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Abstract This paper addresses heat transfer and rotation effects on MHD peristaltic flow of
a Jeffrey fluid in an asymmetric channel with partial slip. Mathematical modeling is carried
out by utilizing long wavelength and small Reynolds number assumptions. The analytical
solution has been computed for the stream function, velocity and temperature distribution.
The expression for pressure rise is carried out using numerical integration. The effects of var-
ious emerging parameters on the flow characteristics are shown and discussed with the help
of graphs. The pumping characteristics, axial pressure gradient and trapping phenomenon
have been studied. The axial velocity depresses with increasing of Hartmann number, Jeffrey
fluid parameter and slip parameter. The size of trapping bolus enhances when an increase in
Hartmann number, Jeffrey fluid parameter and rotation parameter. The temperature dimin-
ishes as the larger values of slip parameter. A comparison of a special case of our results with
the one previously reported in the literature shows a very good agreement.

Keywords Peristaltic flow · Rotation · Magnetic field · Heat transfer · Jeffrey fluid · Partial
slip · Asymmetric channel

Introduction

Peristaltic transport in recent times has collected considerable attention due to its applications
in physiological fluids such as vasomotion of small blood vessels, chyme motion in the
gastrointestinal tracts, sperm transport in the ductus efferent us of the male reproductive
tract, movement of ovum in the fallopian tube, swallowing of food through esophagus etc.
The principle of peristaltic motion is also exploited in many industrial applications. Sanitary
fluid transport, transport of incisive fluids and blood pumps in heart lung tools are few of
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these. Several theoretical and experimental attempts have beenmade to examine the peristaltic
flows in view of their obvious importance since the seminal researches of Latham [1] and
Shapiro et al. [2]. Such investigations have been presented under various assumptions of
long wavelength, low Reynolds number, small wave number, small amplitude ratio, etc. The
peristaltic flows of viscous and non-Newtonian fluids have been discussed by many authors
recently in the studies [3–6].

The effects of magnetic field on the peristaltic mechanisms are important in connection
with certain problems of the movement of the conductive physiological fluids, e.g., the blood
and blood pump machines. The analytical and numerical analysis of peristaltic flows in
viscous and non-Newtonian fluids has been analyzed by Nadeem and Akram [7]. Hayat et
al. [8] discussed the effect of compliant wall properties and heat transfer on the peristaltic
transport of an incompressible viscous fluid in an arched channel. Nadeem and Akbar [9]
studied the peristaltic transport of an incompressible MHD Newtonian fluid in a vertical
annulus. The peristaltic motion of a non-Newtonian fluid in a channel possessing compliant
boundaries is presented by Ali et al. [10]. Vajravelu et al. [11] studied the impact of heat
transfer on peristaltic transport of a Jeffrey fluid in a vertical porous lamina. Kothandapani
and Srinivas [12] Peristaltic flow of a Jeffrey fluid under the influence of magnetic field in an
asymmetric channel. The characteristics of the Jeffrey fluid model for the peristaltic flow of
chime in the small intestine with magnetic field have been investigated by Akbar et al. [13].
Very recently, the peristaltic flow of Jeffrey nanofluid over an asymmetric channel under the
influence of applied magnetic field was investigated by Gnaneswara Reddy and Makinde
[14].

The phenomenon of rotation has its numerous applications in cosmic and geophysical
flows. Moreover occurrence of rotation also helps in better understanding the behavior of
ocean circulation and galaxies formation. Rotation also helps in the measurement of the
energies of transitions between quantized rotational states of molecules in the gas phase
(rotational spectroscopy). In particular the peristalsis of MHD fluid in presence of rotation
is relevant with regard to certain flow cases involving the movement of physiological fluids
for example the blood and saline water. Obviously the magnetic field and rotation are useful
for biofluid transport in the intestines, ureters and arterioles. Abd-Alla et al. [15] studied
the effects of rotation and magnetic field on nonlinear peristaltic motion of second-order
fluid in an asymmetric channel through a porous medium. Mahmoud et al. [16] investi-
gated the impact of the rotation on wave motion through cylindrical bore in a micro polar
porous medium. The influence of the rotation, magnetic field and initial stress on peristaltic
motion of micro polar fluid is studied by Abd-Alla et al. [17]. Hayat et al. [18] have stud-
ied the influences of rotation and thermophoresis on MHD peristaltic transport of Jeffrey
fluid with convective conditions and wall properties. Hayat et al. [19] have investigated the
homogeneous-heterogeneous reactions and heat source/sink effects in MHD peristaltic flow
of micropolar fluid with Newtonian heating in a curved channel.

