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Abstract Magnetohydrodynamic flow and heat transfer over a stretching sheet with a vari-
able thickness in a rotating fluid with Hall current is investigated. Both analytical and
numerical methods are employed to solve the governing coupled nonlinear differential equa-
tions. The analytical solutions are obtained through the optimal homotopy analysis method
where the numerical solutions are computed by a second-order finite difference scheme. The
solutions for the non-dimensional velocity and temperature fields are obtained and presented
graphically for various physical parameters. The accuracy of the analytical solution is veri-
fied by plotting the residual errors and by comparing solutions with available results in the
literature for some special cases. The Hall current gives rise to a cross flow. The rotating
fluid frame and the wall transpiration (suction/injection) can have strong effects on the shear
stress and the Nusselt number.

Keywords MHDflow ·Rotating fluid ·Hall current ·Wall transpiration ·Optimal homotopy
analysis method · Finite difference method
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f, h Dimensionless velocities or real functions
J Current density vector
K Thermal conductivity
K∞ Thermal conductivity of the fluid far away from the sheet
l Characteristic length
m Hall effect parameter
Mn Magnetic parameter
n Velocity power index parameter
ne Electron number density
Nux Nusselt number
Pr Prandtl number
pe Electronic pressure
Rex Local Reynolds number
r Wall temperature parameter
�T Sheet temperature
T Temperature
Tw Temperature of the plate
T∞ Ambient temperature or temperature away from the wall
u, v, w Velocity components in the x-, y- and z-directions
Uw(x) Stretching velocity
U0 Reference velocity
V Velocity vector
x, y, z Cartesian coordinates

Greek symbols

η, ξ Similarity variables
α Wall thickness parameter
� Angular velocity
β Fluid rotation parameter β = 4�/ [(n + 1) ρU0]
θ Dimensionless temperature θ = (T − T∞) / (Tw − T∞)

ν Kinematic viscosity away from the sheet
ρ Constant fluid density
σ Electric conductivity
μ Dynamic viscosity
ψ Stream function
φ Kummers’ function

Subscripts

∞ Condition at infinity
w Condition at the wall

Introduction

The study of boundary layer flow and heat transfer over a stretching sheet is of interest as
it occurs in a variety of engineering and technological processes. These processes include
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cooling of an infinite metallic plate in a cooling bath, extrusion of polymers involving cooling
of a molten liquid, drawing and tinning of copper wires, paper production, glass blowing, and
heat treatment of materials travelling on conveyor belts. Some considerations must be made
to accomplish the desired quality in such processes, namely, selection of the liquid to be
used to cool the object of interest and the rate of stretching applied to the material. Processes
involving sudden solidification focus heavily on the rate of stretching. In these processes, we
come across nonlinear relations between stress and rate of strain. In science and technological
industries, frequently we find systems of coupled nonlinear boundary value problems. The
analysis of such systems of nonlinear boundary value problems is usually coupled and poses
challenges to mathematicians and physicists. Because of such complexities, there are many
problems still open in the literature and one such problem is the Navier–Stokes equations.
Traditionally, solutions of nonlinear boundary value problems strongly depend on the type
of nonlinearity, physical parameters, and the employed techniques. Crane [1] considered the
stretching sheet problem and presented the exact solutions. Later, various extensions were
carried out byWang [2], Miklavcic andWang [3], and Fang and Zhang [4]. There are several
analytical techniques available in the literature to solve nonlinear boundary value problems.
Some of the classical analytical techniques are Adomian’s decomposition method (ADM),
Lyapunov’s artificial small parameter method, the δ-expansion method, Chebyshev spectral
collocation method, Padé approximation, homotopy perturbation method (HPM), Laplace
decomposition method (LDM), homotopy analysis method (HAM), spectral-homotopy anal-
ysis method (SHAM), differential transformation method (DTM) and variational iteration
method (VIM), optimal homotopy analysis method (OHAM). Details of these methods can
be found in Dehghan et al. [5], Dehghan and Shakeri [6], Lyapunov [7], Karmishin et al. [8],
Khater et al. [9], John [10], Hayat et al. [11], He [12], Khan [13], Tan and Abbasbandy [14],
Liao [15–18], Fan and You [19], Hayat et al. [20–23], Shehzad et al. [24], Farooq et al. [25]
and Motsa et al. [26]. In particular, the homotopy analysis method logically contains tradi-
tional non-perturbation techniques, such as Adomian’s decomposition method, Lyapunov’s
artificial small parameter method, and the δ-expansion method. Hence it can be regarded as a
unified or generalized theory of these three methods. This method also provides a special way
to control and adjust the convergence region and rate of solution series of nonlinear problems.
Liao [17] observed that HAM cannot always guarantee the convergence of approximation
series of nonlinear equations in general and to overcome this restriction, he introduced non-
zero auxiliary parameter c0 (convergence-control parameter) to construct a two-parameter
family of equations to gain better approximations and the method is called OHAM. Further,
Motsa et al. [26] proposed a spectral-homotopy analysis method (SHAM) which is a modifi-
cation of the homotopy analysis method (HAM) and the basic idea of this method is to blend
in HAM with the Chebyshev spectral collocation method.

In contrast to the above-mentioned analytical/semi-analytical methods for finding stable
solutions, for certain class of systems, researchers have developedmany prominent numerical
methods. To mention a few, the shooting method, finite difference approximations, finite
element method, Crank–Nicolson method and Keller-box method have been employed (see
Meade et al. [27], Cebeci and Bradshaw [28], Keller [29], Vajravelu and Prasad [30], Abbasi
et al. [31], Sheikholeslami et al. [32], and Hayat et al. [33]). One of the notable advantages of
the Keller-box method over the other methods is that it allows easy programming for finding
the solution of a large number of coupled equations with second-order accuracy along with
arbitrary (non-uniform) spacing for discretization in the x- and y-directions.

