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Abstract A numerical investigation has been performed to analyze the effect of mag-
netohydrodynamic natural convection flow in a differentially heated hexagonal enclosure
having a tilted square block filled with CuO/water nanofluid. The horizontal walls of the
cavity and tilted walls of the obstacle are uniformly heated of temperature Th while the
inclined walls are kept at constant temperature Tc. The governing conservation equations
of the physical problem have been solved using finite element method based on Galerkin
weighted residual technique and obtained numerical results are presented graphically in
terms of streamlines, isotherms, average Nusselt numbers, mid height horizontal and vertical
velocities, average temperature and average velocity of nanofluid for a range of Rayleigh
number (103 ≤ Ra ≤ 106), Hartmann number (0 ≤ Ha ≤ 70) and solid volume fraction
(0.1% ≤ φ ≤ 5%) to show the flow structures and temperature characteristics. It is found
that the flow fields and temperature distributions are influenced significantly for the effect
of pertinent parameters. In addition, overall heat transfer rate enhanced due to higher val-
ues of Ra and φ along with lower value of Ha. Comparisons of the present results with the
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previously published results on the basis of special cases are performed and found to be in
good agreement.

Keywords Magnetohydrodynamics (MHD) · Natural convection · CuO/water nanofluid ·
Finite element method · Hexagonal enclosure

List of symbols

Cp Specific heat at constant pressure (kJ kg−1 K−1)
g Gravitational acceleration (m s−2)
Ra Rayleigh number gβ f (Th − Tc)L3/ν f α f

L Length (m)
h Local heat transfer coefficient (W m−2 K−1)
k Thermal conductivity (W m−1 K−1)
Nu Nusselt number Nu = hL/k f

Pr Prandtl number Pr = ν f /α f

p Dimensional pressure (N m−2)
P Dimensionless pressure
qw Heat flux (W m−2)
T Dimensional temperature (K)
u, v Dimensional velocity components (m s−1)
U, V Dimensionless velocity components
x, y Dimensional coordinates (m)
X, Y Dimensionless coordinates

Greek symbols

α Fluid thermal diffusivity (m2 s−1)
β Thermal expansion coefficient (K−1)
φ Volume fraction of nanoparticles
θ Dimensionless temperature θ = (T − Tc)/(Th − Tc)
μ Dynamic viscosity (N s m−2)
ν Kinematic viscosity (m2 s−1)
ρ Density (kg m−3)

Subscripts

f Fluid
h Hot
c Cold
nf Nanofluid

Introduction

Heat transfer analysis due to natural convection within closed enclosures is an important
research area in science and engineering because of its widespread applications in diverse

123



Int. J. Appl. Comput. Math (2017) 3 (Suppl 1):S1047–S1069 S1049

fields such as geophysics, energy storage and conservation, solar energy, electronic cooling,
heat exchangers, nuclear reactor systems, thermal systems, food and metallurgical industries
etc. In recent years, researchers found limitations of enhancing heat transfer rate in con-
ventional fluids like water, oil and ethylene glycol or propylene etc. To break down these
limitations, a new class of fluids was developed named as nanofluids which are stable and
highly conductive suspensions of nano-meter sized particles (1–100nm) in conventional
liquids. Nanofluids having relatively high thermal conductivity, reduced pumping power,
particle clogging and adjustable concentrations play significant roles in electronics, high
speed automotives, gas recovery, refrigeration, energy generation, nuclear systems, biomed-
ical applications, solar systems and space technologies etc, where improved heat transfer is
required. Considering the importance of natural convection heat transfer in nanofluids within
closed enclosures a number of experimental and theoretical investigations have been reported
extensively by many researchers.

Khanafer et al. [1] firstly investigated the heat transfer performance for nanofluids in a
two-dimensional enclosure. In this analysis, they found that the suspended nanoparticles
increase the heat transfer rate substantially and also alter the structure of the fluid flow.
Jou and Tzeng [2] utilized the Khanafer model to investigate heat transfer enhancement of
nanofluid in a rectangular enclosure and observed that the heat transfer coefficient increases
significantly for increasing buoyancy parameter and dispersion of nanoparticles in the base
fluid. Daungthongsuk and Wongwises [3] summarized the experimental and numerical stud-
ies of forced convective heat transfer of nanofluids and concluded that nanofluids have great
potential to enhance the overall heat transfer mechanisms and suitable for practical heat trans-
fer processes. Heat transfer behaviors in a two-sided lid-driven differentially heated cavity
were analyzed by Tiwari and Das [4] and they observed that heat transfer characteristics of
nanofluids within the enclosure were affected by the governing parameters.

