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Abstract The demand for a service is the amount of it that a consumer will purchase or
will be ready to purchase at different prices at a given moment of time. An EOQ model for
spoilage commodities and power demand under trade credits is established. Mathematical
model is established to obtain optimal ordering policies for policies for retailer under two
different cases. In this model buyer who purchases the commodities enjoy a fixed period
offered by his/her vendor. We show that total profit function is concave with respect to time.
We then provide for finding maximum profit. Numerical examples are provided of the optimal
solution to find order quantity and total profit. Sensitivity analysis of the key parameters is
presented to validate the model.

Keywords Inventory · Power demand · Deterioration · Trade credits · Optimal

Introduction

In high tech business transaction industries found that they can get more advantages by
establishing steady and long term relationship between retailer and supplier. Thus, it is a
powerful and incremental tool to get more profit. Therefore inventory model is an excellent
model for both seller and buyer. In traditional Economic Order Quantity (EOQ) models, it
is assumed that the demand rates of commodities be either constant or time induced.But in
actual practice it may be stock-sensitive. In recent days, changeable demand is attracting the
researchers due to maintaining inventory very crucial.
Every item in the universe deteriorates over time. While the rate of deterioration of some
items may be small. Therefore, the effect of deterioration cannot ignore in the study of inven-
tory policy, otherwise it will cause inaccurate results. Jaggi and Aggarwal [1] established the
economic ordering policies considering discounted cash flow approach. Jaggi et al. [2] estab-

B R. P. Tripathi
tripathi_rp0231@rediffmail.com

1 Department of Applied Sciences & Humanities, KNIT, Sultanpur, UP, 228118, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40819-018-0485-y&domain=pdf


55 Page 2 of 16 Int. J. Appl. Comput. Math (2018) 4:55

lished an EOQ of deteriorating items under inflation. Ghare and Schrader [3] first proposed
an inventory model with constant deterioration rate over a finite planning horizon. Covert
and Philip [4] generalized a model considering variable deterioration rate. Researchers like:
Holler and Mak [5], Datta and Pal [6], Dye et al. [7], Philip [8], Chakrabarty and Chaudhuri
[9], Giri and Chaudhuri [10], Deb and Chaudhuri [11], Chung and Ting [12], Hariga [13],
Hariga and Benkherouf [14], Jalan and Chaudhuri [15], Roy [16].

At present in high tech business transaction, supplier offers their buyers a fixed period
with interest in between the credit period. Two benefits are produced in case of permissible
delay in payment: (1) it motivates more buyers that consider it a price discount and (2)
it is applicable an alternative discount price. Shinn et al. [17] provided an EOQ model
considering quantity discount for freight charges. Teng et al. [18] developed an EOQ model
with progressive demand. Khanra et al. [19] focused an EOQ model for deteriorating items
with time-sensitive demand under permissible delay in payments. Tripathi [20] established
“EOQ model for optimal payment time for a retailer with exponential demand under permitted
credit period by the whole seller”. Tripathi and Mishra [21] presented an inventory model
for deteriorating items with inventory sensitive demand. Shah [22] considered a stochastic
EOQ model under trade credits. Several related papers can be seen in Chung [23], Jamal et
al. [24], Hwang and Shinn [25], Chung and Teng [26], Chung and Liao [27], Ouyang et al.
[28] etc.

