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Abstract A problem of mixed convective flow of a non-Newtonian power-law fluid over an
inclined plate embedded in a non-Darcy porous medium under convective thermal boundary
condition is attempted in the present investigation. In addition, the nonlinear temperature–
concentration-dependent density relation taken into account to address thermal and solutal
transport phenomena in some thermal systems which are performed at high-level tempera-
tures. Initially, the flow equations of the present model are cast into a sequence of ordinary
differential equations by the local non-similarity technique. Then the modified set of equations
is evaluated by applying a successive linearization method. This numerical study explores
the impact of pertinent parameters on the fluid flow characteristics through graphs and the
salient features are discussed in detail.

Keywords Nonlinear convection · Non-Darcy porous medium · Convective boundary
condition · Successive linearization method · Power-law fluid

Introduction

Many problems related to energy and geophysical industries (such as thermal insulation, geo-
physical flows, petroleum resource, polymer processing, etc.) needed the analysis of mixed
convective thermal and solutal transport phenomena of non-Newtonian fluids in a porous
medium along different geometries. In particular, the majority of the real fluids (cosmetic
products, grease, body fluids, and much more) exhibit a non-Newtonian behavior. Various
fluid models have been suggested and studied to describe the dynamics of non-Newtonian flu-
ids. Among them, Ostwald-de-Waele power-law fluid is one and it has substantial applications
in many engineering industries such as oil reservoir engineering, chemical engineering, man-
ufacturing processes, etc., because it characterizes the flow pattern of certain non-Newtonian
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fluids which contradict to Newton’s law of viscosity like polymer melt and glass, etc. A
comprehensive evaluation of free/mixed convective thermal and mass transport phenomena
of power-law fluid flow along different geometries embedded in a Darcy/non-Darcy porous
medium, has been discussed and exposed by the many authors to mention few, Shenoy [1,2],
Gorla and Kumari [3], Ibrahim et al. [4], Kumari and Nath [5], Cheng [6], Kairi and Ram-
Reddy [7].

The analysis of heat transfer with convective thermal boundary condition is an important
and useful consideration in the gas turbines, nuclear plants, heat exchangers related indus-
tries, due to the realistic nature of this condition. In this mechanism, heat is supplied to the
convecting fluid through a bounding surface with a finite heat capacity, which provides a
convective heat transfer coefficient (namely, Biot number). In view of these applications,
Makinde [8] considered convective thermal boundary condition for the analysis of thermal
and mass transfer on MHD fluid flow over a moving vertical plate, whereas Munir et al.
[9] scrutinized the influence Biot number and Joule heating effect on the peristaltic flow of
a viscous fluid along an asymmetric channel. Recently, Hayat et al. [10] utilized convec-
tive boundary condition in the analysis of fluid characteristics of power-law fluid along a
stretching sheet with suspended nanoparticles.

The main streams of thermal systems are processed at high-level temperatures and in
such situations, the density relation with temperature and concentration may become non-
linear. This nonlinear variation in temperature–concentration-dependent density relation
gives a strong influence to the fluid flow characteristics (for more details see [11], [12]).
Partha [13] studied the influence of dispersion and cross-diffusion effects with the nonlin-
ear Boussinesq approximation (known as nonlinear convection) to the viscous fluid flow.
A Darcy–Forchheimer model considered in the analysis of nonlinear convection and ther-
mophoresis in a regular fluid by Kameswaran et al. [14] and concluded that the boundary
layer thickness of temperature and concentration is reduced with enhancing values of nonlin-
ear concentration and temperature parameters. More recently, RamReddy and Pradeepa [15]
analyzed the influence of nonlinear convection and convective thermal boundary condition
on saturated micropolar fluid emerged in porous media by taking into homogeneous-
heterogeneous reactions.

In present days, the researchers are attracted to scrutinize the free/mixed convective flow
of Newtonian and non-Newtonian fluids along non-identical geometries (such as inclined
surfaces, discs, V-shaped prisms and bluff bodies, among them inclined plate is the first pref-
erence) in a porous medium. Since, the inclined plate is used in various industrial fields like
chemical processing, electrical systems, iron removal, brine clarification, etc. The analysis of
fluid flow characteristics over a inclined plate was pioneered by Cheng [16]. Further, Chamka
et al. [17], Rahman et al. [18], Murthy et al. [19], Pal and Chatterjee [20], and in recent times,
Sui et al. [21] considered problems on inclined plate with different Newtonian/non-Newtonian
fluid and physical conditions.

