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Abstract In this paper, the time fractional two-dimensional diffusion-wave equation defined
by Caputo sense for (1 < α < 2) is analyzed by an efficient and accurate computational
method namely meshless local Petrov–Galerkin (MLPG) method which is based on the
Galerkin weak form and moving least squares (MLS) approximation. We consider a general
domain with Dirichlet boundary conditions further to given initial values as continuous
functions. Meshless Galerkin weak form is adopted to the interior nodes while the meshless
collocation technique is applied for the nodes on the boundaries of the domain. SinceDirichlet
boundary condition is imposed directly therefore the general domains are also applicable
easily. InMLPGmethod, theMLS approximation is usually used to construct shape functions
which plays important rule in the convergence and stability of the method. It is proved the
method is unconditionally stable in some sense. Two numerical examples are presented, one
of them with the regular domain and the other one with non-regular domain, and satisfactory
agreements are achieved.

Keywords Local weak formulation · Meshless local Petrov–Galerkin (MLPG) method ·
Moving least squares (MLS) · Diffusion-wave equation · Time fractional derivative

Introduction

The fractional derivative and fractional differential equations have been used to describemany
phenomena in physics and engineering, such as boundary layer effects in ducts, allometric
scaling laws in biology and ecology, colored noise, dielectric polarization, electromagnetic
waves, electrode–electrolyte polarization, fractional kinetics, quantitative finance, quantum
evolution of complex systems, power-law phenomenon in fluid and complex network, vis-
coelastic mechanics, etc. [1,2]. On the other hand, an important class of fractional differential
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equations which has been studied widely in recent years is the time fractional diffusion-wave
equation (FDWE). The time FDWE is obtained from the classical diffusion-wave equation by
replacing the second-order timederivative termby a fractional derivative of order (1 < α < 2)
[3]. Many of the universal electromagnetic, acoustic, mechanical responses can be described
exactly by the FDWE [4]. It is also worth mentioning that fractional diffusion equation and
diffusion wave equation have a lot in common, for example, they can behave like diffusion.
To see some different kinds of fractional differential equations interest readers are referred
to [5–7].

Strictly speaking, fractional diffusion-wave equation with damping is similar to the frac-
tional Cattaneo equationwhere FDWEhasmore a term f (x, t) rather than fractional Cattaneo
equation. A considerable amount of papers have been appeared dealing with fractional
diffusion-wave equation with damping (FDWE). It is well known that whereas diffusion
equation describes a process, where a disturbance of the initial conditions spreads infinitely
fast, the propagation velocity of the disturbance is constant for the wave equation. In a cer-
tain sense, the time-fractional diffusion-wave equation that is obtained from the diffusion
equation by substituting the first derivative in time by the fractional derivative of order α,
1 < α < 2, interpolates between these two different behaviors.

The present paper considers the following time-fractional two-dimensional diffusion-wave
equation of order (1 < α < 2):

∂αu(x, t)
∂tα

+ γ1
∂u(x, t)

∂t
= γ2�u + f (x, t), x ∈ � ⊆ R

2, t ∈ [0, T ], (1)

subject to compatible initial conditions

u(x, 0) = ϕ(x),
∂u

∂t
(x, 0) = ψ(x), x ∈ �, (2)

and the boundary condition

u(x, t) = g(x, t) for x ∈ 	 = ∂�, t ∈ [0, T ], (3)

where x = (x, y) is spatial variable, 	 the boundary of domain and, γ1 and γ2 are constants.
Also, f (x, t) is source function with sufficient smoothness and, ϕ(x), ψ(x) and g(x, t) are
given continuous functions. Furthermore, in Eq. (1), the time-fractional derivatives are in the
sense of Caputo which is defined by

Dα
t F(t) =

⎧
⎨

⎩

1
	(k−α)

∫ t

0
(t − ξ)k−α−1F (k)(ξ)dξ, k − 1 < α < k, t > 0,

F (k)(t), α = k.
(4)

In the case α = 2, this equation is the telegraph equation, which governs electrical transmis-
sion in a telegraph cable [4]. This equation could also be characterized as a wave equation,
governing wave motion in a string, with a damping effect due to the term ∂u(x,t)

∂t .
In the literature, several meshless weak form methods have been reported such as: Mesh-

less methods based on weak forms such as the element free Galerkin (EFG) method [8,9],
meshless methods based on collocation techniques (strong forms) such as the meshless col-
location method based on radial basis functions(RBFs) [10–23] and meshless methods based
on the combination of weak forms and collocation technique [24–35].

The weak forms are used to derive a set of algebraic equations through a numerical
integration process using a set of quadrature domain that may be constructed globally or
locally in the domain of the problem. In the global weak form methods, global background
cells are needed for numerical integration in computing the algebraic equations. To avoid
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the use of global background cells, a so-called local weak form is adopted to develop the
meshless local Petrov–Galerkin (MLPG) method [36–46].

