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Abstract This paper deals with the diffraction of SH-waves by a Griffith crack located at
the interface of two bonded dissimilar orthotropic half spaces. The mixed boundary value
problem has been reduced to the solution of Fredholm integral equation of second kind by
applying Fourier and Abel transforms. Stress intensity factor at the tip of the crack has been
calculated by solving integral equation using perturbation method for low frequency and
plotted against dimensionless frequency.
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Introduction

In the fabrication process the cracks or faults are essential. Analytic study of the arrest of
crack propagation or faults are very important for civil, aerospace, nuclear and mechani-
cal engineering. The growing use of composite materials in many engineering applications
demands the fundamental understanding of the response of cracked orthotropic bodies under
stress. Interfacial crack is one of the most common failure modes in fibre-reinforced compos-
ite laminates. The interfacial imperfection usually forms the nucleus of the fracture initiation
and propagation in the medium. From the engineering point of view, composite materials are
highly anisotropicmaterials formed by orthotropic layers. Thus the study of interfacial cracks
between orthotropic media is of great importance in the analysis of fracture of composites.
The diffraction of waves in presence of cracks has important application in seismology as
the earth is considered as composite material. Srivastava et al. [1] studied the interaction
of antiplane shear waves by a Griffith crack at the interface of two bonded dissimilar elas-
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tic half-spaces and Srivastava et al. [2] also studied the interaction of shear waves with a
Griffith crack situated in an infinitely long elastic strip. The problem of the edge crack in
orthotropic elastic half-plane was considered by De and Patra [3]. Interaction of elastic waves
with a periodic array of coplanar Griffith cracks in an orthotropic elastic medium has been
solved by Mandal and Ghosh [4]. The diffraction of elastic waves by three coplanar Griffith
cracks in an orthotropic medium has been studied by Sarkar et al. [5]. Das et al. [6] solved
the problem of determining the stress intensity factor for an interfacial crack between two
orthotropic half planes bonded to a dissimilar orthotropic layer with a punch. Das et al. [7]
studied diffraction of SH-Waves by a Griffith crack in an infinite transversely orthotropic
medium. Das et al. [8] solved the problem of determining the stress intensity factor (SIF) due
to symmetric edge cracks in an orthotropic strip under normal loading. The problem of two
perfectly bonded dissimilar orthotropic strip with an interfacial crack is studied by Li [9].
Elastostatic problem of an infinite row of parallel cracks in an orthotropicmedium is analyzed
by Sinharoy [10]. Monfared and Ayatollahi [11] investigated the problem of determining the
dynamic SIF of multiple cracks in an orthotropic strip with functionally graded materials
coating. The problem of interaction of three interfacial Griffith cracks between two bonded
dissimilar orthotropic half spaces has been studied by Mukherjee and Das [12]. Mukhopad-
hyay et al. [13] have studied to find the SIF of an edge crack in bonded orthotropic materials.
Itou [14] solved the problem of finding the SIF for two parallel interface cracks between a
nonhomogeneous bonding layer and two dissimilar orthotropic half-spaces under tension.
The diffraction of an antiplane shear wave by two coplanar Griffith cracks in an infinite elastic
medium has been considered by Itou [15]. The problem of P-wave interaction by an asym-
metric crack in an orthotropic strip is studied by Basak and Mandal [16]. Li [17] analyzed
the collinear crack problem for an orthotropic functionally graded coating-substrate struc-
ture. Garg [18] studied stress distribution near periodic cracks at the interface of two bonded
dissimilar orthotropic half planes. Satapathy [19] deduced the stresses in an orthotropic strip
containing a Griffith crack. Marin [20] investigated the problem of a temporally evolution-
ary equation in elasticity of micropolar bodies with voids. The problem of a evolutionary
equation in thermoelasticity of dipolar bodies has been studied by Marin [21,22]. But the
problem of diffraction of SH-waves at composite interface has not been considered yet.

In this paper, we have considered the diffraction of elastic SH-waves by the interface crack
at two orthotropic half spaces. The problem has been reduced to that of solving the Fredholm
integral equation of the second kind by applying Fourier and Abel transform. The solution
of this integral equation has been obtained for low frequency using perturbation technique.
This solution is then used for calculating numerical values of dynamic SIF at the tip of the
crack. The SIF has been plotted against frequency for different orthotropic materials.