Based on the previous studies, it is relevant to discuss the mixed convective thermal and
solutal transport phenomena in a power-law fluid flow along an inclined plate with a Biot
number effect. Also, the nonlinear Boussinesq approximation is considered in the formulation
of fluid flow equations with a Darcy-Forchhiemer’s model. This kind of investigation is
useful in the mechanism of combustion, solar collectors which are performed at high-level
temperatures.
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Fig. 1 Schematic diagram of the problem

Mathematical Modeling

An incompressible, two-dimensional, steady, mixed convective flow of power-law fluid along
an inclined semi-infinite plate embedded in a non-Darcy porous medium is considered. The
semi-infinite plate is inclined about vertical direction with an angle �, as projected in Fig. (1).
The plate is either heated or cooled from left by convection from a fluid of temperature T f

with T f > T∞ corresponding to a heated surface and T f < T∞ corresponding to a cooled
surface, respectively. It is further assumed that the concentration of the ambient fluid is
of uniform magnitude, C∞, the unknown wall concentration of the plate is Cw. In Fig. 1,
M.B.L. represent momentum boundary layer, while T.B.L. and C.B.L. represents thermal
and concentration boundary layers, respectively.

A power-law fluid is a type of generalized Newtonian fluid for which the shear stress τxy

can be expressed as τxy = μ∗
∣
∣
∣
∂u
∂y

∣
∣
∣

n−1
∂u
∂y . Here, μ∗ is called the consistency coefficient and

n is the power-law index. The dimension of μ∗ depends on the value of n which is non-
dimensional. When n = 1, the fluid become the Newtonian fluid with a dynamic coefficient
of viscosity μ∗. Therefore, deviation of n from a unity indicates the degree of deviation from
Newtonian fluid behavior. That is for n < 1, the fluid is pseudo-plastic and for n > 1, the
fluid is dilatants. The governing equations for the flow, heat and mass transfer of a power-law
fluid saturated non-Darcy porous medium (Shenoy [2], Murthy and Singh [22], Chen [23] )
are given by
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∂u

∂x
+ ∂v

∂y
= 0 (1)

un + b
√

Kp

ν
u2 = −Kp

μ

(
∂p

∂x
+ ρg∗ cos �

)

(2)

vn + b
√

Kp

ν
v2 = −Kp

μ

(
∂p

∂y

)

(3)

u
∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂x2 + ∂2T

∂ y2

)

(4)

u
∂C

∂x
+ v

∂C

∂y
= D

(
∂2C

∂x2 + ∂2C

∂ y2

)

(5)

along with the nonlinear Boussinesq approximation (Partha [13])

ρ = ρ∞
[

1 − β0 (T − T∞) − β1(T − T∞)2 − β2 (C − C∞) − β3(C − C∞)2] (6)

along with the associated boundary conditions

v = 0, −k f
∂T

∂y
= h f (T f − T ), C = Cw at y = 0

u = u∞, T = T∞, C = C∞ as y → ∞ (7)

where (u, v) are the Darcian velocities, ρ is the density, p is the pressure, Kp is the permeabil-
ity, C is the concentration, D is the solutal diffusivity, ν is the kinematic viscosity, h f is the
convective heat transfer coefficient, α is the thermal diffusivity, b is the empirical constant,
� is the inclination of angle, g∗ is the acceleration due to gravity, T is the temperature, k f is
the thermal conductivity, u∞ is the free stream velocity. Further, the first and second order
thermal and solutal coefficients are taken as β0 and β1, β2 and β3, respectively.

Experimental and numerical studies on convective heat transfer in porous media show
that thermal boundary layers exist adjacent to the heated or cooled bodies. When the thermal
boundary layer is thin (i.e., x � y ∼ δT , δT is the boundary layer thickness), boundary layer
approximations analogous to classical boundary layer theory can be applied (Nield and Bejan
[24]). Near the boundary, the normal component of seepage velocity is small compared with
the other component of the seepage velocity and the derivatives of any quantity in the normal
direction are large compared with derivatives of the quantity in the direction of the wall.
Now, making use of the boundary layer assumptions, nonlinear Boussinesq approximations
and eliminating pressure gradient from the momentum equations, the governing Eqs. (2)–(5)
reduces to

