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Abstract In this paper, theAdomian decompositionmethod in combinationwith the Laplace
transform is used to solve the nonlinear differential equation that governs the oscillation of
the relativistic oscillator. The solution obtained is a power series of functions that have never
been reported and which show a very good match when compared with other approximate
solutions, obtained by different methods. The method proposed herein works with high
degree of accuracy. Moreover, the proposed method requires less computational effort, and
is therefore, very convenient for solving such types of nonlinear differential equations.
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Introduction

Many of the phenomena that arise in the real world can be described by means of nonlinear
partial and ordinary differential equations and, in some cases, by integro-differential equa-
tions. However, most of the mathematical methods developed thus far are only capable of
solving linear differential equations. In the 1980’s, George Adomian (1923–1996) introduced
a powerful method to solve nonlinear differential equations, known as the Adomian decom-
position method (ADM) [3,4]. The technique is based on the decomposition of a solution
of a nonlinear differential equations into a series of functions. Each term of the series is
obtained from a polynomial generated by a power series expansion of an analytic function.
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The Adomian method is very simple in an abstract formulation; however, calculating the
polynomials is difficult, which becomes a non-trivial task. This method has widely been used
to solve equations that come from nonlinear models as well as to solve fractional differential
equations [15,16,31]. The chaotic nature and nonlinearity of other systems, proposed in the
past, have been studied through ADM in Ghosh et al. [21]. The advantage of this method
is that it solves the problem directly without the need of linearization, perturbation, or any
other transformation, and also, requires relatively lesser computational effort as compared to
most other methods.
The relativistic nonlinear harmonic oscillator, was studied for the first time in the middle
of the last century [9,10,22,29,30]. In spite of its importance in several models of physics,
exact solutions of its equation of motion have not been obtained. In the present work, we
will use the Adomian decomposition method in combination with the Laplace transform
(LADM) [33] to determine the solution to the relativistic oscillator problem. This equation
is a nonlinear ordinary differential equation that, in physics, is used to model a simple one
dimensional harmonic oscillator with relativistic velocities. We decompose the nonlinear
terms of this equation using the Adomian polynomials and then, in combination with the
use of the Laplace transform, we obtain an algorithm to solve the problem subject to initial
conditions. Finally, we illustrate our procedure and the quality of the algorithm obtained
by solving two examples in which the nonlinear differential equation is solved for different
initial conditions.
Our work is divided into several sections. In the “Adomian Decomposition Method Com-
bined With Laplace Transform” section, we present, in a brief and self-contained manner,
the LADM. Several references are given to delve deeper into the subject and to study its
mathematical foundation, which is beyond the scope of the present work. In the “Relativistic
Harmonic Oscillator” section, we present a brief introduction to the model described by the
relativistic harmonic oscillator. In the “Main Result: Solution of the Relativistic Harmonic
Oscillator Equation Through LADM” section, we establish that LADM can be used to solve
this equation in a very simple way. In “Application to the Relativistic Harmonic Oscillator”
section, we show by means of two examples, the quality and precision of our method, com-
paring the obtained results with existing approximate solutions available in the literature and
obtained by other methods. Finally, in the “Conclusion and Summary” section, we present
the conclusions and implications of this study.

The Adomian Decomposition Method Combined with Laplace Transform

The ADM is a method to solve ordinary and nonlinear differential equations. Using this
method, it is possible to express analytic solutions in terms of a series [4]. In other words, the
method identifies and separates the linear and nonlinear parts of a differential equation. By
inverting and applying the highest order differential operator that is contained in the linear
part of the equation, it is possible to express the solution in terms of the rest of the equation
affected by the inverse operator. At this point, the solution is proposed by means of a series
with terms that will be determined and that give rise to the Adomian Polynomials [32]. The
nonlinear part can also be expressed in terms of these polynomials. The initial (or the border
conditions) and the terms that contain the independent variables will be considered as the
initial approximation. In this manner, and by means of recurrence relations, it is possible to
find the terms of the series that give the approximate solution of the differential equation.
In the next paragraph, we will see how to use the ADM in combination with the Laplace

123



Int. J. Appl. Comput. Math (2017) 3:2627–2638 2629

transform (LADM). Let us consider the following homogeneous differential equation of
second order:

d2x

dt2
+ N (x) = 0 (1)

with initial conditions
x(0) = α, x ′(0) = β (2)

where α, β are real constants and N is a nonlinear operator acting on the dependent variable
x and some of its derivatives. In general, if we consider the second-order differential operator

