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Abstract A self-similar model for one-dimensional unsteady adiabatic flows behind a cylin-
drical shock wave driven out by a piston moving with time according to an exponential law
in non-ideal gas in the presence of conductive and radiative heat fluxes is discussed in a
rotating atmosphere. The ambient medium is assumed to have axial, azimuthal and radial
component of fluid velocities. The axial and azimuthal component of fluid velocity in the
ambient medium is assumed to be varying according to exponential laws. The initial density
and angular velocity of the ambient medium are taken to be constant for the existence of the
similarity solutions. It is shown that increase in the parameter of non-idealness of the gas and
the conductive or radiative heat transfer parameters have decaying effect on the shock wave.
It is obtained that the parameter of non-idealness of the gas and heat transfer parameters have
same effects on shock strength, density, pressure, axial and azimuthal component of fluid
velocity and vorticity vector.

Keywords Shock wave · Self-similar flow · Rotating medium · Non-ideal gas · Conductive
and radiative heat flux

Introduction

In recent years considerable attention has been given to study the interaction between gas
dynamics and radiation. When the effects of radiation and conduction are taken under con-
sideration in gas dynamics the fundamental non-linear equations are of a very complicated
type and thus it is essential to determine approximations which are physically accurate and
afford considerable simplifications. The problems of the interaction of radiation with gas
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dynamics have been studied by many authors by using the self-similar method developed by
Sedov [1]. Marshak [2] studied the effect of radiation on the shock propagation by introduc-
ing the radiation diffusion approximation. He solved both the cases of constant density and
constant pressure fields without invoking conditions of self similarity. Using the same mode
of radiation, Elliott [3] discussed the conditions leading to self-similarity with a specified
functional form of the mean free path of radiation and obtained a solution for self-similar
spherical explosion. The problems of either stationary or moving radiating walls, generating
shock at the head of self-similar flow-fields was discussed by Wang [4], Helliwell [5] and
Nicastro [6]. Ghoneium et al. [7] obtained the self-similar solution for spherical explosions
taking into account the effects of both conduction and radiation in the two limits of Rosseland
radiative diffusion and Planck radiative emission.

The problem of propagation of shock waves in a rotating interplanetary atmosphere
assumes special significance in the study of astrophysical phenomena. The experimental
studies and astrophysical observations show that the outer atmosphere of the planets rotates
because of rotation of the planets and stars. Macroscopic motion with supersonic speed
occurs in an interplanetary atmosphere with rotation and shock waves are generated. Thus
the rotation of planets or stars considerably affects the process taking place in their outer
layers, therefore question connected with the explosions in rotating gas atmospheres are
of definite astrophysical interest. Chaturani [8] obtained the solutions for the propagation
of cylindrical shock wave through a gas having solid body rotation by a similarity method
adopted by Sakurai [9]. Similarity solutions for the flow behind the spherical shock waves
propagating in a non-uniform rotating interplanetary atmosphere with increasing energy is
obtained by Nath et al. [10]. A theoretical modal of propagation of strong spherical shock
waves in a self-gravitating atmosphere with radiation flux in presence of a magnetic field
and considering the medium behind the shock to be rotating was studied by Ganguly and
Jana [11], but they have neglected the rotation of the undisturbed medium.

Sedov [1] (see Rao and Ramana [12]) indicated that a limiting case of a self-similar
flow-field with a power-law shock is the flow-field formed with an exponential shock. Rao
and Ramana [12] obtained approximate analytical solutions for the problem of unsteady
self-similar motion of a perfect gas displaced by a piston moving with time according to an
exponential law.

Because of high pressure and density that usually occur behind a shock wave, produced
by an explosion, the belief that the gas is perfect is no more valid. In recent years, several
studied are performed regarding the problem of shock waves in non-ideal gases, specifically,
by Anisimov and Spiner [13], Rao and Purohit [14], Vishwakarma and Nath [15], Nath [16]
and many others. The popular alternative to the perfect gas might be a simplified van der
Waals model. Wu and Roberts [17], Roberts and Wu [18] adopted this model to discuss the
shock wave theory of sonoluminescence. In the present work, we too adopt this as our model
of a non-ideal gas to find how deviations from the perfect gas can affect the self-similar
solutions.