Abu-Nada [5] carried out a numerical study on heat transfer and flow structure in nanoflu-
ids due to natural convection in a partially heated rectangular enclosurewith different ultrafine
particles and indicated that heat transfer enhancement occurred for the presence of nanopar-
icles and accentuated due to the low aspect ratio than higher. Later on, Abu-Nada et al.
[6] examined the sensitivity of average Nusselt number depending on Rayleigh numbers
using variable thermal conductivity and variable viscosity of nanofluids in a differentially
heated square enclosure. Ghasemi and Aminossadati [7] reported thermal performance of
nanofluids in a lid-driven triangular enclosure and found that nanoparticles increase the heat
transfer rate for all values of Richardson number. Yu et al. [8] employed finite volumemethod
together with Brownian motion of nanoparticles to analyze transient natural convection flow
of aqueous nanofluids in a heated square cavity. Their results indicated that the time-averaged
Nusselt number is lower with higher volume fraction of nanoparticles. Finite element method
was applied by Basak and Chamkha [9] to analyze the heat lines for natural convection flow
of nanofluids in square cavities with various thermal boundary conditions and they ensured
that the considered nanofluids have larger enhancement of heat transfer rate. Nasrin et al.
[10] investigated the influence of governing parameters on natural convection flow in a
differentially heated closed chamber filled with water-Al2O3 nanofluid and indicated that
the flow and temperature characteristics within the cavity strongly depend on the govern-
ing parameters. Qi et al. [11] carried out a numerical solution for natural convection heat
transfer in a square cavity filled with nanofluids to predict the influence of volume fraction
of nanoparticles and Rayleigh numbers on average Nusselt number. Their results showed
that the average Nusselt numbers increases with lower volume fraction and higher Rayleigh
number. Later on, Ahmed and Eslamian [12] extended this analysis by incorporating ther-
mophoresis and Brownian forces inside an inclined square enclosure. In this investigation
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they found that inclination angle, Rayleigh number and thermophoresis have considerable
effects on heat transfer enhancement. Sheikholeslami et al. [13] employed control volume-
based finite element method (CVFEM) to analyze the natural convection heat transfer in
water based nanofluids between the circular enclosure and elliptic cylinder. They found that
Nusselt number increases with the increase of physical parameters of the problem and the
minimum heat transfer enhancement occurred at right angle. Sheremet et al. [14] considered
the Buongiorno’s mathematical model to investigate the flow and heat transfer behaviors of
nanofluids inside a right-angled porous trapezoidal cavity and observed that the flow strength,
Nusselt number and Sherwood number are affected by the variation of the pertinent parame-
ters. Later on, Esfe et al. [15] accomplished a numerical study on the flow field, temperature
distribution and rate of heat transfer due to natural convection flow in carbon nanotube-EG-
water nanofluid within a trapezoidal enclosure. Their results highlighted that heat transfer
rate is dominated by higher Rayleigh number.