The main objective of this paper is to solve the system of coupled nonlinear boundary
value problemwhich arises in themathematicalmodeling ofMHDflow and heat transfer over
a slender permeable elastic sheet in a rotating fluid with Hall current. The semi-analytical
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method OHAM and the second-order finite difference scheme known as the Keller-box
method are used. The study of the MHD flow in a rotating environment includes the effect
of Coriolis forces, thermal convection current, and Hall current. It is generally admitted that
the Coriolis force due to the earth’s rotation has a strong influence on the hydromagnetic
flow in the earth’s liquid core. Several authors have examined the fluid dynamics of rotating
systems under different geometry due to its various applications such as the compressor,
wind turbine, jet engine, pumps, large-scale atmospheric and oceanic flows (see Wang [34],
Abbas et al. [35]). The present work aims to look into the enhancement in the transport
phenomena due to an increase in temperature (e.g. Grubka and Bobba [36], Ali [37] and Chen
[38], Chaudhary and Kumar Jha [39]) by considering a special type of nonlinear stretching
uw (x) = U0 (x + b)n at y = A (x + b)(1−n)/2 for different values of n. That is, a stretching
sheet with a variable thickness, as in Fang et al. [40], Khader and Megahed [41] and Hayat
et al. [42,43]. This study is also pertinent to vibration of orthotropic plates. The governing
nonlinear coupled equations for flow and heat transfer are reduced to a set of nonlinear
coupled differential equations through a suitable similarity transformation and are solved for
various values of physical parameters by the OHAM and Keller-box method. We may find
out from the numerical results that under what conditions the fluid flow can be appreciably
influencedby thephysical parameters. Thepresent findingswill not only beuseful to industrial
applications but also help a basic understanding of the physics of the problem.

Mathematical Formulation

Consider a steady, laminar boundary layer flow of a viscous, incompressible and electrically
conducting fluid induced by permeable stretching of a surface in the x-direction with a
variable thickness. The surface coincides with the plane at y = A (x + b)(1−n)/2, and is
being stretched with a nonlinear velocityUw(x) and temperature Tw(x). The fluid is rotating
with a constant angular velocity � about the y-axis. The sheet is in the plane z = 0. Initially,
the fluid and the plate rotate synchronously with uniform angular velocity �. The fluid is
then set into motion with uniform acceleration along the x-axis. The stretching nonlinear
distance x is also rotating with the fluid. The flow is three dimensional due to the presence
of the Coriolis force. The positive x-coordinate is measured along the stretching sheet in
the direction of motion and the positive y-coordinate is measured normal to the sheet in the
upward direction (see Fig. 1 for details).

An externalmagnetic field is applied in the positive y-directionwith a constant flux density
B0. In general, for an electrically conducting fluid,Hall current affects the flow in the presence
of a strong magnetic field. The effect of Hall current gives rise to a cross flow and hence
the flow becomes three-dimensional. We assume that there is no variation of flow quantities
in the z-direction. This assumption is valid for a surface of infinite extent. The generalized
Ohm’s law including Hall currents in the usual notation is given by

J = σ

(
E + V × B − 1

ene
J × B + 1

ene
∇ pe

)
. (1)

HereJ = (
Jx , Jy, Jz

)
is the current density vector,E is the intensity vector of the electric field,

V is the velocity vector, B = (0, B0, 0) is the magnetic induction vector, σ is the electrical
conductivity, and pe is the electronic pressure. Since there is no applied or polarization
voltage is imposed on the flow we have, E = 0. For weakly ionized gases, the electron
pressure gradient and the ion slip effects can be neglected. The generalized Ohm’s law
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Fig. 1 a Schematic diagram of the stretching sheet with variable thickness model; b schematic representation
of the physical model and co-ordinate system

under the above conditions for electrically non-conducting sheet Jy = 0. Hence Eq. (1)
reduces to

Jx = σ B0 (x)(
1 + m2

) (mu − w) and Jz = σ B0 (x)(
1 + m2

) (u + mw) . (2)

Here u, v and w are the x-, y- and z-components of the velocity vector V, and m is the Hall
parameter. The following assumptions are made.

1. Joule heating and viscous dissipation are neglected.
2. The fluid is isotropic, homogeneous, and has constant viscosity and electric conductivity.
3. The wall is impermeable (vw = 0).
4. The sheet is being stretched with a velocityUw(x) = U0 (x + b)n where U0 is constant,

b is the physical parameter related to stretching sheet, and n is the velocity exponent
parameter.

5. The sheet is not flat and is defined as y = A (x + b)(1−n)/2 , where the coefficient A is
chosen as small so that the sheet is sufficiently thin, to avoid pressure gradient along the
sheet (∂p/∂x = 0).