The purpose of this study is to obtain the similarity solutions for the flow behind an
exponential shock wave in a rotational axisymmetric non-ideal gas with heat conduction and
radiation heat flux. To obtain the similarity solution it is assumed that the density of the
ambient medium is constant. The ambient medium have variable azimuthal and axial fluid
velocities (Levin and Skopina [19], Nath [16,20]).

In the present work, we generalize the solution of Rao and Ramana [12] in perfect gas
(the solution of Nath [27] in the case of non-ideal gas) to the case of rotational axisymmetric
non-ideal gas with conductive and radiative heat fluxes, which has a variable azimuthal and
axial fluid velocities (Levin and Skopina [19], Nath [20]). Here, we therefore investigate the

123



Int. J. Appl. Comput. Math (2017) 3:2785–2801 2787

one-dimensional unsteady self- similar adiabatic flow of a rotational axisymmetric non-ideal
gas behind a shock wave driven out by cylindrical piston moving with time according to an
exponential law. It is assumed that the motion of the piston obeys the exponential law (Rao
and Ramanna [12], Vishwakarma and Nath [15,21])

rp = C exp(λ t), λ > 0, (1)

where rp is the radius of the piston, C and λ are dimensional constants and t is the time. ‘C’
represents the initial radius of the piston.

The law of piston motion (1) implies a boundary condition on the gas speed at the piston,
which is required for the determination of the problem. Since we are concerned with the
self-similar motions, we may assume that the shock propagation follows the exponential law

rs = B exp(λ t), (2)

where rs is the radius of the shock and B is a dimensional constant which depends on the
constant ‘C’ and the non-dimensional position of the piston (see Eq. 29).

The effects of variation of the heat transfer parameters and the parameter of the non-
idealness of the gas are investigated. It is shown that the non-idealness of the gas and the
conductive and radiative heat transfer parameters have decaying effect on the shock wave.
It is observed that the effect of an increase in the value of radiation heat transfer parameter
and conduction heat transfer parameter have similar effects on the flow variables and shock
strength.

Equations of Motion and Boundary Conditions

The fundamental equations governing the one-dimensional, unsteady adiabatic and cylindri-
cally symmetric rotational flow of a non-ideal gas with heat conduction and radiation heat
flux, in Eulerian coordinates, may be expressed as (cf. Ghoneim et al. [7], Chaturani [8],
Levin and Skopina [19], Nath [16,20], Gretler and Wehle [22], Vishwakarma and Nath [23])

∂ρ

∂t
+ u

∂ρ

∂r
+ ρ

∂u

∂r
+ uρ

r
= 0, (3)

∂u

∂t
+ u

∂u

∂r
+ 1

ρ

∂p

∂r
− v2

r
= 0, (4)

∂v

∂t
+ u

∂v

∂r
+ uv

r
= 0, (5)

∂w

∂t
+ u

∂w

∂r
= 0, (6)

∂em
∂t

+ u
∂em
∂r

− p

ρ2

(
∂ρ

∂t
+ u

∂ρ

∂r

)
+ 1

ρr

∂

∂r
(Fr) = 0, (7)

where r and t are independent space and time coordinates; u, v, and w are the radial, azimuthal
and axial components of the fluid velocity −→q in the cylindrical coordinates (r, θ, z); ρ, p,
em and F are the density, the pressure, the internal energy per unit mass and the total heat
flux.

