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Abstract Das et al. (Comput Math Appl 60(7):1973–1985, 2010) proposed a production
inventory model for a deteriorating item under permissible delay in payments assuming
that the demand is stock dependent. In the production inventory model, the production rate is
partially constant and dependent upon on both on-hand inventory and demand. The production
inventory model assumes that the supplier gives a price discount and permissible delay in
payment. In this paper, some shortcomings in the solutions of the numerical example given
in Das et al. (2010) are identified, discussed and corrected. Moreover, this paper presents the
optimal solutions to the numerical example as well as the correct sensitivity analysis.

Keywords Inventory · Trade credit · Delay in payment · Stock dependent demand ·
Deteriorating items

Introduction

Deterioration is a significant factor in inventory analysis and it cannot be ignored its effect
in the inventory. Many researchers have been doing their research in both EPQ and EOQ
models by considering deterioration effect in inventory. In this connection, the reader can
study the works of Cárdenas-Barrón and Sarkar [1], Sarkar [3], Sett et al. [5], Sarkar et al. [4]
and others.

Das et al. [2] developed a production inventory model for a deteriorating item under per-
missible delay in payments considering that the demand is stock dependent. In the production
inventory model, the production rate is partially constant and partially dependent upon on
both on-hand inventory and demand. The production inventory model considers that the

B Leopoldo Eduardo Cárdenas-Barrón
lecarden@itesm.mx

1 School of Engineering and Sciences, Tecnológico de Monterrey, E. Garza Sada 2501 Sur,
C.P. 64849 Monterrey, NL, México

2 Department of Operational Research, Faculty of Mathematical Sciences, New Academic Block,
University of Delhi, Delhi 110007, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40819-017-0442-1&domain=pdf
http://orcid.org/0000-0002-6290-8095


5 Page 2 of 7 Int. J. Appl. Comput. Math (2018) 4:5

supplier offers price discount and permissible delay in payment. Das et al. [2] formulated a
single objective optimization problem that maximizes the total profit. Then they solved the
optimization problem with a real-coded genetic algorithm (GA) with rank-based selection
and arithmetic crossover. They illustrated the production inventory model with a numerical
example, and a sensitivity analysis was done.

Das et al. [2] said that they found the optimal solutions. However, it is worth mentioning
that a genetic algorithm (GA) cannot guarantee to obtain the optimal solution.

Discussion

We have read Das et al. [2]’s paper with a high interest and after going through the paper very
carefully, we identified two shortcomings in their paper. The shortcomings of their paper are
as follows:

1. The solutions are not optimal
2. The solutions are infeasible

Das et al. [2] stated that they obtained the optimal solution. However, in fact, their solutions
are not optimal because they solved the numerical example with a genetic algorithm. It
is important to mention that the solutions have another problem because the optimization
problem contains two decision variables and the results in all tables only show one decision
variable, which is the production time-period (t1). There is missing the solution to the cycle
time (T ). Additionally, we identified that all solutions are wrong because all solutions have
inconsistencies. The inconsistencies are as follows:

Considering the results reported in Table 1 in Das et al. [2]’s paper, the following discussion
is stated: The results for Case I are wrong because the cash discount is negative for the
five solutions. It is worth mentioning that a negative value for cash discount is impossible,
therefore, the solutions are incorrect. The results of Case II in the last three solutions the
cash discount values are negative, and the payable interest values for the five solutions are
negative. It is important to note that the payable interest cannot be negative therefore all five
solutions are incorrect. In addition, it was found that all these solutions are infeasible. In
Case III both cash discount and interest payable are positive but the solutions are infeasible.

Taking into account the results shown in Table 2 in Das et al. [2] paper, the following
argument is given: The results for Case IV are incorrect due to the fact that the cash discount
value is negative in all five solutions. A negative value for cash discount does not make
sense. With respect to Case V, it was found that all solutions the cash discount and the
interest payable are negative. These inconsistencies produce invalid solutions. Because both
cash discount and interest payable must be positive. Finally, in Case VI both cash discount
and interest payable are positive but the solutions are infeasible.

Das et al. [2]’s production inventory model

The production inventory model considers the following notation, which was given by Das
et al. [2].
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Symbol Description Units

C3 Replenishment cost per order $/order
C1 Holding cost excluding interest charges $/unit/unit time
P0 Regular production rate units/unit time
Cp Regular production cost $/unit
Co Overtime production cost $/unit
q (t) On hand inventory level units
D(t) Demand rate dependent on inventory level units/unit time
s Selling price $/unit
Ic Interest paid by the retailer %/unit time
Id Interest earn by the retailer %/ unit time
r Cash discount rate %/ unit
t1 Production time period (time at which the inventory

level reaches its maximum level)
unit time

M1 The period of cash discount for which supplier cannot
charge the interest

unit time

M2 Last time of permissible delay period unit time
T The length of the cycle unit time
θ Deterioration rate %
α, β Demand parameters (α, β > 0)

γ, δ Overtime production parameters (where δ > 0 and
0 ≤ γ ≤ 1)

Notation

Das et al. [2] considered six cases. For each case, they stated that profit function is a function
of the length of the cycle (T ). But, actually, the production inventory model has two decision
variables: one is the production time period (t1) and another one is the length of cycle (T ).

