
Int. J. Appl. Comput. Math (2017) 3:3471–3487
DOI 10.1007/s40819-017-0309-5

ORIGINAL PAPER

Hall Current and Viscous Dissipation Effects on
Boundary Layer Flow of Heat Transfer Past a Stretching
Sheet

M. Ferdows1 · A. A. Afify2 · E. E. Tzirtzilakis3

Published online: 24 January 2017
© Springer India Pvt. Ltd. 2017

Abstract The effect of Hall current and viscous dissipation on MHD natural convective
heat transfer flow of a compressible viscous fluid past a stretching surface in the presence of
strong magnetic field has been considered in the present work. A magnetic field is applied
transversely to the direction of the flow. By means of similarity transformation the governing
equations are transformed into nonlinear ordinary flow and heat transfer characteristics which
are evaluated by making the use of Nachtsheim–Swigert iteration technique along with the
sixth order Runge–Kutta integration scheme. Validation is achieved through the use of Math-
ematica software as well. The influence of various parameters is then presented graphically
in the form of non-dimensional velocity (primary and secondary) and temperature within the
boundary layer entering into the problem. Also the effects of the pertinent parameters on the
skin-friction coefficients and rate of heat transfer in terms of the Nusselt number, which are
of physical interest, are sorted out and presented in the form of table and the conclusion is
drawn that the flow field and other quantities of physical interest are significantly influenced
by these parameters.

Keywords Hall current · Dissipation · Nusselt number · Magnetic field and similarity
variable

B M. Ferdows
ferdowsltech@gmail.com

1 Research Group of Fluid Flow Modeling and Simulation, Department of Applied Mathematics,
University of Dhaka, Dhaka 1000, Bangladesh

2 Department of Mathematics, Deanship of Educational Services, Qassim University, P.O. Box 6595,
Buraidah 51452, Saudi Arabia

3 Fluid Dynamics and Turbomachinery Laboratory, Department of Mechanical Engineering,
Technological Educational Institute of Western Greece, 1 M. AleksandrouStr, Koukouli,
263 34 Patras, Greece

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40819-017-0309-5&domain=pdf


3472 Int. J. Appl. Comput. Math (2017) 3:3471–3487

Introduction

Laminar boundary layer flow, a significant type of flow, in presence of magnetic field and
under the viscous dissipation effect over a moving continuous surface has been receiving
wide attention due to its applications in engineering and industries. Ostrach [1] analyzed
a similarity solution of transient free convection flow past a semi infinite vertical plate by
an integral method. Goody [2], one of the initiator of free convection problem, considered
a neutral fluid. Sakiadis [3] analyzed the boundary layer flow over a solid surface moving
with a constant velocity. This boundary layer flow situation is quite different from the clas-
sical Blasius problem of boundary flow over a semi-infinite flat plate due to entrainment
of ambient fluid. Cess [4] analyzed the effect of thermal radiation on absorbing emitting
gray fluids with black vertical plate. Soundalgekar [5] made analytical study on the MHD
forced and free convection flow past a vertical porous plate. Ferdows [6] introduced a sim-
ilarity analysis for the forced and free convection boundary layer flow in a semi-infinite
expanse of an electrically conducting viscous incompressible fluid past a semi-infinite non-
conducting porous plate with suction applying a uniform magnetic field normal to the
plate.

Crane [7] noted that usually the sheet is assumed to be inextensible, but situations may
arise in the polymer industry in which it is necessary to deal with a stretching plastic sheet.
For examples, materials manufactured by aerodynamic extrusion processes and heat-treated
materials traveling between a feed roll and a wind-up roll or on a conveyor belt possess the
characteristics of a moving continuous stretching surface. Moreover lots of metallurgical
processes occupy the system of cooling of continuous strips or filaments by drawing them
through a quiescent fluid and that in the process of drawing, these strips are sometimes
stretched. Gorla [8] depicted the application of linearly stretched surface in electro-chemistry.
Banks [9] discussed the flow field of a stretching wall with a power-law velocity variation.
McLeod and Rajagopal [10] investigated the uniqueness of the flow of a Navier Stokes fluid
due to a linear stretching boundary.