Ltt = ∂2

∂t2
, then the Eq. (1) can be written as

Ltt x(t) + N (x(t)) = 0. (3)

Solving for Ltt x(t), we have
Ltt x(t) = −N (x(t)). (4)

The LADM consists of applying Laplace transform (denoted throughout this paper by L )
first on both sides of Eq. (4), thereby obtaining

L {Ltt x(t)} = −L {N (x(t))}. (5)

An equivalent expression to (5) is

s2x(s) − sx(0) − x ′(0) = −L {Nx(t)}, (6)

using the initial conditions (2), we have

x(s) = α

s
+ β

s2
− 1

s2
L {N (x(t))}. (7)

Now, applying the inverse Laplace transform to Eq. (7)

x(t) = α + βt − L −1
[
1

s2
L {N (x(t))}

]
. (8)

The ADM proposes a series of solutions x(t), given by,

x(t) =
∞∑
n=0

xn(t). (9)

The nonlinear term N (x) is given by

N (x) =
∞∑
n=0

An(x0, x1, . . . , xn) (10)

where {An}∞n=0 is the so-calledAdomian polynomials sequence established inWazwaz [5,32]
and, in general, gives us term by term:

A0 = N (x0)
A1 = x1N ′(x0)
A2 = x2N ′(x0) + 1

2 x
2
1N

′′(x0)
A3 = x3N ′(x0) + x1x2N ′′(x0) + 1

3! x
3
1N

(3)(x0)
A4 = x4N ′(x0) + ( 1

2 x
2
2 + x1x3

)
N ′′(x0) + 1

2! x
2
1 x2N

(3)(x0) + 1
4! x

4
1N

(4)(x0)
....
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Other polynomials can be generated in a similar manner. Some other approaches to obtaining
Adomian’s polynomials can be found in Duan [17,19].
Using (9) and (10) in Eq. (8), we obtain,

∞∑
n=0

xn(t) = α + βt − L −1

[
1

s2
L

{ ∞∑
n=0

An(x0, x1, . . . , xn)

}]
. (11)

From equation (11), we deduce the recurrence formula, which is given as follows:

{
x0(t) = α + βt,

xn+1(t) = −L −1
[
1
s2
L {An(x0, x1, . . . , xn)}

]
, n = 0, 1, 2, . . .

(12)

Using (12), we can obtain an approximate solution of (1), (2) using

x(t) ≈
k∑

n=0

xn(t), where lim
k→∞

k∑
n=0

xn(t) = x(t). (13)

It is evident that, the Adomian decomposition method, combined with the Laplace transform
requires less effort in comparison with the traditional Adomian decomposition method. This
method considerably decreases the volume of calculations. The decomposition procedure of
Adomian is easily set, without requiring the linearization of the problem.With this approach,
the solution is found in the form of a convergent series with easily computed components;
in many cases, the convergence of this series is very fast and only a few terms are needed to
gain an understanding of how the solutions behave. Convergence conditions of this series are
examined by several authors, mainly in Abbaoui and Cherrault and Cherruault [1,2,13,14].
Additional references related to the use of the ADM, combined with the Laplace transform,
can be found in Wazwaz, Khuri and Yusufoǧlu [25,33,34] and references therein.

The Relativistic Harmonic Oscillator

The equation of motion of the relativistic harmonic oscillator is given by the nonlinear
differential Eq. [12,23]:

d2x

dt2
+

[
1 −

(dx
dt

)2] 3
2
x = 0, x(0) = 0,

dx

dt
(0) = β. (14)

This normalized, dimensionless form of the equation is obtained by considering the rest
mass m to be unity and the speed of light c to also be unity [26]. It is easy to verify that the
dimensionless length x and the dimensionless time t are related to the dimensional variables
x̄ and t̄ through x = ω0 x̄/c and t = ω0 t̄ , respectively, where ω0 = √

k/m is the angular
frequency for the non-relativistic oscillator.
To the best of our knowledge, no exact solution of the nonlinear Eq. (14) has yet been
published; therefore the research work about Eq. (14) has been intense. A fundamental result
reported inMickens [26] is that all the solutions of (14) are periodic functions with the period
dependent on the initial velocity β. In the same work, an approximation solution of (14) was
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determined using the harmonic balance method (HBM), which is given by

xHBM(t) = β

ω

(3β4 + 8β2 + 64

64

)
sin(ωt) − β3

24ω

(3β2 + 128

128

)
sin(3ωt)