Thus, mathematical formulation of Das et al. [2] model is given as follows. The selling
price is determined as

ST (t1, T ) = s

[
P0t1 + k1t1 + k2

(
e−λt1 − 1

) − μθ

λ

{
t1 + 1

λ

(
e−λt1 − 1

)}

+ αθ

θ + β

{
1

θ + β

(
1 − e(θ+β)(T−t1)

)
+ (T − t1)

}]

k1 = αδ + μ(βδ − γ )

λ
, k2 = μ(βδ − γ )

λ2 , λ = θ + γ − β(δ − 1) and

μ = P0 + α(δ − 1)

The total cost for each case is given below
TCi (t1, T ) = Ordering cost + Holding cost + Production cost + Interest charged −

Interest earned − Cash discount
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TCi (t1, T ) = C3 + μC1

λ

{
t1 + 1

λ

(
e−λt1 − 1

)}

− αC1

θ + β

{
1

θ + β

(
1 − e(θ+β)(T−t1)

)
+ (T − t1)

}

+Cp P0t1 + Co
{
k1t1 + k2

(
e−λt1 − 1

)}

+Cp(1 − ri )Ic

{
1
2 (α + βμ

λ
)
(
t2
1 − M2

i

) + βμ
λ

{ 1
λ

(
e−λt1 − e−λMi

) + (
t1e−λt1 − Mie−λMi

)}
+ αθ

2(θ+β)

(
T 2 − t2

1

) − αβ

(θ+β)2

(
T − t1e(θ+β)(T−t1)

) − αβ

(θ+β)3

(
1 − e(θ+β)(T−t1)

)
}

− s Id

{
1

2

(
α + βμ

λ

)
M2

i + βμ

λ2 Mie
−λMi + βμ

λ3

(
e−λMi − 1

)}

− riCp
{
k1t1 + k2

(
e−λt1 − 1

)}

for i = 1 or 4 and M1 = M1,M4 = M2, r1 = r, r4 = 0.
TC j (t1, T ) = Ordering cost + Holding cost + Production cost + Interest charged −

Interest earned − Cash discount

TC j (t1, T ) = C3 + μC1

λ

{
t1 + 1

λ

(
e−λt1 − 1

)}

− αC1

θ + β

{
1

θ + β

(
1 − e(θ+β)(T−t1)

)
+ (T − t1)

}

+Cp P0t1 + Co
{
k1t1 + k2

(
e−λt1 − 1

)}

+Cp(1 − r j )Ic

{
αθ

2(θ + β)

(
T 2 − M2

j

)

− αβ

(θ + β)2

(
T − Mje

(θ+β)(T−Mj )
)

− αβ

(θ + β)3

(
1 − e(θ+β)(T−Mj )

)}

− s Id

⎧⎨
⎩

1
2

(
α + βμ

λ

)
t2
1 + βμ

λ2 t1e
−λt1 + βμ

λ3

(
e−λt1 − 1

) + αθ
2(θ+β)

(
M2

j − t2
1

)
− αβ

(θ+β)2

(
Mje(θ+β)(T−Mj ) − t1e(θ+β)(T−t1)

) − αβ

(θ+β)3

(
e(θ+β)(T−Mj ) − e(θ+β)(T−t1)

)
⎫⎬
⎭

− r jCp
{
k1t1 + k2

(
e−λt1 − 1

)}

for j = 2 or 5 and M2 = M1,M5 = M2, r2 = r, r5 = 0.
TCk(t1, T ) = Ordering cost + Holding cost + Production cost − Interest earned −

Cash discount

TCk (t1, T ) = C3 + μC1

λ

{
t1 + 1

λ

(
e−λt1 − 1

)}

− αC1

θ + β

{
1

θ + β

(
1 − e(θ+β)(T−t1)

)
+ (T − t1)

}

+Cp P0t1 + Co
{
k1t1 + k2

(
e−λt1 − 1

)}

− s Id

⎧⎪⎪⎨
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1
2

(
α + βμ

λ

)
t2
1 + βμ

λ2 t1e
−λt1 + βμ

λ3

(
e−λt1 − 1

) + αθ
2(θ+β)