Also,
v = Ar, (8)
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where ‘A’ is the angular velocity of themedium at radial distance r from the axis of symmetry.
In this case the vorticity vector

−→
ζ = 1

2
Curl −→q ,

has the components

ζr = 0, ζθ = −1

2

∂w

∂r
, ζz = 1

2r

∂

∂r
(rv). (9)

The total heat-flux F , which appear in the energy Eq. (7) may be decomposed as

F = Fc + FR, (10)

where Fc is conduction heat flux and FR is radiation heat flux.
According to Fourier’s law of heat conduction

Fc = −K
∂T

∂r
, (11)

where ‘K’ is the coefficient of the thermal conductivity of the gas and ‘T’ is the absolute
temperature.

Assuming local thermodynamic equilibrium and using the radiative diffusion model for
an optically thick grey gas Pomroning [24], the radiative heat flux FR may be obtain from
the differential approximation of the radiation transport equation in the diffusion limit as

FR = −4

3

(
σ

αR

)
∂T 4

∂r
, (12)

where σ is the Stefan–Boltzman constant and αR is the Rosseland mean absorption coeffi-
cient.

The thermal conductivity ‘K’ and the absorption coefficientαR of themedium are assumed
to vary with temperature and density. These can be written in the form of power laws, namely
(Ghoneim et al. [7], Vishwakarma and Nath [23,25])

K = K0

(
T

T0

)βc
(

ρ

ρ0

)δc

and αR = αR0

(
T

T0

)βR
(

ρ

ρ0

)δR

, (13)

where the subscript ‘0’ denotes a reference state. The exponents in the above equations should
satisfy the similarity requirements if a self similar solution is sought

The system of Eqs. (3)–(7) should be supplemented with an equation of state. Most of the
phenomena associated with shock wave arise in extreme conditions under which the ideal
gas is not a sufficiently accurate description. To discover how deviations from the ideal gas
can affect the flow behind a shock wave, we adopt a simple model. We assume that the gas
obey a simplified van derWaal equation of state of the form (Nath [16], Wu and Roberts [17],
Roberts and Wu [18])

p = Γ ρ T

(1 − ρ b)
; em = CvT = p (1 − ρ b)

ρ (γ − 1)
, (14)

where Γ is the gas constant, Cv = Γ

γ − 1
is the specific heat at constant volume and γ is the

ratio of specific heats. The constant b is the van der Waal excluded volume; it places a limit,

ρmax = 1

b
, on the density of the gas.

A cylindrical shock wave is supposed to be propagating outwards in the undisturbed
rotating non-ideal gas about the axis of symmetry with constant density. In order to obtain
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the similarity solution, it is assumed that initial angular velocity of the medium is constant.
The flow variables immediately ahead of the shock front are

u = ua = 0, (15)

ρ = ρa = constant, (16)

A = Aa = constant, (17)

w = wa = w∗ exp(α t), (18)

pa = ρa A2
a
r2s
2

, (19)

F = Fa = 0 (Laumbach and Probstein [26]), (20)

where w∗ and α are constants, and the subscript ‘a’ refers to the conditions immediately
ahead of the shock front.

Ahead of the shock, the components of the vorticity vector, therefore vary as

ζra = 0, (21)

ζθa = − w∗α
2λ rs

exp(α t), (22)

ζza = Aa . (23)

The jump conditions are given by the conservation of mass, momentum and energy across
the shock, namely,

ρaU = ρn(U − un),

pa + ρaU
2 = pn + ρn(U − un)

2,

ema + pa
ρa

+ 1

2
U 2 = emn + pn

ρn
+ 1

2
(U − un)

2 − Fn
ρaU

,

va = vn, wa = wn, Ta = Tn, (24)

where the subscript ‘n’ denotes the conditions immediately behind the shock front,

U

(
= drs

dt

)
denotes the velocity of the shock front.