+
( 3β5

640ω

)
sin(5ωt), where ω = 4

√
2 − 2β2

2 − β2 and 0 < β < 1. (15)

Some more detailed work in the same direction was reported 10years later in Beléndez and
Mickens [7,8,27,28]. Other mass-spring systems have been studied by the same method
in Beléndez [11]. Thereafter, in Ebaid [20], using the differential transformation method
(DTM), some periodic solutions were obtained. More recently, the relativistic harmonic
oscillator was studied by using the homotopy perturbation method (HPM) [12], where a
good approximation is obtained using the fact that the solutions are periodic functions. In the
following section, we will develop an algorithm using the method described in the “Adomian
Decomposition Method Combined with Laplace Transform” section in order to solve the
nonlinear differential Eq. (14) without resorting to any truncation or linearization. Moreover
the a priori assumption that the solutions are periodic functions is not required.

The Main Result: Solution of the Relativistic Harmonic Oscillator
Equation Through LADM

Comparing (14) with Eq. (4) we have that Ltt and N becomes:

Ltt x = d2

dt2
x, Nx =

[
1 −

(dx
dt

)2] 3
2
x . (16)

Now, by using Eq. (12) through the LADM method, we recursively obtain
{
x0(t) = βt,

xn+1(t) = −L −1
[
1
s2
L {An(x0, x1, . . . , xn)}

]
, n = 0, 1, 2, . . .

(17)

In addition, the nonlinear term is decomposed as

Nx =
[
1 −

(
dx

dt

)2
] 3

2

x =
∞∑
n=0

An(x0, x1, . . . , xn) (18)

where {An}∞n=0 is the so-called Adomian polynomials sequence, the terms are calculated
according to Duan [17–19]. The first few polynomials are given by

A0(x0) = x0
(
1 − x ′2

0

) 3
2 ,

A1(x0, x1) = x1
(
1 − x ′2

0

) 3
2 ,

A2(x0, x1, x2) = x2
(
1 − x ′2

0

) 3
2 ,

A3(x0, x1, x2, x3) = x3
(
1 − x ′2

0

) 3
2 ,

A4(x0, x1, x2, x3, x4) = x4
(
1 − x ′2

0

) 3
2 ,

...

Am(x0, x1, . . . , xm) = xm
(
1 − x ′2

0

) 3
2 for every m ≥ 0.
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Now, recursively using (17) with the Adomian polynomials given by the later sequence
{An}∞n=0, we obtain, for a given initial velocity β:

x0(t) = βt, (19)

x1(t) = −L −1
[ 1

s2
L {β(1 − β2)

3
2 t}

]
= −L −1

[ 1

s4
β(1 − β2)

3
2

]

= −β(1 − β2)
3
2
t3

3! , (20)

x2(t) = −L −1
[ 1

s2
L

{
− β(1 − β2)3

t3

3!
}]

= L −1
[ 1

s6
β(1 − β2)3

]

= β(1 − β2)3
t5

5! , (21)

x3(t) = −L −1
[ 1

s2
L

{
β(1 − β2)

9
2
t5

5!
}]

= −L −1
[ 1

s8
β(1 − β2)

9
2

]

= −β(1 − β2)
9
2
t7

7! , (22)

x4(t) = −L −1
[ 1

s2
L

{
− β(1 − β2)6

t7

7!
}]

= L −1
[ 1

s10
β(1 − β2)6

]

= β(1 − β2)6
t9

9! , (23)

x5(t) = −L −1
[ 1

s2
L

{
β(1 − β2)

15
2
t9

9!
}]

= −L −1
[ 1

s12
β(1 − β2)

15
2

]

= −β(1 − β2)
15
2
t11

11! , (24)

....