In the classical EOQ model demand is always constant. In actual practice, it is in dynamic
stage and may not always constant. Demand expresses the functional relational ship between
price and quantity demanded. Price of an item is the most important factor affecting the
demand for a commodity. Generally, demand for an item increases, when its price falls. In
the same way, if the price increases the demand will fall. Variation in the price of a com-
modity may result in the change of demand for that commodity. Demand may occur due to
factors other than price. Silver and Meal [29] first considered a generalization of the inven-
tory model for the case of a varying demand. Jalan and Chaudhuri [30] established inventory
model considering exponentially time varying demand pattern. Ghosh and Chaudhuri [31]
presented EOQ models considering time- quadratic demand rate. Soni and Shah [32] pre-
sented an EOQ model retailer when customer demand is stock-induced and when supplier
offers two progressive credit periods. Tripathi and Singh [33] developed EOQ model for
inventory-induced demand rate. Soni [34] established inventory model for optimal replen-
ishment policies for spoilage products with stock-sensitive demand. Hou [35] derived a model
for deteriorating items with stock-dependent consumption rate and shortages under inflation
and time discounting. Padmanabhan and Vrat [36] pointed out inventory models for perish-
able commodities for stock-dependent selling rate. The notable researchs were addressed by
Kim et al. [37], Noh [38], Cheikhrouhou et al. [39]. Sarkar [40,41], Kang [42] Sarkar and
Saren [43], Sarkar et al. [44–46], Shin et al [47], Tayyab and Sarkar [48], Sett et al. [49],
Datta and Pal [50], Dye and Ouyang [51], Taleizadeh et al. [52], Tripathi [53] and others
(Table 1).
The problem of determining the total profit with stock- dependent demand (power demand
pattern) is addressed in this paper in a manner that reflects realistic situation. Thus this model
has a new managerial insight that helps a manufacturing system to generate maximum profit.
The rest of the paper is designed as follows: in “Notation and Assumptions” section fun-
damental notations and assumption are provided. In “Mathematical Formulation” section,
Mathematical model is shown. Optimal solution is discussed in “Determination of Opti-
mal Solution” section followed by solution algorithm. Numerical examples and sensitivity
analysis are given in “Solution Algorithm and Numerical Examples” sections respectively.
Conclusions are made in the last section.
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Table 1 Major characteristics of inventory models of different authors is this research field including this
work

References EOQ/EPQ Demand Holding cost Deterioration Shortages

Sarkar et al. [43] EOQ Constant Constant Variable No

Sarkar [40] EOQ Stock-dependent Constant Variable Yes

Sarkar et al. [44] EOQ Stock-dependent Constant Constant Yes

Datta and Pal [6] EOQ Stock-dependent Constant Constant No

Dye and Ouyang
[51]

EOQ Stock-dependent Constant Constant Partial backlogged

Taleizadeh et al.
[52]

EOQ Constant Constant Constant Completely
backlogged

Tripathi [53] EOQ Time-dependent Linearly No No

In this paper EOQ Power demand Constant Constant No

Notation and Assumptions

Notations

c, p, and h Unit purchase, selling and holding cost (Rs./unit/year)
θ Constant deterioration rate of an item (0 ≤ θ ≤ 1)
A Replenishment cost of item (Rs./order)
D{I (t)} = α{I (t)}β Demand rate which is inventory dependent α > 0, 0 ≤ β ≤ 1, where

α is initial demand (for β = 0)
M Permissible delay period (in years)
T Time interval between (in years)
Ic Interest charges/unit/year (in Rs.)
Id Interest earned unit/year (in Rs.) (Ic > Id)
I (t) Inventory level at instant t
Q Lot-size (in units)
RC Replenishment cost/unit time (in Rs.)
DC Deterioration cost (in Rs.)
SR Sales revenue (Rs./year)
I P1 and I P2 Interest payable (Rs./unit/year for case I and II respectively
I E1 and I E2 Interest earned (Rs./unit/year for case I and II respectively
Z1(T ), and Z2(T ) Total variable profit (in Rs.) for case I and II respectively
T ∗

1 and T ∗
2 Optimal T for case I and II

Z∗
1(T ∗

1 ) and Z∗
2(T ∗

2 ) Optimal Z1(T ) and Z2(T ) respectively

Assumptions

(i) Deterioration rate is constant and 0 ≤ θ ≤ 1 per unit time.
(ii) Demand rate is inventory dependent of the item.

(iii) Selling price is greater than purchase cost (p > c).
(iv) Inventory is considered for single item.
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Mathematical Formulation

The rate of decrease of inventory I (t) at time t is:

d I (t)

dt
= −θ I (t) − D{I (t)}, 0 ≤ t ≤ T (1)

The solution of (1) with the condition I (T ) = 0, is

I(t)= (α/θ)1/(1−β)
{
eθ(1−β)(T−t) − 1

}1/(1−β)

(2)

The order quantity Q is

Q = (α/θ)1/(1−β)
{
eθ(1−β)T − 1

}1/(1−β)
(3)

The replenishment cost RC = A (4)

The sales revenue SR = p{α(1−β)T }1/(1−β)(4−2β+βθT )
2(2−β)

(see appendix A3)

(5)

Total demand during one cycle is = {α(1−β)T }1/(1−β)(4−2β+βθT )
2(2−β)

