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Abstract This paper presents a new approximate method based on operational matrices
of fractional integrations and differentiations for fractional Navier–Stokes equation in polar
coordinate system using Legendre scaling functions as a basis. Convergence analysis as well
as error analysis of the proposed methods is given. Numerical stability of the method is
shown. Numerical examples are given to show the effectiveness of the proposed method.
Results are compared with existing analytical methods to show the accuracy of the proposed
method.
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Introduction

The Navier–Stokes equation (NSE) is fundamental equation of the computational fluid
dynamics. It relates pressure and external forces acting on a fluid to the response of the
fluid flow. The NSE and continuity equations are given by

∂u

∂t
+ (

u · ∇)
u = − 1

ρ
∇ p + v∇2u, (1a)

∇u = 0, (1b)

where u is the velocity, ν is the kinematics viscosity, p is the pressure, ρ is density and t is
the time variable.

We transfer all motion in polar coordinates (r, θ, z) where z axis coincides with the axis
of cylinder. Taking ur = uθ = 0 and uz = u(r, t), the NSE in polar coordinate reduces to
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following form
∂u

∂t
= − ∂p

ρ∂z
+ ν

(
∂2u

∂r2
+ 1

r

∂u

∂r

)
, (2)

Recently El-Shahed and Salem [6] and Odibat and Momani [21] have generalised the
classical NSE by replacing first order time derivative to fractional order time derivative α,
where 0 < α ≤ 1. In the present paper we shall consider the unsteady flow of a viscous fluid
in a tube in which the velocity field is a function of only one space coordinate and time as
one of the dependent variable. So our aim is to study numerically the following generalised
form of FNSE [6,21], namely

∂αu(r, t)

∂tα
= P + ν

(
∂2u(r, t)

∂r2
+ 1

r

∂u(r, t)

∂r

)
, 0 < α ≤ 1, (3)

subject to the initial and boundary conditions:

u(r, 0) = g(r), u(0, t) = g1(t), u(1, t) = g2(t) for 0 ≤ r, t ≤ 1,

where P = − ∂p
ρ∂z , r is spatial domain.

There exist several analyticalmethods to solve fractionalNavier–Stokes equations. In [21],
Odibat and Momani solve Eq. (3) using Adomian decomposition method (ADM). Some
other analytical approaches are modified Laplace decomposition method [15], homotopy
analysis method [25], homotopy perturbation method [9], homotopy perturbation transform
method [2]. In [16], Chaurasia and Kumar usedMittag–Leffler and Bessel functions to obtain
analytical solution of FNSE in circular cylinder.

In this paper we are using numerical approach based on operational matrices of fractional
integration and differentiation. There exist a vast literature for theory and applications of
fractional differential equations in areas such as hydrology [1,13,18,27,28], physics [7,8,
12,19,23,32,35] and finance [10,24,26]. For construction of operational matrices and their
applications to solve fraction differential equations see [14,17,31,33,34]. In this method we
first get finite dimensional approximate solution taking finite dimensional basis in r–t plane,
which in turn leads to a system of linear algebraic equations whose solution is obtained using
Sylvester’s approach. This in turn gives us the approximate solution of the FNSE.

In general for the existence and uniqueness of the solution for the fractional Navier–Stokes
equation (FNSE) there does not exist any analytical methods. Stability and convergence are
not shown for themethods given above. In this paperwe give a new stable numerical approach
along with error and convergence analysis for FNSE. Due to the complexity and non-local
nature of the fractional order derivatives, it is not encouraged to search for a strong solution.
In this paper, we solve this issue by giving solution in the sense of association in the same
lines as developed by Colombeau, see [3,4,22]. This gives satisfactory concept of solution.
With some additional condition on approximating sequence, we obtain the strong solution.

The present paper is organised as follows. In second section, we describe basic prelim-
inaries. In third section, we construct operational matrices of fractional differentiation and
integration using Legendre scaling functions as basis. In fourth section, we describe the algo-
rithm for the construction of approximate solutions. In fifth section, we give the error analysis
of the proposed method. In sixth section, we describe the convergence of the method. In sev-
enth section, we discuss the stability of our method based on maximum absolute error and
root mean square error. In eighth section, we present numerical experiments and discussions
to show the effectiveness of the proposed method.
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Preliminaries

There are several definitions of fractional order derivatives and integrals. These are not
necessarily equivalent. In this paper, the fractional order differentiations and integrations are
in well-known Caputo and Riemann–Liouville sense respectively [5,20].

