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Abstract This paper applies He’s new amplitude–frequency relationship recently estab-
lished by He (Int J Appl Comput Math 3(2):1557–1560, 2017. doi:10.1007/s40819-016-
0160-0) to study periodic solutions of strongly nonlinear systems with odd nonlinearities.
Some examples are given to illustrate the effectiveness, ease and convenience of the method.
In general, the results are valid for small as well as large oscillation amplitude. The method
can be easily extended to other nonlinear systems with odd nonlinearities and can therefore
be found widely applicable in engineering and other science. The method used in this paper
can be applied directly to highly nonlinear problems without any discretization, linearization
or additional requirements.

Keywords Nonlinear oscillators · Periodic solution ·Approximate frequency ·Conservative
oscillator
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Introduction

Nonlinear vibration arises everywhere in science, engineering and other disciplines, since
most phenomena in our world today, are essentially nonlinear and are described by nonlinear
equations. It is very important in applications to have a version of the frequency (or period)
to have a better understanding of the phenomena modeled through differential equations that
contain terms with high nonlinearities, and a simple mathematical method is very useful for
practical applications.

Recently many analytical methods have appeared to obtain the approximate solutions
of nonlinear systems, such as the parameter-expansion method [30], the harmonic balance
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method [3,22,28,31], the energy balancemethod [23,36], the Hamiltonian approach [13,37],
the use of special functions [6,7], the max–min approach [14,39], the Adomian decom-
position technique [10], the variational iteration method [15,16,21,33,35] and homotopy
perturbation [2,4,9,11,17–19] are some examples. An excellent study, in which many of
these techniques can be found in detail to solve nonlinear problems of oscillatory type can
be seen in [20].

Recently, In [12] an analytical approximate technique for large and small amplitudes oscil-
lations of a class of conservative single degree-of-freedom systems with odd non-linearity
is proposed. In this study, we have applied new method to find the approximate solutions
of nonlinear differential equation governing strongly nonlinear oscillators and have made a
comparison with the exact solution. The most interesting features of the used method are its
simplicity and its excellent accuracy of both period and corresponding periodic solution for
the entire range of oscillation amplitude. Finally, four examples are presented to describe
the solution methodology and to illustrate the usefulness and effectiveness of the proposed
technique.

He’s New Amplitude–Frequency Relationship

Consider a one-dimensional, free nonlinear oscillator (undamped and unforced) governed by

u′′ + f (u) = 0, (1)

with the initial conditions
u(0) = A, u′(0) = 0 (2)

where a primedenotes differentiationwith respect to t ,u is the displacement, and the nonlinear
restoring force f (u) is an odd function of u, i.e. f (−u) = − f (u) and satisfies f (u)/u > 0
for u ∈ [−A, A], u �= 0. It is obvious that u = 0 is the equilibrium position. The system
oscillates between the symmetric bounds −A and A. If f (u) is a nonlinear function, both
period T and frequency ω = 2π/T of the corresponding oscillation are dependent upon the
amplitude of oscillation A. The relationship between the frequency and amplitude is the main
property of a nonlinear oscillator; see [5,8] and references therein.

A simple realization of the harmonic oscillator in classical mechanics is a particle which is
acted upon by a restoring force proportional to its displacement from its equilibrium position.
Considering motion in one dimension, this means

f = −ku (3)

Such a force might originate from a spring which obeys Hooke’s law. The force constant k
is a measure of the stiffness of the spring. Now applying Newton’s second law to the force
from Eq. (3), we obtain

f = mu′′ = −ku (4)

where m is the mass of the body attached to the spring, which is itself assumed massless.
This leads to a linear differential equation of familiar form

u′′ + ω2u = 0, ω2 = k/m. (5)

The square of its frequency can be easily obtained, which reads

ω2 = F ′(u) (6)
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Table 1 Criterion for choosing a
location point

Conditions Location point for Eq. (10)

u f ′′(u) < 0 0 < ui < A/2

u f ′′(u) > 0 A/2 ≤ ui < A

where F(u) is the restoring force, F(u) = ω2u.
Let us now consider a general nonlinear oscillator of the form given by Eq. (1). In this

case, the restoring force is given by f (u). We extend Eq. (6) to nonlinear cases, that is

ω2 = f ′(u). (7)

According to He’s new amplitude–frequency formulation, the approximate frequency as
a function of A can be obtained as follows [12]:

ω2(A) =
∑N

i=1 ω2
i (A)

N
(8)

with each ω2
i (A) defined by

ω2
i (A) = f ′(ui ) (9)

where ui are location points, 0 < ui < A. Explicitly, ui = i A/N for every i = 1, 2, . . . , N−
1.

