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Abstract In the present paper the theory of progressive waves is used to analyze the finite
amplitude disturbances, moderately small amplitude disturbances in a dusty gas for general-
ized geometry. The conditions, under which a complete history of the evolutionary behavior
of shock waves including weak shock can be traced out, are determined. It is also assessed
as to how the presence of dust particles in the gas affects the existence of shock or no shock.
Further the effect of variation of mass fraction of the dust particles on the growth and decay
behavior of shock in cylindrically symmetric and spherically symmetric flows are discussed.
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Introduction

The ideal gas model has played an important role to study the shock wave phenomena. Many
important and interesting results have been worked out using the ideal gas model while real
gases are not exactly described by ideal gas model; there is always certain deviation, from
the ideal gas model, in the behaviour of real fluids. The shock wave phenomena in real fluid
exhibits richer behaviour than that of ideal gas model. In the last few decades, in non linear
waves the theory of progressive wave has received a great attention from mathematical as
well as physical points of view as it is associated with sonic boom problem in the field
of aerodynamics. Several approaches have been developed to investigate the asymptotic
properties of weakly nonlinear waves and for the derivation of transport equation describing
the wave phenomena governed by a hyperbolic system see [1-4]. The theory of relatively
undistorted waves was first presented by Varley and Cumberbatch [5] in which they have
studied the nonlinear wave phenomenon governed by nonlinear system of equations. The
theory of relatively undistorted waves depends on a scheme of successive approximations
to the system of hyperbolic equations, which makes no assumption on the magnitude of the
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disturbance, it also gives an asymptotic expansion of the flow variable for outward going
wave. This method was further discussed in detail by Seymour and Mortell [6] in which
they have proposed an expansion scheme which generalizes the earlier study and was used
in linear geometrical acoustics to account for the amplitude dispersion and shock formation.
Again Seymour and Mortell [6] have proved that the representation of high frequency waves
in terms of modulated simple wave with slowly changing Riemann invariants, the parameter
expansion technique of geometrical optics can be modified to finite amplitude waves. Further,
the theory of simple modulated waves has been used by few authors such as Varley and
Cumberbatch [5], Varley and Rogers [7] and Gupta et al. [8] to discuss high frequency waves
in different material media. The necessary idea underlying the theory of progressive waves
may be found in [9-12]. Also a parallel attempt, in the field of perturbation method has been
done by Asano, T. Taniuti and some other associated authors see [13—15]. Zhao et al. [16]
has presented a complete classification of shock waves in van der Waals fluids in which a
theoretical understanding of shock related phenomena is developed in real fluids which cannot
be accounted by the ideal gas model. A remarkable attention on evolution and propagation of
weak shock waves in different material media has been drawn by Singh et al. [17-19]. Radha
et al. [20] have studied the interaction of shock waves with weak discontinuities. Ambika et
al. [21] have used the theory of progressive waves to study the finite and moderately small
amplitude waves in non-ideal gas.

The dusty gas is a mixture of gas and small solid particles where solid particles do not
occupy more than 5% volume of the total volume of the mixture. The study of shock waves
in dusty gas is of great importance due to its wide application in industry, lunar ash flow,
nozzle flow, bomb blast, propellant rocket, supersonic flight in polluted air and many other
engineering problems see (Miura and Glass [22], Pai et.al [23,24]). Anand [25] have derived
the Shock jump relations for the dusty gas atmosphere. When a shock wave is propagated
through a gas which contains an appropriate amount of dust particles, the thickness of the
wave, the pressure changes across the shock and the other features of the flow differ greatly
from those which arise when the shock passes through dust free gas. Further Carrier [26] has
studied the feature of shock waves in dusty gases in which the plane steady decelerated flow of
a dusty gas mixture is analyzed in an appropriate manner. The main motivation of the present
work is to study the planar and radially symmetric flow of finite amplitude disturbances, small
amplitude disturbances and evolution of shock waves in a dusty gas by using the theory of
progressive waves. Further some specific cases, in which the initial disturbance is either a
pulse or periodic wave, are considered to trace out the complete history of shock decay after
its formation in a dusty gas.