It is now known that the no-slip condition for velocity condition is not appropriate for
momentum in micro devices. The velocity slip condition is adequate for the flow of liquids
at the micro scale level especially in view of the lack of data on the thermal accommodation
coefficient. Among the utilization of micro devices, several complex micro channels arise.
Investigations of the effects of slip on the peristaltic motion have been recently reported in
[20–22]. Abd-Alla et al. [23] reported the influence of magnetic field and rotation effects
on peristaltic flow of a Jeffrey fluid in an asymmetric channel. Gnaneswara Reddy and
Venugopal Reddy [24] have investigated the impact of velocity slip and joule heating on
MHD peristaltic flow through a porous medium with chemical reaction. Gnaneswara Reddy
et al. [25] have analyzed the hydromagnetic peristaltic motion of a reacting and radiating
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couple Stress fluid in an inclined asymmetric channel filled with a porous medium. Mishra
and Rao [26] have investigated the peristaltic transport of a Newtonian fluid in an asymmetric
channel. Kothandapani and Srinivas [27] have analyzed the peristaltic transport of a Jeffrey
fluid under the effect of magnetic field in an asymmetric channel.

The studies of heat transfer have significant applications in industry and medicine. Espe-
cially heat transfer in human body is an important area of research. Bio heat transfer in
tissues has attracted the attention of biomedical engineers in view of thermotherapy and the
human thermoregulation system. The heat transfer in humans takes place as conduction in
tissues, perfusion of the arterial–venous blood through the pores of the tissue, metabolic heat
generation etc. The other applications are destruction of undesirable cancer tissues, dilution
technique in examining blood flow and vasodilation. In addition mass transfer also occurs
when nutrients diffusion out from the blood to neighboring tissues, membrane separation
process, reverse osmosis, distillation process, combustion process and diffusion of chemical
impurities. The combined heat and mass transfer effects can be seen in processes like drying,
evaporation, thermodynamics at the surface of a water body and oxygenation etc. With this
view point the recent researchers have made efforts for peristalsis with combined effect of
heat and mass transfer [28–33].

The aim of the present paper is to analyze the effects of heat transfer and rotation onMHD
peristaltic motion of a Jeffrey fluid in an asymmetric channel in the presence of velocity
slip. The mathematical formulation taking into account of heat transfer analysis and partial
slip. The governing equations of momentum and energy have been simplified using long
wave length and low Reynolds number approximations. Numerical results for the velocity,
temperature, pressure gradient, pressure rise and shear stress to the pertinent parameters are
presented graphically and discussed in detail. Also, the trapping phenomenon discussed for
the flow parameters.

Mathematical Formulation

In this paper, we investigate the problem for two-dimensional peristaltic flow of a Jeffrey
liquid in a asymmetric channel of width d1 + d2. The channel walls are convectively heated.
A uniform magnetic field of strength Bo is applied. Electric field effects are taken zero
and induced magnetic field is neglected due to small magnetic Reynolds number. The whole
system is in a rotating frame of referencewith constant angular velocity�. Flow configuration
is presented in Fig. 1. Flow inside the channel is induced due to propagation of sinusoidal
waves of wavelength λ along the flexible walls of the channel with constant speed c.

The geometries of the wall surfaces are described by

h̄1
(
X̄ , t̄

) = d1 + a1 cos

[
2π

λ

(
X̄ − ct̄

)]
, at upper wall

h̄2
(
X̄ , t̄

) = −d2 − b1 cos

[
2π

λ

(
X̄ − ct̄

) + φ

]
, at lower wall (1)

where a1 and b1 are the amplitudes of the waves, λ is the wavelength, d1 + d2 is the channel
width, c is the wave speed, φ is the phase difference, φ = 0, φ = π the waves are in phase,
and further a1, b1,d1, d2 and φ should satisfy the following condition

a21 + b21 + 2a1b1 cosφ ≤ (d1 + d2)
2 . (2)
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Fig. 1 Physical model of the problem