In addition, magnetic field is an interesting research area due to its technical importance
in realistic engineering such as electronic devices, chemical processing equipments, high-
energy equipments, nuclear reactors, solar collectors, crystal growth in liquids, geothermal
reservoirs, thermal insulations and petroleum reservoirs and drying technologies etc. More-
over, external magnetic field effects have been receiving a considerable attention due to its
numerous applications in industries and engineering.M’hamed et al. [16] reviewed the effects
of external magnetic field on nanofluids properties and fluid flow and they summarized that
the applied magnetic field has a positive effect to control the overall fluid flow characteristics
as well as the thermal conductivity of nanofluids. However, natural convection heat trans-
fer under the influence of external magnetic field is of great importance in many industrial
applications. In this context, a number of theoretical and experimental studies have been con-
ducted by many researchers to find out the flow and heat transfer behaviors inside cavities.
Ece and Buyuk [17] considered steady laminar natural convection flow in a heated inclined
rectangular cavity in presence of magnetic field and they employed differential quadrature
method to obtain numerical solution for the stream function and temperature. They found
that flow and temperature fields strongly depend on orientation, aspect ratio, strength and
direction of imposed magnetic field. Kahveci and Oztuna [18] applied the polynomial differ-
ential quadrature (PDQ) method to analyze the effect of MHD natural convection flow in a
heated partitioned enclosure and their results indicated that the flow and heat transfer are sup-
pressed significantly due to the influence of magnetic field and the locations of partitioned.
Pirmohammadi et al. [19] utilized the finite volume code based on PATANKAR’s SIMPLER
method to analyze the effect of natural convection flow in a heated square cavity in presence
of a magnetic field. They focused that convective heat transfer is decreased for the effect of
magnetic field. Penalty finite element method with bi-quadratic rectangular elements used by
Sathiyamoorthy andChamkha [20] to investigate the effect of natural convection flow of elec-
trically conducting liquid gallium in a square cavity. Later on, they [21] extended this analysis
by considering magnetic field effect on natural convection heat transfer in an enclosure with
uniformly or linearly heated adjacent walls and found that magnetic field causes significant
effects on the local and average Nusselt numbers. A numerical study has been conducted by
Nasrin and Parvin [22] to analyze flow and heat transfer characteristics for hydrodynamic
mixed convection flow in a lid-driven cavity with sinusoidal surface. They observed that
average Nusselt number increases for increasing number of waves and Reynolds number and
decrease for the effect of magnetic field. Saha [23] modeled thermo-magnetic convection
and heat transfer of paramagnetic fluid with micro-gravity condition in an open square cavity
and concluded that heat transfer rate is suppressed for the influence of magnetic field and
increased paramagnetic fluid parameter. Bondareva and Sheremet [24] studied numerically
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the effect of natural convection melting in a square cavity with a local heat source on the bot-
tomwall and indicated that the flow and temperature patterns are influenced noticeably by the
presence of inclinedmagnetic field and temperature difference inside the cavity. Thus, natural
convection heat transfer in a heated enclosure in presence of magnetic field is a prototype of
many engineering applications. In the present literature review, a number of theoretical and
numerical investigations have been reported on natural convection flow and heat transfer in
different geometries like square, rectangular, triangular, cylindrical and spherical enclosures.
It is important to note that the basic differences in fluid flow structure are observed due to the
presence of cornered edges of hexagonal enclosure. Thus, the presence of inclined edges of
hexagonal enclosure can significantly affect momentum and heat transfer characteristics as
compared to other geometrical shapes. Accordingly, natural convection flow of nanofluids
inside a hexagonal enclosure in presence ofmagnetic effect is of special technical significance
because of its frequent occurrence in many industrial applications such as heat exchangers,
electronic devices, nano-electronics, Boron nitride nanosheets, fuel cells, design of solar col-
lectors, thermal insulations, nuclear technologies, aerodynamics and space technologies etc.
But there is a lack of information on the topic of MHD natural convection heat transfer in a
hexagonal enclosure filled with CuO/water nanofluid.

However, to the best of authors’ knowledge, no work has been conducted on magnetohy-
drodynamic natural convection heat transfer in a hexagonal enclosure filled with nanofluids.
So, themajor objective of this study is to explore the flowfields, temperature distributions and
heat transfer behaviors for MHD natural convection flow using CuO/water nanofluid inside
a hexagonal enclosure. The numerical outcomes of this study hope to be a useful guide
for advanced research on natural convection heat transfer in nanofluids inside hexagonal
enclosure in presence of magnetic field.

Physical Model

We consider a steady two-dimensional, laminar and incompressible natural convection flow
in a regular hexagonal enclosure of side length L filled with CuO/water nanofluid. A tilted
hot square block is placed at the centre of the cavity whose side walls are heated at temper-
ature Th. The temperature of the top and bottom horizontal walls of the cavity is supposed
to be at temperature Th while the inclined walls are fixed at constant temperature Tc, main-
taining Th > Tc for all situations. The fluid properties are assumed to be constant except
the density variation with temperature in the body force term of the momentum equation
and the radiation effect is ignored. It is assumed that the shape and size of the nanoparticles
are to be uniform and thermal equilibrium exists between the base fluid and nanoparticles.
The thermo-physical properties of the base fluid and copper-oxide nanoparticles are given in
the Table 1. Dimensional coordinate systems are considered as such that the x-axis is along
the horizontal detection and y-axis is normal to it along the vertically upward direction and
the gravitational force, g, is acted along the negative y- axis, indicated downward direction.
A uniform magnetic field of strength B0 is applied along the horizontal direction. All the
solid boundaries of the enclosure are assumed to be rigid no-slip walls. The geometry and
coordinate systems are schematically presented in Fig. 1.

Mathematical Formulation

Using the balance laws of mass, momentum, and energy and also Boussinesq approximation
for natural convection flow, the governing conservation equations for this model can be
written as follows:
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Table 1 Thermo physical
properties of base fluid and
copper-oxide

Physical properties Base fluid Copper-oxide (CuO)

Cp (J/kg K) 4179 540

ρ (kg/m3) 997.1 6510

k (W/m K) 0.613 18

β (1/K ) 2.1 × 10−4 0.085 × 10−4

σ (	m)−1 0.05 10−10

x

y

CuO/water nanofluid

Th

g

B0

Tc

Tc

Tc

Tc

Th

Th

L

Fig. 1 Schematic diagram of the hexagonal enclosure
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(
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)
n f = (1 − φ)

