 0.7502 0.6474 0.9057 0.9877 0.7265 0.9138 0.9452 0.9437 0.8970

G4 0.6729 0.6474 0.9057 0.9771 0.6427 0.9138 0.9801 0.9785 0.9439

G5 0.6499 0.6109 0.8329 0.9659 0.5774 0.8463 0.9492 0.9465 0.8866

G6 0.6399 0.5953 0.8027 0.9659 0.5774 0.8180 0.9129 0.9110 0.8437

EWei (G
1/2
2 ) > EWei (G2) > EWei (G

2
2) > EWei (G

3
2) > EWei (G

4
2);

EV S(G
1/2
2 ) > EV S(G2) > EV S(G

2
2) > EV S(G

3
2) > EV S(G

4
2);

EWW (G1/2
2 ) < EWW (G2) > EWW (G2

2) > EWW (G3
2) > EWW (G4

2);
ELR(G1/2

2 ) < ELR(G2) > ELR(G2
2) > ELR(G3

2) > ELR(G4
2);

Eβ
α (G1/2

2 ) > Eβ
α (G2) > Eβ

α (G2
2) > Eβ

α (G3
2) > Eβ

α (G4
2).

Again EZL , ESK , EZ J , EWW and ELR fail to meet the requirement whereas ESV , EWei ,
EV S and Eβ

α follow the pattern.
Finally, we take one more example from Liu and Ren [38].
Suppose that there are five IF sets denoted as IFNs as: G3 = (0.4, 0.1), G4 = (0.6, 0.3),

G5 = (0.2, 0.6), and G6 = (0.13, 0.565). It can be observed that G4 is less fuzzy than G3

and G5 is less fuzzy than G6. Numerical values of the five entropies are displayed in Table
4.

From the Table 4, we can observe that entropies EZ J , EWei and EV S cannot differentiate
between the alternatives G3 and G4 and entropies EW and EWW is unable to differenti-
ate between G5 and G6 while ESV and proposed entropy Eβ

α distinguishes all the above
alternatives. Thus on the basis of above examples we can say that ESV and Eβ

α has a better
performance over EZ J , EWei , EW , EWW , EV S . But the proposed entropy Eβ

α contains the
parameters which makes it more flexible from application point of view whereas ESV does
not. Therefore, the proposed entropy measure Eβ

α is not only flexible in nature but also has
consistent performance. Thus, the proposed entropy formula is considerably good.

The New MADM Method Using Proposed IF Entropy

For a MADM problem, suppose there be set Z = (Z1, Z2, . . . , Zm) of m equally probable
alternatives and O = (e1, e2, . . . , en) be a set of n attributes. Out of the given set of m
alternatives, we have to select most suitable one. The degrees to which the alternative Zi (i =
1, 2, . . . ,m) satisfies the attribute e j ( j = 1, 2, . . . , n) is represented by intuitionistic fuzzy
number (IFN) x̃i j = (pi j , qi j ), where pi j is the membership degree and qi j denote the
non-membership degree of the alternative Zi (i = 1, 2, . . . ,m) satisfying: 0 ≤ pi j ≤ 1,
0 ≤ qi j ≤ 1 and 0 ≤ pi j + qi j ≤ 1 with i = 1, 2, . . .m and j = 1, 2, . . . , n. In MADM
problems, intuitionistic fuzzy values are calculated using statistical method suggested by Liu
and Wang [40].

To obtain the degrees to which the alternatives Zi ’s (i = 1, 2, . . . ,m) satisfy or do not
satisfy the attributes e j ’s ( j = 1, 2, . . . , n), we use the statistical tool proposed by Liu and
Wang [40]. Suppose we invite a team of N -decision makers to deliver the judgment. The team
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members are expected to answer “yes” or “no” or “I don’t know” to the questions whether
the alternatives Zi (i = 1, 2, . . . ,m) satisfy the attributes e j ( j = 1, 2, . . . n). Let nyes(i, j)
denote the number of experts who answer affirmatively and nno(i, j) denote the number of
experts who answer negatively. Then, the degrees to which alternatives Zi ’s (i = 1, 2, . . . ,m)

satisfy and/or do not satisfy attributes e j ’s ( j = 1, 2, . . . , n) may be computed as:

pi j = nyes(i, j)

N
and qi j = nno(i, j)

N
. (48)

Thus, MADM problem can be represented by using a fuzzy decision matrix X = (x̃i j )m×n

as:

X = (x̃i j )m×n =

e1 e2 en⎛

⎜⎜⎝

⎞

⎟⎟⎠

Z1 (p11, q11) (p12, q12) . . . (p1n, q1n)

Z2 (p21, q21) (p22, q22) . . . (p2n, q2n)
...