Under these assumptions, along with the boundary layer approximations, the governing
equations can be written as (for details see Abbas et al. [35] and Chaudhary and Kumar Jha
[39]):
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ux + vy = 0, (3)

ρ
(
uux + vuy

) − 2�w = μuyy − σ B2
0 (x)(

1 + m2
) (u + mw) , (4)

ρ
(
uwx + vwy

) + 2�u = μwyy + σ B2
0 (x)(

1 + m2
) (mu − w) , (5)

ρcp
(
uTx + vTy

) = kTyy . (6)

Here, the subscript denotes partial differentiation with respect to the independent variable, ρ
is fluid density,μ dynamic viscosity,Cp is the specific heat at constant pressure, T is the tem-
perature, k thermal conductivity. A special form of a magnetic field B2

0 (x) = B2
0 (x + b)n−1

is considered to facilitate the similarity transformation. The appropriate boundary conditions
for the problem are

u(x, y) = Uw = U0(x + b)n, v(x, y) = 0
w(x, y) = 0, T (x, y) = Tw = C

l (x + b)r

}
at y = A(x + b)1−n/2,

u(x, y) → 0, w(x, y) → 0, T (x, y) → T∞ as y → ∞, (7)

where C is a constant and r is the wall temperature. It should be noted that the positive and
negative value of n indicate cases of surface stretching and surface shrinking, respectively.
Now we transform the system of Eqs. (3)–(6) into a dimensionless form. To this end, let us
introduce a dimensionless similarity variable

η = y

√
n + 1

2

U0

ν
(x + b)

n−1
2 . (8)

Now in termsofη,wedefine the dimensionless stream functionψ(x, y) and the dimensionless
temperature distribution θ (η) as

ψ(x, y) = f (η)

√
2

n + 1
νU0 (x + b)n+1, θ (η) = T − T∞

Tw − T∞
, (9)

whereψ(x, y) identically satisfies the continuity Eq. (3).With the help of Eq. (9), the velocity
components can be written as

u = Uw f ′(η), v = −
√

ν
n + 1

2
U0(x + b)n−1

[
f (η) + η f ′(η)

(
n − 1

n + 1

)]
, w = Uwh(η).

(10)
Here a prime denotes differentiation with respect to η.With the use of Eqs. (8)–(10), Eqs. (4)–
(6) and (7) can be reduced to

f ′′′ + f f ′′ − 2n

(n + 1)
f ′2 + βh − 2Mn(

1 + m2
)
(1 + n)

(
f ′ + mh

) = 0, (11)

h′′ + f h′ − 2n

n + 1
f ′h − β f ′ + 2Mn(

1 + m2
)
(1 + n)

(
m f ′ − h

) = 0, (12)

θ ′′ + Pr

(
f θ ′ − 2r

n + 1
θ f ′

)
= 0, (13)

f (α) = α
1 − n

1 + n
, f ′ (α) = 1, h (α) = 0, θ (α) = 1, θ(∞)=0, f ′(∞)=0, h(∞) = 0.

(14)
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The non-dimensional parametersMn, β and Pr, respectively denote the magnetic parameter,
the fluid rotation parameter, and the Prandtl number and are defined as follows:

Mn = σ B2
0

ρU0
, β = 4�

(n + 1) ρU0
and Pr = ν

α
.

Here, α = A
√

(n + 1)U0/(2ν) is the wall thickness parameter and η = α =
A
√

(n + 1)U0/(2ν) indicates the plate surface. In order to facilitate the computation, we
define f (ξ) = f (η − α) = f (η), h(ξ) = h (η − α) = h(η) and θ(ξ) = θ(η − α) = θ(η).
Now Eqs. (11)–(13) become

f ′′′ + f f ′′ − 2n

(n + 1)
f ′2 + βh − 2Mn(

1 + m2
)
(1 + n)

(
f ′ + mh

) = 0, (15)

h′′ + f h′ − 2n

(n + 1)
f ′h − β f ′ + 2Mn(

1 + m2
)
(1 + n)

(
m f ′ − h

) = 0, (16)

θ ′′ + Pr

(
f θ ′ − 2r

n + 1
θ f ′

)
= 0, (17)

and the corresponding boundary conditions are (n �= −1)

f (0) = α
1 − n

1 + n
, f ′(0) = 1, h(0) = 0, θ(0) = 1, θ(∞) = 0,

h(∞) = 0, f ′(∞) = 0 (18)

where the prime denotes differentiation with respect to ξ. When (α < 0 and n < 1) or
(α > 0 and n > 1), the surface is of a suction case, and when (α < 0 and n > 1) or
(α > 0 and n < 1), the surface is of injection (blowing) case. In general, injection (blowing)
tends to decrease the skin friction and Nusselt number, whereas suction acts in the opposite
manner. For all practical purposes, the important physical quantities of interest are the hori-
zontal skin frictionC f x , transverse skin frictionC f z and the Nusselt number Nux defined by

C fx =
2ν

(
uy

)
y=A(x+b)

1−n
2

U 2
w

= 2

√
n + 1

2Rex
f ′′(0),

C fz =
2ν

(
wy

)
y=A(x+b)

1−n
2

U 2
w

= 2

√
n + 1

2Rex
h′(0),

Nux =
(x + b)

(
Ty

)
y=A(x+b)

1−n
2

(Tw − T∞)
= −

√
n + 1

2Rex
θ ′(0), (19)

where Rex = Uw(x + b)/ν is the local Reynolds number.

Method of Solution

Semi-analytical Solution: Optimal Homotopy Analysis Method (OHAM)

Optimal homotopy analysis method has been employed to solve the nonlinear, system of
Eqs. (15)–(17) with boundary conditions (18). The OHAM scheme breaks down a nonlinear
differential equation into infinitely many linear ordinary differential equations whose solu-
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tions are found analytically. In the framework of the OHAM, the nonlinear equations are
decomposed into their linear and nonlinear parts described as follows.