(6)

Number of deteriorated units = Q −
T∫
0

α{I (t)}βdt

= {α(1−β)T }1/(1−β)θ(1−β)T
(2−β)

(7)

Deteriorated cost (DC), in [0, T ] is = cθ(1−β)T {α(1−β)T }1/(1−β)

(2−β)
(8)

The holding cost (HC), during [0, T ] is

HC = hα1/(1−β) {(1 − β)T }(2−β)/(1−β)
{

1
2−β

+ θT
2(3−2β)

}
(9)

The following two cases may arise depending on credit period

Case I: T >M
In this case, the cycle time is greater than credit period (M), the interest is payable during
(T–M), the interest payable in [0, T ] is:

I P1 = cIc

T∫

M

I (t)dt = cIcα
1/(1−β) {(1 − β)(T − M)}(2−β)/(1−β)

{
1

2 − β
+ θ(T − M)

2(3 − 2β)

}

(10)
The interest earned (IE1) in between [0, T ] is:

I E1 = pIdα1/(1−β) {(1 − β)T }(2−β)/(1−β)

2 − β

{
1 + βθT

2(3 − 2β)

}
(11)

The total variable profit/ unit time is:

Z1(T ) = 1

T

[
p{α(1 − β)T }1/(1−β)(4 − 2β + βθT )

2(2 − β)

− A − cθ(1 − β)T {α(1 − β)T }1/(1−β)

(2 − β)

− hα1/(1−β) {(1 − β)T }(2−β)/(1−β)

{
1

2 − β
+ θT

2(3 − 2β)

}
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− cIcα
1/(1−β) {(1 − β)(T − M)}(2−β)/(1−β)

{
1

2 − β
+ θ(T − M)

2(3 − 2β)

}

+ pIdα1/(1−β) {(1 − β)T }(2−β)/(1−β)

2 − β

{
1 + βθT

2(3 − 2β)

}]
(12)

Case II: T ≤ M
In this, case, the cycle time (T ) is less than credit period (M) customer earns interest on the
sales revenue and no interest is payable (i.e. IP2 = 0). Therefore, interest earned in [0, M] is:

pId

T∫

0

t.D(t)dt + pId(M − T )

T∫

0

D(t)dt (13)

Therefore, the interest earned IE2 is:

I E2 = pId

[
α1/(1−β) {(1 − β)T }(2−β)/(1−β)

(2 − β)

{
1 + βθT

2(3 − 2β)

}

+ (M − T ) {α(1 − β)T }1/(1−β) (4 − 2β + θβT )

2(2 − β)

]
(14)

The total variable profit/cycle is:

Z2(T ) = 1

T

[
p{α(1 − β)T }1/(1−β)(4 − 2β + βθT )

2(2 − β)

− A − cθ(1 − β)T {α(1 − β)T }1/(1−β)

(2 − β)

− hα1/(1−β) {(1 − β)T }(2−β)/(1−β)

{
1

2 − β
+ θT

2(3 − 2β)

}]

+ pId
T

[
α1/(1−β) {(1 − β)T }(2−β)/(1−β)

(2 − β)

{
1 + βθT

2(3 − 2β)

}

+ (M − T ) {α(1 − β)T }1/(1−β) (4 − 2β + θβT )

2(2 − β)

]
(15)

Case III: Let T = M
At T = M , Z1(T ) and Z2(T ) are equal i .e. Z1(T ) = Z2(T ). Substituting T = M in
Eqs. (12) or (16), we get

Z3(T ) = 1

T

[
p{α(1 − β)T }1/(1−β)(4 − 2β + βθT )

2(2 − β)

− A − cθ(1 − β)T {α(1 − β)T }1/(1−β)

(2 − β)

− hα1/(1−β) {(1 − β)T }(2−β)/(1−β)

{
1

2 − β
+ θT

2(3 − 2β)

}]

+ pId
T

[
α1/(1−β) {(1 − β)T }(2−β)/(1−β)

(2 − β)

{
1 + βθT

2(3 − 2β)

}]
(16)
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Or

Z3(M) = 1

M

[
p{α(1 − β)T }1/(1−β)(4 − 2β + βθM)

2(2 − β)

− A − cθ(1 − β)M{α(1 − β)M}1/(1−β)

(2 − β)

