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Abstract This paper deals with the classical backorder economic order quantity inventory
model under cloudy fuzzy environment. The traditional concepts on fuzziness of the fuzzy
parameters remains the same in all the time, but in practice, due to the human experience and
precision the fuzziness began to remove from the system over time. However, we take the crisp
model first, then fuzzifying the model to get a decision under the cloudy fuzzy (extension of
dense fuzzy) demand rate followed by its practical application. A new defuzzification method
has been utilized for ranking the fuzzy numbers. Finally, comparative analysis between the
crisp, general fuzzy as well as cloudy fuzzy solutions are done extensively. The graphical
illustrations and numerical examples are studied to justify the usefulness of the new approach
in the model itself.

Keywords Backorder inventory · Cloudy fuzzy number · Cloud index · Extension of
Yager’s ranking index method

Introduction

In any production process especially on the classical economic order quantity (EOQ) model,
the constancy on demand rate has been threatened by modern thinkers. Harris [21] developed
the concept of modeling in the inventory management problems. Hariga [20] studied an EOQ
model for deteriorating items with time-varying demand. In deterministic world, numerous
research articles have been studied yet in the literature.
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Zadeh [41] first introduced the concept of fuzzy sets. After that it has been applied by
Bellman and Zadeh [5] in decision making for industrial management problems. Researchers
like Kaufmann and Gupta [23], Mahata et al. [30], Mahata and Goswami [31], Mahata and
Mahata [32], Báez-Sáncheza et al. [2], Mahata and Goswami [33], Milenkovic et al. [35],
Ban and Coroianu [3] and De and Sana [13] have studied extensively over the subject. In
fuzzy EOQ model with backorder an analytical solution is made by Bjork [4]. Kazemi et al.
[25] studied with the same model for fuzzy decision variables. Kao and Hsu [22] developed
a lot size—reorder point inventory model with fuzzy demands. De et al. [9,10] studied the
inventory model considering fuzzy demand rate, fuzzy deterioration rate and fuzzy cost co-
efficient respectively. Researchers like Kumar et al. [29], De [11], De and Sana [12] etc. have
tried to develop fuzzy models with backorders under promotional efforts sensitive demand.
De and Sana [14] developed a hill type fuzzy stochastic model using Bonferroni mean operator
and they have solved this problem by a fuzzy schematic algorithm via score functions of the
fuzzy numbers.

In another study, Mahata [34] investigated the learning effect of the unit production time
on optimal lot size for the imperfect production process with partial backlogging of shortage
quantity in fuzzy random environments. He assumed that the setup cost, the average holding
cost, the backorder cost, the raw material cost and the labor cost are characterized as fuzzy
variables and the elapsed time until the machine shifts from “in-control” state to “out-of-
control” state is characterized as a fuzzy random variable. Another such characterization
developed by Goetschel and Voxman [18] considering eigen fuzzy number sets.

Recently, Kazemi et al. [24,26,27] discussed the learning and forgatting effects on fuzzy
parameters for the backorder EOQ model considering imperfect quality items in their models.
Through their works they basically use Wright’s [37] learning curve in estimating the several
cost parameters that involved in the model. According to them, learning can be improved from
one shipment to another and it might have the range 50–100 %. (for details see “Appendix”)
. In addition, they did not take the learning performance as the decision variable and solved
the model using simple differential calculus. But, in practical use, the decision variable, we
see the cycle time plays a vital role in forming the knowledge through learning over passing
time instead of how many shipments taking place. Again, their model fails if the learning
rate assumes values in between [0–50 %). Thus in this study we have developed a cloudy
fuzzy model such that the fuzziness is directly depends upon the decision variable in which
no restrictions could be imposed on learning rate and defuzzify the fuzzy problem with a
new defuzzification method.