Nowutilizing theMathematical analysis of the relevant published literature [18,23,28,30,31]
with long wavelength and low Reynolds number approximations, the reduced dimensionless
governing equation of flow and energy are given by

∂2

∂y2

[
1

1 + λ1

∂2ψ

∂y2

]
+

(
2ρa2�

μ
− M2

)
∂2ψ

∂y2
= 0 (3)

1

Pr

∂2θ

∂y2
+ Ec

(1 + λ1)

∂2ψ

∂y2
= 0 (4)

The relevant boundary conditions for the stream function and temperature in the wave frame
are given by

ψ = q

2
,
∂ψ

∂y
+ L

1 + λ1

∂2ψ

∂y2
= −1, θ = 0 at y = h1 (x) = 1 + a cos [x] , (5)

ψ = −q

2
,
∂ψ

∂y
− L

1 + λ1

∂2ψ

∂y2
= −1, θ = 1 at y = h2 (x) = −d − b cos

[
2π

λ
(x) + φ

]
,

(6)

where M is the Hartmann number, Pr is the Prandtl number, Ec is the Eckert number, λ1 is
the Jeffrey fluid parameter, � is the rotation parameter, φ is phase difference, L is the slip
parameter, q is the flux in the wave frame and a, b, φ and d satisfies the relation

a2 + b2 + 2ab cosφ ≤ (1 + d)2 . (7)

Solution of the Problem

The solution of the Eq. (3) subject to the boundary conditions (5) and (6) are given by

ψ = F0 + F1y + F2 cosh (Ny) + F3 sinh (Ny) (8)

123



Int. J. Appl. Comput. Math (2017) 3:3201–3227 3205

where

F0 =
(h1 + h2)

[
Nq +

(
qLN2+2(1+λ1)

)

(1+λ1)
tanh

(
N (h1−h2)

2

)]

2N (h2 − h1) + 2 (N2L(h2−h1)+2(1+λ1))
1+λ1

tanh
(
N (h1−h2)

2

) ,

F1 =

[
Nq +

(
qLN2+2(1+λ1)

)

(1+λ1)
tanh

(
N (h1−h2)

2

)]

N (h1 − h2) − (N2L(h2−h1)+2(1+λ1))
1+λ1

tanh
(
N (h1−h2)

2

) ,

F2 =
(q + h1 − h2) sech

(
N (h1−h2)

2

)
sinh

(
N (h1+h2)

2

)

N (h1 − h2) − (N2L(h2−h1)+2(1+λ1))
1+λ1

tanh
(
N (h1−h2)

2

) ,

F3 =
(q + h1 − h2) sech

(
N (h1−h2)

2

)
cosh

(
N (h1+h2)

2

)

N (h1 − h2) + (N2L(h2−h1)+2(1+λ1))
1+λ1

tanh
(
N (h1−h2)

2

) ,

and N 2 =
(
M2 − 2ρa2�

μ

)
(1 + λ1).

The velocity distribution is given by

u = ∂ψ

∂y
= F1 + NF2 cosh (Ny) + NF3 cosh (Ny)

The solution of Eq. (4) using the Eq. (8) subject to the boundary conditions (5) and (6) is
given by

θ = Ec Pr

(1 + λ1)

[
F2
3

2
N 4y2 − N 4

8

(
F2
2 + F2

3

)
cosh 2Ny − y2

4
N 4 (

F2
2 + F2

3

)

− F2F3
4

N 2 sinh 2Ny

]

+ c2y + c1 (9)

where

c2 = 1

h1 − h2

⎡

⎣−1 − Pr Ec

1 + λ1

⎡

⎣
F2
3 N

4

2

(
h21 − h22

) + F2F3N2

4 (sinh (2Nh2) − sinh (2Nh1)) + N4

4

(
F2
2 + F2

3

) (
h22 − h21

) +
N4

8

(
F2
2 + F2

3

)
(cosh (2Nh2) − cosh(2Nh1)

⎤

⎦

⎤

⎦

c1 = −Ec Pr

(1 + λ1)

[
F2
3

2
N 4h21 − N 4

8

(
F2
2 + F2

3

)
cosh (2Nh1) − h21

4
N 4 (

F2
2 + F2

3

) − F2F3
4

N 2 sinh (2Nh1)

]

− c2h1

It is noticed that in the absence of heat transfer and slip parameter L the results of Abd-Alla
and Abo-Dahab [23] can be recovered as special case of our problem. Moreover, the results
of Mishra and Rao [26] can be recovered if λ1 → 0, L → 0 and in the absence of heat
transfer.