The Legendre scaling functions {φi (t)} in one dimension are defined by

φi (t) =
{√

(2i + 1)Pi (2t − 1), for 0 ≤ t < 1.
0, otherwise,

where Pi (t) is Legendre polynomials of order i on the interval [−1, 1], given explicitly by
the following formula;

Pi (t) =
i∑

k=0

(−1)i+k (i + k)!
(i − k)!

tk

(k!)2 . (4)

Using one dimensional Legendre scaling functions, we construct two dimensional Leg-
endre scaling function φi1,i2 ,

φi1,i2(x, t) = φi1(x)φi2(t), i1, i2 ∈ N0, N0 = {0, 1, 2, . . .} .

An explicit expression of two dimensional Legendre scaling functions are given as

φi1,i2(x, t) =
{√

(2i1 + 1)
√

(2i2 + 1)Pi1(2x − 1)Pi2(2t − 1), for 0 ≤ x < 1, 0 ≤ t < 1.
0, otherwise.

From the above formula it is clear that two dimensional Legendre scaling functions are
orthogonal;

1∫

0

1∫

0

φi1,i2(x, t)φ j1, j2(x, t)dxdt =
{
1, i1 = j1 and i2 = j2,
0, otherwise.

and
(
φi1,i2

)
form a complete orthonormal basis.

So, a function f (x, t) ∈ L2([0, 1] × [0, 1]), can be approximated as

f (x, t) ∼=
n1∑

i1=0

n2∑

i2=0

ci1,i2ϕi1,i2(x, t) = CTφ(x, t), (5)

where C = [c0,0, . . . , c0,n2 , . . . , cn1,1, . . . , cn1,n2 ]T ;
φ(x, t) = [φ0,0(x, t), . . . , φ0,n2(x, t), . . . , φn1,1(x, t), . . . , φn1,n2(x, t)]T .

The coefficients ci1,i2 in the Fourier expansions of f (x, t) are given by the formula,

ci1,i2 =
1∫

0

1∫

0

f (x, t)φi1,i2(x, t)dxdt . (6)

Using matrix notation Eq. (5) can be written as,

f (x, t) ∼= φT (x)Cφ(t), (7)

where φ(x) = [φ0(x), . . . , φn1(x)]T , φ(t) = [φ0(t), . . . , φn2(t)]T and C =(
ci1,i2

)
(n1+1)×(n2+1).
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Operational Matrices

Theorem 3.1 Let φ(x) = [φ0(x), φ1(x), . . . , φn(x)]T , be Legendre scaling vector and con-
sider α > 0, then

Iαφi (x) = I (α)φ(x), (8)

where I (α) = (ω(i, j)) , is (n + 1) × (n + 1) operational matrix of fractional integral of
order α and its (i, j)th entry is given by

ω(i, j) = (2i + 1)1/2(2 j + 1)1/2

×
i∑

k=0

j∑

l=0

(−1)i+ j+k+l (i + k)!( j + l)!
(i − k)!( j − l)!(k)!(l!)2(α + k + l + 1)
(α + k + 1)

0 ≤ i, j ≤ n.

Proof Pl. see [29]. ��
Theorem 3.2 Let φ(x) = [φ0(x), φ1(x), . . . , φn(x)]T , be Legendre scaling vector and con-
sider β > 0, then

Dβφi (x) = D(β)φ(x), (9)

where D(β) = (η(i, j)), is (n+1)×(n+1) operationalmatrix of Caputo fractional derivative
of order β and its (i, j)th entry is given by

η(i, j) = (2i + 1)1/2(2 j + 1)1/2
i∑

k=	β


j∑

l=0

(−1)i+ j+k+l

× (i + k)!( j + l)!
(i − k)!( j − l)!(k)!(l!)2(k + l + 1 − β)
(k + 1 − β)

.