Another important matter is that the final product depends to a great extent on the rate of
cooling. By drawing such strips in an electrically conducting fluid subjected to a magnetic
field, the rate of cooling can be controlled and a final product of desired characteristics can
be achieved. The study of heat and mass transfer is necessary for determining the quality
of the final product. Sparrow [11] explained a parameter named Rosseland approximation
to describe the radiation heat flux in the energy equation in his book. Soundalgekar and
Takhar [12] studied radiation effects on free convection flow of a gas past a semi infinite
flat plate using the Cogley–Vincentine–Giles equilibrium model. Anderson [13] studied of
the diffusion of a chemically reactive species from a linearly stretching sheet. Samad and
Mohebujjaman [14] exposed the effect of a chemical reaction on the flow over a linearly
stretching vertical sheet in the presence of heat and mass transfer as well as a uniform
magnetic field with heat generation/absorption. Samad [15] calculated numerically the effect
of thermal radiation on steady MHD free convectoin flow taking into account the Rosseland
diffusion approximaion.

Sattar and Hossain [16] investigated the unsteady free convective flow, with Hall currents
and mass transfer, past an accelerated vertical porous plate in the presence of a transverse
magnetic field while assuming the plate temperature and concentration to be functions of
time. Bég [17] examined the steady double-diffusive free convective heat and mass transfer
of a chemically-reacting micropolar fluid flowing through a Darcian porous regime adjacent
to a vertical stretching plane including viscous dissipation effects in the energy equation.
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Devi and Ganga [18] considered viscous and Joule dissipation effects on MHD nonlinear
flow and heat transfer past a stretching porous surface embedded in a porous medium under
a transverse magnetic field.

Very recently, Mahatha [19] studied the two dimensional steady hydromagnetic bound-
ary layer flow of a viscous, incompressible, and electrically conducting nanofluid past a
stretching sheet with Newtonian heating, in the presence of viscous and Joule dissipations.
In their study included in the transport equations the combined effects of Brownian motion
and thermophoresis. Pal [20] studied the unsteady mixed convection boundary layer flow
of an electrically conducting fluid over an stretching permeable sheet in the presence of
transverse magnetic field, thermal radiation and non-uniform heat source/sink effects. Hayat
and Hendi [21] investigated the effects of thermal-diffusion and diffusion-thermo on MHD
three-dimensional axisymmetric flow of a viscous fluid between radially stretching sheets in
the presence of Hall and ion-slip currents, viscous dissipation, Joule heating and first order
chemical reaction by applying homotopy analysis method (HAM). Motsa and Shateyi [22]
considered the problem ofmagnetomicropolar fluid flow, heat, andmass transfer with suction
through a porous medium is numerically analyzed. By introducing successive linearization
method (SLM) together with Chebyshev collocation method the problem was studied under
the effects of chemical reaction, Hall, ion-slip currents, and variable thermal diffusivity. Com-
prehensive reviews on thermoelasticity of micropolar bodies and materials have been made
by researchers including Marin [23–25].

In this paper boundary layer flow and heat transfer analysis has been undertaken in order
to clarify the parametric behavior of free convection saturated strong magnetic field over a
stretching sheet in the presence of dynamic effects of Hall current and viscous dissipation.

Mathematical Model

We consider a steady, incompressible and electrically conducting viscous fluid flowing over
a vertical plate in the x-direction under the influence of heat transfer. The flow under con-
sideration is also subject to a strong transverse magnetic field B0 with a constant intensity
along the y-axis see Fig. 1. The velocity component u on a stretching sheet is proportional
to its distance from the leading edge.

Fig. 1 Model Geometry
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Generally, Hall current has an effect on an electrically conducting fluid in the presence
of a magnetic field. The effect of Hall current gives rise to a force in the z-direction, which
induces a cross-flow in the z-direction and hence the flow becomes three dimensional. The
equation of conservation of Charge ∇ · J = 0 gives Jy = constant, where the current density
J = (

Jx , Jy, Jz
)
. Since the plate is non-conducting this constant is zero, Jy = 0 at the

plate and hence everywhere. The expressions for the current density components Jx and Jz
as obtained from the generalized ohm’s law, see Cowling [26].