The flux at any axial station in the fixed frame is

Q =
∫ h1

h2

(
∂ψ

∂y
+ 1

)
dy = h1 − h2 + q (10)

The time-mean flow over a period T2 is defined as


 = 1

T2

T2∫

0

Qdt = 1

T2

T2∫

0

(q + h1 − h2) dt = q + 1 + d (11)
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The pressure gradient is obtained from the dimensionless momentum equation for the axial
velocity is given by

dp

dx
= 1

1 + λ1

[
∂3ψ

∂y3
− N 2

(
∂ψ

∂y
+ 1

)]
(12)

dp

dx
= −N 2

1 + λ1
[F1 + 1] (13)

The dimensionless expression for the pressure rise perwavelength�pλ on the lower is defined
as follows:

�pλ =
2π∫

0

(
dp

dx

)
dx (14)

The dimensionless shear stress at the upper wall of the channel is reduced to

sxy = 1

1 + λ1

∂2ψ

∂y2
, (15)

sxy = N 2

1 + λ1
[F2 cosh Nh1 + F3 sinh Nh1] (16)

Results and Discussion

The variation of the stream lines, axial velocity (u), temperature (θ), pressure gradient
(
dp
dx

)
,

pressure rise (�Pλ) and shear stress
(
Sxy

)
have been analyzed for the impact of sundry

dynamical parameters. The following fixed constants are adopted for numerical computations
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Fig. 2 Effect of M on velocity profile
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unless specified in the graph.

x = 1, M = 1.0, L = 0.1, λ1 = 0.5, Q = −2.0, φ = π

3
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d = 2.0,Pr = 0.71, Ec = 1
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Fig. 6 Effect of φ on velocity profile

Flow Behavior Analysis

To investigate the effects of Hartmann number M , Jeffrey fluid parameter λ1, mean flux Q,
the non-dimensional amplitude of wave b, rotation parameter �, phase difference φ and slip
parameter L on the axial velocity through Figs. 2, 3, 4, 5, 6 and 7. Figures2 and 3 observed
that the axial velocity depresses in the central part of the channel by increasing of Hartmann
number M and Jeffrey fluid parameter λ1. Since larger M provides a resistance to flow and
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-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

y

M = 0
M = 1
M = 2
M = 3

Fig. 8 Effect of M on temperature

thus velocity depresses. Figure4 depicts that axial velocity enhances when an increase in Q.
Figure5 illustrates that axial velocity depresses as increasing values of rotation parameter�.
Figure6 shows that the magnitude of axial velocity diminishes by an increase in the phase
angle φ. Figure7 depicts that the axial velocity diminishes with increasing L values.
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-1 -0.5 0 0.5 1
0

1

2

3

4

5

6

y

Q = 2
Q = 3
Q = 4
Q = 5 

Fig. 10 Effect of Q on temperature

123



Int. J. Appl. Comput. Math (2017) 3:3201–3227 3211

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

y

Pr = 0.71
Pr = 1
Pr = 1.5
Pr = 2

Fig. 11 Effect of Pr on temperature

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

y

Ec = 1
Ec = 2
Ec = 3
Ec = 4

Fig. 12 Effect of Ec on temperature

Heat Transfer Analysis

The temperature field for different values of Hartmann number (M), material parameter (λ1),
mean flux (Q), Prandtl number (Pr), Eckert number (Ec) and slip parameter (L) are shown
in Figs. 8, 9, 10, 11, 12 and 13. The temperature depresses with an increase in M and λ1
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Fig. 13 Effect of L on temperature
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Fig. 14 Effect of M on pressure gradient

from Figs. 8 and 9. The temperature rises as the magnitude of Q increases from Fig. 10. The
temperature enhances by increasing of Pr in Fig. 11. This is due to the fact that heat generation
due to friction caused by shear in the flow is more prominent when the fluid is largely viscous
or flowing at a high speed. Similar behavior is noticed for Eckert number Ec that can be
seen from Fig. 12. Such rise in temperature resulted from the heat generation due to friction
caused by shear in the flow. The temperature depresses when an increase in L from Fig. 13.
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Fig. 15 Effect of λ1 on pressure gradient
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Fig. 16 Effect of Q on pressure gradient