Proof Pl. see [30]. ��

Method of Solution

In this section for any approximation we take n1 = n2 = n, and describe the algorithm for
the construction of approximate solution of the Eq. (3). If Dα

t u = w, then

u = Iα
t (w) + u0(r). (10)

From Eqs. (3) and (10) we get

w = P + ν

(
D2
r

(
Iα
t (w) + u0(r)

) + 1

r
Dr

(
Iα
t (w) + u0(r)

))
, (11)

Eqs. (3) and (11) are equivalent. Equation (11) can be written as

rw = r P + ν
(
r D2

r

(
Iα
t (w) + u0(r)

) + D1
r

(
Iα
t (w) + u0(r)

))
, (12)

Let

G(r) = ν
(
r D2

r + D1
r

)
(u0(r)). (13)
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From Eqs. (12) and (13) we can write,

rw = r P + ν
(
r D2

r

(
Iα
t (w)

) + D1
r

(
Iα
t (w)

)) + G(r), (14)

Approximating

w(r, t) ∼= wn(r, t) = φT (r)Cφ(t), (15)

where C is a square matrix to be found.
Using Eq. (15) and operational matrices for the operators D2

r I
α
t and D1

r I
α
t in Eq. (14), we

obtain,

rφT (r)Cφ(t) = r P+ν

(
rφT (r)

(
D(2)
r

)T
C I (α)

t φ(t) + φT (r)
(
D(1)
r

)T
C I (α)

t φ(t)

)
+G(r),

(16)
where I (α)

t is an operational matrix of fractional integration of order α and D(1)
r , D(2)

r are an
operational matrix of fractional differentiation of order 1 and 2 respectively.

Further approximating the following approximations

G(r) ∼= Gn(r) = φT (r)Aφ(t), (17)

h(r) = r P ∼= hn(r) = φT (r)Bφ(t), (18)

rφT (r) = φT (r)E, (19)

where the matrix A, B and E are known matrices and can be calculated using Eq. (6).
From Eqs. (16)–(19) we get,

φT (r)ECφ(t) = φT (r)Bφ(t) + νφT (r)E(D(2)
r )T C I (α)

t φ(t)

+φT (r)(D(1)
r )T C I (α)

t φ(t) + φT (r)Aφ(t), (20)

Now Eq. (20) can be written as,

LC + CM + N = 0, (21)

where L = ν((D(2)
r )T ) + inverse(E)(D(1)

r )T , M = −inverse(I (α)
t ) and N = inverse

(E)(A + B)inverse(I (α)
t ).

Equation (21) is a Sylvester equation which can be solved easily to get the matrix C .
Using the value of C in Eq. (15), we can find w and further using value of w in Eq. (10)

we can obtain an approximate solution for time fractional Navier–Stokes equation.

Error Analysis

Theorem 5.1 Let ∂α f (x,t)
∂tα ∈ L2([0, 1]×[0, 1]), and ∂α fn(x,t)

∂tα be its approximation obtained

by using (n + 1)2, 2-dimensional Legendre scaling vectors. Assuming
∣∣∣ ∂α+4 f (x,t)

∂x2∂tα+2

∣∣∣ ≤ K, we

have the following upper bound for error
∥∥∥∥
∂α f (x, t)

∂tα
−

(
∂α fn(x, t)

∂tα

)∥∥∥∥

2

L2
<

(
K 2

65536

) (
F3

(
−1

2
+ n

))2

where,

‖ f (x, t)‖L2 =
⎛

⎝
1∫

0

1∫

0

| f (x, t)|2 dxdt
⎞

⎠

1
2
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and Fn(z) is the Poly Gamma function defined by,

Fn(z) = (−1)n+1|n
∞∑

k=0

1

(z + k)n+1 . (22)

Proof Let ∂α f (x,t)
∂tα = ∑∞

i1=0
∑∞

i2=0 ci1,i2φi1,i2
(x, t). Truncating it to level n, we get

(
∂α fn(x,t)

∂tα

)
= ∑n

i1=0
∑n

i2=0 ci1,i2φi1,i2
(x, t), thus,

∂α f (x, t)

∂tα
−

(
∂α fn(x, t)

∂tα

)
=

∞∑

i1=n+1

∞∑

i2=n+1

ci1,i2φi1,i2
(x, t), (23)

∥
∥
∥
∥
∂α f (x, t)

∂tα
−

(
∂α fn(x, t)

∂tα

)∥
∥
∥
∥

2

L2
=

1∫

0

1∫

0

(
∂α f (x, t)

∂tα
−

(
∂α fn(x, t)

∂tα

))2

dxdt

=
∞∑

i1=n+1

∞∑

i2=n+1

c2
i1,i2

, (24)

Similar process as in [11] and using our condition, we get,

∣∣ci1,i2
∣∣2 <

9K 2

64(2i1 − 3)4(2i2 − 3)4
. (25)

so from Eqs. (24) and (25),

∥∥∥∥
∂α f (x, t)