(
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f + φ

(
ρCp

)
s is

the heat capacitance, βn f = (1 − φ) β f + φβs is the thermal expansion coefficient, αn f =
kn f /

(
ρCp

)
n f is the thermal diffusivity, σn f = σ f (1+ ((3((σs/σ f )−1)φ)/(((σs/σ f )+2)−

((σs/σ f ) − 1)φ)) is the electrical conductivity, kn f = k f ((ks + 2k f − 2φ(k f − ks))/(ks +
2k f + φ(k f − ks))) [25] is the thermal conductivity and μn f = μ f (1+ 39.11φ + 533.9φ2)

[26] is the dynamic viscosity of nanofluid.
The appropriate boundary conditions for the governing equations are as follows:

at the inclined walls of the enclosure: u = v = 0 and T = Tc (5)

123



Int. J. Appl. Comput. Math (2017) 3 (Suppl 1):S1047–S1069 S1053

at the horizontal walls of the enclosure: u = v = 0 and T = Th (6)

at the side walls of the block: u = v = 0 and T = Th (7)

To obtain non-dimensional governing equations, we incorporate the following dimensionless
dependent and independent variables:

X = x

L
, Y = y

L
, U = uL

α f
, V = vL

α f
, P = pL2

ρn f α
2
f

and θ = T − Tc
Th − Tc

(8)

Introducing the above relations into the Eqs. (1)–(4), the non-dimensional governing equa-
tions can be written as follows:
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where Pr = ν f
α f

is the Prandtl number, Ha2 = σ f B2
0 L

2

ρ f ν f
is the Hartmann number and Ra =

gβ f (Th−Tc)L3

ν f α f
is the Rayleigh number.

According to the Eq. (8), the boundary conditions (Eqs. (5)–(7)) are rewritten into dimen-
sionless form as:

at the inclined walls of the enclosure: U = V = 0 and θ = 0 (13)

at the horizontal walls of the enclosure: U = V = 0 and θ = 1 (14)

at the side walls of the centered block: U = V = 0 and θ = 1 (15)

From the physical point of view, it is important to calculate the heat transfer rate in terms of
local Nusselt number and average Nusselt number at the bottom heated wall of the enclosure.
The local Nusselt number in dimensional form is defined as:

N̄u = −kn f
k f

∂T

∂x
(16)

and the average Nusselt number along the bottom heated wall can be calculated by the
following expression:

Nu = 1

L

∫ L

0
N̄u dY (17)
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Also, the average temperature of the fluid domain inside the cavity can be calculated using
the following relation:

θav =
∫

(θ/V̄ )dV̄ (18)

where V̄ is the volume of the enclosure.

Numerical Method

In this analysis, nanofluid can be assumed to be single-phase fluid and the classical theory for
single phase nanofluids can be applied. The governing Eqs. (9)–(12) along with the boundary
conditions (13)–(15) have been solved numerically by using Galerkin weighted residual
finite-element technique. To obtain the finite element equations of the present problem, the
weighted residual method as described by Zienkiewicz and Taylor [27] is applied to the
governing Eqs. (9)–(12) and the finite element equations are:
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where A is the element area, Nα(α = 1, 2, ......, 6) are the element shape functions or
interpolation functions for the velocity components and temperature and Hλ(λ = 1, 2, 3.)
are the element shape function for the pressure.

In order to generate the boundary integral terms associated with the surface tractions and
heat flux in the momentum and the energy equations the Gaussian divergence theorem has
been introduced and we obtained the following equations:

∫
A
Nα

(
U

∂U

∂X
+ V

∂U

∂Y

)
d A +

∫
A
Hλ

∂P

∂X
dA + νn f

α f

∫
A

(
∂Nα

∂X

∂U

∂X
+ ∂Nα

∂Y

∂U

∂Y

)
d A

=
∫
A0

NαAxd A0 (23)

∫
A
Nα

(
U

∂V

∂X
+ V

∂V

∂Y

)
d A +

∫
A
Hλ

∂P

∂Y
d A + νn f

α f

∫
A

(
∂Nα

∂X

∂V

∂X
+ ∂Nα

∂Y

∂V

∂Y

)
d A

−
(

βn f

β f

)
Ra Pr

∫
A
Nαθ d A+

(
ρ f

ρn f

) (
σn f

σ f

)
Ha2 Pr

∫
A
NαVdA =

∫
A0

NαAy d A0

(24)∫
A
Nα

(
U

∂θ

∂X
+ V

∂θ

∂Y

)
d A + αn f

α f

∫
A

(
∂Nα

∂X

∂θ

∂X
+ ∂Nα

∂Y

∂θ

∂Y

)
d A =

∫
Aw

Nαqwd Aw

(25)