Pumping Characteristics: Pressure Gradient

Figures14, 15, 16, 17, 18, 19 and 20 represent the profiles of pressure gradient
(
dp
dx

)
for

the effects of Hartmann number (M), Jeffrey fluid parameter (λ1), the non-dimensional
amplitude of wave (b), mean flux (Q), rotation parameter (�), phase difference (φ) and
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Fig. 17 Effect of b on pressure gradient
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Fig. 18 Effect of � on pressure gradient

slip parameter (L). The pressure gradient has oscillatory behavior in the whole range of the
x-axis. From all figures, it is clear that the pressure gradient has a non-zero value only in a
bounded region of space. It is depicted from these figures that for x ∈ [0, 1] and x ∈ [5, 6]
the pressure gradient is small, i.e., the flow can easily pass, while in the region x ∈ [1, 5],
the pressure gradient observed from Figs. 14, 15, 16, 17, 18, 19 and 20. Figure14 depicts
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Fig. 19 Effect of φ on pressure gradient
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Fig. 20 Effect of L on pressure gradient

that pressure gradient increases when an increase in M while pressure gradient has opposite
behavior with the effect of λ1 increases in Fig. 15. Figure16 found that the pressure gradient
enhances by decrease in Q. Figures17, 18 and 19 shown that pressure gradient increase
by increasing in b, � and φ. Figure20 illustrates that pressure gradient diminishes with an
increase in L and much pressure is required to maintain the flux to pass. Moreover, it can
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Fig. 21 Effect of M on pressure rise
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Fig. 22 Effect of λ1 on pressure rise

be noticed that on the other hand, in the wider part of the channel, the pressure gradient is
relatively small, i.e. the flow can easily pass without imposition of a large pressure gradient.
On the other hand, in a narrow part of the channel a much pressure gradient is required to
maintain the flux to pass it.

Pressure Rise

To study the effects of Hartmann number (M), Jeffrey fluid parameter (λ1) and rotation
parameter (�) on the Pressure rise (�Pλ) with respect to the time mean flow (
) are carried
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Fig. 23 Effect of � on pressure rise
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Fig. 24 Effect of M on shear stress

out from Figs. 21, 22 and 23. We have observed that the pressure rise has a non-zero value
only in a bounded region of space. It is shown that the pressure rise increases with increasing
of the Hartmann number and rotation parameter while it decreases with increasing the ratio
of relaxation to retardation times (Jeffrey fluid parameter) through Figs. 21, 22 and 23. The
graph is sectored so that the upper right-hand quadrant (I) denotes the region of the peri-
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Fig. 25 Effect of λ1 on shear stress
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Fig. 26 Effect of b on shear stress

staltic pumping (
 > 0,�pλ > 0). Quadrant (II) is designated as an augmented flow when
(
 < 0,�pλ < 0). Quadrant (III) is for co pumping (
 > 0,�Pλ < 0) and free pumping
(
 = 0,�Pλ = 0). Quadrant (IV) is designated as (
 < 0,�pλ > 0) is called retrograde
or backward pumping.
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Fig. 27 Effect of Q on shear stress
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Fig. 28 Effect of � on shear stress

Shear Stress

The axial shear stress distribution
(
Sxy

)
on the upper wall of an asymmetric channel for

different values of Hartmann number (M), Jeffrey fluid parameter (λ1), the non-dimensional
amplitude of wave (b), mean flux (Q), rotation parameter (�) and phase difference (φ) are
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Fig. 29 Effect of φ on shear stress
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Fig. 30 Effect of λ1 on Nusselt number

presented in Figs. 24, 25, 26, 27, 28 and 29. It depicts that stress is in oscillatory behavior,
which may be due to peristalsis. The absolute value of shear stress enhances with increasing
of M , λ1, b, Q, � and φ from Figs. 24, 25, 26, 27, 28 and 29. Moreover, the absolute values
of shear stress are larger in case of a Jeffrey fluid when compared with Newtonian fluid.
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Fig. 31 Effect of Pr on Nusselt number
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Fig. 32 Effect of Ec on Nusselt number

Nusselt Number (Heat Transfer Coefficient)