From Eq. (24), the conditions across the shock propagating into non-ideal gas are

ρn = ρa

β
, un = (1 − β)U, pn =

[
(1 − β) + 1

γ M2

]
ρaU

2,

vn = va, wn = wa, Fn = (1 − β)

[
b

γ M2(β − b)
− (1 + β)

2

]
ρaU

3, (25)

where M =
(

ρaU 2

γ pa

) 1
2

is the shock-Mach number referred to the frozen speed of sound

(
γ pa
ρa

) 1
2

. The density ratio β (0 < β < 1) across the shock front is given by

β = 1

γ M2 + b. (26)
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Following Levin and Skopina [19] and Nath [16,20], we obtained the jump conditions for
the components of vorticity vector across the shock front as

ζθn = ζθa

β
, ζzn = ζza

β
. (27)

Self-Similarity Transformations

We introduce ξ = r

rs
as an independent variable, so that ξ = 1 at the shock wave and ξ = ξp

at the piston face. The field variables describing the flow pattern can be written in terms of
the dimensionless functions of ξ such that (Vishwakarma and Nath [15,25], Nath [27])

u = UV (ξ), v = Uψ(ξ), w = UW (ξ), p = ρaU
2P(ξ),

ρ = ρaG(ξ), F = ρa U
3Q(ξ), (28)

where V , ψ , W , P , G and Q are function of ξ only.
Equations (1), (2) and (28) yields a relation between B and C in the form

B = C

ξp
. (29)

Using the similarity transformations (28), the system of governing Eqs. (3)–(7) can be
transformed to the following system of ordinary differential equations:

G ′ ξ (V − ξ) + G (V ′ ξ + V ) = 0, (30)

(V − ξ) V ′ + P ′

G
+ V − ψ2

ξ
= 0, (31)

(V − ξ) ψ ′ + Vψ

ξ
+ ψ = 0, (32)

(V − ξ)W ′ + W = 0, (33)

2 (1 − b G) P G + (1 − b G) (V − ξ) P ′ G − (V − ξ) γ P G ′

+ (γ − 1)G

ξ
(Q + Q′ ξ) = 0. (34)

Using Eqs. (11), (12) and (13) in (10), we get

F = − K0

T βc
0 ρ

δc
0

T βcρδc
∂T

∂r
− 16 σT βR

0 ρ
δR
0

3αR0

T 3−βRρ−δR
∂T

∂r
. (35)

Using Eqs. (14) and (28) in (35), we get

Q =
[ −K0 λ

T βc
0 ρ

δc
0 Γ βc+1

U 2βc−2Pβc (1 − b G)βc ρδc−1
a Gδc−βc

− 16 σT βR
0 ρ

δR
0 λ

3αR0 Γ 4−βR
U 4−2βR P3−βR (1 − b G)3−βR ρ−1−δR

a G−3+βR−δR

]

d

dξ

(
P(1 − b G)

G

)
. (36)
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Equation (36) shows that the similarity solution of the present problem exists only when

βc = 1 and βR = 2. (37)

Therefore Eq. (36) becomes

Q = −X

[
(1 − b G)

G

dP

dξ
− P

G2

dG

dξ

]
, (38)

where X = [
Γc Gδc−1 + ΓR G−1−δR

]
P(1−b G),Γc andΓR are the conductive and radiative

non-dimensional heat transfer parameters, respectively. The parameters Γc and ΓR depend

on the thermal conductivity K and the mean free path of radiation
1

αR
respectively and they

are given by

Γc = K0 λ

T0 ρ
δc
0 Γ 2

ρδc−1
a and ΓR = 16 σT 2

0 ρ
δR
0 λ

3αR0 Γ 2 ρ−1−δR
a .

Solving the set of differential Eqs. (30)–(34) and (38) for
dV

dξ
,
dG

dξ
,
dP

dξ
,
dψ

dξ
,
dW

dξ
and

dQ

dξ
, we have

V ′ =

[
(1 − b G)

ψ2G(ξ − V )

ξ
− (1 − b G) V G (ξ − V ) − PV

ξ
+ Q G (ξ − V )

X

]
[
P − G(V − ξ)2(1 − b G)

] ,

(39)

G ′ = G(V ′ξ + V )

ξ(ξ − V )
, (40)

P ′ = ψ2G

ξ
− (V − ξ)G V ′ − V G, (41)

ψ ′ = ψ (ξ + V )