In accordance with the boundary conditions (18), consider the base functions as
{exp (−nξ) for n ≥ 0}, then the dimensionless velocities f (ξ), h(ξ) and temperature θ(ξ)

can be expressed in a series form as follows

f (ξ) =
∞∑
n=0

ane
(−nξ), h(ξ) =

∞∑
n=0

bne
(−nξ) and θ(ξ) =

∞∑
n=1

cne
(−nξ)

where an, bn and cn are the coefficients. According to the solution expression and boundary
conditions (18), we assume the following.

a. Initial guesses for dimensionless velocities f (ξ), h(ξ) and temperature θ(ξ) (for detail
see Liao [18] and Fan and You [19]):

f0(ξ) = 1 − e−ξ + α
1 − n

1 + n
, h0(ξ) = 0 and θ0(ξ) = e−ξ . (20)

b. Choose linear operators L f , Lh and Lθ as follows:

L f = d3

dξ3
− d

dξ
, Lh = d2

dξ2
− d

dξ
and Lθ = d2

dξ2
− d

dξ
(21)

such that

L f [c1 + c2e
ξ + c3e

−ξ ] = 0, Lh[c4 + c5e
−ξ ] = 0 and Lθ [c6 + c7e

−ξ ] = 0,

where c′
i s (i = 1, 2, 3, 4, 5, 6, 7) are arbitrary constants.

c. Choose the auxiliary function as H f (ξ) = e−ξ , Hh(ξ) = e−ξ and Hθ (ξ) = e−ξ . Let us
consider the so-called zero-th order deformation equations as

(1 − q)L f

[
f̂ (ξ, q) − f0(ξ)

]
= qH f (ξ)hN f

[
f̂ (ξ, q), ĥ(ξ, q)

]
, (22)

(1 − q)Lh

[
ĥ(η, q) − h0(η)

]
= qHh(ξ)h̄Nh

[
ĥ(ξ, q), f̂ (ξ, q)

]
, (23)

(1 − q)Lθ

[
θ̂ (ξ, q) − θ0(ξ)

]
= qHθ (ξ)h̄Nθ

[
θ̂ (ξ, q), f̂ (ξ, q)

]
, (24)

with conditions
f̂ (0, q) = α 1−n

1+n , f̂ ′(0, q) = 1, f̂ ′(∞, q) = 0; ĥ(0, q) = 0, ĥ(∞, q) = 0; θ̂ (0, q) =
1, θ̂ (∞, q) = 0, where q ∈ [0, 1] is an embedding parameter, h̄ �= 0 is the convergence
control parameter and N f , Nh and Nθ are nonlinear operators defined as

N f = ˆf ′′′(ξ, q) + f̂ (ξ, q) f̂ ′′(ξ, q) −
(

2n

n + 1

)
f̂ ′2(ξ, q) + β ĥ(ξ, q)

− 2Mn(
1 + m2

)
(1 + n)

(
f̂ ′(ξ, q) + mĥ(ξ, q)

)
,

Nh = ĥ′′(ξ, q) + f̂ (ξ, q)ĥ′(ξ, q) −
(

2n

n + 1

)
f̂ ′(ξ, q)ĥ(ξ, q) − β f̂ ′(ξ, q)

+ 2Mn(
1 + m2

)
(1 + n)

(
m f̂ ′(ξ, q) − ĥ(ξ, q)

)

Nθ = θ̂ ′′(ξ, q) + Pr

(
f̂ (ξ, q)θ̂ ′(ξ, q) − 2r

n + 1
θ̂ (ξ, q) f̂ ′(ξ, q)

)
.
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From Eqs. (22)–(24), at q = 0 we have

L f

[
f̂ (ξ, 0) − f0(ξ)

]
= 0, Lh

[
ĥ(ξ, 0) − h0(ξ)

]
= 0 and Lθ

[
θ̂ (ξ, 0) − θ0(ξ)

]
= 0,

which imply that f̂ (ξ, 0) = f0(ξ), ĥ(ξ, 0) = h0(ξ) and θ̂ (ξ, 0) = θ̂0(ξ), respectively.

Whereas at q = 1 we have N f

[
f̂ (ξ, 1), ĥ(ξ, 1), θ̂ (ξ, 1)

]
= 0, Nh

[
ĥ(ξ, 1), f̂ (ξ, 1)

]
=

0 and Nθ

[
θ̂ (ξ, 1), f̂ (ξ, 1)

]
= 0 which implies that f̂ (ξ, 1) = f (ξ), ĥ(ξ, 1) = h(ξ) and

θ̂ (ξ, 1) = θ(ξ) respectively. Hence, by defining

fm(η) = 1

m!
dm f (ξ, q)

dξm

∣∣∣∣
q=0

, hm(ξ) = 1

m!
dmh(ξ, q)

dξm

∣∣∣∣
q=0

,

θm(ξ) = 1

m!
dmθ(ξ, q)

dξm

∣∣∣∣
q=0

.

We expand f̂ (ξ, q), ĥ(ξ, q) and θ̂ (ξ, q) by means of Taylor’s series as

f̂ (ξ, q) = f0(ξ) +
∞∑

m=1

fm(ξ)qm, ĥ(η, q) = h0(ξ) +
∞∑

m=1

hm(ξ)qm

and θ̂ (ξ, q) = θ0(ξ) +
∞∑

m=1

θm(ξ)qm . (25)

If the series (25) converges at q = 1, we get the homotopy series solution as

f (ξ) = f0(ξ) +
∞∑

m=1

fm(ξ), h(ξ) = h0(ξ) +
∞∑

m=1

hm(ξ) and

θ(ξ) = θ0(ξ) +
∞∑

m=1

θm(ξ). (26)

It should be noted that f (ξ), h(ξ) and θ(ξ) in Eq. (26) contain an unknown convergence
control parameter h̄ �= 0, which can be used to adjust and control the convergence region
and the rate of convergence of the homotopy series solution. The mth order deformation
equations and the conditions are

L f
[
fm(ξ) − χm fm−1(ξ)

] = H f (ξ)h̄ R f
m(ξ), Lh

[
hm(ξ) − χmhm−1(ξ)

]
= Hh(ξ)h̄ Rh

m(ξ), and

Lθ

[
θm(ξ) − χmθm−1(ξ)

] = Hθ (ξ)h̄ Rθ
m(ξ).