− hα1/(1−β) {(1 − β)M}(2−β)/(1−β)

{
1

2 − β
+ θM

2(3 − 2β)

}]

+ pId
T

[
α1/(1−β) {(1 − β)M}(2−β)/(1−β)

(2 − β)

{
1 + βθM

2(3 − 2β)

}]
(17)

Determination of Optimal Solution

Differentiating Z1(T ) and Z2(T ) from Eqs. (12) and (15) with respect to T , we get

dZ1(T )

dT
= − 1

T 2

[
p{α(1 − β)T }1/(1−β)(4 − 2β + βθT )

2(2 − β)

− A − cθ(1 − β)T {α(1 − β)T }1/(1−β)

(2 − β)

− hα1/(1−β) {(1 − β)T }(2−β)/(1−β)

{
1

2 − β
+ θT

2(3 − 2β)

}

− cIcα
1/(1−β) {(1 − β)(T − M)}(2−β)/(1−β)

{
1

2 − β
+ θ(T − M)

2(3 − 2β)

}

+ pIdα1/(1−β) {(1 − β)T }(2−β)/(1−β)

2 − β

{
1 + βθT

2(3 − 2β)

}]

+ α1/1−β

2T

[
p {(1 − β)T }β/1−β (2 + βθT )

−{(1 − β)T }1/1−β

{
2cθ + h(2 + θT ) − pId(4 − 2β + θT )

2 − β

}

− cIc{(1 − β)(T − M)}1/1−β {2 + θ(T − M)}] (18)

dZ2(T )

dT
= − 1

T 2

[
p{α(1 − β)T }1/(1−β)(4 − 2β + βθT )

2(2 − β)

− A − cθ(1 − β)T {α(1 − β)T }1/(1−β)

(2 − β)

− hα1/(1−β) {(1 − β)T }(2−β)/(1−β)

{
1

2 − β
+ θT

2(3 − 2β)

}]

− pId
T 2

[
α1/(1−β) {(1 − β)T }(2−β)/(1−β)

(2 − β)

{
1 + βθT

2(3 − 2β)

}

+ (M − T ) {α(1 − β)T }1/(1−β) (4 − 2β + θβT )

2(2 − β)

]
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+ α1/1−β

2T
[p {(1 − β)T }β/(1−β) (2 + βθT )

− {(1 − β)T }1/(1−β)

{
2cθ + h(2 + θT ) − pId(4 − 2β + θT )

2 − β

}

+ pId {(1 − β)T }β/(1−β)

(2 − β)
{(βT + M − 2T ) (4 − 2β + βθT )

+ (1 − β)βθ(M − T )}] (19)

The main aim is to find the maximum value of profit. The maximum value of Zi (T ) for given

T = T ∗
i , i = 1, 2, are obtained by solving dZi (T )

dT = 0 for T, provided d2Zi (T )

dT 2 < 0, (see
“Appendix”).

Putting dZi (T )
dT = 0, i = 1,2, from Eqs. (18) and (19), we obtain

α1/1−βT
[
p {(1 − β)T }β/1−β (2 + βθT ) − {(1 − β)T }1/1−β

{
2cθ + h(2 + θT ) − pId(4 − 2β + θT )

2 − β

}

− cIc{(1 − β)(T − M)}1/1−β {2 + θ(T − M)}]

− 2

[
p{α(1 − β)T }1/(1−β)(4 − 2β + βθT )

2(2 − β)
− A − cθ(1 − β)T {α(1 − β)T }1/(1−β)

(2 − β)

− hα1/(1−β) {(1 − β)T }(2−β)/(1−β)

{
1

2 − β
+ θT

2(3 − 2β)

}

− cIcα
1/(1−β) {(1 − β)(T − M)}(2−β)/(1−β)

{
1

2 − β
+ θ(T − M)

2(3 − 2β)

}

+ pIdα1/(1−β) {(1 − β)T }(2−β)/(1−β)

2 − β

{
1 + βθT

2(3 − 2β)

}]
= 0 (20)

α1/1−βT [p {(1 − β)T } 1/(1−β) (2 + βθT ) − {(1 − β)T }1/(1−β)

{
2cθ + h(2 + θT ) − pId(4 − 2β + θT )

2 − β

}

+ pId {(1 − β)T }β/(1−β)