ξ(ξ − V )
, (42)

W ′ = W

(ξ − V )
, (43)

Q′ = 1

(γ − 1)ξ

[
(V − ξ)2(1 − b G)G ξ V ′ + (V − ξ)(1 − b G)G ξ V − 2 P ξ (1 − b G)

− (V − ξ)(1 − b G) ψ2 G − γ P ξ V ′ − γ PV − Q (γ − 1)
]
. (44)

Applying the similarity transformations on Eq. (9), we obtained the non-dimensional

components of the vorticity vector lr = ζr

U/rs
, lθ = ζθ

U/rs
, lz = ζz

U/rs
in the flow-filed

behind the shock as

lr = 0, (45)

lθ = W

2(V − ξ)
, (46)

lz = ψ

(ξ − V )
. (47)
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The shock conditions (25) are transformed into

V (1) = (1 − β), G(1) = 1

β
, P(1) =

[
(1 − β) + 1

γ M2

]
,

ψ(1) = Aa

λ
, W (1) = w∗

λ B
, Q(1) = (1 − β)

[
b

γ M2(β − b)
− (1 + β)

2

]
, (48)

where it was necessary to use α = λ to obtain the similarity solution.
In addition to the shock conditions (48), the condition to be satisfied at the piston surface

is that the velocity of the fluid is equal to the velocity of the piston itself. This kinematic
condition at the piston face in non-dimensional form can be written as from Eq. (28)

V (ξp) = ξp, (49)

where ξp is the value of ξ at the piston.
For an isentropic change of state of the non-ideal gas, we may calculate the sound speed

in non-ideal gas for a given b as follows

a =
(

∂p

∂ρ

) 1
2

S
=

[
γ p

ρ (1 − bρ)

] 1
2

, (50)

where the subscript ‘S’ refers to the process of constant entropy. In addition, the isothermal
speed of sound may also play a role when thermal radiation is taken into account. The
isothermal sound speed in non-ideal gas is

aisoth =
(

∂p

∂ρ

) 1
2

T
=

[
p

ρ (1 − bρ)

] 1
2

, (51)

where the subscript ‘T’ refers to the process of constant temperature.
By using Eq. (28) the expression for reduce isothermal speed of sound (51) becomes

aisoth
U

=
[

P

G (1 − b G)

] 1
2

. (52)

The adiabatic compressibility of non-ideal gas may be calculated as (c.f. Moelwyn-
Hughes [28], Nath [27])

Cadi = 1

ρ

(
∂p

∂ρ

)
S

= 1

ρ a2
=

[
(1 − bρ)

γ p

]
. (53)

By using Eq. (28) in Eq. (53), we obtain the expression for the adiabatic compressibility
Cadi as

Cadi ρa U
2 = (1 − b G)

γ P
. (54)

The total energy of the disturbance is given by

E = 2π
∫ rs

rp
ρ

[
1

2

(
u2 + v2 + w2) + em

]
rdr. (55)

Applying the similarity transformations (28) and equation (14) to the relation (55), we
have

E = 2πρa
2
λ r4s

∫ 1

ξp

[
1

2
G

(
V 2 + ψ2 + W 2) + P(1 − b G)

(γ − 1)

]
ξdξ. (56)
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Hence, the total energy of the shock wave is not constant and varies as r4s . The increase
in the total energy may be achieved by the pressure exerted on the fluid by the piston. The
situation verymuch of the same kindmay prevail in the formation of cylindrical spark channel
from exploding wires. In addition, in the usual cases of spark break down, time dependent
energy input is a more realistic assumption than instantaneous energy input. (Vishwakarma
and Nath [25], Freeman and Craggs [29]).