Formulation of the Problem

We consider a crack of finite width located at the interface of two bonded dissimilar
orthotropic half spaces. The location of the crack is given by |x1| ≤ a, −∞ < z1 < ∞,
y1 = 0 at the interface of two half spaces y1 > 0 and y1 < 0. By normalizing all the lengths
by ′a′ and putting x1/a = x , y1/a = y and z1/a = z, the location of the crack become
|x | < 1, −∞ < z < ∞, y = 0 (Fig. 1).
The nonzero stress components are

τyz( j) = μ12( j)
∂w j

∂y
(1)
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Fig. 1 Geometry of the problem

and displacement equation of motion for orthotropic materials are

c55( j)
∂2w j

∂x2
+ c44( j)

∂2w j

∂y2
= a2

c2s( j)

∂2w j

∂t2
, j = 1, 2. (2)

where c55( j) and c44( j) are elastic constants and c2s( j) = μ12( j)
ρ j

with ρ j being the density of

the materials. Substitution of w j (x, y, t) = w j (x, y)e−iωt in Eq. (2) yields

c55( j)
∂2w j

∂x2
+ c44( j)

∂2w j

∂y2
+ a2ω2

c2s( j)
w j = 0 (3)

which is to be solved subject to the boundary conditions

τyz(1)(x, 0
+) = τyz(2)(x, 0

−) = −τ0, |x | ≤ 1 (4)

τyz(1)(x, 0
+) = τyz(2)(x, 0

−), |x | > 1 (5)

w(1)(x, 0
+) = w(2)(x, 0

−), |x | > 1 (6)

where τ0 is a constant. The term e−iωt which is common to all field variables is omitted in
the sequel. The solution of the Eq. (3) are taken to be

w1(x, y) =
∫ ∞

0
A1(ξ)e−β1 y cos(ξ x)dξ, y > 0 (7)

w2(x, y) =
∫ ∞

0
A2(ξ)eβ2 y cos(ξ x)dξ, y < 0 (8)

where β j = P
1
2
j (ξ2 − k2s( j))

1
2 , Pj = (

c55( j)
c44( j)

) and k2s( j) = a2ω2

c2s( j)c55( j)
. The non vanishing stress

components are given by

τyz( j) = −μ12( j)

∫ ∞

0
A j (ξ)β j e

−β j y cos(ξ x)dξ, j = 1, 2. (9)

In Eqs. (7) and (8) A1(ξ) and A2(ξ) are unknown functions which will be determined with
the help of boundary conditions.
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Derivation of the Integral Equation

From the boundary condition (5), i.e., τyz(1)(x, 0+) = τyz(2)(x, 0−) for all x yields

A2(ξ) = −μ12(1)β1

μ12(2)β2
A1(ξ) (10)

The boundary conditions (4) and (6) lead to the following dual integral equations∫ ∞

0
β1A1(ξ) cos(ξ x)dξ = τ0

μ12(1)
, |x | < 1 (11)

∫ ∞

0

(
μ12(2)β2 + μ12(1)β1

β2

)
A1(ξ) cos(ξ x)dξ = 0, |x | < 1 (12)

Substituting (
μ12(2)β2 + μ12(1)β1

β2

)
A1(ξ) = B(ξ) (13)

the above integral equations become∫ ∞

0
B(ξ) cos(ξ x)dξ = 0, |x | > 1 (14)

∫ ∞

0
ξ [1 + H(ξ)]B(ξ) cos(ξ x)dξ = τ0(μ12(1) + μ12(2))

μ12(1)
, |x | < 1 (15)

where

H(ξ) = (μ12(1) + μ12(2))β1β2

(μ12(1)β1 + μ12(2)β2)ξ
− 1 (16)

and H(ξ) → 0 as ξ → ∞. Let the trial solution of the above system of dual integral equation
be

B(ξ) = τ0(μ12(1) + μ12(2))

μ12(1)

∫ 1

0
tg(t)τ0(ξ t)dt (17)

In theEq. (17), B(ξ) is considered in this formso that theEq. (14) is automatically satisfied and
Eq. (15) yields 1√

x−1
type of singularity at the tip of the crack which is physically consistent

with the problem. From the Eq. (15) we get the following Fredholm integral equation of the
second kind for determining the unknown function g(t) as

g(u) +
∫ 1

0
tg(t)L(u, t)dt = 1 (18)

where

L(u, t) =
∫ ∞

0
ξH(ξ)J0(ξu)J0(ξ t)dξ (19)