123



Int. J. Appl. Comput. Math (2017) 3 (Suppl 1):S1047–S1069 S1055

where the surface tractions (Ax , Ay) along the outflow boundary A0 and velocity compo-
nents and fluid temperature or heat flux (qw) that flows into or out from the domain along
wall boundary Aw. The basic unknown for the above differential equations are the veloc-
ity components (U, V), temperature θ and the pressure P. For the development of the finite
element equations, the six node triangular element is used in this analysis. All six nodes
are associated with velocities as well as temperature, only the three corner nodes are linked
with pressure. This means that a lower order polynomial is chosen for pressure and which
is satisfied through continuity equation. The velocity components, temperature profiles and
linear interpolation for the pressure distribution according to their highest derivative orders
for the differential Eqs. (9)–(12) are as:

U (X, Y ) = NβUβ (26)

V (X, Y ) = NβVβ (27)

θ(X, Y ) = Nβθβ (28)

P(X, Y ) = HλPλ (29)

where β = 1, 2, . . .. . ., 6 and λ = 1, 2, 3.
Substituting the element velocity component distributions, the temperature distributions

and the pressure distribution from Eqs. (26)–(29), into the Eqs. (23)–(25), the finite element
equations can be written in the following form:
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Now we consider the coefficients in the above governing equations are as follows:

Kαβx =
∫
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NαNβ,x d A, Kαβ y =

∫
A
NαNβ,y d A, Kαβγ x =

∫
A
NαNβNγ,x d A

Kαβγ y =
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NαNβNγ,y d A, Kαβ =

∫
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∫
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Table 2 Grid sensitivity test at Pr = 0.6.2,Ra = 1000 and φ = 1% and Ha = 20

Nodes (elements) 997 (1838) 1671 (3186) 2895 (5486) 6218 (12,132) 6943 (13,694)

Nuav 2.480281 2.924606 3.223751 3.646643 3.652651

Qαu =
∫
A0

NαAx d A0, Qαv =
∫
A0

NαAy d A0, Qαθ =
∫
Aw

Nαqw d Aw

These element matrices are evaluated in closed form for numerical simulation. Details of the
derivation for these element matrices are omitted for brevity.

With the help of the above coefficients the finite element equations can be written in the
following type

KαβxUβ + Kαβ y Vβ = 0 (34)

Kαβγ xUβUγ + Kαβγ y VβUγ + Mλμx Pμ + νn f

α f
Uβ

(
Sαβxx + Sαβ yy

) = Qαu (35)

Kαβγ xUβVγ + Kαβγ y VβVγ + MλμY Pμ + νn f

α f
Vβ

(
Sαβxx + Sαβ yy

)

−
(

βn f

β f

)
Ra Pr Kαβ θβ +

(
ρ f

ρn f

)(
σn f

σ f

)
Ha2Pr KαβVβ = QαV (36)

Kαβγ xUβθγ + Kαβγ y Vβθγ + αn f

α f
θβ

(
Sαβxx + Sαβ yy

) = Qαθ (37)

Using Newton–Raphson method explained by Reddy [28], the obtained nonlinear Eqs. (34)–
(37) are converted into linear algebraic equations. Finally, these linear equations are solved
by employing Triangular Factorization method and reduced integration method expressed by
Zeinkiewicz et al. [29]. The convergence criterion of the numerical solution along with error
estimation has been set to

∣∣ϕm+1 − ϕm
∣∣ ≤ 10−5, where m is the number of iteration and ϕ

is a function of U , V and θ. The application of this simulation is well described by Taylor
and Hood [30] and Dechaumphai [31].

Grid Sensitivity Test

An extensive mesh testing procedure has been conducted using five types of different meshes
to obtain the appropriate grid size for the solution of the present problem considering Pr =
6.2,Ra = 103, Ha = 20 and φ = 1%. The numerical technique is carried out for highly
precise key in the average Nusselt number (Nuav) for the different meshes to develop an
understanding of the grid fineness as shown in Table 2 and Fig. 2. Comparing the obtained
numerical results and graphical presentation of average Nusselt number, it is found that the
value of Nuav for 12132 elements indicates little difference with the results calculated for
other elements. Therefore, the grid size of 6218 nodes and 12132 elements is found to meet
the requirements of accurate solution for the present problem.