In the last few years, several numerical methods have been proposed for solving FDWE,
see [4] and Refs. therein. In Ref. [4], the authors have applied a collocation method based
on the Legendre wavelets (LWs) to solve the 1-D form of the problem (1)–(3) and obtained
good results. In this paper, we focus on the numerical solution of the Eqs. (1)–(3) (which is
two-dimensional) using a kind of MLPG method which is based on the Galerkin weak form
and moving least squares (MLS) approximation and achieve still satisfactory results. Two
illustrative examples are given so that the one of them possesses regular domain and the other
one enjoys non-regular domain.

The MLS Approximation Procedure

Ameshless method uses a local approximation to represent the trial function with the values
of the unknown variable at some nodal points. In the current paper, the moving least squares
(MLS) approximation is used. Consider a sub-domain �s , the neighborhood of a point x
and denoted as the support domain of the MLS approximation for the trial function at x,
which is located in the problem domain � (see Fig. 1). To approximate the function u in
�s , over a number of randomly located nodes xi , i = 1, 2, . . . , n, the Moving Least Squares
approximant uh(x) of u, ∀x ∈ �s , could be defined by

uh(x) = pT (x) a(x) ∀x ∈ �s, (5)

wherepT (x) = [p1(x), p2(x), . . . , pm(x)] is a completemonomial basis of orderm, and a(x)
is a vector containing coefficients a j (x), j = 1, 2, . . . ,m which are functions of the space
coordinates x. p j (x) is monomial in the space coordinate xT = [x, y], and m is the number
of polynomial basis functions. The coefficient vector a(x) is discovered by minimizing a
weighted discrete L2 norm, defined as:

J (x) =
n∑

i=1

wi (x)[pT (xi )a(x) − ûi ]2

= [P.a(x) − û]T .W.[P.a(x) − û], (6)

where wi (x) is the weight function associated with the node i , with wi (x) > 0 for all x in
the support of wi (x), xi denotes the value of x at node i , n is the number of nodes in �s for
which the weight functions wi (x) > 0, the matrices P andW are given as

P =

⎛

⎜
⎜
⎝

pT (x1)
pT (x2)

. . .

pT (xn)

⎞

⎟
⎟
⎠

n×m

, W =
⎛

⎝
w1(x) . . . 0
. . . . . . . . .

0 . . . wn(x),

⎞

⎠

and ûT = [û1, û2, . . . , ûn]. Here, it should be noted that ûi , i = 1, 2, . . . , n in Eq. (6) are
the fictitious nodal values, and not the nodal values of the unknown trial function uh(x) in
general. The stationarity of J in Eq. (6) with respect to a(x) leads to the following linear
system of equations between a(x) and û:

A(x)a(x) = B(x)û, (7)
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where the matrices A(x) and B(x) are given by

A(x) = PTWP = B(x)P =
n∑

i=1

wi (x)p(xi )pT (xi ), (8)

B(x) = PTW = [w1(x)p(x1), w2(x)p(x2), . . . , wn(x)p(xn)]. (9)

The MLS approximation is well defined only when the matrixA in Eq. (7) is non-singular. It
can be seen that this is the case if and only if the rank of P equals m. A necessary condition
for a well-defined MLS approximation is that at least m weight functions are non-zero (i.e.
n > m) for each sample point x ∈ � and that the nodes in �s should not be arranged in a
special pattern such as on a straight line. Here a sample point may be a nodal point under
consideration or a quadrature point.

Solving for a(x) from Eq. (7) and substituting it into Eq. (5) yields a relation which may
be written as the form of an interpolation function similar to that used in FEM, as

uh(x) = �T (x).û =
n∑

i=1

φi (x)ûi , x ∈ �s, (10)

where uh(xi ) ≡ ui is not essentially equal to ûi and,

�T (x) = pT (x)A−1(x)B(x) (11)

or

φi (x) =
m∑

j=1

p j (x)[A−1(x)B(x)] j i . (12)

Here, φi (x) is usually called the shape function of the MLS approximation corresponding
to nodal point xi . From Eqs. (9) and (11), it is easily seen that φi (x) = 0 when wi (x). In
practical applications, wi (x) is generally chosen such that it is non-zero over the support of
nodal points xi . The support of the nodal points xi is usually taken to be a circle of radius rs ,
centered at xi (see Fig. 1). The fact that φi (x) = 0, for x not in the support of nodal point xi
preserves the local character of the Moving Least Squares approximation.