In derivation of integral equation (18) the fixed point theorem method adopted by Zhang and
Chen [23] can also be applied. The integrand in (19) has no poles, it has only branch points
at ξ = ks(1), ξ = ks(2). The infinite integral (19) can be converted into integrals with finite
limits by contour integration method (Mandal and Ghosh [4]) as follows: let

I =
∫ ∞

ks(1)
ξM(ξ, β2, β1)J0(ξu)J0(ξ t)dξ (20)
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Fig. 2 Complex(ξ, η) plane

where M(ξ, β2, β1) = H(ξ) and 2J0(ξ t) = H (1)
0 (ξ t)+ H (2)

0 (ξ t).We consider the integrals

I1 =
∮
c1

ξM(ξ, β2, β1)J0(ξu)H (1)
0 (ξ t)dξ, t > u (21)

I2 =
∮
c2

ξM(ξ, β2, β1)J0(ξu)H (2)
0 (ξ t)dξ (22)

The contour C1 and C2 are defined in Fig. 2.
After integrating along the contours we have the following integral:

L(u, t) = −i(μ12(1) + μ12(2))k
2
s(1)

∫ γ

0

√
P1(γ 2 − ξ2)

1
2
√
P2(1 − ξ2)

1
2

√
P1μ12(1)(1 − ξ2)

1
2 + √

P2μ12(2)(γ 2 − ξ2)
1
2

×J0(ξks(1)u)H (1)
0 (ξks(1)t)dξ

−μ12(2)(μ12(1) + μ12(2))k
2
s(1)

∫ 1

γ

√
P1(γ 2 − ξ2)P2(1 − ξ2)

1
2

P1μ2
12(1)(1 − ξ2) + P2μ2

12(2)(γ
2 − ξ2)

×J0(ξks(1)u)H (1)
0 (ξks(1)t)dξ, t > u (23)

where γ = ks(2)
ks(1)

. For t < u we get the integral by interchanging t and u in (23).
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Quantities of Physical Interest

The singular part of the stress component in the neighbourhood of the crack tip can be
obtained for |x | > 1 as

τyz(1)(x, 0
+) = τyz(2)(x, 0

−)

= −τ0(μ12(1) + μ12(2))

∫ ∞

0

β1β2 cos(ξ x)dξ

μ12(1)β1 + μ12(2)β2

∫ 1

0
tg(t)J0(ξ t)dt (24)

For large ξ , β1 = ξ , β2 = ξ (for small k1, k2), τyz takes the form

τyz(1)(x, 0
+) = τ0x

g(1)

(x2 − 1)
1
2

+ O(1) (25)

Dynamic stress intensity factor(SI F) denoted by K at the tip of the crack is defined by the
relation

K = lim
x→1+

∣∣∣∣τyz(1)(x, 0
+)(x − 1)

1
2

τ0

∣∣∣∣ (26)

and is obtained as

K = lim
x→1+(x − 1)

1
2

∣∣∣∣ τ0xg(1)

(x2 − 1)
1
2

∣∣∣∣
= τ0|g(1)|√

2
(27)

Solution of the Integral Equation

Following Srivastava et al. [1], we obtained iterative solution of the integral equation using
perturbation method. The iterative solution is valid for small values of ks(1) and ks(2). The
numerical values of SIF(K ) has been obtained for different values of frequencies. For small
values of the argument the Bessel functions J0(x) and H (1)

0 (x) has been expanded in ascend-

ing powers of x as J0(x) = ∑∞
n=0 a2nx

2n , H (1)
0 (x) = [1+ 2i

π
log( x2 )]J0(x)+ i

∑∞
n=0 b2nx

2n

where a0 = 1 and the values of a2n and b2n are given by Abramowitz and Stegun [24, p. 36].
Using the above expression in (23), L(u, t) can be expressed as

L(u, t) =
(
k2s(1)log(ks(1))

)
L1(u, t) + k2s(1)L2(u, t)

+
(
k2s(1)log(ks(1))

)2
L3(u, t) +

(
k4s(1)log(ks(1))

)
L4(u, t)

+ o
(
k4s(1)