(
T 2 − t2

1

)
− αβ

(θ+β)2

(
T − t1e(θ+β)(T−t1)

) − αβ

(θ+β)3

(
1 − e(θ+β)(T−t1)

) + (Mk − T )
{(

α + βμ
λ

)
t1 + βμ

λ2

(
e−λt1 − 1

)}
+ (Mk − T ) (T − t1)

αθ
(θ+β)

− (Mk − T )
αβ

(θ+β)2

(
1 − e(θ+β)(T−t1)

)

⎫⎪⎪⎬
⎪⎪⎭

− rkCp
{
k1t1 + k2

(
e−λt1 − 1

)}

for k = 3 or 6 and M3 = M1,M6 = M2, r3 = r, r6 = 0.
Therefore, the total average profit is expressed as follows

T Pi (t1, T ) = [ST (t1, T ) − TCi (t1, T )]

T
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Table 1 Optimal solution of the numerical example for Cases I, II and III

M1 α β θ Case I Case II Case III

TP t1 T TP t1 T TP t1 T

4.5 55 0.25 0.1 108.6551 4.50 5.6053 141.4926 3.4462 4.50 145.3574 2.0378 2.9017

4.7 55 0.25 0.1 112.6669 4.70 5.8133 146.2126 3.6357 4.70 150.6524 2.0777 2.9508

4.9 55 0.25 0.1 116.6859 4.90 6.0209 150.876 3.8257 4.90 155.9632 2.1179 3.0014

5.1 55 0.25 0.1 120.7147 5.10 6.2281 155.4933 4.0163 5.10 161.2902 2.1594 3.0534

5.3 55 0.25 0.1 124.7554 5.30 6.4347 160.0732 4.2073 5.30 166.6338 2.2022 3.1069

Table 2 Optimal solution of the numerical example for Cases IV, V and VI

M2 α β θ Case IV Case V Case VI

TP t1 T TP t1 T TP t1 T

5.0 55 0.25 0.1 118.6417 5.0 6.1245 153.1604 3.9209 5.0 157.8276 2.8081 3.8215

5.2 55 0.25 0.1 122.6757 5.2 6.3314 157.7576 4.1117 5.2 163.4382 2.8559 3.8727

5.4 55 0.25 0.1 126.7226 5.4 6.5379 162.3216 4.3031 5.4 169.0706 2.9043 3.9243

5.6 55 0.25 0.1 130.7835 5.6 6.7441 166.8579 4.4948 5.6 174.7247 2.9531 3.9764

5.8 55 0.25 0.1 134.8595 5.8 6.9498 171.3728 4.6871 5.8 180.4005 3.0023 4.0288

for i = 1 or 4 and M1 = M1,M4 = M2, r1 = r, r4 = 0.

T Pj (t1, T ) =
[
ST (t1, T ) − TC j (t1, T )

]
T

for j = 2 or 5 and M2 = M1,M5 = M2, r2 = r, r5 = 0.

T Pk(t1, T ) = [ST (t1, T ) − TCk(t1, T )]

T

for k = 3 or 6 and M3 = M1,M6 = M2, r3 = r, r6 = 0.
Thus, the optimization problem is expressed as follows:
Maximize T Pi (t1, T ) ∀ i = 1, . . . , 6
The above optimization problem can be solved optimally using Lingo 10. In next section,

the optimal solutions to the numerical example are provided.

Optimal solution for numerical example in Das et al. [2]’s production
inventory model.

The parameters for the numerical example are:C3 = 55,C1 = 0.25,Cp = 2,Co = 2.5, s =
3.5, Ic = 0.2, Id = 0.15, P0 = 75, γ = 0.03, δ = 0.3, r = 0.001 in appropriate units. Thus,
the optimal solutions to the six cases are presented in Tables 1 and 2. The sensitivity analysis
are reported in Tables 3, 4, 5 and 6.
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Table 3 Sensitivity analysis with respect demand parameters when θ = 0.1 and M1 = 4.9

α β Case I Case II Case III

TP t1 T TP t1 T TP t1 T

50 0.20 102.5230 4.90 6.1239 135.8054 3.7405 4.90 135.3199 2.0009 3.0527

0.25 107.8384 4.90 6.1064 140.5561 3.7542 4.90 140.2853 2.2257 3.2921

0.30 113.0934 4.90 6.0819 145.1538 3.7732 4.90 145.6520 2.4062 3.4627

55 0.20 111.473 4.90 6.0415 146.2056 3.8082 4.90 151.4841 1.9275 2.7999

0.25 116.6859 4.90 6.0209 150.8760 3.8257 4.90 155.9632 2.1179 3.0014

0.30 121.8335 4.90 5.9947 155.4611 3.8477 4.90 160.856 2.2744 3.1518

60 0.20 120.2938 4.90 5.9729 156.4345 3.8658 4.90 168.0386 1.8584 2.5784

0.25 125.3656 4.90 5.9496 160.9697 3.8864 4.90 172.0262 2.0171 2.7446

0.30 130.3688 4.90 5.9208 165.3986 3.9106 4.90 176.4270 2.1497 2.8731

Table 4 Sensitivity analysis with respect deterioration parameters when α = 55 and M1 = 4.9