∂un

∂y
+ b

√

Kp

ν

∂u2

∂y
= Kpg∗

ν

{

[β0 + 2β1(T − T∞)]
∂T

∂y

+ [β2 + 2β3(C − C∞)]
∂C

∂y

}

cos� (8)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂ y2 (9)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂ y2 (10)
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By defining stream function ψ(x, y) as u = ∂ψ

∂y
and v = −∂ψ

∂x
, the continuity equation (1) is

automatically satisfied. To convert the system of dimensional equations (8)–(10) into system
of the equations in the non-dimensional form, we considered the following dimensionless
non-similarity transformations (for more details, see. Huang et al. [25], Chamkha et al. [26],
Prasad et al. [27])

ξ = x

L
, η = y

L
Pe

1
2 ξ

−1
2 , ψ(ξ, η) = α ξ

1
2 Pe

1
2 f (ξ, η)

T (ξ, η) = T∞ + (

T f − T∞
)

θ(ξ, η), C(ξ, η) = C∞ + (Cw − C∞) φ(ξ, η)

(11)

Substituting the transformations (11) into (8)–(10), the resultant dimensionless momentum,
energy and concentration equations can be presented as

n
(

f ′)n−1
f ′′ + 2F0Pe f

′ f ′′ = λn
[

(1 + 2 α1θ)θ ′ + B(1 + 2 α2φ)φ′] cos � (12)

θ ′′ + 1

2
f θ ′ = ξ

(

f ′ ∂θ

∂ξ
− ∂ f

∂ξ
θ ′

)

(13)

1

Le
φ′′ + 1

2
f φ′ = ξ

(

f ′ ∂φ

∂ξ
− ∂ f

∂ξ
φ′

)

(14)

Boundary conditions (7) in terms of f , θ , and φ become

f (ξ, 0) = −2 ξ

(
∂ f

∂ξ

)

η=0
, θ ′(ξ, 0) = −Bi ξ

1
2 [1 − θ(ξ, 0)] , φ(ξ, 0) = 1,

f ′(ξ,∞) = 1, θ(ξ,∞) = 0, φ(ξ,∞) = 0.

(15)

In usual definitions, Ra = (L/α)
([Kpg∗β0(T f − T∞)]/ν)1/n is the global Rayleigh

number, Pe = (u∞ L)/α is the global Peclet’s number, Ped = (u∞d)/α is the pore
diameter-dependent Peclet number, α1 = β1(T f − T∞)/β0 is the nonlinear density-
temperature parameter, λ = Ra/Pe is the mixed convection parameter is the B =
β2(Cw −C∞)/

(

β0(T f − T∞)
)

is the Buoyancy ratio, α2 = β3(Cw −C∞)/β2 is the nonlin-
ear density-concentration parameter, F0Pe = f0(Ped)2−n

[

f0 = (

(b
√

Kp)/ν
)

(α/d)2−n
]

is the non-Darcian parameter(Forchheimer number), Le = (α/D) is the diffusivity ratio(or
Lewis number), Sc = ν/D is the Schmidt number, ξ is the streamwise coordinate, Pr = ν/α

is the Prandtl number, Bi = h f L/(k f Pe1/2) is the Biot number, respectively.

Non-dimensional Nusselt number Nux = −x

(T f − T∞)

[
∂T

∂y

]

y=0
and the Sherwood num-

ber Shx = −x

(Cw − C∞)

[
∂C

∂y

]

y=0
are given by

Nu Pe
−1
2 = −ξ

1
2 θ ′(ξ, 0), Sh Pe

−1
2 = −ξ

1
2 φ′(ξ, 0). (16)

Numerical Solutions

Numerical solution to Eqs. (12)–(14) together with (15) has been evaluated with Successive
Linearisation Method (SLM) (see. Makukula et al. [28], Awad et al. [29], Khidir et al. [30])
along with Local non-similarity procedure (Sparrow and Yu [31], Minkowycz and Cheng
[32]).
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Local Non-similarity Procedure

The preliminary approximate solution can be found from local similarity equations for a
particular case of ξ << 1, the terms containing ξ ∂

∂ξ
are supposed to be negligible. Then the

first level truncation or local similarity equations from (12) to (15) are
[

n
(

f ′)n−1 + 2F0Pe f
′] f ′′ − λn

[

(1 + 2 α1θ)θ ′ + B(1 + 2 α2φ)φ′] cos � = 0 (17)

θ ′′ + 1

2
f θ ′ = 0 (18)