)
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where

L1(u, t) = 2M0

π

L2(u, t) = 2N0

π
+

(
b0 − i + 2

π
log

(
t

2

))
M0

L3(u, t) = 0

L4(u, t) = 2a2M2

π
(u2 + t2), u < t

M2n =
∫ γ

0
α2n(ξ)dξ +

∫ 1

γ

β2n(ξ)dξ

N2n =
∫ γ

0
α2n(ξ)log(ξ)dξ +

∫ 1

γ

β2n(ξ)log(ξ)dξ,

α2n(ξ) = (μ12(1) + μ12(2))
ξ2n

√
P1(γ 2 − ξ2)

1
2
√
P2(1 − ξ2)

1
2

√
P1μ12(1)(1 − ξ2)

1
2 + √

P2μ12(2)(γ 2 − ξ2)
1
2

β2n(ξ) = μ12(2)(μ12(1) + μ12(2))
ξ2n

√
P1(γ 2 − ξ2)P2(1 − ξ2)

1
2

P1μ2
12(1)(1 − ξ2) + P2μ2

12(2)(γ
2 − ξ2)

Also assuming that g(u) can be expanded in the form

g(u) = g0(u) + k2s(1)log(ks(1))g1(u) + k2s(1)g2(u)

+ (k2s(1)log(ks(1)))
2g3(u) + k4s(1)log(ks(1))g4(u) + o(k4s(1)) (28)

the following expressions are obtained

g0(u) = 1

g1(u) = −
∫ 1

0
t L1(u, t)dt = −M0

π

g2(u) = −
∫ 1

0
t L2(u, t)dt = −N0

π
− M0

π

(
b0 − i + 2

π
log

(
1

2

))
+ (1 − u2)

M0

2π

g3(u) = −
∫ 1

0
t[L1(u, t)g1(t) + L3(u, t)]dt =

(
M0

π

)2

g4(u) = −
∫ 1

0
t[L1(u, t)g2(t) + L2(u, t)g1(t) + L4(u, t)]dt

= M0

π

{
2N0

π
+ M0

(
b0 − i + 2

π
log

1

2

)}
+ (1 + 2u2)

a2M2

2π
− (3 − 2u2)

(
M0

2π

)2

.

With the help of above expression g(u) can be obtained from (28).
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For isotropic media we substitute C44 = C55 = μ, where μ is Lame’s constant and we
deduce the following expressions

P1 = 1, P2 = 1

α2n(ξ) = (μ12(1) + μ12(2))
ξ2n(γ 2 − ξ2)

1
2 (1 − ξ2)

1
2

μ12(1)(1 − ξ2)
1
2 + μ12(2)(γ 2 − ξ2)

1
2

β2n(ξ) = μ12(2)(μ12(1) + μ12(2))
ξ2n(γ 2 − ξ2)(1 − ξ2)

1
2

μ2
12(1)(1 − ξ2) + μ2

12(2)(γ
2 − ξ2)

The remaining terms are same. These results coincide with the expressions obtained by
Srivastava [1] for isotropic materials.

Numerical Results and Discussions

The Fredholm integral equation (18) is solved by perturbation method for low frequency and
is given by (28). Numerical values of g(1) has been computed for γ = ks(2)

ks(1)
< 1 for fixed

values of ks(2)(0.0022784). Different orthotropic materials are given in Tables 1 and 2. The
values of engineering elastic constants have been taken from [25–27].

After calculating g(1), SIF(K ) is obtainednumerically and is plotted (Figs. 3, 4) against the
dimensionless frequency (ks(1)) for different orthotropic materials. Figures 3 and 4 show the

Table 1 Engineering elastic
constants

C44 C55

Type-1 Graphite-epoxy composite 5.40 5.50

Type-2 Glass-epoxy composite 1.19 1.19

Table 2 Engineering elastic
constants

C44 C55

Type-3 prepreg 7.8 7.8

Type-4 Carbon fiber 6.15 6.15
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Fig. 3 SIF versus dimensionless frequency for Type-1 and Type-2 materials
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Fig. 4 SIF versus dimensionless frequency for Type-3 and Type-4 materials

variation of SIF(K ) against the dimensionless frequency for different orthotropic materials
which are similar in nature. For both the materials SIF(K ) first increases and then decreased
rapidly with increase in frequency ks(1) and finally tending to zero.

Conclusion

The SIF(K ) has been obtained at the tip of the crack at the orthotropic bimaterial interface
subject to shear wave incidence. The singularities and discontinuties associated with the
incidence shear waves and crack have been predicted in the solution. The dynamic response
of the crack has been analyzed for the variation of wave frequency. Also the effect of material
orthotropy has been shown in graphs.
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