In defuzzification analysis, specially on ranking fuzzy numbers, after Yager [39], some
other recent researchers like Allahviranloo and Saneifard [1], Ezzati et al. [17], Deng [16] and
Zhang et al. [42] etc. have adopted the methods for ranking fuzzy numbers based on center of
gravity as well. Using deviation degree, the extensive works over L-R fuzzy numbers made
by Wang et al. [36], Kumar et al. [28], Hajjari and Abbasbandy [19], Xu et al. [38], etc.
have kept a new milestone in the subject. Yu et al. [40] developed fuzzy ranking generalized
fuzzy numbers in fuzzy decision making based on the left and right transfer coefficients and
areas of the corresponding membership functions. Das et al. [7] were able to develop an
backlogging EOQ model using step order fuzzy approach, while De and Sana [15] gave an
alternative fuzzy approach for backlogging model using promotional effort sensitive demand.
Moreover, De and Beg [8] and De and Sana [14] invented new defuzzification methods for
triangular dense fuzzy set. They are also able to apply this concept in the Neutrosophic
sets, by hosting the method not only in manufacturing engineering but for environmental
risk analysis, assessment and disaster management, even crime research also. Here we have
utilized the extension of triangular dense fuzzy into triangular cloudy fuzzy to rank the
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fuzzy objective value. We have incorporated the implications of cloudy fuzzy environment
in inventory management problems in a separate section along with a practical example.
The findings explore that, a cloud indicator exists and it cannot be removed in any inventory
process. Thus we solve the model by crisp, general fuzzy and cloudy fuzzy environments also.
A numerical study followed a comparative graphical illustrations and a sensitivity analysis as
well. Finally decision is made over the applicable region by realistic feasibility of the model
itself.

Preliminary Concept

Normalized General Triangular Fuzzy Number (NGTFN)

Let D be a NGTFN having the form D̃ = (D1, D2, D3). Then its membership function is
defined by

μ
(
D̃

)
=

⎧
⎪⎪⎨
⎪⎪⎩

0 if D < D1 and D > D2
D−D1
D2−D1

if D1 ≤ D ≤ D2

D3−D
D3−D2

if D2 ≤ D ≤ D3

(1)

Now, the left and right α−cuts of μ
(
D̃

)
are given by

L (α) = D1 + (D2 − D1)α and R (α) = D3 − (D3 − D2)α (2)

Note that the measures of fuzziness can be obtained from the following formula:

Yager’s [39] Ranking Index

If L(α) and R(α) are the left and right α−cuts of a fuzzy number D̃ then the defuzzification
rule under Yager’s ranking index is given by

I
(
D̃

)
= 1

2

∫ 1

0
[L (α) + R(α)] dα = 1

4
(D1 + 2D2 + D3) (3)

Note that the measures of fuzziness (degree of fuzziness d f ) can be obtained from the formula
d f = Ub−Lb

2m , where Lb and Ub are the lower bounds and upper bounds of the fuzzy numbers
respectively and m being their respective mode.

Cloudy Normalized Triangular Fuzzy Number (CNTFN) (extension of De and
Beg [6])

A fuzzy number of the form Ã = 〈a1, a2, a3〉 is said to be cloudy triangular fuzzy number
if after an infinite time the set itself converges to a crisp singleton. This means that, as time t
tends to infinity, both a1, a3 → a2.

Let us consider the fuzzy number

Ã =< a2

(
1 − ρ

1 + t

)
, a2, a2

(
1 + σ

1 + t

)
>, for 0 < ρ, σ < 1 (4)

Note that limt→∞a2

(
1 − ρ

1+t

)
= a2 and limt→∞a2

(
1 + σ

1+t

)
= a2, so Ã → {a2}.
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Fig. 1 Membership function of CNTFN

Then the membership functions for 0 ≤ t is as follows:

μ (x, t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if x < a2

(
1 − ρ

1+t

)
and x > a2

(
1 + σ

1+t

)
{

x−a2

(
1− ρ

1+t

)

ρa2
1+t

}
if a2

(
1 − ρ

1+t

)
≤ x ≤ a2

{
a2

(
1+ σ

1+t

)
−x

σa2
1+t

}
if a2 ≤ x ≤ a2

(
1 + σ

1+t

)
(5)

The graphical representation of CNTFN (Fig. 1) can be obtained as follows:

Extended De and Beg’s [6] Ranking Index on CNTFN

Let us take left and right α−cuts of μ (x, t) from (5) noted as L(α, t) and R(α, t) respectively.
Then the defuzzification formula under time extension of Yager’s ranking index is given by