In view of Eqs. (19)–(24), the series solution is

x(t) = βt − β(1 − β2)
3
2
t3

3! + β(1 − β2)3
t5

5! − β(1 − β2)
9
2
t7

7!
+β(1 − β2)6

t9

9! − β(1 − β2)
15
2
t11

11! + β(1 − β2)9
t13

13! · · · (25)

= β
(
t − (1 − β2)

3
2
t3

3! + (1 − β2)3
t5

5! − (1 − β2)
9
2
t7

7! + (1 − β2)6
t9

9! − + · · ·
)

= β

∞∑
n=0

(
(1 − β2)

3
2

)n
(−1)n

t2n+1

(2n + 1)! . (26)

From (26), we conclude that the solution of the Eq. (14), that is, the position of the relativistic
harmonic oscillator is given by the series of power of functions with 0 < β < 1

x(t) = β

∞∑
n=0

(
(1 − β2)

3
2

)n
(−1)n

t2n+1

(2n + 1)! . (27)

According to Bartle [6], it is evident that the power series (27) converges in allR. Moreover, it
converges uniformly in any compact subinterval of R. Using the expressions obtained above
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for the solution of Eq. (14), we illustrate, with two examples, the effectiveness of LADM to
solve the nonlinear relativistic harmonic oscillator.

Application to the Relativistic Harmonic Oscillator

Example 1 In this first example, we consider the particular case of (14) such that β =
0.1; this case was studied in Ebaid [20] via differential transformation method (DTM) and
also in Biazar and Hosami and Mickens [12] through the homotopy perturbation method
(HPM). Good approximations were obtained in both works in comparison with the first
known approximation solution of (14) obtained in Mickens [26] using the harmonic balance
method (HBM). We will use formula (27) considering only the first fourteen terms (since the
subsequent terms will be negligible)

x(t) = 0.1
13∑
n=0

(0.9850375)n(−1)n
t2n+1

(2n + 1)! = 0.1t − 0.0985037
t3

3! + 0.0970299
t5

5!

− 0.095578
t7

7! + 0.094148
t9

9! − 0.0927393
t11

11! + · · · − 0.0822027
t27

27! (28)

The approximations obtained for β = 0.1 through DTM in Ebaid [20] by using HPM in
Biazar and Hosami [12] are as follows:

xDTM(t) = 0.10033 sin(0.998t) − 0.000047097 sin(2.997t)

+ 0.00000008254 sin(4.841t) (29)

xHPM(t) = 0.10010 sin(0.999t) − 0.00004689 sin(2.997t)

+ 0.00000005062 sin(4.995t) (30)

Moreover, using β = 0.1 in (15) we find

xHBM(t) = 0.10025 sin(0.998t) − 0.00004173 sin(2.996t) + 0.00000004369 sin(4.944t)

(31)

The results obtained are shown in Table 1, in which results obtained in Ebaid, Biazar and
Hosami and Mickens [20], [12], and [26] using DTM, HPM, and HBM, respectively, are
compared. We also display this comparison in Figs. 1, 2 and 3. All numerical work was
performed using the Mathematica software package.

Example 2 In the second example, we consider the particular case of (14) such that β = 0.2;
this case was studied in [20] via DTM and also in [12] using HPM.Once again, in both works,
good approximations were found in comparison with the first approximations obtained in
(14) and the one obtained in [26] by HBM. As before, using formula (27), and taking the
first fourteen terms, we obtain

x(t) = 0.2
13∑
n=0

(0.940604)n(−1)n
t2n+1

(2n + 1)! = 0.2t − 0.1881208
t3

3! + 0.1769472
t5

5!

− 0.1664372
t7

7! + 0.1565515
t9

9! − 0.1472253
t11

11! + · · · − 0.0902233
t27

27! (32)
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Table 1 Table of xour and xHBM, xHPM, xDTM for β = 0.1 and t ∈ [0, 5]
β = 0.1
t xour xHBM [26] xHPM [12] xDTM [20] Maximum error

0.5 0.0479729590 0.0479328162 0.0478998303 0.0479657729 7.3129 × 10−5

1.0 0.0843725830 0.0842428703 0.0841703143 0.0843093300 2.0227 × 10−4

1.5 0.1004175702 0.1000179266 0.0998843534 0.1001029926 5.3322 × 10−4

2.0 0.0922371146 0.0913351729 0.0911171475 0.0914094983 1.1200 × 10−3

2.5 0.0618047271 0.0603586490 0.0600634967 0.0604017614 1.7412 × 10−3

3.0 0.0164621313 0.0147248839 0.0144036691 0.0147345492 2.0585 × 10−3

3.5 −0.0328519050 −0.0344716193 −0.0347441361 −0.0344944258 1.8922 × 10−3

4.0 −0.0742405162 −0.0753198191 −0.0754679268 −0.0753771430 1.2274 × 10−3

4.5 −0.0977188217 −0.0978363382 −0.0977921545 −0.0979187422 1.9992 × 10−4

5.0 −0.0976227495 −0.0964395012 −0.0961601232 −0.0965198814 1.4626 × 10−3

Fig. 1 Graph of the values of xour and xDTM for β = 0.1

Fig. 2 Graph of the values of xour and xHPM for β = 0.1
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Fig. 3 Graph of the values of xour and xHBM for β = 0.1