Let Cq(�) be the space of qth continuously differentiable functions on �. If wi (x) ∈
Cq(�) and p j (x) ∈ Cs(�), i = 1, 2, . . . , n, j = 1, 2, . . . ,m, then φi (x) ∈ Cr (�) with
r = min(q, s). The partial derivatives of φi (x) are obtained as

Fig. 1 �s and �q are local support and local quadrature domains, respectively
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φi,k =
m∑

j=1

[p j,k(A−1B) j i + p j (A−1B,k + A−1
,k B) j i ] (13)

in which A−1
,k = (A−1),k represents the derivative of the inverse of A with respect to xk ,

which is given by A−1
,k = −A−1A,kA−1, where( ),i denotes ∂( )/∂xi .

In this paper, the Gaussian weight function is applied as

wi (x) =

⎧
⎨

⎩

exp

[

−
(
di
ci

)2
]

−exp

[

−
(
rs
ci

)2
]

1−exp
[
−
(
rs
ci

2
)] , 0 ≤ di ≤ rs,

0, di ≥ rs,

(14)

where di =‖ x − xi ‖, ci is a constant controlling the shape of the weight function wi and
rs is the size of the support domain.

The size of support, rs , of the weight function wi associated with node i should be chosen
such that rs should be large enough to have sufficient number of nodes covered in the domain
of definition of every sample point (n ≥ m) to ensure the regularity of A. A very small
rs may result in a relatively large numerical error in using Gauss numerical quadrature to
calculate the entries in the system matrix. On the other hand, rs should also be small enough
to maintain the local character of the MLS approximation.

The Time Fractional Discretization of the Problem

According to Eq. (4), ∂αu(x,t)
∂tα could be written as follows:

∂αu(x, t)
∂tα

=

⎧
⎨

⎩

1
	(2−α)

∫ t

0

∂2u(x, ξ)

∂ξ2
(t − ξ)1−αdξ, 1 < α < 2,

∂2u(x,t)
∂t2

, α = 2.

(15)

In order to discretize the problem in the time direction for 1 < α < 2, we substitute t (n+1)

into Eq. (15), then the integral can be partitioned as

∂αu(x, t (n+1))

∂tα
= 1

	(2 − α)

∫ t (n+1)

0

∂2u(x, ξ)

∂ξ2
(t (n+1) − ξ)1−αdξ

= 1

	(2 − α)

n∑

k=0

∫ t (k+1)

t (k)

∂2u(x, ξ)

∂ξ2
(t (n+1) − ξ)1−αdξ, (16)

where t (0) = 0, t (n+1) = t (n) + 	t , n = 0, 1, 2, . . . , M , and M	t = T . Approximations
of the first and second order derivatives due to the finite difference formulae are defined
as

∂2u(x, σ )

∂t2
= u(x, t (n+1)) − 2u(x, t (n)) + u(x, t (n−1))

	t2

+ o(	σ t + 	t2), (17)

∂u(x, t (n+1))

∂t
= 3u(x, t (n+1)) − 4u(x, t (n)) + u(x, t (n−1))

2	t
+ o(	t2), (18)
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where σ ∈ [t (n), t (n+1)] and 	σ t = σ − t (n). Replacing Eq. (17) into Eq. (16), gives

∂αu(x, t (n+1))

∂tα
= 1

	(2 − α)

∫ t (n+1)

0

∂2u(x, ξ)

∂ξ2
(t (n+1) − ξ)1−αdξ

∼= 1

	(2 − α)

n∑

k=0

u(k+1) − 2u(k) + u(k−1)

	t2

∫ t (k+1)

t (k)
(t (n+1) − ξ)1−αdξ,

(19)

where u(k) = u(x, t (k)), k = 0, 1, 2, . . . , M . In the above equation, the integral is easily
obtained as

∫ t (k+1)

t (k)
(t (n+1) − ξ)1−αdξ = 1

(2 − α)
	t2−α[(n − k + 1)2−α − (n − k)2−α]. (20)

Rearrangement of Eqs. (19) and (18) by notation bk = (k + 1)2−α − (k)2−α lead to

∂αu(x, t (n+1))

∂tα
= 	t−α

	(3 − α)

n∑

k=0

bk[u(n−k+1) − 2u(n−k) + u(n−k−1)]

∼= a0

{

u(n+1) − 2u(n) + u(n−1)+
n∑

k=1

bk[u(n−k+1) − 2u(n−k) + u(n−k−1)]
}

,

(21)

and

∂u(x, t (n+1))

∂t
∼= a′

0

(
3u(n+1) − 4u(n) + u(n−1)

)
, (22)

where a0 = 	t−α

	(3−α)
, a′

0 = 1
2	t and n = 0, 1, 2, . . . , M . We note that Eq. (1) at t = t (n+1)

due to θ -weighted finite difference formulation is as follows:

∂αu(x, t (n+1))

∂tα
+ γ1

∂u(x, t (n+1))