Here fm(0) = 0, f ′
m(0) = 0, f ′

m(∞) = 0, hm(0) = 0, θm(∞) = 0, hm(∞) =
0, f ′

m(∞) = 0, with

R f
m = f ′′′

m−1(ξ) +
m−1∑
k=0

f ′′
m−1−k fk −

(
2n

n + 1

) m−1∑
k=0

f ′
m−1−k f

′
k + βhm−1

− 2Mn(
1 + m2

)
(1 + n)

f ′
m−1 − 2mMn(

1 + m2
)
(1 + n)

hm−1

Rh
m = h′′

m−1(ξ) +
m−1∑
k=0

h′
m−1−k fk −

(
2n

n + 1

) m−1∑
k=0

f ′
m−1−khk − β f ′

m−1
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Table 1 Comparison of f ′′(0) and CPU time (s) incurred to evaluate the mth order approximation by exact
residual error and average residual error when β = 0.2, r = 1.0,m = 1.0, α = 0.5, n = 1.0

Order m Using exact residual error Using average residual error

f ′′(0) CPU time (s) f ′′(0) CPU time (s)

1 −1.109050 3.33 −1.033100 0.95

2 −1.106250 16.44 −1.106840 2.76

3 −1.116280 19.89 −1.113800 4.79

4 −1.114780 24.91 −1.115080 7.45

5 −1.114780 42.38 −1.116840 10.29

6 −1.118290 69.46 −1.117510 20.77

7 −1.117400 84.47 −1.118240 29.66

8 −1.118610 104.31 −1.118640 43.81

+ 2mMn(
1 + m2

)
(1 + n)

f ′
m−1 − 2Mn(

1 + m2
)
(1 + n)

hm−1

Rθ
m = θ ′′

m−1(ξ) + Pr
m−1∑
k=0

θ ′
m−1−k fk−

(
2r

n+1

)
Pr

m−1∑
k=0

f ′
m−1−kθk and χm =

{
0,m ≤ 1
1,m > 1

.

Now, we evaluate the error and minimize it over h in order to obtain the optimal value
of h with the least possible error. In the process of error analyses two different methods
are employed, namely, the exact residual error and the average residual error. For differ-
ent order approximations, the CPU time required for evaluation of f ′′(0) is noted. It is
evident that the values of f ′′(0) evaluated using the two methods are almost the same
(for details see Table 1). As for CPU time is concerned, the average residual error needs
much less time compared with that for the exact residual error.

At the mth order deformation equation, the exact residual error is given by

Ê f
m

(
h̄
) =

∞∫
0

(
N f

[
m∑

n=0

fn(ξ)

])2

dξ, Êh
m

(
h̄
) =

∞∫
0

(
Nh

[
m∑

n=0

hn(ξ)

])2

dξ, and

Êθ
m

(
h̄
) =

∞∫
0

(
Nθ

[
m∑

n=0

θn(ξ)

])2

dξ.

But in practice the evaluation of Ê f
m(h̄), Êh

m(h̄) and Êθ
m(h̄) is much time consuming so

instead of the exact residual error, we use the average residual error, which is defined as

E f
m

(
h̄
) = 1

M + 1

M∑
k=0

(
N f

[
m∑

n=0

fn(ξk)

])2

,

Eh
m

(
h̄
) = 1

M + 1

M∑
k=0

(
Nh

[
m∑

n=0

hn(ξk)

])2

and

Eθ
m

(
h̄
) = 1

M + 1

M∑
k=0

(
Nθ

[
m∑

n=0

θn(ξk)

])2
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where ξk = k�ξ = k/M, k = 0, 1, 2, . . . , M . Now the error function E f
m

(
h̄
)
, Eh

m

(
h̄
)

and Eθ
m

(
h̄
)
is minimized with respect to h̄ to obtain the optimal value of h̄. For the mth

order approximation the optimal value of h̄ for f, h and θ is given by dE f
m

(
h̄
)
/dh =

0, dEh
m

(
h̄
)
/dh = 0 and dEθ

m

(
h̄
)
/dh = 0, respectively. Evidently, lim

m→∞ E f
m

(
h̄
) =

0, lim
m→∞ Eh

m

(
h̄
) = 0 and lim

m→∞ Eθ
m

(
h̄
) = 0 correspond to a convergent series solution.

Substituting this optimal value of h̄ into Eq. (26), we get the approximate solutions of
Eqs. (15)–(17), which satisfy the conditions given in Eq. (18).

Numerical Procedure

For accuracy of the OHAM solution, the highly nonlinear and coupled ordinary differential
equations with variable coefficients are solved numerically via the Keller-box technique. The
boundary value problem given in Eqs. (15)–(17) is reduced to a system of seven simultaneous
ordinary differential equations of first order for seven unknowns. To solve this system of first-
order equations, we require seven initial conditions while we have only two initial conditions
on f and one initial condition for each of θ and h. The three initial conditions f ′′(0), h′(0)
and θ ′(0) are not known. However, the values of f ′(ξ), h(ξ) and θ(ξ) are known as ξ → ∞.
We employ the Keller-box scheme where these three boundary conditions are utilized to
produce three unknown initial conditions at ξ = 0. To select ξ∞, we begin with some initial
guess value of the unknown initial conditions and solve the boundary value problem to
obtain f ′′(0), h′(0) and θ ′(0). Let α0, β0 and γ0 be the correct values of f3(0), h2(0) and
θ2(0), respectively, and integrate the system using the fourth order Runge–Kutta method and
denote the values of f3(0), h2(0) and θ2(0), respectively. The solution process is repeated
with another larger value of ξ∞ until two successive values differ only by a small quantity
within the desired accuracy. The last value of ξ∞ is chosen as an appropriate value for that
particular set of parameters. Then solve the system of equations by the Keller-box method;
for details see Cebeci and Bradshaw [28], Keller [29], and Vajravelu and Prasad [30]. For the
sake of brevity, the details of the numerical solution procedure are not presented here. For
numerical calculations, a uniform step size of �ξ = 0.01 is found to be satisfactory and the
shooting error is controlled with an error tolerance of 10−6 in all cases.