...
...

...

Zm (pm1, qm1) (pm2, qm2) . . . (pmn, qmn)

(49)

Considering that the attributes have different importance degrees, the weight vector of
all attributes, given by the decision makers, is defined as u = (u1, u2, . . . , un)T such that
0 ≤ u j ≤ 1( j = 1, 2, . . . , n) satisfying

∑n
j=1 u j = 1, and u j is the importance degree of the

j th attribute. Sometimes, the information about attribute weights is completely unknown or
incompletely known or partially known because of decision maker’s limited expertise about
the problem domain, lack of knowledge or time pressure etc. To get the optimal alternatives,
we should use methods or optimal models to determine the weight vector of the attributes. In
the present communication, two methods are discussed to determine the weights of attributes
using proposed entropy.

When Weights are Unknown

Based on the work done by Chen et al. [12], we use the Eq. (8) to determine the weights of
the attributes when they are completely unknown as:

u j = 1 − e j
n −∑n

j=1 e j
, j = 1, 2, . . . , n, (50)

where e j = 1
m

∑m
i=1 E

β
α (x̃i j ) and

Eβ
α (x̃i j ) = 1

n
(
21−α − 21−β

)
n∑

i=1

{[
(μG(zi )

α + νG(zi )
α) × (μG(zi )

+ νG(zi ))
1−α + 21−απG(zi )

]

−
[
(μG(zi )

β + νG(zi )
β) × (μG(zi ) + νG(zi ))

1−β + 21−βπG(zi )
]}

, (51)

is an IF entropy measure of x̃i j = (pi j , qi j ).
According to the entropy theory, smaller value of entropy for each criterion across all

alternatives provide decision makers with the useful information. So, the criterion should
be assigned a bigger weight; otherwise such a criterion will be judged unimportant by most
decision makers. In other words, such a criterion should be assigned a very small weight.
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When Weights are Partially Known

In general, there are more constraints for the weight vector u = (u1, u2, . . . , un). Sometimes,
the information about attribute weights is partially known due to lack of expertise, time limit
or lack of knowledge about the problem domain. To get the optimal alternative, we should use
the optimal methods to determine the weight vector of attributes. Let the set of known weight
information is denoted as H. Under intuitionistic fuzzy environment, to obtain the weights of
attributes for a multiple attribute decision making problem when we have partial information
about them, we use the minimum entropy principle introduced by Wang and Wang [37] to
determine the weight vector of attributes by constructing the following programming model
as:

Now, the overall entropy of the alternative Zi is

E(Zi ) =
n∑

j=1

Eβ
α (x̃i j ) =

n∑

j=1

1

n
(
21−α − 21−β

)
{ m∑

i=1

([ (
μG(zi )

α + νG(zi )
α
)× (μG(zi )

+ νG(zi ))
1−α
)+ 21−απG(zi )

]
−
[
(μG(zi )

β + νG(zi )
β) × (μG(zi ) (52)

+ νG(zi ))
1−β + 21−βπG(zi )

])}
,

Since each alternative is made in a fairly competitive environment, the weight coefficients
corresponding to same attributes should also be equal; to determine the optimal weight the
following model can be constructed:

min E =
m∑

i=1

u j E(Zi ) =
m∑

i=1

u j

⎧
⎨

⎩

n∑

j=1

Eβ
α (x̃i j )

⎫
⎬

⎭

= 1

n
(
21−α − 21−β

)
m∑

i=1

n∑

j=1

u j

{[
(μG(zi )

α + νG(zi )
α) × (μG(zi )

+ νG(zi ))
1−α + 21−απG(zi )

]
−
[
(μG(zi )

β + νG(zi )
β) × (μG(zi ) (53)

+ νG(zi ))
1−β + 21−βπG(zi )

]}
,

s.t.
n∑

j=1

u j = 1, u j ∈ H.