J = σ
1+m2

(
E + V × B − 1

ene
J × B

)
in the absence of electric field are given by Jx =

σμe B0λ
1+m2λ2

(mλu − w) and Jz = σμe B0λ
1+m2λ2

(u + mλw).
To simplify the problem, we assume that there is no variation of flow or heat transfer

quantities in the z-direction. Under the usual boundary layer and Boussinesq approximations,
the governing equations in (x, y, z) coordinate for the problem under consideration can be
written as follows:

∂u

∂x
+ ∂v

∂y
= 0 (1)

u
∂u

∂x
+ v

∂u

∂y
= υ

∂2u

∂y2
+ ue

due
dx

+ gβ (T − T∞) − B0

ρ
Jz (2)

u
∂w

∂x
+ v

∂w

∂y
= υ

∂2w

∂y2
+ B0

ρ
Jx (3)

u
∂T

∂x
+ v

∂T

∂y
= κ

ρCp

∂2T

∂y2
+ v

Cp

((
∂u

∂y

)2

+
(

∂w

∂y

)2
)

+ σμe B2
0λ

ρCp(1 + m2λ2)
(u2 + w2)

(4)

The boundary conditions are

u = u0 = Bx, v = 0, w = 0, T = Tw = T∞ + A (x/ l) at y = 0
u → ue (x) = Cx, w → 0, T → T∞ as y → ∞

}
(5)
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Fig. 2 Primary Velocity profiles for different step sizes 	η
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Fig. 3 Secondary Velocity profiles for different step sizes 	η
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Fig. 4 Temperature profiles for different step sizes 	η

Here V = (u, v, w) are the fluid velocity components in the x, y, z-directions respectively,
Jx = σμe B0λ

1+m2λ2
(mλu − w) and Jz = σμe B0λ

1+m2λ2
(u + mλw) are the currents only to x- and z-

axis respectively, σ is the electric conductivity, μe is the viscosity of fluid, B0 is the uniform
magnetic field strength, m = ωeτeis the Hall parameter and λ = cosα where α is the angle

between the direction of the strong uniform magnetic field
→
Band the plane transverse to the

plate which is assumed to be electrically non-conducting, E is the intensity of electric field,
ne is the electron number density, υ is the kinematic viscosity, ue(x) is the external velocity,
β is the volumetric coefficient of thermal expansion, ρ is the fluid density, κ is the thermal
conductivity of the fluid, Cp the specific heat at constant pressure, A is a constant and l is
the length.
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Table 1 Variation of physical parameters

δ Pr Gr M m Ec f ′′ g′(0) −θ ′ (0)

0.1 0.72 5.0 0.2 3.0 0.3 0.991158 1.110116 0.079164

0.9910 [28] 1.1101 [28] 0.0790 [28]

0.5 0.054960 1.447144 1.177021

0.8 1.074053 0.076712 1.962002

1.0 1.177332 1.148463 0.081561

1.2 0.072527 1.683643 1.207027

0.1 0.5 5.0 0.2 3.0 0.3 1.154635 0.057703 0.906524

0.72 0.991158 0.054960 1.074053

2.0 0.519546 0.051345 1.740474

3.7 0.246272 0.050245 2.344954

7.0 −0.010344 0.049056 3.212773

0.1 0.72 5.0 0.2 3.0 0.3 0.991158 1.145810 0.061401

8.0 0.054960 2.558421 1.218910

10.0 1.074053 0.059862 3.971300

12.0 1.955360 1.184695 0.063498

15.0 0.058058 3.137554 1.263925

0.1 0.72 5.0 0.1 3.0 0.3 0.994653 1.074053 0.124671

0.2 0.027344 0.987107 1.068125

0.3 1.076560 0.089237 0.973956

0.4 0.991158 1.071329 0.157331

0.5 0.054960 0.980836 1.064619

0.1 0.72 5.0 0.2 2.0 0.3 0.983387 1.076090 0.022497

4.0 0.076760 0.996576 1.078249

6.0 1.069073 0.029613 0.998132

8.0 0.993701 1.077669 0.018106

10.0 0.042860 0.997633 1.078522

0.1 0.72 5.0 0.2 3.0 0.3 0.991158 1.042742 0.056120

3.0 0.054960 1.047982 0.981730

6.0 1.074053 0.055643 1.091622

8.0 1.017482 1.006663 0.056372

10.0 0.055280 1.069770 0.956152

Similarity Analysis

In order to obtain similarity solution for the problem under consideration, we may take the
following suitable similarity variables