(1 − β)(2 − β)
{(βT + M − 2T ) (4 − 2β + βθT ) + (1 − β)βθ(M − T )}

]

− 2

[
p{α(1 − β)T }1/(1−β)(4 − 2β + βθT )

2(2 − β)
− A − cθ(1 − β)T {α(1 − β)T }1/(1−β)

(2 − β)

− hα1/(1−β) {(1 − β)T }(2−β)/(1−β)

{
1

2 − β
+ θT

2(3 − 2β)

}]

− 2pId

[
α1/(1−β) {(1 − β)T }(2−β)/(1−β)

(2 − β)

{
1 + βθT

2(3 − 2β)

}

+ (M − T ) {α(1 − β)T }1/(1−β) (4 − 2β + θβT )

2(2 − β)

]
= 0. (21)

The following algorithm is established to obtain the Q∗ and Z∗(T ∗).
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Solution Algorithm

Step 1 : Initialize the parameters
Step 2 : Find T ∗

1 from Eq. (21), if T ∗
1 > M , calculate Z∗

1(T ∗
1 ) from Eq. (12)

Step 3 : Find T ∗
2 from Eq. (21), if T ∗

2 ≤ M , calculate Z∗
2(T ∗

2 ) from Eq. (15)
Step 4 : If T ∗

1 > M , and T ∗
2 ≤ M is satisfied, compare Z∗

1(T ∗
1 ), Z∗

2(T ∗
2 ) and obtain the

maximum profit.
Step 5 : If T∗

1 > M is satisfied and T ∗
2 > M is not satisfied, then Z∗

1(T ∗
1 ) is the maximum

profit
Step 6 : If T∗

1 < M is not satisfied and T ∗
2 ≤ M is satisfied, then Z∗

2(T ∗
2 ) is the maximum

profit
Step 7 : Compare Q(T ∗

1 ) and Q(T ∗
2 ) for corresponding maximum profit

The following examples are given to validate the above algorithm:

Numerical Examples

Following three examples discussed below cover all three cases. The numerical data is taken
from the previous literature survey:

Example 1 In this inventory system, let us take α = 1000 units/ year, β = 0.5, c = 40 units/year,
A = Rs. 200/ order, Ic = 0.15/ year, Id = 0.13/year, h = Rs. 150/year, p = Rs.50/units, θ = 0.20
and M = 0.35 year.
Putting these values in (20) and solving for T , we get T ∗

1 = 0.483832 year, corresponding
Z1(T ∗

1 ) = Rs. 3.08245 × 106 and Q(T ∗
1 ) = 61381.1 units.

Also, substituting these above parameter values is (21), and solving for T , we obtain
T ∗

2 = 0.42826 year, corresponding Z2(T ∗
2 ) = Rs. 2.97985 × 106 and Q(T ∗

2 ) = 46156.4
units.
Here T ∗

2 > M , which contradicts the assumption of case II, thus only case I holds as
T ∗

1 > M . Therefore, Z1(T ∗
1 ) = Rs. 3.08245 × 106, in which T ∗

1 = 0.483832 year and
Q(T ∗

1 ) = 61381.1 units.

Example 2 Let us consider α = 1000 units, β = 0.5, c = 40, A = 200, Ic = 0.15, Id = 0.13, h = .
230, p = 50, θ = 0.20 and M = 0.30 year in appropriate units.
Putting these values in (20) and solving for T , we get, T ∗

1 = 0.31971 year, Z1(T ∗
1 ) = Rs.

2.01991 × 106 and Q(T ∗
1 ) = 26377.1 units.

Also, substituting these above parameter values is Eq. (21), and solving for T , we obtain
T ∗

2 = 0.296152 year, corresponding Z2(T ∗
2 ) = Rs. 2.01066 × 106 and Q(T ∗

2 ) = 22580.7
units.
Here T ∗

1 > M , and T ∗
2 ≤ M , both cases are satisfied. Since Z1(T ∗

1 ) > Z2(T ∗
2 ),therefore,

the Z1(T ∗
1 ) = Rs. 2.01991 × 106, in which the maximum, cycle time is T ∗

1 = 0.31971 year
and optimal Q(T ∗

1 ) = 26377.1 units.