1

Le
φ′′ + 1

2
f φ′ = 0 (19)

The corresponding boundary conditions are

f (ξ, 0) = 0, θ ′(ξ, 0) = −Bi ξ
1
2 [1 − θ(ξ, 0)] , φ(ξ, 0) = 1,

f ′(ξ,∞) = 1, θ(ξ,∞) = 0, φ(ξ,∞) = 0.
(20)

The local non-similarity ordinary nonlinear differential equations in the second level trun-
cation is discovered by introducing new variables to recall the omitted expressions from the

first level truncation i.e., takeU = ∂ f

∂ξ
, V = ∂θ

∂ξ
,W = ∂φ

∂ξ
. Thus the second level truncation

is
[

n
(

f ′)n−1 + 2F0Pe f
′] f ′′ − λn

[

(1 + 2 α1θ)θ ′ + B(1 + 2 α2φ)φ′] cos � = 0 (21)

θ ′′ + 1

2
f θ ′ = ξ

(

V f ′ −U θ ′) (22)

1

Le
φ′′ + 1

2
f φ′ = ξ

(

W f ′ −U φ′) (23)

The corresponding boundary conditions are

f (ξ, 0) = −2 ξ U (ξ, η), θ ′ (ξ, 0) = −Bi ξ
1
2 [1 − θ(ξ, 0)] , φ(ξ, 0) = 1,

f ′(ξ,∞) = 1, θ(ξ,∞) = 0, φ(ξ,∞) = 0.
(24)

The two level local non-similarity technique is accomplished with a third level of truncation,
for this we differentiate equations (21)–(24) with respect to ξ and omit the partial derivatives
of U, V,W . Then the resultant equations are

n(n − 1)
(

f ′)n−2
f ′′U ′ + n

(

f ′)n−1
U ′′ + 2F0Pe( f

′′ U ′ +U ′′ f ′)
− λn

[

V ′ + 2 α1(V θ ′ + θV ′) + B(W ′ + 2 α2(Wφ′ + φW ′))
]

cos � = 0
(25)

V ′′ + 3

2
Uθ ′ + 1

2
V ′ f − V f ′ = ξ

(

U ′ V −U V ′) (26)

1

Le
W ′′ + 3

2
Uφ′ + 1

2
W ′ f − W f ′ = ξ

(

U ′ W −U W ′) (27)

The corresponding boundary conditions are

U (ξ, 0) = 0, V ′ (ξ, 0) = Biξ
1
2 V (ξ, 0) + 1

2
Bi ξ

−1
2 [θ(ξ, 0) − 1],W (ξ, 0) = 0,

U ′(ξ,∞) = 0, V (ξ,∞) = 0, W (ξ,∞) = 0
(28)
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Successive Linearization Method

The coupled nonlinear ordinary differential equations (21)–(23) and (25)–(27) along with
the boundary conditions (24) and (28) are evaluated using Successive Linearization Method.
First, it linearise the non-similarity equation and then it utilizes Chebyshev collocation method
for the approximate solution.

Successive Linearization

Let us consider an independent vector Q(η) = [ f (η) , θ (η) , φ(η),U (η), V (η), W (η)] and
assume that it can be represented as

Q(η) = Qk(η) +
k−1
∑

m=0

Qm(η) (29)

where Qk(η), k = 1, 2, 3 . . . ., are unknown vectors, those are determined by recur-
sively evaluating the linearised version of the non-similarity equations and presuming that
Qm(η), (0 ≤ m ≤ k − 1) are expected from antecedent iterations. The initial guesses Q0(η)

is selected so that it satisfy the boundary conditions (24) and (28). By imposing Eq. (29) in
Eqs. (21)–(28) and considering only linear terms, we obtain the linearised equations to be
evaluated are

p̃1,k−1 fk
′′ + p̃2,k−1 fk

′ + p̃3,k−1θk
′ + p̃4,k−1θk + p̃5,k−1φk

′ + p̃6,k−1φk = z̃1,k−1 (30)

q̃1,k−1 fk + q̃2,k−1θk
′′ + q̃3,k−1θk

′ + q̃4,k−1Uk + q̃5,k−1Vk = z̃2,k−1 (31)