Normalizing the variables u, v, w, p, ρ and F with their respective values at the shock
front, we obtain

u

un
= V (ξ)

V (1)
,

v

vn
= ψξ)

ψ(1)
,

w

wn
= W (ξ)

W (1)
,

p

pn
= P(ξ)

P(1)
,

ρ

ρn
= G(ξ)

G(1)
,

F

Fn
= Q(ξ)

Q(1)
. (57)

Because of the dependence of the boundary conditions (48) and Eqs. (39)–(44) on the
parameter of non-idealness of the gas b(= b ρa), shock-Mach number M , and heat transfer
parametersΓc andΓR , the similarity solutions exist only when b,M ,Γc andΓR are constants.
Therefore, for existence of similarity solutions it is necessary to take the initial density ρa to
be a constant.

Results and Discussion

The set of differential Eqs. (39)–(44) have been integrated numerically with the bound-
ary conditions (48) and (49) to obtain the distributions of the flow variables in the
flow-field behind the shock front by the fourth order Runge–Kutta method. For the pur-
pose of numerical integration, the values of the physical parameters are taken to be
(Ghoneim et al. [7], Vishwakarma and Nath [15,23,25], Nath [27]) γ = 1.4; M =
5; δc = 1;δR = 2;b = 0, 0.01, 0.025, 0.05;Γc = 1, 1.5, 2, 3, 3.5, 10, ∞;ΓR =
1, 10, 1000, 5000, 10000, 15000, ∞. The value b = 0 corresponds to the perfect gas
case. The set of values δc = 1, δR = 2 is the representative of the case of high-temperature,
low-density medium (Ghoneim et al. [7]). Also, the set of values Γc = 3, ΓR = 10 (taken
in Fig. 2a–j) is the representative of the case in which there is heat transfer by both the
conduction and radiative diffusion.

Figures 1a–j and 2a–j show the variation of the reduced flow variables
u

un
,

v

vn
,

w

wn
,

ρ

ρn
,

p

pn
,

F

Fn
, the non-dimensional azimuthal component of vorticity vector lθ , the non-

dimensional axial component of vorticity vector lz , reduced isothermal speed of sound
aisoth
U

and the adiabatic compressibilityCadi ρa U 2 against the similarity variable ξ at various values
of the parameters b, Γc and ΓR respectively.

These figures show that the radial component of fluid velocity
u

un
, the density

ρ

ρn
, the

pressure
p

pn
, the axial component of vorticity vector lz and isothermal speed of sound

aisoth
U

increases, but the azimuthal component of fluid velocity
v

vn
, axial component of fluid veloc-

ity
w

wn
, the azimuthal component of vorticity vector lθ and the adiabatic compressibility

123



2794 Int. J. Appl. Comput. Math (2017) 3:2785–2801

Fig. 1 Variation of the reduced flow variables in the region behind the shock front for b = 0.05: a radial

component of fluid velocity
u

un
, b azimuthal component of fluid velocity

v

vn
, c axial component of fluid

velocity
w

wn
, d density

ρ

ρn
, e pressure

p

pn
, f total heat flux

F

Fn
, g non-dimensional azimuthal component

of vorticity vector lθ , h non-dimensional axial component of vorticity vector lz , i isothermal speed of sound
aisoth
U

, j adiabatic compressibility Cadi ρa U2: 1 Γc = 1, ΓR = 10; 2 Γc = 1.5, ΓR = 10; 3 Γc = 2,

ΓR = 10; 4 Γc = 3.5, ΓR = 10; 5 Γc = ∞, ΓR = 10; 6 ΓR = 1, Γc = 3; 7 ΓR = 1000, Γc = 3; 8
ΓR = 5000, Γc = 3; 9 ΓR = 15,000, Γc = 3; 10 ΓR = ∞, Γc = 3

Cadi ρa U 2 decreases as we move from the shock front to the piston ingeneral (see Figs. 1a–
j, 2a–j).