∂tα
−

(
∂α fn(x, t)

∂tα

)∥∥∥∥

2

L2
<

(
K 2

65536

) (
F3

(
−1

2
+ n

))2

. (26)

��

Convergence Analysis

Definition 6.1 A sequence of functions un is said to be a solution in the sense of association
of L(u) = f , u(0, x) = u0(x), where L is a linear fractional differential operator involving
fractional derivatives and integrations with respect to x and t ; if limn→∞ 〈L(un) − fn, φ〉 =
0, for all C∞ function φ having compact support in (0, 1) × (0, 1).

Theorem 6.1 If the constructed approximations {wn}, wherewn(r, t) = φT (r)Cφ(t), satisfy∥∥L̄(wn) − hn − Gn
∥∥
L2 < K ,∀n; then, wn is a solution in the sense of association, where

L̄(w) = rw − ν
(
r D2

r (I
α
t (w)) + D1

r (I
α
t (w))

)
.

Proof Observe that wn(r, t) = φT (r)Cφ(t) satisfy
〈
L̄(wn) − hn − Gn, φi j

〉 = 0, for 0 ≤ i, j ≤ n. (27)

Let Vn = span {φi (r)φ j (t) : i = 0, 1, . . . , n. j = 0, 1, . . . , n}.
Then by linearity,

〈
L̄(wn) − hn − Gn, ψ

〉 = 0, for all ψ ∈ Vn . (28)
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Since
(
φi1,i2

)
form a complete orthonormal basis for the Hilbert space L2 ([0, 1] × [0, 1]),

we can get ψn ∈ Vn , such that

‖ψn(r, t) − ψ(r, t)‖L2 → 0. (29)

Our assumption, ∥
∥L̄(wn) − hn − Gn

∥
∥
L2 < K , (30)

in Eq. (28), We can write
〈
L̄(wn) − hn − Gn, ψ(r, t)

〉 = 〈
L̄(wn) − hn − Gn, (ψ(r, t) − ψn(r, t) + ψn(r, t))〉,

= 〈
L̄(wn) − hn − Gn, ψn(r, t)

〉

+ 〈
L̄(wn) − hn − Gn, (ψ(r, t) − ψn(r, t))

〉
. (31)

Now using Eq. (28), in (31), we get
∣
∣〈L̄(wn) − hn − Gn, ψ(r, t)

〉∣∣ ≤ ∥
∥L̄(wn) − hn − Gn

∥
∥
L2 ‖ψ(r, t) − ψn(r, t)‖L2 , (32)

from Eqs. (29), (30) and (32), it follows that limn→∞
〈
L̄(wn) − hn − Gn, ψ(r, t)

〉 = 0.
So wn is a solution in the sense of association. ��

Corollary 6.1 In addition to statement of the Theorem 6.1, if L̄(wn) converges to L̄(w) in
L2 norm then w forms a strong solution.

Proof By the Theorem 6.1, wn forms a solution in the sense of association so

lim
n→∞

∫
L̄(wn)ϕ = 0, ⇒

∫
L̄(w)ϕ = 0, ⇒

∫
L̄(w)L̄(w) = 0,∀ϕ ∈ L2,

⇒ L̄(w) = 0. So w forms a strong solution. ��

Numerical Stability

The accuracy of proposed method is demonstrated by calculating absolute error, average
deviation σ also known as root mean square error (RMS). They are calculated using the
following equations

�u(ri , t j ) = ∣∣ue(ri , t j ) − ua(ri , t j )
∣∣ , (33)

and

σ(N+1)2 =

⎧
⎪⎨

⎪⎩

1

(N + 1)2

N∑

i=0

N∑

j=0

[ue(ri , t j ) − ua(ri , t j )]2
⎫
⎬

⎭

1/2

, (34)

where ue(ri , t j ) is the exact value of output function at point (ri , t j ) and ua(ri , t j ) is the
approximate value of output function at the same point.

From now wards, considering h(r) as input function. Adding random noise term in input
function we demonstrate the stability of the proposed method.