ã1,k−1 fk + ã2,k−1φk
′′ + ã3,k−1φk

′ + ã4,k−1Uk + ã5,k−1Wk = z̃3,k−1 (32)

b̃1,k−1 fk
′′ + b̃2,k−1 fk

′ + b̃3,k−1θk
′ + b̃4,k−1θk + b̃5,k−1φk

′ + b̃6,k−1φk + b̃7,k−1Uk
′′

+ b̃8,k−1Uk
′ + b̃9,k−1Vk

′ + b̃10,k−1Vk + b̃11,k−1Wk
′ + b̃12,k−1Wk = z̃4,k−1

(33)

c̃1,k−1 fk + c̃2,k−1θk
′ + c̃3,k−1Uk

′ + c̃4,k−1Uk + c̃5,k−1Vk
′′ + c̃6,k−1Hk

′

+ c̃7,k−1Vk = z̃5,k−1
(34)

d̃1,k−1 fk + d̃2,k−1φk
′ + d̃3,k−1Uk

′ + d̃4,k−1Uk + d̃5,k−1Wk
′′ + d̃6,k−1Wk

′

+ d̃7,k−1Wk = z̃6,k−1
(35)

The linearised boundary conditions are

fk(0) = fk
′(0) = fk

′(∞) = 0, Bi ξ
1
2 θk(0) + θk

′(0) = 0, θk(∞) = 0,

φk(0) = φk(∞) = 0, Uk(0) = Uk
′(0) = Uk

′(∞) = 0,

− 1

2
Bi ξ

−1
2 θk(0) + Vk

′(0) − Bi ξ
1
2 Vk(0) = 0, Vk(∞) = 0, Wk(0) = Wk(∞) = 0

(36)
Here the coefficient parameters p̃s,k−1, q̃s,k−1, ãs,k−1, b̃s,k−1, c̃s,k−1, d̃s,k−1, and z̃s,k−1

which depend on the Q0(η) and on the Qk(η) derivatives.

Chebyshev Collocation Scheme

We solve linearised equations (30)–(35) by an established procedure, namely Chebyshev
collocation scheme (Canuto et al. [33]). In the context of numerical implication, the original
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region [0,∞) is truncated to [0, L] for large value of L , and further the truncated region
[0, L] is transformed into [−1, 1] using the following mapping

η

L
= τ + 1

2
, −1 ≤ τ ≤ 1 (37)

In this procedure, The Chebyshev polynomials Tm(τ ) = cos[m cos−1τ ] are used to
approximate the unknown functions Qk(η) and these polynomials are collocated at K + 1
Gauss–Lobatto points in the interval [−1, 1] and those are defined as

τm = cos
πm
K

, m = 0, 1, . . . , K (38)

The unknown function Qk(η) is imprecise at the collocation points by

Qk(τ ) =
K

∑

j=0

Qk(τ j )Tj (τm), m = 0, 1, . . . , K (39)

and
dS

dηS
Qk(τ ) =

K
∑

r=0

DS

rmQk(τr ), m = 0, 1, 2, . . . , K (40)

where D is the Chebyshev spectral derivative matrix such that D = (2/L)D and S is the
order of differentiation. After employing Eqs. (37)–(40) into linearized form of equations
(30)–(35), the resultant solution is

Ỹk = B̃−1
k−1Z̃k−1 (41)

In Eq. (41), B̃k−1 is a (6N + 6) × (6N + 6) matrix, Ỹk and Z̃k−1 are (6N + 1) × 1 column
vectors defined by

B̃k−1 =
[

B̃i j

]

, i, j = 1, 2, . . . , 6, Ỹk =
[

F̃k �̃k �̃k Ũk Ṽk W̃k

]
T ,

Z̃k−1 = [

z̃1,k−1 z̃2,k−1 z̃3,k−1 z̃4,k−1 z̃5,k−1 z̃6,k−1
]T (42)

Results and Discussion

The validation of the present results is cross verified with previously established results
(Chaoyang et al. [34], Murthy [35]) in the absence of nonlinear convection parameters as
shown in Tables 1 and 2. From those two tables, we have noticed that the error between these
two (present and previously published) numerical results is negligible so that the numerical
practice which we made by SLM is an appropriate scheme for the present analysis. The
impacts of the considered parameters (such as nonlinear convection parameters (α1,α2), the
inclination of angle (�) and Biot number (Bi), etc.) are determined through Figs. 2a, b, c,
3a, b, c, 4a, b, c, 5a, b, c, 6a, b, c for the boundary layer profiles. Also, the physical quantities