The behaviors of Jeffrey fluid parameter, Prandtl number, Eckert number and slip parameter
on Nusselt number have been observed through Figs. 30, 31 and 33. Figure30 depicts that
Nusselt number depresses when an increase in λ1 while opposite behavior observed by
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Fig. 33 Effect of L on Nusselt number
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Fig. 34 Effect of M on stream lines for M = 0

increasing of Pr and Ec from Figs. 31 and 32. Nusselt number diminishes when an increase
in L from Fig. 33. It is noticed that the effects of all the parameters on the Nusselt number is
almost similar to that of temperature. Moreover, the oscillatory behavior of Nusselt number
occurs due to sinusoidal travelling along the walls of the channel.
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Fig. 35 Effect of M on stream lines for M = 2
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Fig. 36 Effect of λ1 on stream lines for λ1 = 0.5

Trapping Phenomenon

Thephenomenonof trapping is another interesting topic in peristaltic transport. The formation
of an internally circulating bolus of the fluid by closed streamlines is called trapping and this
trapped bolus pushed ahead along the peristaltic wave. The effects of Hartmann number (M),
Jeffrey fluid parameter (λ1) and rotation parameter (�) are analyzed on stream lines from
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Fig. 37 Effect of λ1 on stream lines for λ1 = 2
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Fig. 38 Effect of � on stream lines for � = 0

Figs. 34, 35, 36, 37, 38 and 39. The size of trapped bolus depresses with increasing values of
M from Figs. 34 and 35. The size of trapped bolus diminishes as the higher values of λ1 in
Figs. 36 and 37 while the same behavior observed when an increase in � from Figs. 38 and
39.
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Fig. 39 Effect of � on stream lines for � = 5

Table 1 Comparison of pressure
rise with volume flow rate for
fixed a = 0.7, b = 1.2, d = 2,
M = 0.1, φ = π

6 , λ1 = 0.4,�
= 0.5

Q Kothandapani
and Srinivas [27]
When L = 0 and
� = 0

Present workwhen
L = 0.02

−1 9.78172 11.208

−0.5 7.41007 8.24353

0 5.03843 5.27907

0.5 2.66679 2.3146

1 0.295142 −0.649862

1.5 −2.0765 −3.61433

2 −4.44815 −6.57879

2.5 −6.81789 −9.54326

3 −9.19143 −12.5077

Tables1 and 2 show the comparison of the present solution in limiting case of obtained
results with the ones from the open literature for some particular values of the governing
parameters and found to be good agreement with the existing literature.

Concluding Remarks

A mathematical model under long wavelength and low Reynolds number approximations is
presented to study the influence of heat transfer analysis on MHD peristaltic transport of a
Jeffrey fluid in an asymmetric channel with velocity slip condition. Analytical solutions are
obtained for the stream function, axial velocity, temperature, pressure gradient, pressure rise,

123



3226 Int. J. Appl. Comput. Math (2017) 3:3201–3227

Table 2 Comparision of axial
velocity for fixed a = 0.4, b =
0.5, d = 2, Q = 2, M = 1, φ =
π
3 , λ1 = 0.4,� = 0.5

Y Kothandapani and
Srinivas [27] when
L = 0 and � = 0

Present workwhen
L = 0.02

−1.7707 −1 −0.9777

−1.3 −0.4361 −0.4196

−0.9 −0.1817 −0.1897

−0.5 −0.0657 −0.0906

−0.1 −0.0598 −0.0857

0.1 −0.0966 −0.1166

0.5 −0.2611 −0.2597

0.9 −0.5834 −0.5595

1.2161 −1 −0.9777

and shear stress. The behaviors of the flow characteristics are analyzed through graphs. A
comparative study is made for axial velocity and pressure rise through tables.

1. The axial velocity for the MHD fluid is less when compared with hydrodynamic fluid in
the central part of the channel.

2. The temperature depresses with increasing of slip parameter.
3. The temperature enhances as the larger values of Prandtl number and Eckert number.
4. The magnitude of pressure gradient enhances with increasing of M, b and Q.
5. The magnitude of shear stress at the upper wall in a symmetric channel is greater than in

an asymmetric channel.
6. If L = 0 and in the absence of heat transfer, our results are in good agreement with

Abd-Alla and Abo-Dahab [23].
7. The size of the trapped bolus enhances as the effect of Hartmann number and Jeffrey

fluid parameter increases.
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