∂t
= γ2[θ�u(n+1) + (1 − θ)�u(n)] + f (n+1), (23)

where, 0 < θ < 1 is a constant, �u(n) = �u(x, t (n)) and f (n) = f (x, t (n)). We set θ = 1
2

for simplicity, and substitute Eqs. (21) and (22) into Eq. (23), then we obtain

a0

{

u(n+1) − 2u(n) + u(n−1) +
n∑

k=1

bk[u(n−k+1) − 2u(n−k) + u(n−k−1)]
}

+ γ1a
′
0

(
3u(n+1) − 4u(n) + u(n−1)

)
= 1

2
γ2[�u(n+1) + �u(n)] + f (n+1),

or equivalently

1

2
γ2�u(n+1) − (a0 + 3γ1a

′
0)u

(n+1) = −1

2
γ2�u(n) − (2a0 + 4γ1a

′
0)u

(n)

+
n∑

k=1

a0bk[u(n−k+1) − 2u(n−k) + u(n−k−1)]

+ (a0 + γ1a
′
0)u

(n−1) − f (n+1). (24)
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The Local Weak Form of the MLPG

Instead of giving the global weak form, the meshless local Galerkin weak form method
constructs the weak form over local quadrature cell such as �q , which is a small region
taken for each node in the global domain � (see Fig. 1). The local quadrature cells over lap
each other and cover the whole global domain �. The local quadrature cells could be of any
geometric shape and size. In this paper they are taken to be of circular shape. The local weak
form of Eq. (24) for xi = (xi , yi ) ∈ �i

q can be written as
∫

�i
q

[
1

2
γ2�u(n+1) − (a0 + 3γ1a

′
0)u

(n+1)
]

v(x)d�

=
∫

�i
q

[

−1

2
γ2�u(n) − (2a0 + 4γ1a

′
0)u

(n) + (a0 + γ1a
′
0)u

(n−1)
]

v(x)d�

+
∫

�i
q

(
n∑

k=1

a0bk[u(n−k+1) − 2u(n−k) + u(n−k−1)]
)

v(x)d� −
∫

�i
q

f (n+1)v(x)d�,

(25)

where�i
q is the local quadrature domain associated with the point i , i.e., it is a circle centered

at xi of radius rq and, v(x) is the Heaviside step function [47,48],

v(x) =
{
1, x ∈ �q ,

0, x /∈ �q ,
(26)

as the test function in each local quadrature domain. Using the divergence theorem, Eq. (25)
yields the following expression:

−(a0 + 3γ1a
′
0)

∫

�i
q

u(n+1)v(x)d� − 1

2
γ2

∫

�i
q

∇u(n+1)∇vd� + 1

2
γ2

∫

∂�i
q

v
∂u(n+1)

∂n
d	

= 1

2
γ2

∫

�i
q

∇u(n)∇vd� − 1

2
γ2

∫

∂�i
q

v
∂u(n)

∂n
d	 − (2a0 + 4γ1a

′
0)

∫

�i
q

u(n)v(x)d�

+
n∑

k=1

a0bk

[∫

�i
q

u(n−k+1)v(x)d� − 2
∫

�i
q

u(n−k)v(x)d� +
∫

�i
q

u(n−k−1)v(x)d�

]

+ (a0 + γ1a
′
0)

∫

�i
q

u(n−1)v(x)d� −
∫

�i
q

f (n+1)v(x)d�, (27)

where ∂�i
q is the boundary of �i

q , n = (n1, n2) is the outward unit normal to the boundary

∂�i
q , and

∂u

∂n
= ∂u

∂x
n1 + ∂u

∂y
n2

is the normal derivative, i.e., the derivative in the outward normal direction to the boundary
∂�i

q . Because the derivative of the Heaviside step function v(x) is equal to zero, then the
local weak form Eq. (27) is changed into the following simple integral equation:

−(a0 + 3γ1a
′
0)

∫

�i
q

u(n+1)d� + 1

2
γ2

∫

∂�i
q

∂u(n+1)

∂n
d	 = −1

2
γ2

∫

∂�i
q

∂u(n)

∂n
d	

− (2a0 + 4γ1a
′
0)

∫

�i
q

u(n)d� + (a0 + γ1a
′
0)

∫

�i
q

u(n−1)d�
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+
n∑

k=1

a0bk

[∫

�i
q

u(n−k+1)d� − 2
∫

�i
q

u(n−k)d� +
∫

�i
q

u(n−k−1)d�

]

−
∫

�i
q

f (n+1)d�. (28)

Applying the moving least squares (MLS) approximation for the unknown functions, the
local integral Eq. (28) is transformed into a system of algebraic equations with used unknown
quantities, as described in the next section.