In order to validate the two methods used in this study and to judge the accuracy of the
present analysis, the horizontal skin friction f ′′(0), the transverse skin friction h′(0) and wall
temperature gradient θ ′(0) are compared with the previously published results of Andersson
et al. [44] and Fang et al. [40], Khader and Megahed [41], Grubka and Bobba [36], Ali
[37], Chen [38], Wang [34], and Abbas et al. [35] for several special cases and the results
are all found to be in good agreement: The results are presented in Tables 2, 3, 4 and 5.
Results obtained from this method are discussed and compared with OHAM in “Results and
Discussion” section.

Exact Solutions for Some Special Cases

Here we present the exact solutions for certain special cases and these solutions serve as a
baseline for computing general solutions through numerical schemes. We note that in the
absence of rotation, magnetic field, and Hall current, Eq. (15) reduces to those of Fang et
al. [40].
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Table 2 Comparison of skin friction− f ′′(0) for different values ofMn with β = r = m = α = 0.0, n = 1.0

Mn Exact solution Andersson et al.
[44] n = 1.0

Present work Relative error

OHAM Keller box
method

Andersson et al.
[44] n = 1.0

OHAM Keller box
method

0.0 1.0 1.0 0.99988 0.999821 0 0.0120014 0.0179032

0.5 1.2247448 1.224 1.22476 1.224769 0.0608127 0.0012411 0.0019759

1.0 1.4142135 1.414 1.41424 1.414242 0.0150967 0.0018738 0.0020152

1.5 1.5811388 1.581 1.58118 1.581187 0.0087785 0.0026056 0.0030483

2.0 1.7320508 1.732 1.73209 1.732098 0.0029329 0.0022632 0.002725

Absence of Rotation and Hall Current for the Case of a Flat Plate
(i.e. n = 1.0, β = m = 0.0 and b = 0.0)

In the limiting case of n = 1 and m = 0, the boundary layer flow and heat transfer problem
degenerates. The solution for the velocity in the presence of a magnetic field turns out to be

f (ξ) = 1−e−λξ

λ
and f ′ (ξ) = e−λξ whereλ = √

1 + Mn and the solution for the temperature
field can be written as a two-parameter solution in terms of confluent hypergeometric series,
namely, Kummer’s function, φ, as:

θ(ξ) = e− Pr
β

ξ φ (a1, b1, z)

φ (a1, b1,−a0)
,where a0 = Pr

β2 , a1 = a0 − r, b1 = 1 + a0, z = −a0e
−βξ .

Absence of Rotation, Magnetic Field, Hall Currents, Heat Transfer But
in the Presence of Variable Boundary Thickness
(i.e. β = 0.0, Mn = m = 0.0, n �= 1, r = 0.0)

When n = −1/3, Eq. (15) becomes f ′′′ + f f ′′ + f ′2 = 0 with the boundary conditions
f (0) = 2α, f ′(0) = 1 and f ′(∞) = 0. The solution is

f (ξ) =
√
2 + 4α2tanh

[√
2 + 4α2

2
ξ + tanh−1

(
2α√

2 + 4α2

)]
.

When n = −1/2, Eq. (15) becomes f ′′′ + f f ′′ + 2 f ′2 = 0 with the boundary
conditions f (0) = 3α, f ′(0) = 1, and f ′(∞) = 0. This equation is equivalent to
1
f

d
dξ

[
f 3/2 d

dξ

(
f −1/2 f ′ + 2

3 f 3/2
)] = 0, of which the solution is

η + D = 1

2d2
ln

[
f + d

√
f + d2(

d − √
f
)2

]
+

√
3

d2
tan−1

(
2
√

f + d

d
√
3

)
,

where d =
[
(3α)3/2 + 3

2
√
3α

]1/3
and D = 1

2d2
ln

(
3α + d

√
3α + d2

)
(
d − √

3α
)2

+
√
3

d2
tan−1

(
2
√
3α + d

d
√
3

)
.
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Table 4 Comparison of skin friction − f ′′(0) and −h′(0) for different values of β with Mn = α = r = m =
0.0

β Wang [34] Abbas et al. [35]
for ξ = 1.0

Present results

OHAM Keller-box

− f ′′(0) −h′(0) − f ′′(0) −h′(0) − f ′′(0) −h′(0) − f ′′(0) −h′(0)

0.0 1.0000 0.0000 1.0000 0.0000 1.000000 0.000000 1.0000000 0.0000000

0.5 1.1384 0.5128 1.1384 0.5128 1.138391 0.512776 1.1384213 0.5128192

1.0 1.3250 0.8371 1.3250 0.8371 1.325043 0.837087 1.3250124 0.8371357

Results and Discussion

The problem of MHD flow and heat transfer over a slender elastic sheet in a rotating fluid
with Hall effect is solved analytically as well as numerically. The analytical solutions of the
system of ordinary differential equations subject to the boundary conditions are obtained
through the optimal homotopy analysis method (OHAM) and Keller-box method. Here the
OHAM has been used as a benchmark tool to test the accuracy, and hence the reliability of
the Keller-box results.