Basic Equations
The governing equations describing a one dimensional planar (m = 0), cylindrically symmet-

ric (m=1) or spherically symmetric (m=2) flow of an ideal compressible fluid with dust
particles may be written in the following form [22-24,27]

Pt +upy + pux +mpu/x =0, D
ur+uux+Px//0=O, (2)
E,+uE, — p/p* (p; +upy) = 0, 3)

where p is the density, u is the velocity, p is the pressure, ¢ is the time and x is the spatial
coordinate. The subscripts denote partial differentiation unless stated otherwise. The internal
energy E per unit mass of the mixture is given as
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:(1—Z)p
T—=Dp’

where Z = Vj,,/V, is the volume fraction and k, = my, /m, is the mass fraction of the solid
particles in the mixture while m,, and V, are the total mass and volumetric extension of
the solid particles respectively, V, and m are the total volume and total mass of the mixture
respectively, I" is called Griineisen coefficient and is defined as I' = y (1 + A8)/(1 + ABy),
A =ky/(1=kp), B = csp/cpand y = cp/cy, where cgp is the specific heat of the solid
particles, ¢, is the specific heat of the gas at constant pressure and ¢, is the specific heat
of the gas at constant volume. The entities Z and k), are related via the expressionZ = 6p,
where 0 = k,/psp with py), is the specific density of the solid particles. If we set Z = 0 in
Eq. (4) (i.e. the gas is free from dust particles) then Eq. (4) turns to the equation of state for
an ideal gas.
Using Eq. (4) in Eq. (3) we get

E “

pr +upy + pC? (uy +mu/x) =0, 5)

where C is the sound velocity and is given by C = /I'p/(1 — Z) p.
Now Egq. (1), (2) and (5) can be written in matrix form as

Vi+MV,+ N =0, (6)
P u P 0 mpu/x
where V=|u | M=]0 u 1/p | and N = 0
p 0 pC? u pCZmu/x

The eigenvalues of the matrix M are u + C, u and u — C. Since all the eigenvalues of
the coefficient matrix M are real and distinct therefore the system of equations (6) is strictly
hyperbolic in nature.

Progressive Wave Approximations

The solution vector V of Eq. (6) is said to define a progressive wave if there exist a family of
propagating surfaces 2 (x, t) = «, called wavelets, such that the magnitude of rate of change
of fluid flow parameters p, u and p with respect to x for fixed wavelet 2 (x, 1) = « is very
small as compared with the magnitude of the variation of the flow parameters with respect to
x for a fixed time ¢ [10]. Such type of motion is clearly an extension of the theory of simple
wave, where we can find a variables €2 (x, #) such that the flow variables p, # and p can be
expressed only in terms of 2. This shows that the progressive waves, which we consider here,
treated as slowly modulated simple waves. In order to determine a progressive wave solution,
let us suppose a transformation from (x, ) to (x, 2) through r = T (x, Q). Then equations
(1), (2) and (5) may be transformed in terms of p, u and p through p (x,t) = p (x, Q),
u(x,t)=u(x,RQ)and p (x,t) = p (x, Q) respectively.

(1 —uTy) pr — puy Ty + it py + pitx +mpii/x =0, @
(= uT)u, — Tepi/p + itity + pr/p =0, (8)
(1 —uTe) py — pC>Teuy + it px + pC? (itx + mit/x) = 0, ©9)

where C2 =T'p/(1 — Z)p.
Since the solution is supposed to be a progressive wave therefore, we have|dp/dx| <<
|0p/0x].
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But in a progressive wave p, =~ p; Ty, therefore above equation becomes

[0p/dx| << |dp/dt]|. (10)
Similarly as above, we can write

|0u/dx| << |du/dt], (1D

[0p/dx| << |dap/at]. (12)

Further if p, = O (p/x), uy = O (/x) and p, = O (p/x) then Eqgs. (7)—(9) can be written
in a more convenient form as

(1 —uTy) py — pu; Ty =0, (13)
(1 —uT)u; — Tepe/p =0, (14)
(1 —uTo) py — pC*Tyuy =0, (15)

which, on simplification gives us
To=w+0C)L. (16)

From Eq. (16) we observe that the wavelets are nothing but the characteristic curves of system
of partial differential equations (6). Using Eq. (16) in (13)—(15) we have

C?pa = pa = pCig. (17)

Now in order to find the compatibility condition of system of Egs. (7)-(9), multiplying
equation (8) by pC and then adding to Eq. (9), which gives the compatibility condition
containing p, u, p and their derivatives as

(pCity + py) (it + C) + mpiC*/x =0 . (18)

Let us suppose the region, in which the disturbance is propagating, is uniform and at rest
characterizing as p = po, u = 0 and p = pg. It is possible to choose the label of each
wavelet 2 so that Q = ¢ at x = xg; consequently assuming the boundary condition for p and
T to be

p=g(E ), T =2, atx=xp, 19)

where g is a smooth bounded function i.e. |g| = O (1). In the progressive wave approxima-
tion, in view of Eq. (17) we have

U@, Q) =Upx,Q), px Q) ="P(0@xRQ). (20)

Using Egs. (20), (16) can be solved fort = T (x, Q) as

X 1
/XOU<p>+F(p> g D

Also, in view of Egs. (20), (18) can be solved for p as a function of x and Q

pU (p) = g () U (g () (x/x0) ™%, (22)