On solving the model (53) by using MATLAB software, we get the optimal solution
arg min E = (u1, u2, . . . , un)T .

In summary, the procedural steps of decision making method are listed as follows:

1. Determine the weights of the attributes by solving models equations (50) and (53).
2. Define the Best Solution Z+ and Worst Solution Z− as:

Z+ =
((

α+
1 , β+

1

)
,
(
α+

2 , β+
2

)
, . . . ,

(
α+
n , β+

n

))
, (54)

where (α+
j , β+

j ) = (sup(μG(zi )), inf(νG(zi ))) = (1, 0), j = 1, 2, . . . , n and zi ∈ X .

and Z− =
((

α−
1 , β−

1

)
,
(
α−

2 , β−
2

)
, . . . ,

(
α−
n , β−

n

))
, (55)
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where (α−
j , β−

j ) = (inf(μG(zi )), sup(νG(zi ))) = (0, 1), j = 1, 2, . . . , n and zi ∈ X .
3. By using the definition (2.3), the distance measures of Zi ’s from Z+ and Z− are given

as follows:

s(Zi , Z
+) = 1

2

n∑

j=1

u j (|pi j − α+
j | + |qi j − β+

j | + |ri j − π+
j |),

= 1

2

n∑

j=1

u j (|1 − pi j | + |qi j | + |1 − pi j − qi j |). (56)

s(Zi , Z
−) = 1

2

n∑

j=1

u j (|pi j − α−
j | + |qi j − β−

j | + |ri j − π−
j |),

= 1

2

n∑

j=1

u j (|pi j | + |1 − qi j | + |1 − pi j − qi j |). (57)

where ri j = 1 − pi j − qi j and π j = 1 − α j − β j .
4. Determine the relative degrees of closeness Di ’s as:

Di = s(Zi , Z−)

s(Zi , Z−) + s(Zi , Z+)
. (58)

5. Rank the alternatives as per the values of Di ’s in descending order. The alternative nearest
to the Z+ and farthest from the Z− will be the best alternative.

Numerical Examples

Now we illustrate the application of MADM method with the help of examples as follows:
Case 1 When the weights of the attributes are unknown.
Example 6.1 Consider a supplier selection problem with four possible alternatives Zi (i =

1, 2, 3, 4) and three attributes e j ( j = 1, 2, 3). The ratings of the alternatives are displayed in
the intuitionistic fuzzy decision matrix represented by Table 6. (This example is taken from
Herrera and Herrera-Viedma [41]; Ye [42]). The membership degrees (satisfactory degrees)
pi j and non-membership degrees (non-satisfactory degrees) qi j for the alternatives Zi ’s (i =
1, 2, . . . ,m) satisfying the attributes e j ’s ( j = 1, 2, . . . , n) respectively, may be obtained
using statistical method proposed by Liu and Wang [40]. [Taking no. of experts=N = 100 in
(48)]. Suppose that the ‘yes’ or ‘no’ answers of the expert are distributed as shown in Table
5.

Table 5 Distribution of “yes” and “no” answers from 100 experts

e1 e2 e3
〈nyes (i1), nno(i1)〉 〈nyes (i2), nno(i2)〉 〈nyes (i3), nno(i3)〉

Z1 〈45, 35〉 〈50, 30〉 〈20, 55〉
Z2 〈65, 25〉 〈65, 25〉 〈55, 15〉
Z3 〈45, 35〉 〈55, 35〉 〈55, 20〉
Z4 〈75, 15〉 〈65, 20〉 〈35, 15〉
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Table 6 Intuitionistic fuzzy
decision matrix

Alternatives Evaluating attributes

e1 e2 e3

Z1 (0.45, 0.35) (0.50, 0.30) (0.20, 0.55)

Z2 (0.65, 0.25) (0.65, 0.25) (0.55, 0.15)

Z3 (0.45, 0.35) (0.55, 0.35) (0.55, 0.20)