η = y

(
B

υ

) 1
2

, u = Bx f ′ (η) , v = − (Bυ)
1
2 f (η) , w = Bxg (η) and θ (η)

= T − T∞
Tw − T∞

. (6)
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Fig. 5 Primary Velocity profiles for δ (Pr = 0.72, Gr = 5, M = 0.2, m = 3.0 and Ec = 0. 22)

0 5 10 15
0

0.01

0.02

0.03

0.04

0.05

g

Fig. 6 Secondary Velocity profiles for δ (Pr = 0.72, Gr = 5, M = 0.2, m = 3.0 and Ec = 0. 22)

Therefore the transformed equation using the above parameter becomes:

f ′′′ + δ2 + f f ′′ − f ′2 + Grθ − Mλ

1 + m2λ2

(
f ′ + mλg

) = 0 (7)

g′′ + f g′ + f ′g + Mλ

1 + m2λ2

(
mλ f ′ − g

) = 0 (8)

θ ′′ + Pr f θ ′ − Pr f ′θ + Mλ

1 + m2λ2
Pr .Ec

(
f ′2 + g2

) = 0 (9)

The corresponding boundary conditions are

f = 0, f ′ = 1, g = 0, θ = 1 at η = 0
f ′ → δ, g → 0, θ → 0 as η → ∞

}
(10)
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Fig. 7 Temperature profiles for δ (Pr = 0.72, Gr = 5, M = 0.2, m = 3.0 and Ec = 0. 22)
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Fig. 8 Primary Velocity profiles for Pr (Gr = 5.0, M = 0.2, m = 3.0 and Ec = 0. 22)

Here, δ = C
B is the velocity parameter, Gr = gβ(Tw−T∞)x

u20
is the local Grashof number,

M = σμe B2
0 x

ρu0
is the local magnetic parameter and B0 = B√

x
is the magnetic field, Pr = ρυCp

κ

is the Prandtl number and Ec = u20
Cp(Tw−T∞)

is the Eckert number.
The parameters of engineering interest for the present problem are the wall skin-friction

components for the primary and secondary velocities, and the local Nusselt number (Nu).
The non-dimensional shear stress components due to the primary and secondary velocity are
given by

C f x = τwx
1
2ρu

2
0

and C f z = τwz
1
2ρu

2
0

(11)

The skin-friction τwx and τwz are given by, τwx = μ ∂u
∂y

∣∣∣
y=0

= μu0
( B

υ

) 1
2 f ′′ (0)
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Fig. 9 Secondary Velocity profiles for Pr (Gr = 5.0, M = 0.2, m = 3.0 and Ec = 0. 22)
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Fig. 10 Temperature profiles for Pr (Gr = 5.0, M = 0.2, m = 3.0 and Ec = 0. 22)

and τwz = μ ∂w
∂y

∣∣∣
y=0

= μu0
( B

υ

) 1
2 g′ (0) respectively.

Substitute these values in (11), we get

C f x = τwx
1
2ρu

2
0

= 2 (Bυ)
1
2

u0
f ′′ (0) (12)

C f z = τwz
1
2ρu

2
0

= 2 (Bυ)
1
2

u0
g′ (0) (13)

Now introducing dimensionless quantities, we obtain a local dimensionless coefficient of
heat transfer which is known as the local Nusselt number, the local Nusselt number Nux and
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Fig. 11 Primary Velocity profiles for Gr (δ = 0.1, Pr = 0.72, M = 0.2, m = 3.0 and Ec = 0. 22)
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Fig. 12 Secondary Velocity profiles for Gr (δ = 0.1, Pr=0.72, M = 0.2, m = 3.0 and Ec = 0. 22)

is proportional to the temperature gradient at the plate. It is defined as

Nux = xqw

k (Tw − T∞)

Heat transfer from the plate qw is given by qw = −k
(

∂T
∂y

)

y=0
Thus,

Nux = x

(Tw − T∞)

∂T

∂y

∣∣∣∣
y=0

= −u0 (Bυ)−
1
2 θ ′ (0) (14)

Thus from the above definition we have C f x ∝ f ′′ (0), C f z ∝ g′ (0) and Nux ∝ −θ ′ (0).
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Fig. 13 Temperature profiles for Gr (δ = 0.1, Pr = 0.72, M = 0.2, m = 3.0 and Ec = 0. 22)
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Fig. 14 Primary Velocity profiles for M (δ = 0.1, Pr = 0.72, Gr = 5, m = 3.0 and Ec = 0.22)