Mesh Generation

In finite element method, the mesh generation is a procedure to subdivide a domain into a
set of sub-domains, called finite elements, control volumes, etc. The numerical grids have
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Fig. 2 Grid sensitivity test

Fig. 3 Mesh generation of the
hexagonal enclosure

been defined at discrete locations of the geometric domain, where the variables of the current
problem are calculated. Thus, it is basically a discrete presentation of geometric domain
where the present problem is to be solved. Mesh generation is an essential configuration of
geometric domain for finite elements method which is very useful technique to solve the
boundary value problems occurring in various fields of engineering. The finite element mesh
of the present physical problem is displayed in Fig. 3.

Validation of the Code

The computational model is validated by comparing the present numerical results for the base
fluid solutions with the previously published results by Tiwari and Das [4], Pirmohammadi et
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Table 3 Comparison of the present results for base fluid solutions with the previous works for Pr = 0.70

De Vahl Davis [32] Hadjisophocleous et al. [33]. Tiwari and Das [4] Present

Ra = 103

umax 3.649 3.544 3.642 3.653

vmax 3.697 3.586 3.703 3.700

Nu 1.118 1.141 1.087 1.118

Numax 1.505 1.540 1.509 1.506

Numin 0.692 0.727 0.690 0.692

Ra = 104

umax 16.178 15.995 16.144 16.219

vmax 19.617 18.894 19.665 19.664

Nu 2.243 2.29 2.195 2.243

Numax 3.528 3.840 3.558 3.527

Numin 0.586 0.670 0.581 0.585

Ra = 105

umax 34.73 37.144 34.300 34.025

vmax 68.590 68.910 68.764 68.593

Nu 4.519 4.964 4.450 4.513

Numax 7.117 8.93 7.937 7.695

Numin 0.729 1.01 0.717 0.729

Table 4 Comparison of average Nusselt number for various Rayleigh number and Hartmann number

Ha Pirmohammadi et al. [19] (Nuav) Present study (Nuav) Error (%)

Ra = 104

0 2.29 2.245 2.0

10 1.97 1.928 2.2

50 1.06 1.037 2.2

100 1.02 1.003 1.7

Ra = 105

0 4.62 4.526 2.1

25 3.51 3.433 2.2

100 1.37 1.240 10.0

200 1.16 1.022 13.5

al. [19], De Vahl Davis [32] and Hadjisophocleous et al. [33]. Due to the lack of experimental
and theoretical results for natural convection heat transfer in a hexagonal enclosure, the
present simulation has been performed for similar enclosurewith similar boundary conditions
of mentioned researchers [4,19,32,33]. Moreover, comparison also made for different values
ofRayleigh number andHartman number. It is found that the computed results are in excellent
agreement (Tables 3, 4).

123



Int. J. Appl. Comput. Math (2017) 3 (Suppl 1):S1047–S1069 S1059

Results and Discussion

In this section, the obtained numerical results for magnetohydrodynamic natural convection
heat transfer in CuO/water nanofluid inside a regular hexagonal enclosure are discussed. In
performing the numerical simulation, the non-dimensional parameters are considered as :
Rayleigh number, from Ra = 103 to Ra = 106; solid volume fraction of nanoparticles, from
φ = 0.1% to φ = 5%; magnetic field parameter, from Ha = 0 to Ha = 70; Prandtl number
Pr = 6.2 and then presented graphically in terms of streamlines, isotherms, mid height
horizontal and vertical velocities, average velocity, average Nusselt number and average
temperature. For more information regarding the effects of physical parameters of this study,
a comprehensive discussion has been presented.

Figure 4a, b display the effects of Rayleigh number (Ra) on the streamlines and isotherms
respectively while the value of other parameters are considered as Pr = 6.2, Ha = 20 and
φ = 1%. From Fig. 4a, it can be observed that for different values of Ra, two oppositely
rotating circulations are formed beside the obstacle within the enclosure where one is in
clockwise direction and another is in counter clockwise direction. The fluid near to the
heated walls of the enclosure is much hotter than the fluid near to the cold inclined walls.
Accordingly, fluids near to the heated walls have lower density than fluids near to the cold
walls. As a result, fluid is moving up from bottom to top near to the middle of the bottomwall
and down from top to bottom along the inclined cold walls. Consequently, streamlines rise up
and then down in similar directions besides the block that is shown in Fig. 4a. Moreover, the
numerical values of stream function indicate that the strength of flow circulation increases
with increasing of natural convection parameter Ra. It is also seen that the shape of interior
cells are changed with greater buoyancy parameter and the streamlines are intensified near
to the hot and cold walls for increasing Ra. From Fig. 4b, it is observed that the variation of
isotherms is closely related to the variation of Ra. It is important to note that, the isotherms
are more compressed near to the corners of the top and bottom horizontal walls and the heat
lines are almost similar to each other within the flow region beside the block. These patterns
tell us that the dominance of conduction mode of heat transfer at low value of Ra. Moreover,
the isotherms are more dispersed from middle to the boundary walls of the enclosure and
the denseness of the heat lines near to the hot and cold walls increases due to the greater
effect of Ra which indicates that the dominance of convection mode of heat transfer for
higher values of Ra. This pattern reflects that more convective heat energy flow occurred
into the fluid flow region for increasing of Ra. In addition, a thick thermal boundary layer
exists near to the hot walls of the cavity which become thinner due to greater Ra, indicating
a higher heat transfer rate. Furthermore, the numerical values on temperature reveal that
overall temperature distributions changed for higher Ra. In addition, Fig. 5 demonstrated the
temperature contours at different locations within the cavity. Accordingly, the temperature
distribution and flow circulation within the enclosure are modified noticeably for rising value
of Rayleigh number.