Numerical Implementation of MLPG: Reducing to Linear Algebraic
System

In this section, we consider Eq. (28) to see how to obtain discrete equations. Consider N
regularly located points on the boundary and the domain of the problem (i.e. � ⊆ R

2) so
that the distance between to consecutive nodes in each direction is constant and equal to h.
Assuming that u(xi , k	t) for all k = 1, 2, . . . , n and i = 1, 2, . . . , N are known, our aim is
to compute u(xi , (n + 1)	t), i = 1, 2, . . . , N . So, we have N unknowns and to compute
these unknowns we need N equations. As it will be described, corresponding to each node we
obtain one equation. For nodes which are located in the interior of the domain, i.e., for xi ∈
interior �, to obtain the discrete equations from the locally weak forms (28), substituting
approximation formula (10) into local integral equations (28) yields:

−(a0 + 3γ1a
′
0)

N∑

j=1

(∫

�i
q

φ jd�

)

u(n+1)
j + 1

2
γ2

N∑

j=1

(∫

∂�i
q

∂φ j

∂n
d	

)

u(n+1)
j

= − 1

2
γ2

N∑

j=1

(∫

∂�i
q

∂φ j

∂n
d	

)

u(n)
j − (2a0 + 4γ1a

′
0)

N∑

j=1

(∫

�i
q

φ jd�

)

u(n)
j

+
n∑

k=1

a0bk

⎡

⎣
N∑

j=1

(∫

�i
q

φ jd�

)

u(n−k+1)
j

− 2
N∑

j=1

(∫

�i
q

φ jd�

)

u(n−k)
j +

N∑

j=1

(∫

�i
q

φ jd�

)

u(n−k−1)
j

⎤

⎦

+ (a0 + γ1a
′
0)

N∑

j=1

(∫

�i
q

φ jd�

)

u(n−1)
j −

∫

�i
q

f (n+1)d�. (29)

We had supposed bk = (k + 1)2−α − (k)2−α , k = 1, 2, . . . , n in the section 3, in addition
assume b−1 = 0 and b0 = 1. By these assumptions Eq. (29) is converted to the following
equation

⎡

⎣−(a0 + 3γ1a
′
0)

N∑

j=1

(∫

�i
q

φ jd�

)

+ 1

2
γ2

N∑

j=1

(∫

∂�i
q

∂φ j

∂n
d	

)⎤

⎦ u(n+1)
j

=
n∑

s=1

⎧
⎨

⎩

[
a0(bn−s−1 − 2bn−s + bn−s+1)

]
N∑

j=1

(∫

�i
q

φ jd�

)

u(s)
j

⎫
⎬

⎭
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− 4γ1a
′
0

N∑

j=1

(∫

�i
q

φ jd�

)

u(n)
j

− 2a0bn

N∑

j=1

(∫

�i
q

φ jd�

)

u(0)
j + a0bn

N∑

j=1

(∫

�i
q

φ jd�

)

u(−1)
j

− 1

2
γ2

N∑

j=1

(∫

∂�i
q

∂φ j

∂n
d	

)

u(n)
j + γ1a

′
0

N∑

j=1

(∫

�i
q

φ jd�

)

u(n−1)
j −

∫

�i
q

f (n+1)d�.

(30)

According to the initial conditions that were introduced in Eq. (2), we apply the following
assumptions:

u(0)
j = ϕ(x j ), u(−1)

j = u(1)
j − 2	tψ(x j ), (31)

where, the second relation is the result of central finite difference formula, then we conclude
the following

N∑

j=1

(∫

�i
q

φ jd�

)

u(0)
j =

∫

�i
q

ϕ(x)d�, (32)

N∑

j=1

(∫

�i
q

φ jd�

)

u(−1)
j =

N∑

j=1

(∫

�i
q

φ jd�

)

u(1)
j − 2	t

∫

�i
q

ψ(x)d�. (33)

Therefore, applying Eqs. (32) and (33) into (30) yields

⎡

⎣−(a0 + 3γ1a
′
0)

N∑

j=1

(∫

�i
q

φ jd�

)

+ 1

2
γ2

N∑

j=1

(∫

∂�i
q

∂φ j

∂n
d	

)⎤

⎦ u(n+1)
j

=
n∑

s=1

⎧
⎨

⎩

[
a0(bn−s−1 − 2bn−s + bn−s+1)

]
N∑

j=1

(∫

�i
q

φ jd�

)

u(s)
j

⎫
⎬

⎭

− 4γ1a
′
0

N∑

j=1

(∫

�i
q

φ jd�

)

u(n)
j

+ a0bn

N∑

j=1

(∫

�i
q

φ jd�

)

u(1)
j − 1

2
γ2

N∑

j=1

(∫

∂�i
q

∂φ j

∂n
d	

)

u(n)
j

+ γ1a
′
0

N∑

j=1

(∫

�i
q

φ jd�

)

u(n−1)
j

−
∫

�i
q

f (n+1)d� − 2a0bn

∫

�i
q

ϕ(x)d� − 2a0bn	t
∫

�i
q

ψ(x)d�. (34)