In all examples, the exact and input function with noise are denoted by h(r) and hδ(r),
respectively,where hδ(r) is obtained by adding a noise δ to h(r) such that hδ(ri ) = h(ri )+δθi ,
where ri = ih, i = 1, 2, . . . , N , Nh = 1; and θi is the uniform random variable with values
in [−1, 1] such that

max
1≤i≤N

∣∣hδ(ri ) − h(ri )
∣∣ ≤ δ. (35)
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Table 1 Noise reduction H(r, t)
for N = 10 at different values of
δ

(r, t) δ = 0.01 δ = 0.001 δ = 0.0001

(0, 0) 0.0000 0.00000 0.000000

(0.1, 0.1) 0.0046 0.00046 0.000046

(0.2, 0.2) 0.0052 0.00052 0.000052

(0.3, 0.3) 0.0049 0.00049 0.000049

(0.4, 0.4) 0.0041 0.00041 0.000041

(0.5, 0.5) 0.0032 0.00032 0.000032

(0.6, 0.6) 0.0022 0.00022 0.000022

(0.7, 0.7) 0.0012 0.00012 0.000012

(0.8, 0.8) 0.00002 0.000002 0.0000002

(0.9, 0.9) −0.00007 −0.000007 −0.0000007

(1.0, 1.0) −0.0018 −0.00018 −0.000018

Fig. 1 Noise reduction H(r, t) for N = 10 and δ = 0.0001

Reconstructed output function uδ
a(r, t)(with δ noise) and u0a(r, t) (without noise) are obtained

with and without noise term in the input function h(r) and using Eqs. (10) and (15) these are
given by

uδ
a(r, t) ∼= φT (r)Cδ I (α)φ(t) + g(r), (36)

u0a(r, t) ∼= φT (r)C I (α)φ(t) + g(r), (37)

where Cδ and C are known matrices and they are obtained from the following equations:
LCδ +CδM + N δ = 0 and LC +CM + N = 0, where L , M, N are same as in Eq. (21)

and
N δ = inverse(E)(A + Bδ)inverse(I (α)), (38)
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Fig. 2 Approximate solution for α = 0.5, Example 1

Fig. 3 Approximate solution for α = 1, Example 1

we approximate hδ(r) as

hδ(r) = h(r) + δθi ∼= φT (r)Bδφ(t). (39)

From Eqs. (36) and (37)

uδ
a(r, t) − u0a(r, t) ∼= φT (r)

(
Cδ − C

)
I (α)φ(t). (40)

123



3714 Int. J. Appl. Comput. Math (2017) 3:3705–3722

Fig. 4 Absolute error for α = 1, Example 1

Fig. 5 Absolute error for α = 0.9, Example 1

Let

H(r, t) = uδ
a(r, t) − u0a(r, t) ∼= φT (r)

(
Cδ − C

)
I (α)φ(t), (41)

then H(r, t) reflects the noise reduction capability of the method. Its values at various points
and its graph are shown in Table 1 and Fig. 1.

In Table 1, we list the noise reduction.

123
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Fig. 6 The behaviour of solution for different values of α at t = 1, Example 1

Fig. 7 The behaviour of solution for different values of α at r = 1, Example 1

In eighth section, two examples are solved with and without noise to illustrate the stability
of the proposed method. In all the two examples, we add the noise δ = σ(N+1)2 , for two
different values of N = 10, 20. For different values of N we calculate maximum absolute
error and root mean square errors denoted by E1 and E2 respectively for input functions
without noise term and these respective errors are denoted by E∗

1 and E∗
2 for input function

with noise respectively. In Table 3, we have listed the different values of E1, E2, E∗
1 and E∗

2
for N = 10, 20. From the table it is clear that the there is a very small change in errors when
we add noise term in input function showing the stability of our method.

123
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Fig. 8 Difference of absolute errors with and without noise, Example 1

In Figs. 8 and 14 the difference of absolute errors with and without noise are plotted for
Examples 1 and 2 respectively and it is observed that it is very small so our method is stable.

Numerical Results and Discussion

Example 1 Consider the following time-fractional Navier–Stokes equation [9,15,16,21,25];

∂αu(r, t)

∂tα
= P + ∂2u(r, t)

∂r2
+ 1

r

∂u(r, t)

∂r
, 0 < α ≤ 1, (42)

with initial-boundary conditions u(r, 0) = 1 − r2,

u(0, t) = 1 + P − 4
∣∣(α + 1)

tα, u(1, t) = P − 4
∣∣(α + 1)

tα

and exact solution u(r, t) = 1−r2 + P−4|(α+1)
tα . For simplicity taking P = 1. Figures 2 and 3,

show the approximate solution of Eq. (42),for different values of α = 0.5 and 1 respectively.
Figures 4 and 5 show the absolute error graph of Eq. (42), for α = 1 and 0.9 respectively.