Figure 6a, b illustrate the effect of solid volume fraction on the streamlines and isotherms
while the value of controlling parameters are kept as Pr = 6.2, Ra = 103 and Ha = 20.
FromFig. 6a, it is observed that the streamlines are characterized by symmetric rotations with
clockwise and anticlockwise direction beside the centered square obstacle, which occupies
the entire enclosure. The shape of rotating cells near to the centre of the eddy is affected
noticeably with increasing of φ but no remarkable changes were found near to the boundary
cells. Observing the numerical values of velocity magnitude, it is clear that the flow strength
reduces with increasing concentration of nanopartcles in base fluid. The physical scenario
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Fig. 4 Effect of Ra on streamlines (left) and isotherms (right) while Pr = 6.2, Ha = 20 and φ = 1%

behind it’s that increasing solid concentration in base fluid, increase the density of the fluid
which leads to reduce the motion of nanofluid. On the other hand, from Fig. 6b, it can be seen
that volume fraction plays an insignificant role on the variation of the shape of isotherms. In
addition, the presence of nanoparticles in base fluid enhances the thermal conductivity of the
developed liquid andmodifies the temperature distributionwithin the flowdomain.Moreover,
the curvature of isotherms decreases with increase in percentage of nanoparticles and the heat
lines are more compressed near the corners of the heated walls, indicating conduction heat
transfer dominated. It is also observed that the isotherms are almost symetrical within the
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Fig. 5 Effect of Ra on temperature distribution while Pr = 6.2, Ha = 20 and φ = 1%

enclosure. Furthermore, Fig. 7 represents the topologies of temperature fields for various
solid volume fraction. Consequently, the isotherm contours are influenced noticeably for the
variation of φ.

Figure 8a depicts the influence of magnetic field (Ha) on the streamlines. From Fig. 8a, it
is seen that in absence of magnetic field (Ha = 0), there produced two symmetrical vortices
in opposite direction beside the centered obstacle that occupy almost the entire region of the
enclosure. Among them one is rotating in clockwise direction and other one in counter clock
wise direction with different strength. Comparing the obtained numerical results of stream
function, it is clear that the strength of flow circulation decreases for increasing of Ha that is
shown in Fig. 8a and the movements of fluid become slower with higherHa. This is because;
applied magnetic field creates Lorentz’s force which reduces the fluid motion. Moreover, for
the greater effect of magnetic field the central cells are affected noticeably and changed to
reniform-shaped with two small eyes due to higher Ha but no significant changes were found
in clockwise and counter clockwise calls near to the boundary surfaces. On the other hand,
Fig. 8b displays the effects of Ha on the isotherm contours within the enclosure. From these
figures, it is seen that the isotherms plots are symmetrical about the central block and show
that high temperature regions exist near to the hot walls. The physical fact behind is that, the
existing thermal boundary layer is less influenced due to the strength of applied magnetic
field. Moreover, the isotherms are almost parallel to each other for greater Ha and uniformly
distributed inside the enclosure which indicates that the weaker convection as well as the
dominance of conduction mode of heat transfer. These are expected, because, the external
magnetic field effect tends to reduce the convection mode of heat transfer. Furthermore, the
influence of magnetic field on the temperature contours is shown in Fig. 9.