Numerical Computation

The numerical solutions of the non-linear differential equations (7)–(9) under the boundary
conditions (10) have been performed by applying a shooting method namely Nachtsheim and
Swigert [27] iteration technique (guessing the missing values) along with sixth order Runge–
Kutta iteration scheme. We have chosen a step size 	η = 0.01 to satisfy the convergence
criterion of 10−5 in all cases. The value of η∞ has been found to each iteration loop by
η∞ = η∞ + 	η. The maximum value of η∞ to each group of parameters δ, Pr, Gr, M,m
and Ec has been determined when the values of the unknown boundary conditions at η = 0
not change to successful loop with error less than 10−5. In order to verify the effects of
the step size 	η, we have run the code for our model with three different step sizes as
	η = 0.01,	η = 0.005 and 	η = 0.001, and in each case we have found excellent
agreement among them shown in Figs. 2, 3 and 4. Table1 also compare the Mathematica
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Fig. 15 Secondary Velocity profiles for M (δ = 0.1, Pr = 0.72, Gr = 5, m = 3.0 and Ec = 0.22)
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Fig. 16 Temperature profiles for M (δ = 0.1, Pr = 0.72, Gr = 5, m = 3.0 and Ec = 0.22)

solution, Wolfram [28] with the Nachtsheim and Swigert iteration technique solutions for
the skin friction and temperature gradient functions at selected values of the parameters. In
all cases, excellent agreement is observed. Confidence in the present Nachtsheim and Swigert
iteration computations, which are used for all graphical depictions, is therefore very high.

Results and Discussion

Nachtsheim–Swigert iteration technique along with the sixth order Runge–Kutta integration
scheme have been performed to investigate the non-dimensional primary

(
f ′), secondary

velocity (g) and temperature (θ) variations for the effects of velocity parameter (δ), Prandtl
number (Pr), Grashof number (Gr), magnetic field parameter (M), hall parameter (m) and
Eckert number (Ec). The values of buoyancy parameterGr is taken to be positive to represent
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Fig. 17 Primary Velocity profiles for m (δ = 0.1, Pr = 0.72, Gr = 5, M = 0.2 and Ec = 0.22)
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Fig. 18 Secondary Velocity profiles for m (δ = 0.1, Pr = 0.72, Gr = 5, M = 0.2 and Ec = 0.22)

cooling of the plate. The parameters are chosen arbitrarily where Pr = 0.71 corresponds
physically to air at 20◦C,Pr = 1.0 corresponds to electrolyte solution such as salt water
and Pr = 7.0 corresponds to water, consider M, m, Ec and δ are chosen arbitrarily. As
demonstrated in this model, the angle between the direction of the strong uniform magnetic
field and the plane transverse to the plate is zero i.e., α = 0◦, hence the value of the parameter
λ is set at 1. In order to illustrate the results graphically, the numerical values are plotted in
Figs. 5, 6, 7. 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 and 22. Representative results
for the physical parameters have been presented in Table 1.

Figures5, 6 and 7 illustrate the primary velocity, secondary velocity and temperature
profiles for different velocity parameter. As δ increases the thickness of the momentum
boundary layer increases for both the primary and secondary velocities. Evidently in Fig. 5,
the greatest velocity is achieved for primary velocity than in Fig. 6. Asymptotically smooth
behavior of all profiles is obtained at the edge of the momentum and thermal layer adjusting
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Fig. 19 Temperature profiles for m (δ = 0.1, Pr = 0.72, Gr = 5, M = 0.2 and Ec = 0.22)
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Fig. 20 Primary Velocity profiles for Ec (δ = 0.1, Pr = 0.71, Gr = 5, M = 0.2 and m = 3.0)

the convergence solutions. As with the temperature distribution (Fig. 7), due to the heat
convection in the fluid flow, the temperature profile decreases as δ increases.

Figures8, 9 and 10 shows the effect of Prandtl number on velocity and temperature profiles.
The Prandtl number effect on the primary velocity profile is shown in Fig. 8. It is seen thatwith
the increase of Pr the primary velocity reduces which is observed in each case of δ = 0.1, 0.5
and 1.2. But increasing effect is seen in secondary profile for the Prandtl number. When
δ = 0.1 the effect is apparent for large Pr. But for higher δ there is no significant effect
of Pr on secondary velocity profile (Fig. 9). Figure10 finally shows that there is uniform
temperature profile across the thermal boundary layer for Pr.

