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Abstract In this work we use a decomposition method which is called differential transform
method (DTM) to obtain the numerical or analytical solutions of fuzzy differential equations.
The DTM has been applied to many nonlinear differential equations of integer order as well as
fractional orders. Here by considering strongly generalized differentiable of fuzzy differential
equations we obtain all possible solution of given equations by DTM. Two examples are
presented to show the capacity of this method.
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Introduction

During last few decades fuzzy differential equations (FDEs) has a tremendous use in science
and engineering. The concept of the fuzzy calculus was introduced by Chang and Zadeh [7]
and then Dubois and Prade followed up it [ 10]. Other methods have been studied by Goetschel
and Voxman [11], and Puri and Ralescu [20]. Concept of the FDEs applied in the fuzzy dynam-
ical problems by Kandel and Byatt [16,17]. The Cauchy problem and FDE were rigorously
discussed by He and Yi [12], Kaleva [14,15], Kloeden [18], Menda [19], Seikkala [21], and
by other researchers (see [3—6,8,9,13]). Allahviranloo et al. used numerical methods to solve
FDEs [1,2].

In this work, the differential transform method (DTM) is used to obtain analytical and
approximate solution of FDEs. The paper is arranged as follows.
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In “Differential Transformation Method” section, we give a brief review of the differential
transform method for solving FDEs. Then the mentioned method is applied to two examples in
“Numerical Examples” section. Finally, some conclusions are summarized in “Conclusion”
section.

Differential Transformation Method

Definition 2.1 Let x (7, r) in the time domain 7 is strongly generalized differentiable of
order n then if x is (i)-differentiable,

= d"(x(t,r))
d(t,n,r)y= ——— VteT,
(t,n,r) e €
= = d"(x(,r))
Xi(nVr):l?(tivnvr):T][zti Vn e N,
d"(x(t,r))
d(t,n,r)y= —— Vtel,
B(t,n,r) I €
d"(x(,r))
&i(”l,r)zi(ti’n,r):T]t:t[ Vn e N,

and if x is (ii)-differentiable,

= d"(x(1,r))
v(t,nr)=——"-"+- VteT,
(t,n,r) I €

= d"(x(t,r)) .

Xi(n,r) =0(t,n,r) = T]t=ti n is odd,
d"(x(t,r))

v(t,n, = VieT,

d(t,n,r) T €
- " ‘,

&i(”h r) = 19(1‘1'7 n, r) = %]t:li nis Odd,

Here X'(n,r) and X(n,r) are named the upper and the lower spectrum of x (¢, r) respec-
tively in the domain N at¢ = ¢; . So, for (i)-differentiable x, we can write x (¢, r) as

x(t,r) = Z (t P W) X(t,r),

n=0

X(t,r) = Z ¢ - D %),

n=0

or for (ii)-differentiable f, we can represent x (¢, r) as

00 00
(t—1)" — (t—1)"
x(t,r) = E e X(t,r) + E - X, r),
n=1,odd n=0,even
00 00
_ (r—1)" (t—0)" —
x(t,r) = E T&(ﬁ”)"‘ E TX(I’}’).
n=1,odd n=0,even
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The inverse transform of X (n) can be obtained as above set of equations. If X (n) is
described as
d"(p(t) x(t,r
M s n:O,l,Z,...,OO
dr" =0
d"(q(t) x(t,r))
dr" ’
=0

X(n,r) = M(n) [

X(n,r):M(n)|: n=0,1,2,...,00

or

o n=012,... 00

d"(p(t) x(t,r)) :|
de" =0

Xnr) — MO [ d" (p() x(t,7)) ] ’
t=0

?(n,r):M(n)[ n=0,1,2,...,00

Then the function x (¢, ) can be written as

L& (r—r, Xn,r)
x(t.r) =~ g o
LK) X
Y= T

n=0
or

1 [ =5 X, o (—1)" X(n,r)
2t =5 2 M) 2 n M@

x(t,r) =

1 t —t)" X(n,r) & (=) X(n,r)
m n=120:dd n! M (n) + Z n! M (n)

n=0,even

where p(t) > 0 and M(n) > 0. Here p(¢) is considered as a kernel corresponding to
x(t,r) and M(n) is known the weighting factor. In this article, we apply the p(#) = 1 and
n

H
M(n) = — Here H is the time horizon of interest. If f is (i)-differentiable, then
n!