Flow variables
u

un
,

ρ

ρn
,

p

pn
and the axial component of vorticity vector lz have higher

values at the piston than at the shock front. In fact, since the total energy increases with
time, the velocity of the piston is higher than the radial fluid velocity behind the shock

front. This fact can be seen from the Table 3 which displays that ξp
(
= u p

U

)
is greater than

123



Int. J. Appl. Comput. Math (2017) 3:2785–2801 2795

Fig. 1 continued

123



2796 Int. J. Appl. Comput. Math (2017) 3:2785–2801

Fig. 2 Variation of the reduced flow variables in the region behind the shock front for Γc = 3 and ΓR = 10:

a radial component of fluid velocity
u

un
, b azimuthal component of fluid velocity

v

vn
, c axial component of

fluid velocity
w

wn
, d density

ρ

ρn
, e pressure

p

pn
, f total heat flux

F

Fn
, g non-dimensional azimuthal component

of vorticity vector lθ , h non-dimensional axial component of vorticity vector lz , i isothermal speed of sound
aisoth
U

, j adiabatic compressibility Cadi ρa U2: 1 b = 0; 2 b = 0.01; 3 b = 0.025; 4 b = 0.05

1−β
(
= un

U

)
. Therefore, most of the mass is concentrated near the piston than at the shock

front (see Figs. 1a, d, e, h, 2a, d, e, h).
Figure 1j shows that the adiabatic compressibility Cadi ρa U 2 decreases rapidly near the

piston for lower values of Γc, whereas it decreases in the whole flow field as we move from
the shock front to the piston for higher values of Γc or for all values of ΓR . In fact, when Γc is
small the temperature near the piston increases rapidly due to absorption of energy. This rise
in temperature can be seen through curves 1–3 in Fig. 1i as the isothermal speed of sound
aisoth
U

is proportional to the square root of the temperature (see Eq. 52). Since the adiabatic

compressibility Cadi ρa U 2 is inversely proportional to temperature (see Eq. 54), this rise in
temperature causes the adiabatic compressibility to attain a minimum near the piston (curves
1–3 in Fig. 1j).
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Fig. 2 continued
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Table 1 The position of the
piston ξp for different values of
Γc with γ = 1.4; δc = 1; δR =
2; M = 5; b = 0.05, ΓR = 10

b β Γc Position of the piston ξp

0.05 0.0785714 1 0.988426

1.5 0.982359

2 0.976074

3 0.966475

3.5 0.965854

10 0.963822

∞ 0.962855

Table 2 The position of the
piston ξp for different values of
ΓR with γ = 1.4; δc = 1; δR =
2; M = 5; b = 0.05, Γc = 3

b β ΓR Position of the piston ξp

0.05 0.0785714 1 0.966479

10 0.966475

1000 0.966012

5000 0.964922

10000 0.964286

15000 0.963946

∞ 0.962855

Table 3 The density ratio β

across the shock and the position
of the piston ξp for different
values of b with γ = 1.4; δc =
1; δR = 2; M = 5; Γc = 3,
ΓR = 10

b β 1 − β Position of the piston ξp

0 0.0285714 0.9714286 0.988708

0.01 0.0385714 0.9614286 0.983983

0.025 0.0535714 0.9464286 0.977092

0.05 0.0785714 0.9214286 0.966475

From Table 1 and Fig. 1a–j it is found that the effects of an increase in the value of the
conductive heat transfer parameter Γc are

(i) to decrease ξp , i.e. to increase the distance of the piston from the shock front. This
means that an increase in the value of conductive heat transfer parameter has an effect
of decreasing the shock strength i.e. the flow field behind the shock becomes somewhat
rarefied (see Table 1);

(ii) to decrease the flowvariables
u

un
,

ρ

ρn
,
p

pn
,
F

Fn
, lz and

aisoth
U

at any point in the flow-field

behind the shock front (see Fig. 1a, d–f, h, i);

(iii) to increase the flow variables
v

vn
,

w

wn
, lθ and Cadi ρa U 2 at any point in the flow-field

behind the shock front (see Fig. 1b, c, g, j).

Table 2 and Fig. 1a–j show that, the effects of an increase in the value of radiative heat
transfer parameterΓR are similar to those of an increase in conductive heat transfer parameter
Γc.