β θ Case-I Case-II Case-III

TP t1 T TP t1 T TP t1 T

0.20 0.075 115.4974 4.90 6.0550 149.8316 3.7977 4.90 151.5449 2.0657 3.0081

0.10 111.4730 4.90 6.0415 146.2056 3.8082 4.90 151.4841 1.9275 2.7999

0.125 107.8126 4.90 6.0263 142.7774 3.8203 4.90 151.4374 1.8206 2.6369

0.25 0.075 120.4767 4.90 6.0379 154.3986 3.8123 4.90 156.4104 2.2661 3.2165

0.10 116.6859 4.90 6.0209 150.8760 3.8257 4.90 155.9632 2.1179 3.0014

0.125 113.2251 4.90 6.0027 147.5371 3.8403 4.90 155.6043 1.9985 2.8267

0.30 0.075 125.4182 4.90 6.0143 158.8951 3.8321 4.90 161.6024 2.4241 3.3627

0.10 121.8335 4.90 5.9948 155.4611 3.8477 4.90 160.8560 2.2744 3.1518

0.125 118.5488 4.90 5.9744 Infeasible Infeasible Infeasible 160.2370 2.1497 2.9750

Table 5 Sensitivity analysis with respect demand parameters when θ = 0.1 and M2 = 5.4

α β Case IV Case V Case VI

TP t1 T TP t1 T TP t1 T

50 0.20 111.1316 5.40 6.6461 145.8686 4.2118 5.40 152.3727 2.8200 3.9118

0.25 117.2579 5.40 6.6269 151.3805 4.2266 5.40 156.8600 2.9373 4.0248

0.30 123.2323 5.40 6.6006 infeasible infeasible infeasible 161.6489 3.0252 4.1008

55 0.20 120.7641 5.40 6.5599 156.9547 4.2847 5.40 164.6500 2.8034 3.8342

0.25 126.7226 5.40 6.5379 162.3213 4.3031 5.40 169.0706 2.9043 3.9243

0.30 132.5304 5.40 6.5102 infeasible infeasible infeasible 173.7745 2.9765 3.9800

60 0.20 130.2603 5.40 6.4882 167.8569 4.3465 5.40 176.7808 2.7851 3.7652

0.25 136.0094 5.40 6.4637 173.0186 4.3679 5.40 181.1054 2.8706 3.8347

0.30 141.6110 5.40 6.4349 178.0008 4.3933 5.40 185.6994 2.9282 3.8719
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Table 6 Sensitivity analysis with respect deterioration parameters when α = 55 and M2 = 5.4

β θ Case-I Case-II Case-III

TP t1 T TP t1 T TP t1 T

0.20 0.075 125.0761 5.40 6.5746 160.9186 4.2732 5.40 166.8288 2.9624 4.0139

0.10 120.7641 5.40 6.5599 156.9547 4.2847 5.40 164.6500 2.8034 3.8342

0.125 116.8630 5.40 6.5434 153.2253 4.2978 5.40 162.7274 2.6652 3.6754

0.25 0.075 130.7987 5.40 6.5564 166.1841 4.2884 5.40 171.3214 3.0585 4.1012

0.10 126.7226 5.40 6.5379 162.3213 4.3031 5.40 169.0706 2.9043 3.9243

0.125 123.0179 5.40 6.5184 Infeasible Infeasible Infeasible 167.0868 2.7678 3.7655

0.30 0.075 136.3988 5.40 6.5312 171.3021 4.3094 5.40 176.0501 3.1254 4.1529

0.10 132.5304 5.40 6.5102 Infeasible Infeasible Infeasible 173.7745 2.9765 3.9800

0.125 128.9989 5.40 6.4886 Infeasible Infeasible Infeasible 171.7663 2.8428 3.8228

Conclusion

This paper identifies some shortcomings in the solutions of the numerical example in Das
et al. [2]’s model. The paper shows that all solutions reported by Das et al. [2] are incorrect
and infeasible. Additionally, this paper provides the optimal solutions to all cases of the
production inventory model. Now, the Das et al. [2]’s research is valuable and significant
because it is corrected.
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