Example 3 Let us consider α = 1000, β = 0.5, c = 40, A = 200, Ic = 0.15, Id = 0.13, h = 250,
p = 50, θ = 0.20 and M = 0.30 year, in appropriate units.
Substituting these values in Eq. (20) and solving for T , we get, T ∗

1 = 0.294609 year, corre-
sponding Z1(T ∗

1 ) = Rs. 1.85942 × 106 and Q(T ∗
1 ) = 22342.6 units.

Also, substituting these above parameter values is Eq. (21), and solving for T, we obtain
T ∗

2 = 0.276562 year, corresponding Z2(T ∗
2 ) = Rs. 1.86301 × 106 and Q(T ∗

2 ) = 19654.1
units.
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Fig. 1 Graph of Z1(T ) with T > M (M = 0.35 years)

Here T ∗
1 < M , which contradicts the assumption of case I, thus only case II holds as

T ∗
2 < M . Therefore, the Z2(T ∗

2 ) = Rs. 1.86301 × 106, in which the maximum, cycle time
is T ∗

2 = 0.276562 year and the optimal Q(T ∗
2 ) = 19654.1 units.

Example 4 Let us consider α = 1000, β = 0.5, c = 40, A = 200, Ic = 0.15, Id = 0.13, h =
150, p = 50, θ = 0.20 and T = M in appropriate units.

Substituting these values in Eqs. (20) or (21) and solving for T or M , we get T ∗
1 = T ∗

2 =
M∗ = 0.48572 year, which is the case III. Thus the maximum average profit is Z(M∗) = Rs.
3.08497 x106, in which optimal cycle time is T ∗ = 0.48572 year and optimal Q(T ∗) = 61880.6
units.
The following Figs. 1 and 2 are given for case I and II respectively

Sensitivity Analysis

Sensitivity analysis is established for case I, considering the rest parameters at their original
values as in Example 1.
Sensitivity analysis for case II: Sensitivity analysis is established considering the numerical
data as in Example 2.
Based on Tables 2 and 3, following inferences can be made:

(i) We see that if initial demand α, unit selling price (p) and credit period (M), will increase,
total profit will also increase. It means that Z1(T ∗

1 ) and Z2(T ∗
2 ) are quite sensitive to

change in α, and T ∗
1 , T ∗

2 are moderately sensitive with α, p, and M .
(ii) We observe that if, unit holding cost (h), unit purchase cost (c), replenishment cost (A)

will increase, total profit Z1(T ∗
1 ) and Z2(T ∗

2 ) will decrease. It means that Z1(T ∗
1 ) and

Z2(T ∗
2 ) are sensitive with h, c and A, and T ∗

1 is approximately insensitive to change in
h and A.
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Fig. 2 Graph of Z2(T ) with T < M (M = 0.35 years)

Table 2 Variation of T ∗
1 , Q(T ∗

1 ) and Z1(T ∗
1 ) with α, c, p, M, h and A

α T ∗
1 Q(T ∗

1 ) Z1(T ∗
1 ) c T ∗

1 Q(T ∗
1 ) Z1(T ∗

1 )

1100 0.483826 74279.0 3.72985 × 106 42 0.482579 61064.1 3.07455 × 106

1200 0.483822 88396.6 4.43890 × 106 44 0.481334 60742.1 3.06671 × 106

1300 0.483819 103742.0 5.20962 × 106 46 0.480097 60423.0 3.05890 × 106

1400 0.483817 120315.0 6.04199 × 106 48 0.478869 60107.0 3.05114 × 106

1500 0.483815 138116.0 6.93602 × 106 49 0.478258 59950.2 3.04727 × 106

p T ∗
1 Q(T ∗

1 ) Z1(T ∗
1 ) M T ∗

1 Q(T ∗
1 ) Z1(T ∗

1 )

55 0.532439 74696.6 3.74183 × 106 0.36 0.484087 61455.4 3.08296 × 106

60 0.581138 89408.2 4.46683 × 106 0.37 0.484547 61517.5 3.08341 × 106

65 0.629972 105565.0 5.25800 × 106 0.38 0.484547 61575.0 3.08378 × 106

70 0.678971 123208.0 6.11598 × 106 0.39 0.484751 61628.1 3.084069 × 106

75 0.728184 142392.0 7.04142 × 106 0.40 0.484937 61676.5 3.08434 × 106

h T ∗
1 Q(T ∗

1 ) Z1(T ∗
1 ) A T ∗

1 Q(T ∗
1 ) Z1(T ∗

1 )