The simplest way to calculate the frequency is given by

ω2(A) = f ′(ui ), (10)

for some 0 < ui < A. The accuracy, however, depends greatly upon the location point.
In Table 1 we present the criteria suggested by He [12] for choosing a suitable location

point ui .
Therefore, according to Eq. (10) the analytical approximate frequency ω as a function of

A is
ωapp(A) = √

f ′(ui ). (11)

For conservative oscillations with an odd restoring force f (u), there exists a periodic
motion around the equilibrium point u = 0 with frequency ω and amplitude A. Therefore, a
reasonable and the simplest initial approximation of u(t) which satisfies the initial condition
given by Eq. (2) is [25]:

u(t) = A cos(ωt). (12)

From Eq. (11) we obtain the following approximate periodic solution to (1)

uapp(t) = A cos
(√

f ′(ui ) · t
)

. (13)

Numerical Examples

In this section, we will give four examples to illustrate the use and the efectiveness of the
present approach.

Nonlinear oscillators in physics, engineering, biology, mathematical and related fields
have been the focus of attention for many years. The Duffing equation is a well-known
nonlinear differential equation which is related to many practical engineering systems such
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as the classical nonlinear spring system with odd nonlinear restoring characteristics and
more recently in different physical phenomena. There have been many variations of Duff-
ing equation, one of them is the cubic–quintic Duffing equation. The systems modelled by
the cubic–quintic Duffing equation include the nonlinear dynamics of a slender elastica, the
compoundKorteweg–deVries (KdV) equation in nonlinear wave systems, or the propagation
of a short electromagnetic pulse in a nonlinear medium, structural dynamics, among others
[31,32]. In Examples 1 and 2, we will illustrate that the proposed method is remarkably
effective and applicable in solving the generalized Duffing equation even with strong non-
linearities. Finally, in the Examples 3 and 4 He’s new amplitude–frequency relationship will
be used to solve the nonlinear differential equation related to plasma physics and oscillations
of a mass attached to a stretched elastic wire, respectively.

Example 1 Consider the cubic–quintic Duffing nonlinear oscillator, which is modelled by
the following second-order differential equation

u′′ + u + u3 + u5 = 0, (14)

with initial conditions
u(0) = A, u′(0) = 0. (15)

In the present example we have f (u) = u + u3 + u5, it is clear that f is an odd function
and satisfies f (u)/u > 0.

Calculating we have f ′(u) = 1+ 3u2 + 5u4 and f ′′(u) = 6u+ 20u3, hence u f ′′(u) > 0.
Now, considering the criterion given in Table 1 we must take the location points A/2 ≤ ui <

A. If we take ui = 0.5772A and consider the proposed approach in Eq. (11), one can assume
for the frequency–amplitude formulation

ωapp(A) =
√
1 + 3(0.5772)2A2 + 5(0.5772)4A4. (16)

We, therefore, obtain the following periodic solution:

uapp(t) = A cos
(√

1 + 3(0.5772)2A2 + 5(0.5772)4A4 · t
)

(17)

which has a high accuracy (see Figs. 1, 2).

Fig. 1 Comparisonof analytical approximation (dashed) and exact solution (black) for A = 1/10 inExample 1
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Fig. 2 Comparison of analytical approximation (dashed) and exact solution (black) for A = 50 in Example 1

Table 2 Comparison between frequencies ωapp(A) and ωex(A) for different values of A

A ωapp(A) Eq. (16) ωex(A) Eq. (18) Relative error (%)

1/1000 1.0000004997 1.0000003750 0.0000124

1/100 1.0000499755 1.0000375023 0.0012401

1/10 1.0050125835 1.0037729382 0.1234941

10 75.171283755 75.177400632 0.0081365

50 1863.0910920 1867.5739782 0.2400379

100 7450.3513534 7468.8303066 0.2474142

1000 744,968.72043 746,834.68847 0.2498502

The exact frequency for the present example is given by [38]:

ωex(A) = 2π
∫ π/2

0

4dθ
√
1 + 1

2

(
1 + sin2 θ

)
A2 + 1

3

(
1 + sin2 θ + sin4 θ

)
A4

. (18)

From Table 2, it can be observed that Eq. (16) yield excellent analytical approximate
periods for both small and large values of oscillation amplitude A.

The obtained results in this example reveals that the presented method is very effective,
simple and exact and is valid for small and large amplitudes.