I ( Ã) = 1

2T

∫∫ α=1,t=T

α=0,t=0

{
L−1 (α, t) + R−1 (α, t)

}
dαdt. (6)

Note that, α and t are independent variables.
Let Ã be a CNTFN stated in (4). Then we have its membership function (5). Now taking

the left and right α-cuts of μ (x, t) from (5) we get

L−1 (α, t) = a2

(
1 − ρ

1 + t
+ ρα

1 + t

)
and R−1 (α, t) = a2

(
1 + σ

1 + t
− σα

1 + t

)
(7)

Thus using (6), we have

I ( Ã) = a2

2T

[
2T + σ − ρ

2
log (1 + T )

]
(8)

Again (8) can be rewritten as I ( Ã) = a2

[
1 + σ−ρ

4
log(1+T )

T

]
.

Obviously, limT→∞ log (1+T )
T = 0 and therefore I ( Ã) → a2 as T → ∞.

Note that we may call the factor
log (1 + T )

T
as cloud index (CI) (9)

And the time T is measured by days in practice. The nature of cloud index is shown in Fig. 2.
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Fig. 2 Nature of fuzziness over
time
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Classical backorder EOQ Model

To develop the proposed model, we assume the following notations and assumptions:
Notation:
The notation used in this paper is as follows:

D Demand rate per unit time (days)
Q Lot size (decision variable)
q(t) Instantaneous inventory level
S Shortage level (decision variable)
K Ordering cost of inventory per order
c1 Holding cost per unit per unit time ($)
p Unit purchase cost ($)
c2 Shortage cost per unit ($)
T Length of the replenishment cycle (days)
t1 Time when inventory level comes down to zero, 0 ≤ t1 < T
t2 The shortage period (days)
Z(t1, T ) Average total inventory cost per unit time

Assumptions:
In the model, the primary assumptions are:

(1) The inventory system involves only one item.
(2) Replenishment occurs instantaneously on ordering i.e. lead-time is zero.
(3) Demand rate D(t) is deterministic and given by D (t) = D; 0 < t < T .
(4) Shortages are allowed and completely backlogged.
(5) The planning period is of infinite length. The planning horizon is divided into sub-

intervals of length T units. Orders are placed at time points 0, T, 2T, 3T, . . . the order
quantity at each reorder point being just sufficient to bring the stock height to a certain
maximum level S.

Model Formulation

Let the amount of stock for the item be R at time t = 0. In the interval (0, T (= t1 + t2)),
the inventory level gradually decreases to meet demands. By this process the inventory level
reaches zero at time t1 and then shortages are allowed to occur in the interval (t1, T ). The
cycle then repeats itself.
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The differential equation for the instantaneous inventory q(t) at time t in (0, T ) is given
by

dq (t)

dt
= −D; for 0 ≤ t ≤ t1

= −D; for t1 ≤ t ≤ T (10)

with the initial conditions q (0) = R (= Q − S) , q (T ) = −S, q (t1) = 0.
For each period a fixed amount of shortage is allowed and there is a penalty cost c2 per

item of unsatisfied demand per unit time.
From (10)

q (t) =
{
R − Dt for 0 ≤ t ≤ t1
D (t1 − t) for t1 ≤ t ≤ T

So Dt1 = R, S = Dt2, Q = DT .

In the interval (0, t1), expected holding cost HC = c1
∫ t1

0 q (t) dt = c1Dt21
2 .

Over the interval (t1, T ), expected shortage cost SC = c2
∫ T
t1

−q(t)dt = c2D
(T−t1)2

2 .

Production cost = pQ.

Total cost = Production cost + Set up cost + Holding cost + Shortages cost

= pQ + k + c1Dt2
1

2
+ c2D

(T − t1)2

2

Therefore the total average cost is

Z(t1, T ) = pQ

T
+ k

T
+ c1Dt2

1

2T
+ c2D

(T − t1)2

2T

Thus our problem is given by

{
Minimize Z (t1, T ) = pD + K

T + c1Dt21
2T + c2D

(T−t1)2

2T
subject to Q = DT, S = D (T − t1)

(11)

The graphical representation of the model is shown in Fig. 3.