Table 2 Table of xour and xHBM, xHPM, xDTM for β = 0.2 and t ∈ [0, 5]
β = 0.2
t xour xHBM [26] xHPM [12] xDTM [20] Maximum error

0.5 0.0961266393 0.0960670231 0.0955486075 0.0962486620 5.7803 × 10−4

1.0 0.1700884958 0.1693755477 0.1685301931 0.1698938305 1.5583 × 10−3

1.5 0.2048315199 0.2017087375 0.2007521973 0.2026720850 4.0793 × 10−3

2.0 0.1923447004 0.1846120791 0.1837113487 0.1859888431 8.6334 × 10−3

2.5 0.1355072355 0.1225945408 0.1219478146 0.1243489902 1.3559 × 10−2

3.0 0.0474246500 0.0313518348 0.0311772419 0.0333654695 1.6247 × 10−2

3.5 −0.0515930631 −0.0672523781 −0.0668828424 −0.0655019642 1.5659 × 10−2

4.0 −0.1387145001 −0.1500050664 −0.1492370936 −0.1491851170 1.1291 × 10−2

4.5 −0.1938512888 −0.1967092103 −0.1957682647 −0.1971050236 3.2537 × 10−3

5.0 −0.2042900444 −0.1953114965 −0.1943750213 −0.1969655785 9.9150 × 10−3

The approximations obtained in the case of β = 0.2 vía DTM in [20] through HPM in [12]
are, respectively:

xDTM(t) = 0.203 sin(0.992t) − 0.0003695 sin(3.051t) + 0.000009257 sin(4.29t) (33)

xHPM(t) = 0.201 sin(0.995t) − 0.0003768 sin(2.985t) + 0.000001652 sin(4.974t).

(34)

And also using β = 0.2 in (15) we obtain

xHBM(t) = 0.202 sin(0.995t) − 0.0003354 sin(2.985t) + 0.000001508 sin(4.974t) (35)

Comparison of our results with the ones obtained in [20], [12], and [26] using DTM, HPM,
andHBM, respectively, are shown in Table 2 and displayed in Figs. 4, 5, and 6, respectively. In
this example, we can also see that the approximation accuracy depends on the initial velocity
of the oscillator. All numerical workwas performed using theMathematica software package.

As can be seen from the last examples, the solutions we have obtained are periodic functions
and the amplitude depends of the initial velocity, as found by the author in [26]. The main
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Fig. 4 Graph of the values of xour and xDTM for β = 0.2

Fig. 5 Graph of the values of xour and xHPM for β = 0.2

Fig. 6 Graph of the values of xour and xHBM for β = 0.2

distinction between our results and the ones reported previously is that the final series is
uniformly convergent in any compact subset of the real line; therefore, we can obtain the
results with the required accuracy.
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Summary and Conclusions

To the best of our knowledge, there is no exact solution to the equation of motion for a
relativistic harmonic oscillator. In this work, we have obtained a solution of the problem
without the a priori assumption that the solutions are periodic functions; the solution that we
have obtained is a series of powers of functions that uniformly converge on compact subsets
of R, never before reported. The problem of the limit function of the series solution is an
open question that we are currently working on.
In order to show the accuracy and efficiency of our method, we have solved two examples
and compared our results with the ones obtained with three different methods [12,20,26].
Our results show that LADM produces highly accurate solutions in complicated nonlinear
problems. We, therefore, conclude that the Laplace-Adomian decomposition method is a
notable non-sophisticated powerful tool that produces high quality approximate solutions for
nonlinear ordinary differential equations using simple calculations and that reaches conver-
gence with only a few terms. Finally, the Laplace-Adomian decomposition method would
be a powerful mathematical tool for solving other nonlinear differential equations related
with mathematical physics models. All numerical work and graphics were performed with
the Mathematica software package.
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