of the flow, Nusselt and Sherwood numbers (i.e, Nu Pe
−1
2 and Sh Pe

−1
2 ) are projected in

Figs. 7a, b, 8a, b for the same values.
The practicability of non-similarity transformations (see Eq. (11)) in the present analysis is

addressed by the Figs. 2a–c. Boosting the value of streamwise coordinate (ξ = 0.1, 0.5, 1.0),
the velocity component increases, whereas the thermal and solutal boundary layer thickness
decreases. Further, the wall temperature always tends to 1 as ξ → ∞ and also, the changes
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Table 1 Comparison of −θ ′(0, 0) for various values of λ when F0Pe = 0, B = 0, α1 = 0, α2 = 0,
Bi → ∞, and � = 0

n = 0.5 n = 1.0 n = 1.5

λ Chaoyang et al. [34] Present Chaoyang et al. [34] Present Chaoyang et al. [34] Present

0 0.5641 0.5642 0.5641 0.5642 0.5641 0.5642

0.5 0.8209 0.8217 0.6473 0.6474 0.6034 0.6034

1.0 0.9303 0.9296 0.7205 0.7206 0.6634 0.6634

4.0 1.3010 1.3007 1.0250 1.0558 1.0180 1.0176

8.0 1.6100 1.6097 1.3540 1.3801 1.3800 1.4357

15.0 2.0010 2.0005 1.8120 1.8123 1.8620 1.8606

in these profiles clearly proven that the present results are non-similar. It means that the
solutions are not unique for different values of ξ .

The images placed in Figs. 3a–c, exhibit the dependence of NDT parameter (α1 = 0, 2, 6)
and power-law index (n = 0.5, 1.0, 1.5) on the boundary layer profiles. It reveals that the
variation of the power-law index is considerable and enhances the momentum boundary
layer thickness, whereas it diminishes thermal and solutal boundary layer thickness. With
respect to the variation of α1, the dimensionless velocity increases more at the surface of the
inclined plate and it reaches unity for ηmax value, the same result shown in the Fig. 3a. From
Fig. 3b–c, one can notice that the increment of α1 leads to reduce the temperature and solutal
boundary layer thicknesses, and also the temperature and concentration gradients are more
in the absence of α1 as compared to its presence. Responses of boundary layer profiles for
NDC parameter (α2 = 0, 3, 7) are portrayed to the three different values of the power-law
index in Fig. 4a–c. The results of this set of figures repeat the same kind of behavior as like
α1 in all three profiles, but then the dominance, of α2 is more of these three boundary layer
profiles and in all three kinds fluids (pseudoplastic, Newtonian, dilatant fluid) compared to
α1 influence.

Figure 5a–c illustrate the impact of the convective heat transfer coefficient (i.e Biot number
Bi = 0.05, 1.0, 20) on the non-dimensional velocity, temperature, and concentration for
the pseudoplastic, Newtonian, and dilatant fluids. The rise in the Biot number changes the
magnitude of the velocity in the increasing direction as depicted in Fig. 5a. The utility of
convective thermal boundary condition is possible in two ways, one as an isothermal condition
and another possibility is a non-isothermal condition. Because the isothermal condition is a
limiting result of the Biot number when h f tends to infinity (stated by Aziz [36]) and this
is proven again by Fig. 5b. It means, there is a drastic change in temperature distribution
at the surface of the plate when the Biot number approaches to a large value. The effect of
the Biot number on the concentration profile is displayed in Fig. 5c and it depicts that the
concentration profile decreases within the boundary layer when the Biot number increases
from least to a large value. For a fixed value of the Biot number (for three values of Bi),
the enhancement of power-law index leads to increase the velocity distribution, whereas it
decreases the temperature and concentration distributions within the boundary layers, and
according to above boundary specified condition these profiles are asymptotically reaching
the ambient fluid conditions at ηmax . As convective coefficient enhances from Bi < 1
(thermally thin case) to Bi > 1 (thermally thick case), the temperature of the flow increases
whereas the concentration decreases as shown in Fig. 5b–c, respectively. Obtained results
for temperature and concentration profiles are subjectively equal with those of Makinde and
Aziz [37] work.
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(a) (b)

(c)

Fig. 2 Effect of ξ for different values n on the a velocity, b temperature, and c concentration with the fixed
values of α1 = 1, α2 = 1, Bi = 0.2, � = 30◦