Fig. 3 The EOQ model with
backorder
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Formulation of Fuzzy Mathematical Model

Let the demand rate follows the general fuzzy and cloudy fuzzy over the inventory run time.
Then considering D̃ as follows

D̃ =
{ 〈D1, D2, D3〉 for NGTFN〈

D
(

1 − ρ
1+T , D, D

(
1 + ρ

1+T

))〉
for CNTFN, where 0 < ρ, σ < 1 and T > 0

(12)
And the corresponding fuzzy problem is given by

{
Minimize Z̃ (t1, T ) = pD̃ + K

T + c1 D̃t21
2T + c2 D̃

(T−t1)2

2T
subject to Q̃ = D̃T, S̃ = D̃ (T − t1)

(13)

Therefore, using (3) the membership function for the fuzzy objective, order quantity and
shortage quantity under NGTFN are given by

μ1 (Z) =

⎧
⎪⎨
⎪⎩

0 if Z < Z1 and Z > Z2
Z−Z1
Z2−Z1

if Z1 ≤ Z ≤ Z2
Z3−Z
Z3−Z2

if Z2 ≤ Z ≤ Z3

where

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Z1 = pD1 + K
T + c1D1t21

2T + c2D1
(T−t1)2

2T

Z2 = pD2 + K
T + c1D2t21

2T + c2D2
(T−t1)2

2T

Z3 = pD3 + K
T + c1D3t21

2T + c2D3
(T−t1)2

2T

(14)

μ2 (Q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if Q < Q1 and Q > Q2

Q−Q1
Q2−Q1

if Q1 ≤ Q ≤ Q2

Q3−Q
Q3−Q2

if Q2 ≤ Q ≤ Q3

where

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Q1 = D1T

Q2 = D2T

Q3 = D3T

(15)

μ3 (S) =

⎧⎪⎪⎨
⎪⎪⎩

0 if S < S1 and S > S2
S−S1
S2−S1

if S1 ≤ S ≤ S2
S3−S
S3−S2

if S2 ≤ S ≤ S3

where

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

S1 = D1(T − t1)

S2 = D2(T − t1)

S3 = D3(T − t1)

(16)

Using (2) and (3) the index values of fuzzy objective, fuzzy order quantity and fuzzy shortage
quantity are respectively obtained as

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

I
(
Z̃
)

= 1
4 (Z1 + 2Z2 + Z3) =

(
p + c1t21

2T + c2
(T−t1)2

2T

)
(D1+2D2+D3)

4 + K
T

I
(
Q̃

)
= 1

4 (Q1 + 2Q2 + Q3) = (D1+2D2+D3)
4 T

I
(
S̃
)

= 1
4 (S1 + 2S2 + S3) = (D1+2D2+D3)

4 (T − t1)

(17)

Particular Cases:

i) If D1 → D2 and D3 → D2 → D then I (Z̃) → (p + c1t21
2T + c2

(T−t1)2

2T )D + K
T ,

I (Q̃) → DT and I (S̃) → D(T − t1) , it is the classical backorder EOQ model.
ii) If t1 → T , I (Z̃) → (pD + c1DT

2 + K
T ), it is the classical EOQ model

However, using (5) the membership function for the fuzzy objective, fuzzy order quantity,
and fuzzy shortage quantity under the cloudy fuzzy model are givenby
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w1 (Z , T ) =

⎧⎪⎪⎨
⎪⎪⎩

0 if Z < Z11 and Z > Z21

Z−Z11
Z21−Z11

if Z11 ≤ Z ≤ Z21

Z31−Z
Z31−Z21

if Z21 ≤ Z ≤ Z31

where

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Z11 =
(
p + c1 t21

2T + c2
(T−t1)2

2T

)
D

(
1 − ρ

1+T

)
+ K

T

Z21 =
(
p + c1 t21

2T + c2
(T−t1)2

2T

)
D + K

T

Z31 =
(
p + c1 t21

2T + c2
(T−t1)2

2T

)
D

(
1 + σ

1+T

)
+ K

T

(18)

w2 (Q, T ) =

⎧⎪⎪⎨
⎪⎪⎩

0 if Q < Q11 and Q > Q21

Q−Q11
Q21−Q11

if Q11 ≤ Q ≤ Q21

Q31−Q
Q31−Q21

if Q21 ≤ Q ≤ Q31

where

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Q11 =
(

1 − ρ
1+T

)
DT

Q21 = DT

Q31 =
(

1 + σ
1+T

)
DT

(19)

w3 (S, T ) =

⎧⎪⎪⎨
⎪⎪⎩

0 if S < S11 and S > S21

S−S11
S21−S11

if S11 ≤ S ≤ S21

S31−S
S31−S21

if S21 ≤ S ≤ S31

where

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S11 =
(

1 − ρ
1+T

)
D(T − t1)