Z4 (0.75, 0.15) (0.65, 0.20) (0.35, 0.15)

Using the formula

pi j = nyes(i, j)

N
and qi j = nno(i, j)

N
, (59)

we obtain the degrees to which alternatives Zi ’s (i = 1, 2, 3, 4) satisfy or do not satisfy
attributes e j ’s ( j = 1, . . . , 3) as follows:

The IF decision matrix corresponding to Table 5 is given in Table 6.
The specific calculations are as under:

1. Using Eq. (50), (Taking α = 50 and β = .7) the calculated attribute weight vector is:

u = (u1, u2, u3)
T = (0.2981, 0.3047, 0.3973)T .

2. The Best Solution (Z+) and Worst Solution (Z−) are respectively given as:

Z+ = ((α+
1 , β+

1 ), (α+
2 , β+

2 ), (α+
3 , β+

3 )) = ((1, 0), (1, 0), (1, 0));
Z− = ((α−

1 , β−
1 ), (α−

2 , β−
2 ), (α−

3 , β−
3 )) = ((0, 1), (0, 1), (0, 1)).

3. The distance measures of Zi ’s from Z+ and Z− are:

s(Z1, Z
+) = 0.6256, s(Z2, Z

+) = 0.3859, s(Z3, Z
+) = 0.4857, s(Z4, Z

+) = 0.4221;
s(Z1, Z

−) = 0.5923, s(Z2, Z
−) = 0.7859, s(Z3, Z

−) = 0.7039, s(Z4, Z
−) = 0.8358.

4. The calculated values of Di ’s, the relative degrees of closeness, are:

D1 = 0.4863, D2 = 0.6707, D3 = 0.5917, D4 = 0.6644.

Thus, the ranking order of all alternatives is Z2 � Z4 � Z3 � Z1 and Z2 is the desirable
alternative.

Let us take one more example for more clarity.
Example 6.2 This example is adapted from [43]. Consider a supplier selection problem

with five possible alternatives Zi (i = 1, 2, 3, 4, 5) and six attributes e j ( j = 1, 2, . . . , 6).
The ratings of the alternatives are displayed in the following intuitionistic fuzzy decision
matrix D.

D =

e1 e2 e3 e4 e5 e6⎛

⎜⎜⎜⎝

⎞

⎟⎟⎟⎠

Z1 (.35, .45) (.35, .35) (.35, .5) (.4, .45) (.3, .55) (.35, .45)

Z2 (.35, .4) (.65, .15) (.55, .3) (.55, .25) (.5, .35) (.65, .2)

Z3 (.45, .25) (.75, .05) (.65, .2) (.75, .15) (.35, .45) (.55, .15)

Z4 (.55, .1) (.95, 0) (.75, .05) (.85, .05) (.6, .25) (.7, .15)

Z5 (.65, .2) (.5, .15) (.75, .05) (.35, .25) (.85, .05) (.45, .35)

(60)
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The specific calculation steps are as follows:

1. Taking α = 50 and β = 0.7 in (50), the computed attribute weight vector is:

u = (u1, u2, u3, u4, u5, u6)
T = (0.0382, 0.5762, 0.1367, 0.1077, 0.0896, 0.0516)

(61)

2. The Best Solution (Z+) and Worst Solution (Z−) are:

Z+ = ((α+
1 , β+

1 ), (α+
2 , β+

2 ), (α+
3 , β+

3 ), (α+
4 , β+

4 ).(α+
5 , β+

5 ), (α+
6 , β+

6 ))

= (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0)

Z− = ((α−
1 , β−

1 ), (α−
2 , β−

2 ), (α−
3 , β−

3 ), (α−
4 , β−

4 ), (α−
5 , β−

5 ), (α−
6 , β−

6 ))

= (0, 1), (0, 1), (0, 1), (0, 1), (0, 1), (0, 1) (62)

3. The computed distance measures of Zi ’s from Z+ and Z− are:

s(Z1, Z
+) = 0.6491, s(Z2, Z

+) = 0.3993, s(Z3, Z
+) = 0.3213, s(Z4, Z

+)