155 0.468940 57584.5 2.98471 × 106 210 0.483833 61389.4 3.08242 × 106

160 0.454921 54118.7 2.89291 × 106 220 0.483835 61389.9 3.08240 × 106

165 0.44170 50952.9 2.80651 × 106 230 0.483836 61390.2 3.08238 × 106

170 0.429211 48053.5 2.72507 × 106 240 0.483838 61390.7 3.08236 × 106

180 0.406192 42940.5 2.57544 × 106 250 0.483839 61391.0 3.08234 × 106
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Table 3 Variation of T ∗
2 , Q(T ∗

2 ) and Z2(T ∗
2 ) with α, c, p, M, h and A

α T ∗
2 Q(T ∗

2 ) Z2(T ∗
2 ) c T ∗

2 Q(T ∗
2 ) Z2(T ∗

2 )

1100 0.276553 23779.9 2.25438 × 106 42 0.276207 19603.0 1.86033 × 106

1200 0.276546 28298.6 2.68304 × 106 44 0.275854 19552.3 1.85766 × 106

1300 0.276541 33210.4 3.14897 × 106 46 0.275502 19501.7 1.85500 × 106

1400 0.276537 38515.0 3.65217 × 106 48 0.275150 19451.2 1.85234 × 106

1500 0.276534 44212.7 4.19264 × 106 49 0.274974 19426.0 1.85102 × 106

p T ∗
2 Q(T ∗

2 ) Z2(T ∗
2 ) M T ∗

2 Q(T ∗
2 ) Z2(T ∗

2 )

42 0.237967 14496.0 1.32530 × 106 0.31 0.277529 19793.7 1.86789 × 106

44 0.247786 15732.2 1.45163 × 106 0.32 0.278496 19933.8 1.87277 × 106

45 0.252652 16364.0 1.51683 × 106 0.33 0.279463 20074.4 1.87763 × 106

46 0.257490 17004.8 1.58338 × 106 0.34 0.280430 20215.4 1.88249 × 106

48 0.267081 18312.5 1.72052 × 106 0.35 0.281397 20357.0 1.88732 × 106

h T ∗
2 Q(T ∗

2 ) Z2(T ∗
2 ) A T ∗

2 Q(T ∗
2 ) Z2(T ∗

2 )

255 0.272064 19011.6 1.82353 × 106 210 0.276564 19654.4 1.86297 × 106

260 0.267712 18400.3 1.79697 × 106 220 0.276567 19654.8 1.86294 × 106

265 0.263497 17818.0 1.76566 × 106 230 0.276569 19655.1 1.86290 × 106

270 0.259413 17263.0 1.73541 × 106 240 0.276572 19655.6 1.86286 × 106

280 0.255454 16733.6 1.70618 × 106 250 0.276574 19655.9 1.86283 × 106

Conclusion

This model is based on inventory dependent demand. Most of the EOQ models are considered
that demand rate remain constant. If β = 0, the demand becomes constant. However, at present,
the demand rate of items increases during growth of production process. In this paper, we have
provided an EOQ model for spoilage commodities trade credits. An algorithm is discussed
to obtain the order quantity and total profit. Numerical examples are given to illustrate the
applicability solution algorithm. Sensitivity analysis has been discussed with variation of
several key parameters. Several managerial phenomena have also pointed out:

• Increase in, initial demand, unit selling price, and credit period, will lead increase in total
profit.

• Increase in unit holding cost, unit purchase cost and replenishment cost will cause
decrease in total profit.

Acknowledgements Author would like to acknowledge the Editor-in Chief of the journal and referees for
their encouragement and constructive comments in revising the paper.

Appendix A1

We first to prove the Appendix A1 for following Lemma 1.
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Lemma 1 Let H(T ) = φ(T )
T , where φ(T )is continuous and twice differentiable function of

T, then the maximum value of H(T) exists at T = T ∗, if 1
T

d2φ(T )

dT 2 < 0, at T = T ∗.