S21 = D (T − t1)

S31 =
(

1 + σ
1+T

)
D(T − t1)

(20)

Using (6) the index values of cloudy fuzzy objective, cloudy fuzzy order quantity, and cloudy
fuzzy shortage quantity are respectively given by

J
(
Z̃
)

= 1

τ

∫ τ

T=0

1

4
(Z11 + 2Z21 + Z31) dT = 1

4τ

∫ τ

T=0
(Z11 + 2Z21 + Z31) dT

= 1

4τ

∫ τ

T=0

[
4K

T
+

(
4 + σ − ρ

1 + T

) (
p + c1t2

1

2T
+ c2

(T − t1)2

2T

)
D

]
dT

= pD + D log
(

τ
ε

)

2τ

{
2k

D
+

(
1 + σ − ρ

4

)
(c1 + c2)t

2
1

}
+ c2D

4
(τ − 4t1)

+ (σ − ρ) D

8

[
c2 + {

2p − c1t
2
1 − c2 (1 + t1)

2} log |1 + τ |
τ

]
(21)

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

J
(
Q̃

)
= 1

τ

∫ τ
T=0

1
4 (Q11 + 2Q21 + Q31) dT = 1

4τ

∫ τ
T=0

(
4 + σ−ρ

1+T

)
DTdT

= D
4τ

{
2τ2 + (σ − ρ) (τ − log |1 + τ |)

}

J
(
S̃
)

= 1
τ

∫ τ
T=0

1
4 (S11 + 2S21 + S31) dT = 1

4τ

∫ τ
T=0

{
4 (T − t1) + σ−ρ

1+T (T − t1)
}
DdT

= D
4τ

[
2

(
τ2 − 2t1τ

)
+ (σ − ρ) {τ − (1 + t1) log |1 + τ |}

]

(22)

Stability analysis and particular cases:

i) If σ − ρ → 0 then J
(
Z̃
)

→ pD + Dln( τ
ε
)

2τ

{
(c1 + c2) t2

1 + 2k
D

} + c2D
4 (τ − 4t1) ,

J
(
Q̃

)
→ Dτ

2 and J
(
S̃
)

→ D
2 (τ − 2t1).

ii) If σ → 0 ← ρ then the model reduces to (i). But it is the case of classical backorder
EOQ model. Thus we choose ε in such a way that the above reduces to the classical
model. Thus we take

pD + Dln
(

τ
ε

)

2τ

{
(c1 + c2) t

2
1 + 2k

D

}
+ c2D

4
(τ − 4t1) ≡

(
p + c1t2

1

2T
+ c2

(T − t1)2

2T

)
D + K

T

Comparing we get,
ln( τ

ε
)

τ
= 1

T and
ln( τ

ε
)

τ
t2
1 + (τ−4t1)

4 = (T − t1)
2

giving τ = 2 and T =
1 ⇒ ε → 2e−2 
 1
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Thus the model is stable and in this case we write, τ = 2T and hence, J
(
Q̃

)
→ DT and

J
(
S̃
)

→ D (T − t1) which corresponds the results of classical backorder model.

Implication of Cloudy Fuzzy Environment in Inventory Process

Suppose x is a crisp number then under non-randomly uncertainties it will be ‘around x’.
Our focus of attentions is that such uncertainty basically depends upon the time variable.
This kind of fuzzy variation is generally called the variation due to learning effect in decision
making problems. In practice, for any inventory process, when it begins, the uncertainties
viewed are high and as the time progresses the total ambiguities began to disappear from the
system.