= 0.1477, s(Z5, Z
+) = 0.4475;

s(Z1, Z
−) = 0.5918, s(Z2, Z

−) = 0.7887, s(Z3, Z
−) = 0.8701, s(Z4, Z

−)

= 0.9538, s(Z5, Z
−) = 0.8496. (63)

4. The computed values of Di ’s, i.e., the relative degrees of closeness are:

D1 = 0.4769, D2 = 0.6639, D3 = 0.7303, D4 = 0.8659, D5 = 0.6550. (64)

5. Ranking the alternatives according to the values of Di ’s in descending order, the sequence
of alternatives so obtained is Z4 � Z3 � Z2 � Z5 � Z1 and Z4 is the most desirable
alternative.

Comparison with other methods
By applying the method proposed by Xu [43], the preference order of all alternatives is
Z4 � Z3 � Z5 � Z2 � Z1 and Z4 is the best alternative.

If we apply the method suggested by Boran et al. [44] to compute example 6.2, the
sequence of alternatives so obtained is Z4 � Z5 � Z3 � Z2 � Z1 and Z4 is the most
desirable alternative.

Using the method proposed by Ye [45], the preference order of alternatives Z4 � Z5 �
Z3 � Z2 � Z1 and Z4 is the most desirable alternative.

On applying Li’s method [46] to example 6.2, the sequence of alternatives so obtained is
Z4 � Z5 � Z3 � Z2 � Z1 and Z4 is the most suitable option.

If we use the MADM method based on intuitionistic fuzzy weighted geometric averaging
(IFWGA) operator proposed by Chen and Chang [47] to compute the Example 6.2, the
sequence of preferences so obtained is Z4 � Z3 � Z5 � Z2 � Z1 with Z4 as the best
alternative.

All the methods used for comparison choose Z4 as the best option. Xu’s method [43] is
effective only if all attributes have equal weights which is not possible only in some specific
applications, for example risk assessment, medical diagnosis [12] etc. Boran et al. [44]
uses the definition of IVIFS to calculate the attribute weights in decision making problems
under interval-valued intuitionistic fuzzy (IVIF) environment, which do not consider the
decision matrix for decision making. Li’s method [46] is only effective in solving MADM
problem in attribute weights as well as alternatives on attributes are denoted by interval-
valued intuitionistic fuzzy sets (IVIFSs). In our proposed MADM method, we measure the
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Table 7 Intuitionistic fuzzy
decision matrix

Options Evaluating Attributes
e1 e2 e3

Z1 (0.75, 0.10) (0.60, 0.25) (0.80, 0.20)

Z2 (0.80, 0.15) (0.68, 0.20) (0.45, 0.50)

Z3 (0.40, 0.45) (0.75, 0.05) (0.60, 0.30)

relative degrees of closeness of different alternatives from best possible solution and worst
possible solution whereas Ye’s method [45] is based on correlation coefficients with the best
solution only. The entropy based attributes weight method introduced in this communication
is not only simple and objective method but also considers all the alternatives on attributes.

Case 2 When weights of attributes are partially known
Example 6.3 This example is adapted from Li [48]. In this, we consider an washing

machine selection problem. Suppose there are three washing machines: Zi (i = 1, 2, 3)

are to be selected. Evaluation attributes are e1 (Economical), e2 (Function) and e3 (Opera-
tionality). The membership degrees (satisfactory degrees) pi j and non-membership degrees
(non-satisfactory degrees) qi j for the alternatives Zi ’s (i = 1, 2, . . . ,m) satisfying the
attributes e j ’s ( j = 1, 2, . . . , n) respectively, may be obtained using statistical method
proposed by Liu and Wang [40].

The intuitionistic fuzzy decision matrix (Calculated same as in above example) provided
by decision makers is shown in Table 7.

Let the weights of attributes satisfy the following set

H = {0.25 ≤ u1 ≤ 0.75, 0.35 ≤ u2 ≤ 0.60, 0.30 ≤ u3 ≤ 0.35}.
The specific calculation steps are as under:

1. Using Eq. (53), following programming model can be established:

min E = 0.3926u1 + 0.4326u2 + 0.1748u3, (65)

s.t.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.25 ≤ u1 ≤ 0.75

0.35 ≤ u2 ≤ 0.60

0.30 ≤ u3 ≤ 0.35

u1 + u2 + u3 = 1.