For nodes which are located on the boundary, we set

u(n+1)(xi ) = g(xi , (n + 1)	t), xi ∈ 	. (35)
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The matrix forms of Eqs. (34)–(35) for all N nodal points in the domain and the boundary
of the problem are given below:

⎡

⎣−(a0 + 3γ1a
′
0)

N∑

j=1

Ai j + 1

2
γ2

N∑

j=1

Bi j

⎤

⎦ u(n+1)
j = −4γ1a

′
0

N∑

j=1

Ai j u
(n)
j

n∑

s=1

⎧
⎨

⎩

[
a0(bn−s−1 − 2bn−s + bn−s+1)

]
N∑

j=1

Ai j u
(s)
j

⎫
⎬

⎭
+ a0bn

N∑

j=1

Ai j u
(1)
j

+ γ1a
′
0

N∑

j=1

Ai j u
(n−1)
j − 1

2
γ2

N∑

j=1

Bi j u
(n)
j − F (n+1)

i − 2a0bn�i − 2a0bn	t�i , (36)

where

Ai j =
∫

�i
q

φ jd�, Bi j =
∫

∂�i
q

∂φ j

∂n
d	, F (n+1)

i =
∫

�i
q

F(x, (n + 1)	t)d�, (37)

�i =
∫

�i
q

ϕ(x)d�,�i =
∫

�i
q

ψ(x)d�. (38)

By considering the following notations

Ai j = −(a0 + 3γ1a
′
0)

N∑

j=1

Ai j + 1

2
γ2

N∑

j=1

Bi j ,

αn,s = a0(bn−s−1 − 2bn−s + bn−s+1),

βn = a0bn,

λ1 = −1

2
γ2,

λ2 = −γ1a
′
0,

δn = −2a0bn,

μn = −2a0bn	t,

Fn+1 =
[
F (n+1)
1 , F (n+1)

2 , . . . , F (n+1)
N

]T
,

� = [�1,�2, . . . , �N ]
T ,

� = [�1, �2, . . . , �N ]
T ,

Un+1 =
[
u(n+1)
1 , u(n+1)

2 , . . . , u(n+1)
N

]T
,

Equation (36) changes to the following matrix form

AU (n+1) = [λ1B + 4λ2A]U (n) − λ2AU
(n−1) +

n∑

s=1

{
αn,s AU

(s)
}

+βn AU
(1) + δn� + μn� − Fn+1. (39)

Furthermore, to satisfy Eq. (35), for all nodes belong to the boundary, i.e. xi ∈ 	, we set

�i = �i = 0, ∀ j : Ai j = Bi j = 0, F(n+1)
i = −g(xi , (n + 1)	t), Ai j =

{
1, j = i
0, j = i

(40)
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for each step. We notice here that, when n = 0, we use directly (29) and then for n > 0 it is
straightforward to use Eq. (39).

Error Analysis

Given positive N , let τ = T/N , tn = nτ(0 ≤ n ≤ N ). The time domain [0, T ] is covered
by {tn |0 ≤ n ≤ N }. Given grid function � = {�n |0 ≤ n ≤ N }, we denote:

�n−1/2 = 1

2
(�n + �n−1), ∂t�

n−1/2 = �
n − �n−1

τ
(41)

Lemma 1 Suppose 1 < α < 2, ∈ C2[0, T ]. It holds
∣
∣
∣
∣

1

	(2 − α)

∫ tn

0

G ′(ξ)

(tn − ξ)α−1 dξ

− τ 1−α

	(3 − α)

[

a0G (tn) −
n−1∑

k=1

(an−k−1 − an−k)G (tk) − an−1G (0)

]∣
∣
∣
∣
∣

≤ 1

	(3 − α)

[
2 − α

12
+ 23−α

3 − α
− (1 + 21−α)

]

max
0≤t≤tn

|G ′′(t)|τ 3−α (42)

where
ak = (k + 1)2−α − k2−α. (43)

Proof See [35] for more details.

Theorem 1 The scheme (24) is unconditionally stable in the sense that for all τ > 0, it holds

‖Un‖2 ≤ C

(

‖∇U0‖2 + t2−α
n

	(3 − α)
‖U 0

t ‖2 + 2
tn
γ1

max
1≤k≤n

‖ f k−1/2‖2
)

. (44)

Proof Choosing � = ∂tUn−1/2 in (42) and noticing a0 = 1 and —1 = 	(3 − α)τα−1 then
we have the following equation for 1 ≤ n ≤ N :

1

—1
‖∂tUn−1/2‖2 + (∇Un−1/2,∇∂tUn−1/2) + γ1(∂tUn−1/2, ∂tUn−1/2)

= 1

—1

[
n−1∑

k=1

(an−k−1 − an−k)(∂Uk−1/2
t , ∂tUn−1/2) − an−1(U

0
t , ∂tUn−1/2))