From Table 3 and Fig. 2a–j it is found that the effects of an increase in the value of the
parameter of non-idealness of the gas b are

(i) to increase the value of β i.e. to decrease the shock strength (see Table 3);
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(ii) to increase the distance of the piston from the shock front. Physically it means that the
gas behind the shock is less compressed. This shows the same result as given in (i)
above, i.e. there is a decrease in the shock strength (see Table 3);

(iii) to decrease the reduced radial component of fluid velocity
u

un
near shock front but to

increase it near piston (see Fig. 2a);

(iv) to increase the flow variables
v

vn
,

w

wn
,
F

Fn
, lθ and

aisoth
U

; whereas to decrease the flow

variables
ρ

ρn
,
p

pn
, lz andCadi ρa U 2 at any point in the flow-field behind the shock front

(see Fig. 2b–j).

Conclusion

The present work investigates the unsteady adiabatic self-similar flow behind a exponential
shock wave propagating in a rotational axisymmetric non-ideal gas with heat conduction and
radiation heat flux. The density and angular velocity of the ambient medium are taken to be
constants. The shock waves in rotational axisymmetric non-ideal gas with heat conduction
and radiation heat flux can be important for description of shocks in supernova explosions, in
the study of a flare produced shock in solar wind, central part of star burst galaxies, nuclear
explosion, rupture of a pressurized vessel etc. On the basis of this work, one may draw the
subsequent conclusions:

(i) An increase in the value of the parameter of conductive heat transfer Γc (or radiative
heat transfer ΓR) decreases the shock strength and widens the disturbed region between
the shock and the piston.

(ii) An increase in the parameter of non-idealness of the gas has significant effects on
the flow-variables between the shock and the piston. An increase in the value of the
parameter of non-idealness of the gas and the conductive (or radiative) heat transfer
parameter exhibits similar effects on the shock strength and on the distance between
the shock front and the piston.

(iii) An increase in the value of conductive heat transfer parameter Γc (or radiative heat

transfer parameter ΓR) decrease the flow variables
u

un
,

ρ

ρn
,
p

pn
,
F

Fn
, lz ,

aisoth
U

; whereas

reverse behaviour is observed in the case of theflowvariables
v

vn
,

w

wn
, lθ andCadi ρa U 2.

(iv) An increase in the non-idealness of the gas b and the conductive heat transfer parameter
Γc (or radiative heat transfer parameter ΓR) have same behaviour on the flow variables
ρ

ρn
,
p

pn
,

v

vn
,

w

wn
, lθ and lz ; whereas opposite behaviour is observed in the case of flow

variables
F

Fn
,
aisoth
U

and Cadi ρa U 2.

In this paper, the problem concerning the self-similar method for one-dimensional
unsteady adiabatic flows behind an exponential shock wave with conductive and radiative
heat fluxes in a rotational axisymmetric non-ideal gas is considered. Our considered problem
consists of highly non-linear system of hyperbolic partial differential Eqs. (3)–(7). In order
to find the solution of problem under consideration we employed the self-similarity method
to transform the partial differential Eqs. (3)–(7) into ordinary differential Eqs. (39)–(44) and
these equations are solved numerically by using Runge–Kutta method of fourth order. In the
pioneer works (Igra et al. [30,31], Falcovitz et al. [32] and Falcovitz and Ben-Artzi [33]) the
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numerical solutions were compared with experimental finding and excellent agreement was
found between the two, confirming the reliability of the numerical solution obtained for the
considered problem.

In the present case the flow takes place in a non-ideal gaswith conductive and radiative heat
flux in rotatingmedium.Unfortunately, to the best of our knowledge there are no experimental
results that can be used as a benchmark for the present problem. Also, to the best of our
knowledge there are no research papers in literature for the shock wave problems by using
homotopy perturbation method or variational iteration method [34,35] that can be used as
benchmark for the considered flows. First of all one need to develop the correct formula for
the correction functionals or to construct the homotopy for Eqs. (3)–(7) or (39)–(44) that is
very interesting problem for future research.
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