For instance, if we think of demand rate then at the beginning the ambiguity is high for any
inventory setup because, the decision maker (DM) has no information how many people are
accepting their items or how much will the demand rate be. As the time (it may be cycle time)
progresses the DM will began to gather more information over the nature of expected demand
through the run of inventory and learn whether it is below expected or over expected (usually
mean below crisp or above crisp value). People will usually take much time (no matter what
offers have been declared or how attractive the getup of the system or commodities are) to
accept and adopt the process. According to public opinion, the shorter cycle time inventory
treated as “less reliable’ because of the fact that the inventory practitioner (DM) is hesitating
to run the process for a longer cycle time so as the customers to buy the items as well. As
soon as the uncertain region (cloud) getting thinner (fuzziness near zero) to the DM’s mind
the cycle time will be fix up and (s)he will be order the commodities accordingly.

Numerical Example

Let us consider k = $300 per cycle, c1 = $1.5 per unit, p = $25 per unit, c2 = $5. per
unit, D = 500 units for Crisp model; for fuzzy model let the demand rate 〈D1, D2, D3〉 =
〈450, 500, 600〉 units keeping the other parameters same as crisp and that for cloudy fuzzy
model we assume σ = 0.15, ρ = 0.13. ε = 0.001 for numerical illustration of the model.
Therefore, from Eqs. (11), (17), and (21–22), we get the following results:

Note that, we need to calculate the mode of the fuzzy demand rate for the compu-
tation of fuzziness; and this can be calculated as follows: Mean of (450, 500, 600) =
516.67, Median = 500, So, Mode (m) = 3× Median - 2 × Mean = 466.67, Ub and
Lb are the upper and lower bounds of the fuzzy demand components respectively, then apply
degree of fuzziness d f = Ub−Lb

2m .

Discussion on Numerical Results of Tables (1, 2, 3)

Table 1 shows in crisp environment, for the 7 days (approx) cycle time with 1.5 days shortage
time the average optimum inventory cost assumes the value $13088.35, but the fuzzy solution
becomes more costly keeping the total average value $13408.16 per cycle. Moreover, it is
astonished that, whenever we are thinking of cloudy fuzzy environment the average inventory
cost reduces to $10295.81 per cycle time by just increasing the length of the cycle time to
19.6 days alone. By this time, we also observe that, the degree of fuzziness has been reduced
from 0.321 to 0.154.
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Table 1 Optimal solution of the classical backorder EOQ model

Model Cycle time
T∗ (days)

Inventory
period t1∗
(days)

Shortage
quantity S∗
units

Order
quantity Q∗
units

Minimum
Cost z∗ ($)

d f =
Ub−Lb

2m

C I =
Log(1+T )

T

Crisp 7.14 5.46 117.67 509.90 13088.35 . . . . . .

Fuzzy 7.07 5.46 119.13 516.24 13408.16 0.321 . . .

Cloudy fuzzy 19.60 15.75 427.06 701.68 10295.81 . . . 0.154

Tables 2 and 3 shows, within the time span of cycle time 16–23 days, the crisp model as
well as general fuzzy model giving the value of the average inventory cost such that they
began to increase with cycle time duration but the objective function of the cloudy fuzzy
model assumes a ‘U-shaped curve ’ at 20 days cycle time keeping the global minimum of the
average inventory cost. Also our observation reveals that, at the cycle time below 16 days,
the solution of the cloudy fuzzy model is infeasible.

In cloudy fuzzy model, the order quantity and shortage quantity becomes high with respect
to the findings obtained in crisp as well as fuzzy environment. Although, if we consider the
trend values of the order quantity and shortage quantity which they take we see that they are
increasing in nature for all environments.

Sensitivity Analysis of the Cloudy Fuzzy Model

We consider a sensitivity analysis for the parametric changes from −50 to + 50 % of the
parameters c1, c2, d, k, p, ε ρ and σ respectively and this can be shown in Table 4.