]

+ ( f n−1/2, ∂tUn−1/2), 1 ≤ n ≤ N , (45)

Since

(∇Un−1/2,∇∂tUn−1/2) =
(∇Un − ∇Un−1

2
,
∇Un + ∇Un−1

τ

)

= 1

2τ
(‖∇Un‖2 − ‖∇Un−1‖2). (46)
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and noticing ak−1 and (an−k−1 − an−k) are positive, hence

1

—1
‖∂tUn−1/2‖2 + 1

2τ
(‖∇Un‖2 − ‖∇Un−1‖2) + γ1(∂tUn−1/2, ∂tUn−1/2)

= 1

—1

[
n−1∑

k=1

(an−k−1 − an−k)|(∂tUk−1/2, ∂tUn−1/2)| − an−1|(U 0
t , ∂tUn−1/2)|

]

+ |( f n−1/2, ∂tUn−1/2)|, 1 ≤ n ≤ N , (47)

Then we can rewrite:

2τ

—1
‖∂tUn−1/2‖2 + (‖∇Un‖2 − ‖∇Un−1‖2) + 2γ1τ‖∂tUn−1/2‖2

≤ τ

—1

[
n−1∑

k=1

(an−k−1 − an−k)(‖∂tUk−1/2‖2+‖∂tUn−1/2‖2) − an−1(‖U0
t ‖2 + ‖∂tUn−1/2‖2)

]

+ 2τ |( f n−1/2, ∂tUn−1/2)|, 1 ≤ n ≤ N . (48)

On the other hand
τ

—1
‖∂tUn−1/2‖2 + ‖∇Un‖2 − ‖∇Un−1‖2 + 2γ1τ‖Un−1/2‖2

= τ

—1

[
n−1∑

k=1

(an−k−1 − an−k)‖∂tUk−1/2‖2 − an−1‖U 0
t ‖2

]

+ 2τ |( f n−1/2, ∂tUn−1/2)|, 1 ≤ n ≤ N . (49)

We may consider without loss of generality 0 < 2γ1τ < 1, then we obtain

τ

—1

n∑

k=1

an−k‖∂tUk−1/2‖2 + ‖∇Un‖2

= τ

—1

n−1∑

k=1

an−k−1‖∂tUk−1/2‖2 + ‖∇Un−1‖2 − an−1‖U 0
t ‖2 + τ

‖ f n−1/2‖
2γ1

, 1 ≤ n ≤ N ,

where

2τ | ( f n−1/2, ∂tUn−1/2) | ≤ 2τ
‖ f n−1/2‖2

γ1
+ 2γ1τ‖∂tUn−1/2‖2. (50)

Denoting

E
n = ‖∇Un‖2 + τ

—1

n∑

k=1

an−k‖∂tUk−1/2‖2, n ≥ 1, (51)

consequently, we reach to the following inequality

E
n ≤ E

n−1 + τan−1

—1
‖U 0

t ‖2 + 2τ

γ1
‖ f n−1/2‖2

≤ E
0 + τ

—1

n∑

k=1

ak−1‖U 0
t ‖2 + 2τ

γ1

n∑

k=1

‖ f k−1/2‖2

≤ E
0 + τ

—1

n∑

k=1

ak−1‖U 0
t ‖2 + 2τn

γ1
max
1≤k≤n

‖ f k−1/2‖2
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Fig. 2 Absolute error of MLPG solutions with 	t = 0.001, N = 441 and α = 3
2 for Example 1

It is easy to verify that
∑n

k=1 ak−1 = n2−α , therefore, we have

τ

—1

n∑

k=1

ak−1‖U 0
t ‖2 = t2−α

n

	(3 − α)
‖U 0

t ‖2. (52)

It could be rewritten

‖Un‖2 ≤ C

(

‖∇U0‖2 + τ

—1

n∑

k=1

ak−1‖U 0
t ‖2 + 2

nτ

γ1
max
1≤k≤n

‖ f k−1/2‖2.
)

(53)

Hence the proof is complete. ��

Two Numerical Experiments

In this section, we show the results obtained for two examples using the meshless method
described above. In both examples, the domain integrals are evaluatedwith 16 pointsGaussian
quadrature rule while the boundary integrals are evaluated with 7 points Gaussian quadrature
rule. To show the behavior of the solution and the efficiency of the proposed method, the
following absolute error is applied to make comparison
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Fig. 3 Diagram of MLPG solutions u(x, 0.5, t) at t = 0, 0.1, 0.2, . . . , 2 with 	t = 0.001 and N = 441 for
Example 1

t=0,0.1,0.2,0.3,...,2.0

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

Fig. 4 Diagram of exact solutions u(x, 0.5, t) at t = 0, 0.1, 0.2, . . . , 2 for Example 1