Figures11, 12 and 13 present the influence of Grashof number on the profiles of velocity
and temperature. Near the plate there is very noteworthy effect of the Grashof number Gr
on primary velocity profile. At the beginning primary velocity profile increases with the
increase of Gr but profile overlaps and Gr has tiny decreasing effect after η = 2.07 as in
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Fig. 21 Secondary Velocity profiles for Ec (δ = 0.1, Pr = 0.71, Gr = 5, M = 0.2 and m = 3.0)
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Fig. 22 Temperature profiles for Ec (δ = 0.5, Pr = 0.71, Gr = 5, M = 0.2 and m = 3.0)

Fig. 11. Figure12 shows that in the vicinity of the plate (η < 0.92) secondary velocity profile
increases with the rising of the value of Gr but away from the plate Gr affects reversely
on the secondary velocity profiles. For Gr 〉1 buoyancy force dominates the viscous force.
Increasing Gr therefore attain falling outcome to the temperature profile closer to the plate
surface.

Figures14, 15 and 16 depict the effect of present the influence of magnetic field parameter
on the profiles of velocity and temperature. Trivial effect associated with primary velocity
and temperature where as the vastly affected corresponds to secondary velocity. Due to slight
mounting deviation in M the secondary profile enhances to a very large extent.

Figures17, 18 and 19 depict the effects of the Hall current parameterm on the velocity and
temperature distributions. We observe that there is no influence of m on the primary velocity
as well as on the temperature profile. Secondary velocity profile is affected enormously by
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the Hall current parameter m. The temperature distribution decreases at a great extent as m
increases as shown in Fig. 18.

Figures20, 21 and 22 depict the effect of present the influence of Eckert number on the
profiles of velocity and temperature. Figure20 demonstrates the effects of the Eckert number
Ec on primary velocity profile for some values of δ (0.1, 0.5 and 1.2). For small velocity
parameter (δ = 0.1) there is not so remarkable effect of Ec. But when δ = 0.5 the effect of
Ec is very patent. Primary velocity profile increases with the increase of Ec. When the value
of δ is getting large the effect of Ec on primary velocity profile is lessening. The secondary
velocity profile increases when the value of Ec increases as shown in Fig. 21. Figure22
demonstrates that Ec has increasing influence on the temperature profile.

Finally, the effects of various physical quantities at the plate surface appeared in problem
such as the skin frictions C f x ∝ f ′′ (0) & C f z ∝ g′ (0) and local Nusselt number Nux ∝
−θ ′ (0) are shown in the Table 1.

Conclusions

In the current paper, the steady three-dimensionalMHDnatural convection heat transfer of an
electrically conducting fluid past a stretching surface in the presence of Hall currents, viscous
dissipation and Joule heating effects was studied. The governing equations were reduced to
a system of ordinary differential equations and then the results were carried out numerically.
The effects of velocity parameter (δ), Prandtl number (Pr), Grashof number (Gr), magnetic
field parameter (M), hall parameter (m) and Eckert number (Ec) on the primary and secondary
velocity (momentum) and temperature (Thermal) profiles are investigated through the use of
graphs and table. The main results of the present analysis are listed below:

1. Both the primary and secondary velocities increase whereas the temperature distributions
decreases with increasing velocity parameter δ.

2. Both the primary and secondary velocities profiles increase for increasing Gr near to the
plate while the trend is reversed far from the plate. TheGrashof numberGr is to decelerate
the temperature profiles.

3. Both the primary velocity and temperature profiles are insensible to changewithmagnetic
parameter M . Further, Increasing magnetic parameter M tends to increase the secondary
velocity profiles.

4. Both the primary velocity and temperature profiles are insensible to change with Hall
current parameter m. Further, Increasing Hall current parameter m tends to diminish the
secondary velocity profiles.

5. Both the secondary velocity and temperature profiles boost with a rise in the Eckert
number Ec. Further, Primary velocity is intangible to change Eckert number Ec for lower
value of (δ = 0.1) while it increases moderately with the higher value of (δ = 0.5 and
1.2).
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