Example 2 In this example, we consider the following nonlinear Duffing oscillator:

u′′ + u + u5 = 0, (19)

subject to the initial conditions

u(0) = A, u′(0) = 0. (20)

For this problem,

f (u) = u + u5,

it is clear that f is an odd function and satisfies f (u)/u > 0.
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Table 3 Comparison between frequencies ωapp(A) and ωex(A) for different values of A

A ωapp(A) Eq. (21) ωex(A) Eq. (22) Relative error (%)

1/1000 1.0000000000 1.0000000000 0.0000000

1/100 1.0000000028 1.0000000031 0.0000000

1/10 1.0000278833 1.0000312493 0.0003365

1 1.2480683052 1.2647077571 1.3156756

10 74.684301857 74.690887847 0.0088176

100 7467.7607379 7468.3420769 0.0077840

500 186,694.01678 186,708.55006 0.0077839

1000 746,776.06710 746,834.20022 0.0077839

10,000 7.467760 × 107 7.468342 × 107 0.0077839

Derivating we have, f ′(u) = 1 + 5u4 and f ′′(u) = 20u3, hence u f ′′(u) = 20u4 > 0.
Therefore, considering the criterion given in Table 1 we must take the location points A/2 ≤
ui < A. If we take ui = 0.5779A and consider the proposed approach in Eq. (11), one can
assume for the frequency–amplitude formulation

ωapp(A) =
√
1 + 5(0.5779)4A4. (21)

The exact frequency for the present problem was established in [16] and is given by

ωex(A) = π
√
A4 + 3

2
√
3

⎛

⎜
⎜
⎝

∫ π/2

0

1
√

1 +
(

A4

A4+3

)
(sin2 θ + sin4 θ)

dθ

⎞

⎟
⎟
⎠

−1

. (22)

To illustrate and verify accuracy of these approximate analytical approach, a comparison
of approximate frequencies ωapp(A) for different values of amplitude A and the exact fre-
quencies ωex(A) is presented in Table 3. Note that the approximation is very accurate for
small values and large values of A. From Table 3 we can see that

lim
A→0+

ωapp(A)

ωex(A)
= 1 and lim

A→∞
ωapp(A)

ωex(A)
= 0.999922. (23)

Considering the approximation for the frequency obtained in Eq. (21) the approximate
solution of Eq. (19) becomes

uapp(t) = A cos
(√

1 + 5(0.5779)4A4 · t
)

. (24)

For this example we will not show graphs as we did in the previous example, because the
high precision would not allow the distinction between them.

Example 3 A problem of some importance in plasma physics concerns an electron beam
injected into a plasma tube where the magnetic field is cylindrical and increases towards the
axis in inverse proportion to the radius. The governing equation for the path u of the electrons
is modelled by the following second-order differential equation [1,24]:

u′′ + 1

u
= 0, (25)
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Table 4 Comparison between frequencies ωapp(A) and ωex(A) for different values of A

A ωapp(A) Eq. (28) ωex(A) Eq. (27) Relative error (%)

1/1000 1251.5644556 1253.3141373 0.13960

1/100 125.15644556 125.33141373 0.13960

1/10 12.515644556 12.533141373 0.13960

1 1.2515644556 1.2533141373 0.13960

10 0.1251564456 0.1253314137 0.13960

100 0.0125156446 0.0125331414 0.13960

500 0.0025031289 0.0025066282 0.13960

1000 0.0012515644 0.0012533141 0.13960

with initial conditions
u(0) = A, u′(0) = 0. (26)

The exact solution for Eq. (25) as a function of A was obtained in [29] and this is

ωex(A) = 2π

[

2
√
2A

∫ 1

0

ds√
ln(1/s)

]−1

. (27)

To use the method presented in the “He’s New Amplitude–Frequency Relationship” sec-
tion, wewill consider f (u) = 1

u , it is clear that f is an odd function and satisfies f (u)/u > 0.

Calculating, we get f ′(u) = − 1
u2

and f ′′(u) = 2
u3
, hence u f ′′(u) > 0. Now, considering

again the criterion given in Table 1 we must take the location points A/2 ≤ ui < A. If we
take ui = 0.799A and consider the proposed approach in Eq. (11), one can assume for the
frequency–amplitude formulation

ωapp(A) =
√

1
( 799
1000

)2
A2

= 1000

799A
. (28)

lim
A→0+

ωapp(A)

ωex(A)
= lim

A→∞
ωapp(A)

ωex(A)
= 0.9986. (29)

Finally, considering the approximation (28),wehaveobtain the followingperiodic solution
of the Eq. (25)

uapp(t) = A cos

(
1000

799A
· t

)

. (30)

The obtained solution is of remarkable accuracy, as shown in Table 4 and Fig. 3.