(66)

Solving the above programming model by using MATLAB software, we get the weight
vector as follows:

u = (0.30, 0.35, 0.35)T . (67)

2. The Best Solution (Z+) and Worst Solution (Z−) are respectively given as:

Z+ = ((α+
1 , β+

1 ), (α+
2 , β+

2 ), (α+
3 , β+

3 )) = ((1, 0), (1, 0), (1, 0));
Z− = ((α−

1 , β−
1 ), (α−

2 , β−
2 ), (α−

3 , β−
3 )) = ((0, 1), (0, 1), (0, 1)).

3. The calculated distances of Zi ’s (i = 1, . . . , 4) from Z+ and Z− are as:

s(Z1, Z
+) = 0.2850, s(Z2, Z

+) = 0.3645, s(Z3, Z
+) = 0.4075;

s(Z1, Z
−) = 0.8125, s(Z2, Z

−) = 0.7100, s(Z3, Z
−) = 0.7425.

4. The calculated values of Di ’s, the relative degrees of closeness, are as follows:

D1 = 0.7403, D2 = 0.6608, D3 = 0.6457.
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Arranging the alternatives in descending order according to the values of Di ’s, we get the
following sequence of alternatives Z1 � Z2 � Z3 and Z1 is the best alternative.

If we apply intuitionistic fuzzy weighted geometric averaging (IFWGA) operator method
introduced by Chen and Chang [47], the preferential sequence of alternatives so obtained is
Z1 � Z2 � Z3 which coincides with proposed method. This shows that the performance of
proposed information measure and MADM method based on it is considerably good. Also,
the best alternative agrees with that of Li [48].

On analyzing the output obtained from above three examples, we may observe that the
proposed method not only give an optimal alternative, but also provide the decision makers
with useful information for the choice of alternatives. The fuzzy decision making method
with the entropy weights is more practical and effictive for dealing with the partially known
and unknown information about criteria weights.

The above method can also be used to solve the following types of MADM problems

1. Suppose a person wants to buy a car. Suppose five types of cars are available in the
market. Suppose he makes the four attributes (1) price (2) comfort (3) design (4) safety,
a base to purchase the car.

2. Suppose a person wants insure himself with some insurance company. Suppose he has
five options available and company considers four attributes to check the suitability of
the customer namely (1) age (2) adequate weight (3) cholesterol level (4) blood pressure.

3. Suppose a doctor wants to diagnose the patients on the basis of some symptoms of
disease. Let the five possible diseases be (1) D1 (2) D2 (3) D3 (4) D4 having closely
related symptoms. Let the doctor consider the four symptoms to decide the possibility
of a particular disease: (1) A1 (2) A2 (3) A3 (4) A4.

4. Suppose a person wants to choose a school for his children. He as five schools as pos-
sible alternatives. He considers the following four attributes to decide : (1). Transport
facility (2). Academic profile of the teachers (3). Previous year’s results of the school
(4). Discipline.

Concluding Remarks

Intuitionistic fuzzy sets play an important role in solving MADM problems. In this commu-
nication, we have proposed a new parametric intuitionistic fuzzy entropy and presented a
MADM model based on the proposed entropy in which intuitionistic fuzzy sets represents
characteristics of alternatives. We have discussed two cases to calculate the weights of the
attributes. One is for unknown attribute weights and other is for partially known attribute
weights. Using minimum entropy principle, the optimal criteria weights are obtained by the
proposed entropy based model. The problems based on multiple attributes like evaluation of
project management risks which depends on many factors, site selection and credit evalua-
tion etc. can also be solved by using proposed MADM method. The techniques proposed in
this paper can efficiently help the decision maker. In future, this idea of intuitionistic fuzzy
sets will be extended to interval valued intuitionistic fuzzy sets for determining the weights
of experts in MADM problems under intuitionistic fuzzy environment and will be reported
elsewhere.

Acknowledgements The authors are thankful to the anonymous reviewers for their constructive suggestions
to improve this manuscript.
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