H" d"(x(t,r))

X,y = ST
n! dt
Hl’l n

Xn.r) = d (X(f, r))
n! dt

If f is (ii)-differentiable, then
H" d"(X(t,r))

X(n,r) = 0 FITI nis odd
H" d"(x(

Xn,r) = M nis odd
n! dt"

If n is even, then ¢ is considered as in the first form (i). Using the DTM, a differential equation
can be transformed into an algebraic equation in the domain n. Also x (¢, r) can be shown as
the finite-term Taylor series plus a remainder, as
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n

(t —10)" —ro)" X(n,r)
x(t,r) = pTZ:; oy TR @
t—1o
Z = ) X1, )+ Rog1 (1)
T(t.r) = —— (t_"))" XD @
p( ) ~ M(n)
- t—t())" —
= X(n,r)+ Ry4+1(1).
n=0 ( H
or
_ N (—10)" X(n,r) ~ (—10)" X(n,r)
x(t,r) = o0 n:%d VT +=02 T ey | TRem©
. <t;1t°> X+ Y <t;1t°> X, r) + Rug1 (0.
n=1,odd n=0,even
N N (1 —1)" X(n,r) N (t—1)" X(n,r)
xX(t,r) = p(t) n:lXO:dd n! M(n) +n=§)en n! M (n) Rus1(1)
> (t_“’) X+ Y ( ’0) Xn.r) + Rusr 0.
n=1,odd n=0,even

Definition 2.2 The transformation of the nth derivative and the inverse transformation of a
function can be defined as follows, respectively.

1 d"
Fn) = — [ — flx )]
n! | dx x=xg
f) =Y F) (x —xo)".
n=0

From definition (2.1), it can be easily shown that the transformation function has basic
mathematical operations as Table 1.

Numerical Examples

In this section, we solve few examples by the DTM.
Example 3.1 Consider the following second-order nonlinear FDE

Y —y+4y3—3y°=0, xel0,1]

i<0)=<[+{ 3{—{>, 7(0):([2 ‘f—fr)

1" , ey

@ Springer



Int. J. Appl. Comput. Math (2018) 4:33 Page 5of 10 33

Table 1 Functional forms and

: . Functional form Differential transform
differential transforms
y(©) = au(t) £ o) Y(n) = au(n) £+ pv(n)
dm !
=% {0 Yoy = LD
X n.
y(0) = u(®)v(t) Yn) =31 uvn—1)
y(o) =x" V() =8(n—m)
)Ln
() =M Yn) =~
n:
Y@ = (140" V) = "’(m_”",;,('”_"_ D
. w" | /nm
(1) = sin(wt + ) Y(n) = = sin (j n a)
w” nmw
y(t) = cos(wt + «) Y0n) = o cos (? +a)

To use the DTM, first we rewrite Eq. (1) in the following form:

n ny
M+ DM+ Y +2)=Ym) =4 > Yn)Vny —n)Vn —ny)
ny=0n1=0
n ny4 n3 n2
3D Y YanYing — n)YVns — n2)V(ng —n3)V(n — na).

na=0n3=0n,=0n;=0
The related initial conditions should be also transformed as follows:

Y(O,r) = (ﬁ + Qr 3v2 \fzr) ,

4 47 4 4

y(L")Z(fr,f—fr), r=0,1,2,... 2)

with substituting Eq. (2) into (2) and by recursive method, we have:

V22
Y@, r) T+T :
Y(,r) = gr,

1
VQ2.r) = EBS[ — 17V/2r — 66v/2r% — 23/2r% + 15v2r* 4 3V/21°),

1
V3. r) = @(—17«@ —132v/2r% — 67273 + 608 2r* + 15v/27°),

Some solutions with » = 0, 0.05, 0.1, ...,0.95, 1 and x = 1 are shown in the Table 2.
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Table 2 Solutions withr =0,0.05,...,1and x = 1
r 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Yy 0452 0478 0507 0535 0.561 0.586  0.609 0.631 0.653 0.673  0.694
r 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Yy 0713 0733 0753 0773 0.795 0.817 0842 0.868 0.897  0.939
I o ®
r °
0.8 PY [ ]
L P
)
L o ©®
t )
0.6 o®"®
L )
)
F e Y
®
0.4}
02
[ L Il L L Il L L Il L L L Il L L Il
0.2 0.4 0.6 0.8 1.0
Fig. 1 Obtained solutions in the Table 2
Table 3 Solutions forr =0,0.05,...,landx =1
r 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Y 3773 3392 3085 2812 2569 2352 2160 1.988 1.836 1.701 1.581
r 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Y 1475 1.381 1.298 1.224  1.159 1.102  1.051 1.006  0.965 0.939

Figure 1 is given to illustrate obtained solutions in the Table 2.

and

Y,r) = K - % r,
Y(,r) = £ — £r
V@2,r) =

V3,r) =

Some solutions with » = 0, 0.05, 0.1, ...

1536

—(57\6 — 415v/2r + 5224/2r%

Figure 2 is given to illustrate obtained solutions in the Table 3.
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Fig. 2 Obtained solutions in the Table 3

Example 3.2 Consider the second-order nonlinear FDE
Y —y+3y’=0, xe[0,1]
y0) = (r,2 —r), YO0) = (=1+r1-7r), 3)

To apply the DTM, first we rewrite Eq. (3) in the following form:

n ng  n3 Ny

M+ D@+ YO+ =Vm) =3 Y Y Y Y Y)Y —n)Y(ns —n2)

n4=0n3=0n2=0n;=0

Y(ng —n3)Y(n — ny). “4)
The related initial conditions should be also transformed as follows:

YO,r)y=(r2-r),
Y,r)y=(=1+r1-r), r=0,1,2,... 5)

with substituting Eq. (5) into (4) and by recursive method, we have:

Y, r) =r,
Y, r)=—1+r,

1 5
Y2,r) :E(r —3r7),

Y3.r) :é(—l +7r = 15(=14+rrh,

Some solutions with » = 0, 0.05,0.1,...,0.95,1 and x = 1 are shown in the Table 4.
Figure 3 is given to illustrate obtained solutions in the Table 4.
and
YO0,r)=2-r,
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Table 4 Solutions withr =0,0.05,...,1and x = 1

r 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Y —1.666 —1.031 —0.897 —0.765 —0.635 —0.506 —0.378 —0.251 —0.125 —0.005
r 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Y 0.120 0.237 0.345 0.443 0.529 0.603 0.667 0.732 0.814 0.943 1.666
E .
10F
°
L . . .
05 °
[ °
°
L L L Il L L L Il - .\ L Il L L L L Il
[ 02 o 06 0.8 1.0
[ °
[ °
-05} °
r °
°
b °
-1.0- o
®
Fig. 3 Obtained solutions in the Table 4
Table 5 Solutions withr=0,0.05, ..., l,andx =1
r 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Y 65399 510.09 394.69 302.79 230.15 173.20 12896 94.90 68.97 49.45
r 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 095 1
Y 4945 34.94 24.32 16.66 11.24 7.49 4.94 3.27 2.21 1.55 1.16
ya,n=1-r,
_ 1 5
Y2,r)= 5(2 =32-=r) —r),
_ 1 2 3 4 5
Y@3,r) = 6(_239 + 719r — 840r- + 480r° — 135r" 4 15r°),
Some solutions with r = 0, 0.05, 0.1, ...,0.95, 1 and x = 1 are shown in the Table 5.

Figure 4 is given to illustrate obtained solutions in the Table 5.
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Fig. 4 Obtained solutions in the Table 5

Conclusion

In this paper, the differential transform method has been utilized to obtain solution of nonlinear
fuzzy differential equations with initial conditions. It has shown that the DTM is a useful
mathematical method for solving nonlinear FDEs. Two examples were used to illustrate the
efficiency of this technique.
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