Figure 10 plots the numerical results of average Nusselt number at the bottom wall for
different values of Rayleigh number, Hartmann number and solid volume fraction. From
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Fig. 6 Effect of φ on streamlines (left) and isotherms (right) while Pr = 6.2, Ra = 103and Ha = 20

these figures, it is observed that the average Nusselt number, a measure of heat transfer rate,
increases monotonically with increasing of Ra and φ and decreases for increasing Ha. It is
important to note that the addition of nanparticles into the host fluid accelerates the increasing
rate of heat transfer inside the enclosure that is shown in Fig. 10b, c respectively, but the
strength of magnetic field suppressed the enhancing rate of heat transfer that is presented in
Fig. 10a, d, respectively. These are expected phenomenon, because, increasing φ, increases
the concentration level of nanoparticles (CuO) in the base fluid that improves the capability of
carrying more heat energy into fluid due to the higher thermal conductivity of nanoparticles.
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Fig. 7 Effect of φ on temperature distribution while Pr = 6.2, Ra = 103 and Ha = 20

Besides this, greater Ha causes lower temperature differences within the temperature field.
Moreover, from numerical computations, it is also observed that heat transfer increases by
246.90, 234.70, 207.46 and 176.15% at the selected values of Ha (0, 20, 45, 70) for the
variation of convective force, Ra, from 103 to 106 whereas heat transfer rate increases by
219.72, 234.70, 246.33 and 266.16% for the specified values of solid volume fraction with
the same variation of Ra.

Figure 11a, b illustrate the horizontal velocity profiles U (Y) and vertical velocity profiles
V(X) at the mid-section of the hexagonal enclosure for the specified values of Ra, Ha and φ.
From these figures, it is clear that the velocity profiles are changed significantly due to rising
of governing parameters which are good concordances to the effects of pertinent parameters.
Because, relatively higher value of Ra increases the movement of the fluid and the presence
of external magnetic field as well as nanoparticles tends to slow down the motion of the fluid
inside the enclosure. Accordingly, the magnitude of velocity increases for increasing of Ra
whereas decreases for higher Ha and φ. Moreover, the maximum and minimum values of
velocity varied along with increasing in distances as well as of Ra, Ha and φ. Furthermore,
serpentine shaped profiles are formed in U velocities for the effect of Ra, Ha and φ.

The variations of average temperature in nanofluid and base fluid for the different values
of Ra,Ha and φ within the enclosure are displayed in Fig. 12a–c, respectively. From Fig. 12,
it is seen that mean temperature increases smoothly for increasing Ha and φ but decreases
for increasing Ra. These are consistent to the effects of governing parameters. Moreover,
average temperature is prominent for nanofluid than base fluid. In addition, the presence
of magnetic field causes greater effect on the influence of Ra and φ to modify the nature
of average temperature. It is well known that rising effect of magnetic field enhance fluid
temperature.
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Fig. 8 Effect of Ha on streamlines (left) and isotherms (right) while Pr = 6.2, Ra = 103 and φ = 1%

Figure 13a–d illustrate the variation of mean velocity of nanofluid inside the enclosure
for the various values of Ra, Ha and φ. Observing these figures (Fig. 13), it is found that
average velocities influenced remarkably for varying of Rayleigh number, magnetic field
parameter and solid volume fraction. In addition, the enhancing profiles of ωav are found for
different values of Ra, which are suppressed for greater effect of Ha and φ. On the other
hand, decreasing profiles are also observed for increasing φ and Ha. These are expected
phenomenon for the effects of aforesaid parameters because relatively higher value of Ra
accelerates the flow strength while the greater Ha and φ slow down the fluid motion.
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Fig. 9 Effect of Ha on temperature distribution while Pr = 6.2, Ra = 103 and φ = 1%

Fig. 10 Variation of average Nusselt number
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Fig. 11 Effect of Ra, Ha and φ on U-velocity (left) and V-velocity (right)

Conclusion

The influence of magnetic field on the flow and heat transfer characteristics due to natural
convection heat transfer in a differentially heated hexagonal enclosure filled with CuO/water
nanofluid has been examined in this study. The finite element method has been employed
to carry out numerical solutions of velocity and temperature fields in terms of streamlines,
isotherms, average Nusselt number, mid height horizontal and vertical velocity components,
average temperature andmean velocity for a range of pertinent parameters. Based on obtained
numerical results and discussions, the following conclusions can be summarized:

123



Int. J. Appl. Comput. Math (2017) 3 (Suppl 1):S1047–S1069 S1067

Fig. 12 Variation of average temperature

Fig. 13 Variation of average velocity
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• The structure of flow field within the hexagonal enclosure is affected remarkably due to
higher Rayleigh number but the flowpattern does not change noticeably for the greater Ha
and φ. In addition, the strength of flow circulations is strongly depended on the effect of
natural convection parameter, magnetic field and solid volume fraction of nanoparticles.

• The isotherms contours are influenced significantly due to the variation of Ra,Ha and φ.
• Average temperature of the nanofluid increasedwith increasing ofHa andφ but decreased

of greater Ra.
• The effects of Ra, Ha and φ on the mid height horizontal and vertical velocities and also

average velocities are remarkable.
• Increasing buoyancy parameter and solid volume fraction of nanoparticles as well as

lowest Ha have positive effects to accelerate the heat transfer enhancement.
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