The orientation of the plate is displaced from vertical to horizontal with reference to the
angle(� = 0◦, 40◦, 80◦) and the resulting variations in boundary layer profiles are portrayed
in Fig. 6a–c. The physical reason for the depletion of velocity profile with respect inclination
angle is that the thermal and concentration buoyancy falls down [as considered in Eq. (8)]
when the inclination of angle changed from � = 0◦ to 90◦. The same illustration is noticed
from Fig. 6a. Moreover, from Fig. 6a, one can observe that the maximum buoyancy force
occurs to the temperature and concentration differences along the vertical plate only. It is
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(a) (b)

(c)

Fig. 3 Effect of α1 for different values n on the a velocity, b temperature, and c concentration with the fixed
values of Bi = 0.2, α2 = 1, � = 30◦, ξ = 0.5

observed from Fig.6b, c that the concentration and temperature enhance with rising values
of inclination of angle. In the case of an inclination of angle, the thermal and concentration
distributions results are identically equal to the work of Chamkha et al. [17], Chen [38].

The variation in physical quantities (specifically, Nu Pe
−1
2 and Sh Pe

−1
2 ) of the present

analysis are collected through the graphs Figs. 7a, b, 8a, b for different values of the considered
parameters (for, α1 = 0, 6; α2 = 0, 5; Bi = 0.05, 1.0; and � = 0◦, 60◦). With respect to the

pseudoplastic fluid, the magnitude of heat transfer rate (Nu Pe
−1
2 ) slightly increased when
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(a) (b)

(c)

Fig. 4 Effect of α2 for different values n on the a velocity, b temperature, and c concentration with the fixed
values of Bi = 0.2, α1 = 1, � = 30◦, ξ = 0.5

the α1 is increased from zero to a nonzero value and the same kind of variation appeared for
α2, but then influence of α2is more compared to α1 effect, as projected in Fig. 7a. In the case
of other two fluids (Newtonian and dilatant fluids) the influence of these parameters is same.
On the other side, for a fixed value of these two parameters, the heat transfer rate is more
for dilatant compared to Newtonian and pseudoplastic fluids. The illustrations of Fig. 7b for

Sherwood number (Sh Pe
−1
2 ), it is also showing same results as Nu Pe

−1
2 affect. Fig. 8a,

b demonstrate that the Nu Pe
−1
2 and Sh Pe

−1
2 show the opposite trend when the plate is
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(a)

(c)

(b)

Fig. 5 Effect of Bi for different values n on the a velocity, b temperature, and c concentration with the fixed
values of α1 = 1, α2 = 1, � = 30◦, ξ = 0.5

displaced from vertical to a horizontal position with reference to the angle �. But then in the
case of Bi variation of these two quantities is same and both the transfer rates are increased.

However, for a fixed value of either Bi or �, both the Nu Pe
−1
2 and Sh Pe

−1
2 fall down when

power-law index moves from n < 1 to n > 1.
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(a) (b)

(c)

Fig. 6 Effect of � for different values n on the a velocity, b temperature, and c concentration with the fixed
values of α1 = 1, α2 = 1, Bi = 0.2, ξ = 0.5

Conclusions

In the present study, the nonlinear Boussinesq approximation is considered in the analysis
of heat and mass transfer phenomena of an Ostwald-de-Waele model power-law fluid flow
over a convectively heated inclined plate in a non-Darcy porous medium. The impact of per-
tinent parameters on the velocity, temperature, concentration, heat, and mass transfer rates
have been analyzed. The major notice is that the impact of NDC parameter is prominent on
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(a) (b)

Fig. 7 Effect of α1 and α2 for different values n on the a heat transfer rate, and b mass transfer rate, against
ξ with the fixed values of Bi = 0.5 and � = 30◦

(a) (b)

Fig. 8 Effect of Bi and � for different values n on the a heat transfer rate, and b mass transfer rate, against
ξ with the fixed values of α1 = 1 and α2 = 1

the physical quantities(specifically, Nusselt and Sherwood number) of the present model,
compared therewith NDT parameter and these two effects are more influenced in pseudo-
plastic fluids. The variation of the Biot number leads to enhance all pertinent characteristics
except the concentration profile. However, the velocity, heat, and mass transfer rates dimin-
ish, whereas the thermal and solutal boundary layer thicknesses enhance with the increase of
inclination of angle. This kind of analysis has important applications in aerosol technology,
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high-temperature polymeric mixtures, which are associated with temperature–concentration-
dependent density.
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