~ n _ o\, - \T S N\1/2
where U (p) = [ @ds, P (p) = po (%) (é) and F (s) = ((1;59(;;3) .
00
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where Zo = 6pp. From Eq. (21) it follows immediately that a shock first forms at a point
x = x; on the wavelets 2, where x; can be found from the solution of

1—/ F(FT;)P@ (@> dx =0, (23)
252F (p) (1= Z)"[U (p) + F (9)1* \9%/ a=q,

X0

Equations (20)—(23) construct the desired modulated simple wave solution. Indeed the dis-
turbance that propagates into a uniform region p = pp, u = 0, p = po and is expressed
by equations (20)—(23), can be obtained from Egs. (21), (22) and further density p can be
found. With the help of p, velocity u# and pressure p can be obtained from Eq. (20). It is also
evident from the equation (23) that the solution may break after running a finite length x;
depending on the dust particles 6. Now we shall investigate shock wave propagation into an
undisturbed region with # = 0 ahead of the shock.

Small Amplitude Disturbances

For studying the flow pattern and its distortions explicitly, let us consider the disturbed flow
as a perturbation of the uniform state, which is of the form p = pg + p; where the perturbed
density p; is taken to be very small. Therefore from Eq. (20) we have

P, Q) =po+p (5, Q) Fy, i, Q) =pi(x,Q) Fo/po. (24)
With the assumption |g (2) — po| << 1, the perturbed density p; is given by
p1(x, Q) = g (Q) (x/x0) "2 (25)

Now Eq. (21) on integration, yields the perturbed wavelet as

T(x,Q)=Q+ (x —x0)/Fo—¥18 () o (x), (26)
where | = 720(1;%21_)2)2,
and
X — Xo, if m =0,
12 ]
00 = | 2x0 ((%) —1),1f m=1,
xo log (;—0) , if m=2.

From Eq. (26) we observe that for ¥y > 0, a shock forms on a compression wavelet
(dg (2)/d2 > 0) at a distances x;, given by

de (R
wlwm)( 8 ( )) =1. @7
atQ=q;

ds2

Equation (25) represents that, along the wavelets the perturbed density p; is constant for
planar flow (m = 0) and decay according to the power law in case of cylindrically symmetric
(m = 1) and spherically symmetric (m = 2) flows.

When a shock wave is formed it will separate the portions of the continuous region. Here
we can use the following equal area rule to determine the location of the weak shock wave,
see [9]
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Q2
Q Q
/g ©)d¢ = (2 — Q) (W) , 28)
Q

where 2] and €2 are the wavelets ahead of the shock and behind of the shock respectively.

Evolution of Shocks

To study the early history of shock decay after its formation on the leading wave front 2 = 0,
consider a special case in which the disturbance at the boundary x = xq is a pulse defined as

0, if Q<0,
g (@ =1 podsin (22), if 0< Q<%0 (29)
0, if Q>

So with the help of Eq. (29), the progressive wave solution for a moderately small amplitude
disturbance can be obtained from Eqgs. (24) and (25) as

QF. —m/2
p(x,2) = po+ Fo2,003 sin (xioo> (%) , (30)
i _(QF (x\T"?
i (x, Q) = Fyd sin = ) G , (31)
and
. . QF() X —m/2
p (x, §2) = po + pod sin <?> (g) . (32)

Also, from Eq. (26) we have

T (@) =+ — (x—x0) — ——si (QF()) ) (33)
X, = — (x — x0) — sin{ — Jw (x).

Fo Y11 Fo X0
While, the shock formation distance x;/xo can be obtained from Eq. (27) as

4 : _
1+ cos(QH)/xo)’ if m=0,

iy Y PR T LT 34
Yo 2cos(QFg/xgy ) W m =1, (34
v S
em(amﬁﬁm)’ if m=2

where v/ is a dimensionless constant quantity and is given by
(35)

with Zg = Opp. In view of Eq. (35) we observe that yr1; will be positive for given 6 and py if

0po < 1 and will be negative if 6py > 1, thus a shock forms (since x; > xp) on the leading

wave front 2 = 0 (respectively on the trailing wave front 2 = 7). From Eq. (35) we have
i1 -2

020 3T+ 1) G6)
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Further for a shock of small strength i.e. for weak shock propagating into the disturbed region
where g (21) = 0 for Q1 < 0, in view of Eq. (29) and (33) we have from Eq. (28) as

O Fo 1/2
sin (270} _ (- Yuxo) 37)
2x0 w (x)
On using Eq. (37) in Eq. (32), the shock strength means i.e. jump in density can be obtained
as
X\ (Yixg nxo\ )/
ol =200 () (Lo (2 . (38)
X0 w (x) w (x)

From Eq. (38) we observe that the shock after its formation on 2 = 0 at the pointx = x; > xp
rises to a maximum strength at the point x = x; > x,, where x| can be obtained from the
solution of the following equation:

—14m)2
00 4 <i> (‘“i’o”) - ml) 29 oy =0, (39)

X0 X0 X0

and then decays ultimately in proportion to x /2.
Let us consider a special case in which a small disturbance is taken at the boundary x = xo

having a periodic wave front which is given as
g () = dposin (). (40)

where § < 0 and € is defined as @ = Fy/xo and suppose the growth over one cycle
0< Q < 2 so that in this case shock will first form on the wavelet Q = 7 at a distance
x = x4 close to xg which is obtained from the solution of Eq. (27). Here Egs. (26) and (28)
are satisfied on the shock if Ql + fzz = 27 and Ql — flz = 2u, where p can be obtained
from the solution of the following equation:

sinpt Yiixo

= : (4D
Iz w (x)
Therefore the discontinuity in p at the shock is given by
[p] = 28p sin 1 (x/x0) ™%, (42)

where x and p satisfies the Eq. (41). From Eq. (42) we observe that the shock begins with
zero strength corresponding to w which tends to zero at x = x;. Here x; can be obtained
from the solution of equation (27). The shock strength increases to maximum for © —
at a point x = x,, satisfying by following relation

Sin (2ftm) — myri1 (Sin (Um)) — o €08 (fm) (X /0) " T2 = 0. 43)

Results and Discussion

From Eq. (36) it is observed that ¥ is a decreasing function of Zy. Further from Fig. 1,
which is plotted by using Eq. (35), we observe that when ¥1; > 0, then for a given value
of mass fraction of dust particles in the gas (i.e. k) an increase in Zy causes to decrease in
Y11, as a result the shock formation distance decreases i.e. shock forms earlier which is also
evident from Eq. (34). Also from Eq. (34) it is observed that in case of nonplanar flow the
shock formation is delayed as compared to the corresponding planar case. The distortion of
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Fig. 2 Variation of the dimensionless density o = (pg + p1)/po with the dimensionless variable £ =
(x — Fpt)/xq on the leading wavelet @ = 0 form =1

the pulse, which is given by Eq. (29), is shown in Figs. 2 and 3 for three sets of values of
mass fraction of the dust particles (i) k, = 0.0 (ii) k, = 0.3 and (iii) k, = 0.6. The value
of the constants involved in the computation are chosen as y = 1.4, 8 = 0.8, Z = 0.04 and
8 = 0.35. The effect of variation of mass fraction on the density for cylindrically symmetric
and spherically symmetric flows is shown in the Figs. 2 and 3 respectively. From the Figs. 2
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Fig. 4 Variation of the dimensionless density p = (pg + p1)/po With the dimensionless variable § =
(x — Fot)/xo on the wavelet 2 = 7 in cylindrically symmetric flow

and 3 we infer that an increasing (decreasing) value of the mass fraction of the dust particles
causes to slow down (enhance) the flattening of the wave profiles as a result the shock
formation distance decreases (increases) i.e. early (delayed) shock formation. Also the shock
formation distance increases in the case of nonplanar flows as compared to the corresponding
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Fig. 6 Effect of variation of mass fractions on the growth and decay behaviour of shock in cylindrically
symmetric flow

planar flows. The evolution of shock waves governed by Eq. (40) are shown in Figs. 4 and 5
for cylindrically symmetric and spherically symmetric flows respectively. From these figures
we observe that the shock first forms on the wavelet & = 7 and then grows up to a maximum
strength at a point x = x,, and then decays according to the power law x /2 given by
Eq. (39). Further from Figs. 6 and 7 it is observed that, an increase in the value of mass
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Fig. 7 Effect of variation of mass fractions on the growth and decay behaviour of shock in spherically
symmetric flow

fraction of the dust particles causes to decrease the shock strength and vice versa. Also it
may be noted here that an increase in the mass fraction of dust particles causes to decrease
the shock curvature.

Conclusions

Present paper uses the progressive wave approach to analyze the propagation of finite ampli-
tude disturbances and moderately small amplitude disturbances in a dusty gas for generalized
geometry. The influence of presence of dust particles in the mixture on the growth and decay
behaviour of shock including weak shock are elucidated. It was observed that the amplitude
dispersion depends on the amplitude of the wavelets which is dependent on the values of the
mass fraction of dust particles. Also the shock formation distance varies according to varia-
tion of mass fraction of dust particles i.e. an increase (decrease) in the value of mass fraction
of dust particles causes to decrease (increase) in the shock formation distance respectively.
Further, in case of small amplitude disturbances, the condition which leads to shock or no
shock depends strongly on the mass fraction of the dust particles. In order to trace out the
early decay of shock after its formation, we have analyzed two different cases in which small
amplitude disturbance is either a pulse or a periodic wave. The effect of increasing/decreasing
value of mass fraction on the profile of shock strength is also presented.
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