In order to get clear a insight into the physical problem, numerical computations have
been carried out for different values of flow parameters such as the Hall parameter m, the
fluid rotation parameter β, the power index parameter n, the variable thickness α, the wall
temperature parameter r , the Prandtl number Pr, and the magnetic parameter Mn. Exact
solutions are obtained for the special cases, such as the absence of rotation and Hall current
for the case of a flat surface (i.e. n = 1, β = m = b = 0). The graphical representation
of the numerical results for the horizontal velocity profile f ′(ξ), the transverse velocity
profile h(ξ), and the temperature field θ(ξ) for different values of physical parameters are
presented in Figs. 2, 3, 4, 5, 6 and 7, and residual error profiles are shown for f ′(ξ), h(ξ)

and θ(ξ) in Fig. 8. It can be seen that both f ′(ξ) and θ(ξ) decrease monotonically and tend
to zero asymptotically as the distance from the boundary increases. In the case of h(ξ), we
find negative profiles which indicate that this component is transverse to the main flow in a
clockwise direction. The computed numerical values for the horizontal skin friction f ′′(0),
the transverse skin friction h′(0) and the rate of heat transfer θ ′(0) are tabulated in Table 6.
From the experimental studies it has been noted that at 20◦C the Prandtl number for air is
0.72, at 300◦C the Prandtl number for water is 1.09, at 40◦C the Prandtl number for ammonia
is 2.0 and at 417◦C the Prandtl number for molten salt is 5.09 (see for details Kothandaraman
and Subramanyan [45]). Therefore, the values of Pr chosen in Table 6 range from 0.01 to
1000, which supports the experimental study; the values of other physical parameter are
chosen arbitrarily.

Figure 2a–c exhibit the effects of α and n on f ′(ξ), θ(ξ) and h(ξ). It is observed that
both the fluid velocity and the temperature rise as α and n increase, and as a result, both the
momentum boundary layer and thermal boundary layer thicknesses increase and the opposite
is true for cross flow. As n increases, the stretching velocity of the sheet increases, which
produces deformation in the fluid causing the fluid velocity to increase as well. This shows
that there is a significant effect of α and n (for all values of n, positive, zero or negative) on the
flow pattern. Here, it may be observed that the sheet is shrinking along the axis for negative
n, and is stretching for positive n. Moreover, the variation of f ′′(0)mainly depends on both α
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Fig. 2 a Horizontal velocity
profiles for different values of n
and α with Pr = 2.0, Mn = 0.5,
B = 0.2, m = 1.0, and r = 1.0;
b temperature profiles for
different values of n and α with
Pr = 2.0, Mn = 0.5,
β = 0.2,m = 1.0, and r = 1.0; c
transverse velocity profiles for
different values of α and n with
Pr = 2.0, β = 0.2,m = 1.0, r =
1.0, and Mn = 0.5

(a)

(b)

(c)

123



Int. J. Appl. Comput. Math (2017) 3:3175–3200 3191

Fig. 3 a Horizontal velocity
profiles for different values of β

and n with Pr = 2.0,m =
1.0 α = 0.2, r = 1.0, and
Mn = 1.0; b temperature profiles
for different values of n and β

with Pr = 2.0,m = 1.0,
Mn = 0.5, α = 0.2, and r = 1.0;
c transverse velocity profiles for
different values of β and n with
Pr = 2.0,
α = 0.2,m = 1.0, r = 1.0, and
Mn = 1.0

(b)

(c)

(a)
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Fig. 4 a Horizontal velocity
profiles for different values ofMn
with Pr = 2.0, m = 1.0, β =
0.2, α = 0.2, r = 1.0, and
n = 2.0; b temperature profiles
for different values ofMn with
Pr = 2.0, m = 1.0, β = 0.2, α =
0.2, r = 1.0, and n = 2.0; c
transverse velocity profiles for
different values ofMn and m with
Pr = 2.0,
β = 0.2, α = 0.2, r = 1.0, and
n = 2.0

(a)

(c)

(b)
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Fig. 5 a Horizontal velocity
profiles for different values of m
with Pr = 2.0, Mn = 0.5, β =
0.2, α = 0.2, r = 1.0, and
n = 2.0; b temperature profiles
for different values of m and n
with Pr = 2.0, Mn = 0.5,
β = 0.0, α = 0.2, r = 1.0; c
transverse velocity profiles for
different values of β and m with
Pr = 2.0, Mn = 0.5,
α = 0.2, r = 1.0, and n = 2.0

(a)

(b)

(c)

and n. For given values of α and n in the range of (α < 0 and n < 1) or (α > 0 and n > 1),
the skin friction f ′′(0) and wall temperature gradient θ ′(0) decreases when α = −0.5,−1.0
and n = 2.0, 5.0. In other words,

∣∣ f ′′(0)
∣∣ and ∣∣θ ′(0)

∣∣ become higher for smaller values of α

and higher values of n in the range of (α < 0 and n > 1) or (α > 0 and n < 1). This can be
explained by the boundary condition f (0) = α (1 − n) / (1 + n). In this case we obtained
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Fig. 6 Temperature profiles for different values of r and Pr with m = 1.5, β = 0.2, α = 0.2, Mn = 0.5, and
n = 2.0

Fig. 7 Comparison of OHAM and Keller-Box method for f ′(ξ) for different values of β with Pr = 2.0,
m = 1.0, α = 0.2, r = 1.0, Mn = 1.0, and n = 2.0

f (0) > 0 (injection/blowing process) when α = −0.5,−1.0 and n = 2.0, 5.0, opposite
results may be obtained in the case of f (0) < 0 (suction process) when α = 2.0, 5.0 and
n = 2.0, 5.0 (see Table 6 for details). In addition to this, for α = 0 or n = 1 the boundary
condition reduces to f (0) = 0, which indicates an impermeable surface.