Figures 6 and 7 show the behaviour of approximate solution of Eq. (42), for different
values of α = 0.7, 0.8, 0.9 and 1 for fix value of t = 1 and r = 1 respectively. From Figs. 6
and 7, it is clear that solution varies continuously for different values of α and approaches
monotonically to integer order NSE continuously as α → 1 (Fig. 8).

In Table 2, we compare results obtain by our numerical algorithm and existing analytical
methods [9,16,25].

Example 2 Consider the following time-fractional Navier–Stokes equation;

∂αu(r, t)

∂tα
= ∂2u(r, t)

∂r2
+ 1

r

∂u(r, t)

∂r
, 0 < α ≤ 1, (43)
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Table 2 Comparison of results for example 1 for different values of α

(r, t) α = 1 α = 0.9

Present method Methods in [9,15,16,21,25] Present method Methods in [9,15,16,21,25]

(0, 0) 1.0000 1.0000 0.9950 1.0000

(0.1, 0.1) 0.6900 0.6900 0.5970 0.5973

(0.2, 0.2) 0.3600 0.3600 0.2275 0.2272

(0.3, 0.3) 0.0100 0.0100 −0.1457 −0.1455

(0.4, 0.4) −0.3600 −0.3600 −0.5274 −0.5274

(0.5, 0.5) −0.7500 −0.7500 −0.9214 −0.9216

(0.6, 0.6) −1.1600 −1.1600 −1.3298 −1.3296

(0.7, 0.7) −1.5900 −1.5900 −1.7528 −1.7528

(0.8, 0.8) −2.0400 −2.0400 −2.1916 −2.1917

(0.9, 0.9) −2.5100 −2.5100 −2.6472 −2.6471

(1.0, 1.0) −3.0000 −3.0000 −3.1197 −3.1193

Fig. 9 Approximate solution for α = 0.5, Example 2

with initial-boundary conditions as u(r, 0) = r2, u(0, t) = 4t, u(1, t) = 1 + 4t and exact
solution u(r, t) = r2 + 4t , for α = 1.

Figures 9 and 10 show the approximate solution of Eq. (43) for different values of α = 0.5
and 1 respectively. Figure 11 shows the absolute error graph of Eq. (43), for α = 1.

Figures 12 and 13 show the behaviour of approximate solution of Eq. (43), for different
values of α = 0.7, 0.8, 0.9 and 1 for fix value of t = 1 and r = 1 respectively. From Figs. 12
and 13, it is clear that solution varies continuously for different values of α and approaches
monotonically to integer order NSE continuously as α → 1 (Fig. 14).
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Fig. 10 Approximate solution for α = 1, Example 2

Fig. 11 Absolute error for α = 1, Example 2
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Fig. 12 The behaviour of solution for different values of α at t = 1, Example 2

Fig. 13 The behaviour of solution for different values of α at r = 1, Example 2

In Table 3, we list the errors E1, E2, E∗
1 and E∗

2 to show the stability of our method.

Conclusions and Future Work

The approximate solutions can be obtained by solving some algebraic equations, so it is very
handy for computational purposes. There are few numerical methods to solve FNSE but none
of them show the stability and convergence of method. In our method stability with respect to
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Fig. 14 Difference of absolute errors with and without noise, Example 2

Table 3 Absolute and RMS errors with and without noise

Example no. N Errors without noise Errors with noise δ = σ(N+1)2

E1 E2 E∗
1 E∗

2

1 10 1.2190 × 10−6 1.1646 × 10−8 1.2368 × 10−6 1.1793 × 10−8

20 1.2190 × 10−6 4.5210 × 10−9 1.2368 × 10−6 4.5628 × 10−9

2 10 3.5650 × 10−6 9.5151 × 10−8 3.5650 × 10−6 9.4388 × 10−8

20 3.5650 × 10−6 3.4209 × 10−8 3.5650 × 10−6 3.4151 × 10−8

the data is restored and accuracy is good even for high noise levels in the data. Convergence
and error analysis are also given. From numerical examples we show that solution varies
continuously for different values of α. For α = 1 solution for standard NSE is obtained. For
future work we can use different orthonormal polynomials to achieve better accuracy.
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