Proof

We have H(T ) = φ(T )

T
(i)

Differentiating (i) w.r.t. T , we have

dH(T )

dT
= 1

T 2

{
T
dφ(T )

dT
− φ(T )

}
(ii)

The necessary condition for extremum is dH(T )
dT = 0, from (ii) we get

T
dφ(T )

dT
− φ(T ) = 0 (iii)

Let Eq. (iii) is satisfied at T = T ∗.
Again differentiating (ii) we get

d2H(T )

dT 2 = 1

T 3

{
T 2 d

2φ(T )

dT 2 + 2

(
T
dφ(T )

dT
− φ(T )

)}
(iv)

But at T = T ∗, T dφ(T )
dT − φ(T ) = 0

From (iv), we get dH(T )
dT = 1

T
d2φ(T )

dT 2

The sufficient condition for maximum value of H(T ) is d2H(T )

dT 2 < 0.
Hence we have proved the Lemma. ��

We have

d2Z1(T )

dT 2 = 1

T

(
d2SR

dT 2 − d2RC

dT 2 − d2CD

dT 2 − d2HC

dT 2 − d2 I P1

dT 2 + d2 I E1

dT 2

)

= {α(1 − β)}1/1−β T (3β−2)/(1−β)

1 − β[
p {β(2 + θT ) + IdT (1 − β)(2 + βθT )}

2(1 − β)
(1 + IdT )

− cθT − h

2
(2 + 2θT − βθT )

− cIc
2

(
1 − M

T

)β/(1−β)

T {2 + (2 − β)θ(T − M)}
]

d2Z1(T )

dT 2 < 0, if

(1 − β) [2cθT + h (2 + 2θT − βθT )

+ cIc

(
1 − M

T

)β/(1−β)

T {2 + (2 − β)θ(T − M)}
]

.

− p {β (2 + θT ) IdT (1 − β)(2 + βθT )} > 0
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Appendix A2

We have Z2(T ) = 1
T (SR − RC − DC − HC + I E2)

For maximum or minimum of Z2(T ),
dZ2(T )
dT = 0, if T = T ∗

2 be maximum value of Z2(T ),

then at T = T ∗
2 , we have

We have
d2Z2(T )

dT 2 = 1

T

(
d2SR

dT 2 − d2RC

dT 2 − d2CD

dT 2 − d2HC

dT 2 + d2 I E2

dT 2

)

= {α(1 − β)}1/1−β T (3β−2)/(1−β)

1 − β

[
p {β(2 + θT ) + Id T (1 − β)(2 + βθT )}

2(1 − β)
(1 + Id T )

− cθT − h

2
(2 + 2θT − βθT )

+
{

β

(1 − β)
(4 − 2β + θβT ) + 2(βθM − 2βθT − 4 + 2β)T − 2(1 − β)θT 2

}]

d2Z2(T )

dT 2 < 0, if

(1 − β) {2cθT + h (2 + 2θT − βθT )} − p {β (2 + θT ) Id T (1 − β)(2 + βθT )}
− (1 − β)

{
β

(1 − β)
(4 − 2β + θβT ) + 2(βθM − 2βθT − 4 + 2β)T − 2(1 − β)θT 2

}
> 0

Appendix A3

It is very difficult to handle the total profit function and its elements for finding closed form
optimal solution. Truncated Taylor’s series expansions are considered for exponential terms

to find closed form optimal solution. For low deterioration rate eθ t ≈ 1 + θ t + (θ t)2

2 etc. Note
that this approximation is valid only for θ t < 1.
Using the above approximation in (3), we get

I (t) =
(α

θ

)1/1−β
{
θ(1 − β)(T − t) + θ2(1 − β)2(T − t)2

2

}1/1−β

= {α(1 − β)}1/1−β (T − t)

{
1 + θ(1 − β)(T − t)

2

}1/1−β

= {α(1 − β)}1/1−β (T − t)

{
1 + θ(T − t)

2

}
, (by Binomial Theorem) (A31)

SR = p

T∫

0

D{I (t)}dt = p

T∫

0

α{T (t)}βdt

= pα

T∫

0

{α(1 − β)}β/(1−β)(T − t)β/(1−β)

{
1 + θ(T − t)

2

}β

dt (byA31)
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SR = pα1/(1−β)(1 − β)β/1−β

T∫

0

(T − t)β/(1−β)

{
1 + θβ(T − t)

2

}
dt

(by Binomial Theorem)

= p {α(1 − β)T }1/(1−β) (4 − 2β + θβT )

2(2 − β)

Similarly we can calculate the remaining elements of the total profit.
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