Comments on Sensitivity Analysis

From the above Table 4 we see, the parameters d and p are highly sensitive, for the changes of
demand rate at −30 and −50 % the average inventory cost reduces to −43.08 and −57.73 %
respectively. Moreover, the changes of unit purchasing price at +50 % the objective function
giving no feasible solution, but at +30 % changes it assumes little more variation. Also, at
−30 and −50 % changes of the unit purchasing price the objective value reduces to −42.45
and −55.76 % respectively. Again, for any kind of variations (positive or negative) of the
parameters c1, c2, k and ε we always have moderately reduced amount of average inventory
cost and that reduction is being ranging from 15.01 to 24.97 %. In the case of fuzzy variability
parameters ρ , for the changes of (+50,+30 %) and that of σ at the changes of (−30,−50 %)
respectively the average inventory cost getting no feasible solution. For the other changes of
(ρ, σ ) , the inventory cost began to reduce moderately. Throughout the whole table we see,
the inventory cost assumes maximum value (+14.61 %) whenever +50 % change is made
for the demand rate and that gets minimum value at −50 % change of the same demand
parameter exclusively. Furthermore, the amount of shortage quantity getting very near to one
third of the order quantity. The order quantity reaches its maximum value for the −50 %
change of the shortage cost parameter. The sensitivity table also explores that for any kind of
changes the range of the shortage time is being limited to (1–9) days for maximum duration
of cycle time 28 days approximately. The observations are more practicable and hence the
model is realistic one.
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Table 3 Cloudy fuzzy solution
under several cycle times

Bold values are optimal values

Cycle time T (days) Cloudy fuzzy model

t1∗ S∗ q∗ z∗

16 15.61 27.57 572.63 10352.41

17 15.65 95.95 608.37 10323.78

18 15.70 164.37 644.12 10305.90

19 15.74 232.82 679.86 10297.19

20 15.78 301.30 715.61 10296.34

21 15.82 369.81 751.34 10302.32

22 15.86 438.36 787.08 10314.24

23 15.91 506.92 822.82 10331.38

Graphical Illustrations of the Model

We shall draw the graphs of the cloudy fuzzy model for better justifications of the newly
introduced method.

Discussion on the Graphs (Figs. 4, 5, 6)

From the Fig. 4, we see that a large difference has been taken place in between the average
inventory costs of the crisp as well as general fuzzy model with respect to the cloudy fuzzy
model. Moreover, we have observed that, the general fuzzy model giving the highest value
and the cloudy fuzzy model giving the lowest value of the objective function everywhere.
Therefore, the solution under cloudy fuzzy environment is a better choice for the inventory
practitioner especially for a decision maker (DM). Figure 5 shows a ‘U-tern’ of the cloudy
fuzzy objective function occurs at 20 days cycle time and hence it is convex. However, Fig. 6
reveals that the backorder quantity curves for all the cases of the model meet at near 21 days
cycle time giving the shortage quantity near 325 units of the model. The backorder curve of
crisp and general fuzzy model is likely to be overlapped lines of smaller gradient but that for
cloudy fuzzy model it is a straight line getting higher gradient values always.

Conclusion

In this paper we have discussed a backorder EOQ model under cloudy fuzzy environment.
In the literature, all inventory models are studied by crisp, general fuzzy, intuitionistic fuzzy
or fuzzy stochastic environment. But the concept of cloudy fuzzy is quite new in decision
making problems. However we see, as the cycle time assumes larger values, the degree of
fuzziness, the cloud index becomes lesser values. Lesser fuzziness does not mean lower
inventory cost. Because, lesser fuzziness of the fuzzy parameters might gradually began to
converge into a crisp number at its optimum. As the crisp minimization problem giving larger
value and it is unrealistic in practice so incorporating parametric flexibilities we are intending
to study the model under cloudy fuzzy environment. Thus if we enhance the cycle time more
than its global optimum then the average inventory cost likely to be converge with the cost
that obtained from the crisp model exclusively. So within a considerable fuzziness we are
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searching the model minimum which is the main focus of attention of the model. Thus for
any DM it is quite easy to understand and to make a decision accordingly.
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Appendix

Wright [37]: Let Yi be the learning performance at the time of i-th shipment, Y1 is the
performance at the beginning of the planning period, i-is the number of shipments and β is
the learning exponent with β = −log (δ)/ log 2 , δ being the learning rate taking values
within 50–100 % then the learning performance can be stated as Yi = Y1i−β .
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