Figure 3a–c illustrate the effect of β on f ′(ξ), θ(ξ) and h(ξ). As β increases, the velocity
decreases and the reverse trend is observed in the case of θ(ξ); see Fig. 3a, b. Influence of the
rotation parameter on the flow reversal is presented in Fig. 3c. Here, the profiles are parabolic
in nature, in particular, as the value of β is increased, the transverse velocity profiles maintain
their form, but are shifted downward. Figure 4a–c elucidate the effect of Mn on f ′(ξ), θ(ξ)

and h(ξ). Figure 4a shows the effect of Mn on the fluid velocity. It is well known that the
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Fig. 8 a Residual error of
horizontal velocity profile at
Pr = 5.09,
β = 0.5, r = 2.0, α = 2.0,
Mn = 0.2, m = 0.5, and
n = 2.0; b residual error of
transverse velocity profile at
Pr = 5.09,
β = 0.5, r = 2.0, α = 2.0,
Mn = 0.2,m = 0.5, n = 2.0; c
residual error of temperature
profile for different values of Pr
at β = 0.5, r = 2.0, α = 2.0,
Mn = 0.2,m = 0.5, and n = 2.0

(a)

(b)

(c)

velocity will decrease with an increase in the magnetic field parameter owing to an increase
in the Lorentz drag force that opposes the fluid motion, and is quite opposite in the case of
heat transfer; see Fig. 4b. Here, the thickness of the momentum boundary layer decreases
while the thermal boundary layer increases with an increase in the strength of the applied
magnetic field. It is interesting to note from Fig. 4c that the cause of the transverse velocity
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spikes near the origin is the parameter Mn. As Mn increases, the transverse velocity profiles
vary steadily from negative to positive and shift upwards. We explore the effect of increasing
values of m on f ′(ξ), θ(ξ) and h(ξ) in Fig. 5a–c. Figure 5a shows the increase in f ′(ξ) and
decrease in θ(ξ) as shown in Fig. 5b. This is attributed to the fact that the effective conductivity[
σ/

(
1 + m2

)]
diminishes as m increases. This in turn reduces the magnetic damping force

on f ′(ξ) and hence increases the propelling effect on f ′(ξ). Furthermore, the spikes near the
origin are observed in Fig. 5c. The transverse flow in the z-direction initially increases with
m and reaches maximum when m = 1.5 and then dips in the absence of rotation effect. For
large values of m, the term

[
1/

(
1 + m2

)]
becomes very small and hence the resistive effect

of the magnetic field is diminished. The presence of rotation effect results in a downward
shift in the transverse velocity profiles and reaches nadir at m = 5.0. The impact of Pr and
r on θ(ξ) is presented in Fig. 6. It is found that θ(ξ) is a decreasing function of Pr implying
a decrease in the thermal conductivity k; consequently a decrease in the thermal boundary
layer is observed. Therefore, cooling of the heated sheet can be improved by choosing a
coolant with a larger Pr. Similar phenomenon is observed for increasing values of r and this
is because when r > 0, heat flows from the stretching sheet into the ambient medium and,
when r < 0, the temperature gradient is positive and heat flows into the stretching sheet from
the ambient medium.

Figure 7 presents evidence to support the agreement of the OHAMandKeller boxmethod.
It is clear from the figure that the solutions by both methods are compatible. Further evidence
is provided in Tables 2, 3, 4 and 5.

Finally, the residual errors for f ′(ξ), h(ξ) and θ(ξ) are presented in Fig. 8a–c, which
demonstrate the accuracy and convergence of the OHAM. These figures show that an eighth-
order approximation may yield the best accuracy for the present model.

Table 6 shows the results for f ′′(0), h′(0) and θ ′(0) corresponding to different values of
the physical parameters. It is interesting to note that f ′′(0) decreases for negative values of α

and increases for positive values. This is because of the induced momentum transfer, which
will accelerate fluid particles downstream. This phenomenon is true even in the case of h′(0)
and θ ′(0).

Conclusions

Steady MHD flow and heat transfer over a slender permeable elastic sheet in a rotating fluid
with Hall current has been examined. Optimal homotopy analytic solutions (OHAM) of the
boundary value problemwere obtained with the aid of the packageMathematica. An efficient
implicit finite difference scheme based on the Keller box method was employed to compute
the numerical solutions. A few interesting conclusions have been observed as summarized
below.

1. The analytic and numerical solutions are found to be in excellent agreement. The solutions
also agree with some of the results available in the literature and with the exact solution
for the special case of a flat sheet.

2. The nature of the elastic sheet depends on a variable thickness parameter, and a velocity
power index parameter n, which leads to wall transpiration (suction or injection).

3. The elastic sheet with a variable thickness has a direct impact on the physical properties
of the sheet such as shrinking and stretching along the axis, corresponding to negative
and positive n.
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4. An increase in the wall thickness parameter leads to an increase in the skin-friction
coefficient in the x-direction and the Nusselt number for n > 1.

5. Hall current can have a significant effect on the shear stress and the Nusselt number.
For large values of the Hall parameter m, the resistive effect of the magnetic field is
reduced, as a result, the skin-friction coefficient in the x-direction increases and the wall
temperature gradient decreases.
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