Example 4 The governing nonlinear differential equation ofmotion and the associated initial
conditions for a mass attached to a stretched elastic wire are [28]:

u′′ + u + u√
1 + u2

= 0, u(0) = A, u′(0) = 0. (31)

Which, f (u) = u + u√
1+u2

. Its derivatives are:

f ′(u) = 1 + 1
√(

1 + u2
)3

, f ′′(u) = − 3u
√(

1 + u2
)5

. (32)
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Fig. 3 Comparison of analytical approximation (dashed) and exact solution (black) for A = 100 in Example 3

Table 5 Comparison between frequencies ωapp(A) and ωex(A) for different values of A

A ωapp(A) Eq. (33) ωex(A) Eq. (34) Relative error (%)

1/1000 1.4142134402 1.4142134298 0.0000007

1/100 1.4142013439 1.4142003049 0.0000734

1/10 1.4129946662 1.4128952474 0.0070365

1 1.3163234011 1.3273988465 0.8343720

10 1.0042330178 1.0606052889 5.3151037

100 1.0000045182 1.0063415277 0.6297076

1000 1.0000000045 1.0006363862 0.0635976

10,000 1.0000000000 1.0000636597 0.0063655

From Eq. (32) we have u f ′′(u) < 0. Considering the criterion given in Table 1 we must
take the location points A < ui < A/2. If we take ui = 0.48A and consider the proposed
approach in Eq. (11), one can assume for the frequency–amplitude formulation

ωapp(A) =
√
√
√
√1 + 1

(
1 + ( 48

100

)2
A2

)3/2 . (33)

The nonlinear oscillator described in Eq. (31) is a conservative system. By integrating
Eq. (31) and using the initial conditions, we arrive at

ωex(A) = 1

2
π

⎛

⎝
∫ π

2

0

A cos θ
√

A2 cos2 θ − 2
(√

1 + A2 sin2 θ − √
1 + A2

)dθ

⎞

⎠

−1

(34)

By taking into account our approximation made through He’s frequency–amplitude for-
mulation Eq. (33) and ωex(A) from Eq. (34) we can calculate the Table 5 for small and large
values of A.
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Fig. 4 Comparison of analytical approximation (dashed) and exact solution (black) for A = 10 in Example 4

Fig. 5 Comparison of analytical approximation (dashed) and exact solution (black) for A = 100 in Example 4

Also, considering the approximation given by Eq. (33), we have obtain the following
periodic solution of the Eq. (31)

uapp(t) = A cos

⎛

⎜
⎝

√
√
√
√1 + 1

(
1 + ( 48

100

)2
A2

)3/2 · t
⎞

⎟
⎠ . (35)

The obtained solution is very acceptable accuracy, as shown in Figs. 4 and 5.
We can conclude that formula (33) is valid for the whole range of values of amplitude of

oscillation and its maximum relative error is 5.3% and this is obtained when A = 10. We
can also see that, for very large or very small values of A, we have

lim
A→0+

ωapp(A)

ωex(A)
= lim

A→∞
ωapp(A)

ωex(A)
= 1. (36)

The study of nonlinear problems arisen in many areas of physics and also engineering
is very complex issue for scientists. Since most phenomena in our world are essentially
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nonlinear and are described by nonlinear equations, it is very difficult to solve nonlinear
problems and in general, it is often more difficult to get an analytic approximation than a
numerical one for given nonlinear problems. One of the critical problems in materials science
field is the behavior of elastic materials. The extensive literature on the topic is now available
and we can only mention a few recent interesting investigations in [26,27,34].

Conclusions

He’s new amplitude–frequency relationship recently established by He [12] is proved to
be a powerful mathematical tool for use in the search for periodic solutions of nonlinear
oscillators. It is simple, straightforward and effective. Moreover the approximate analytical
solutions are valid for small as well as large amplitudes of oscillation.

The new method applied in this paper is of potential and can be applied to other strongly
nonlinear oscillators with more general restoring forces provided that they meet the require-
ments established in “He’s New Amplitude–Frequency Relationship” section. Finally, four
examples have been presented to illustrate excellent accuracy of the analytical approximate
periods and the corresponding periodic solutions; being our main contribution in the present
study to find the location points involved in Eq. (10). All numerical work and graphics were
performed with the Mathematica software package.
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