Error = max
1≤i≤N

∣
∣
∣Uexact (xi ) −Uapprox (xi )

∣
∣
∣

where Uexact (xi ) and Uapprox (xi ) are achieved by exact and approximate solution and N
is number of nodal points. In both problems the regular node distribution is used. Also in
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Table 1 The L∞ error with
fixed N = 441, α = 1.5 and
different time-steps for Example
1

t 	t = 0.1 	t = 0.01 	t = 0.001

t = 0.000000 0.00000000 0.00000000 0.00000000

t = 0.100000 0.00021788 0.00003173 0.00000349

t = 0.200000 0.00139839 0.00016792 0.00001750

t = 0.300000 0.00364989 0.00041713 0.00004267

t = 0.400000 0.00673507 0.00073569 0.00007486

t = 0.500000 0.01024647 0.00108049 0.00010982

t = 0.600000 0.01384541 0.00142623 0.00014512

t = 0.700000 0.01735184 0.00176128 0.00017966

t = 0.800000 0.02070118 0.00208286 0.00021318

t = 0.900000 0.02389343 0.00239296 0.00024589

t = 1.000000 0.02696163 0.00269532 0.00027814
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Fig. 5 The approximation of the domain of Example 2 by different number of nodal points

order to implement the meshless local weak form, the radius of the local quadrature domain
rq = 0.7h is selected, where h is the distance between the nodes in x or y direction. The
size of rq is such that the union of these sub-domains must cover the whole global domain.
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Fig. 6 Absolute error of MLPG solutions with 	t = 0.05, N = 247 and α = 1.2 for Example 2

The radius of support domain to moving least squares approximation is rs = 4rq and all
shape parameters in (14) are chosen ci = c = 1.2h. This size is significant enough to have
sufficient number of nodes (n) and gives an appropriate shape functions. Also, the quadratic
basis functions is used i.e. m = 6 is taken.

Example 1 (Regular domain) We set γ1 = γ2 = 1, the exact solution of problem (1)–(3) is
taken as

u(x, y, t) = t2(2 − x − y)(x + y),

and the domain of the problem is � = [0, 1] × [0, 1]. The functions ϕ(x, y), ψ(x, y) and
g(x, y, t) are defined accordingly, and also f (x, y, t) is given by

f (x, y, t) = 2t2−α(x + y − 2)(x + y)

(α − 2)	(2 − α)
+ 4t2 + 2t (−x − y + 2)(x + y),

where

	(z) =
∫ ∞

0
t z−1 exp(−t)dt. (54)

Figure 2 presents the absolute error of approximate MLPG solutions at different time levels
with 	t = 0.001 and N = 441(h = 0.05) for α = 1.5. Also, the approximate MLPG
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Fig. 7 Diagram of MLPG solutions u(x, 0.5, t) at t = 0, 0.1, 0.2, . . . , 2 with 	t = 0.05 and N = 247 for
Example 2

Fig. 8 Diagram of exact
solutions u(x, 0.5, t) at
t = 0, 0.1, 0.2, . . . , 2 for
Example 2

solutions u(x, 0.5, t) atmany different time levels and different values of time fractional order
i.e. α have been plotted in Fig. 3, while the corresponding exact solutions have been shown
in Fig. 4. Furthermore, Table 1 shows the convergence with respect to time discretization.

Example 2 (Non-regular domain) In this example, we take again γ1 = γ2 = 1 and assume
that

u(x, y, t) = t3 exp(x + y),
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Table 2 The L∞ error with
fixed N = 441, α = 1.2 and
different time-steps for Example
2

t 	t = 0.1 	t = 0.05 	t = 0.01

t = 0.000000 0.00000000 0.00000000 0.00000000

t = 0.100000 0.00148778 0.00104865 0.00022082

t = 0.200000 0.00547895 0.00264969 0.00048595

t = 0.300000 0.00800747 0.00358613 0.00066444

t = 0.400000 0.00899216 0.00411414 0.00077587

t = 0.500000 0.00941117 0.00435965 0.00083423

t = 0.600000 0.00935067 0.00434740 0.00084615

t = 0.700000 0.00882321 0.00408782 0.00081763

t = 0.800000 0.00780302 0.00358998 0.00075120

t = 0.900000 0.00630339 0.00286859 0.00064914

t = 1.000000 0.00435741 0.00192515 0.00051515

is the exact solutionof the problem (1)–(3).Moreover, the domainof the problem is considered
as

� =
{

(x, y) : (x − 1

2
)2 + 4(y − 1

2
)2 ≤ 1

4

}

,

the approximation of this domain by different number of nodal points, while the regular
distributed nodes are used for interior of the domain, are shown in Fig. 5.

The functions ϕ(x, y), ψ(x, y), and g(x, y, t) are defined accordingly and also f (x, y, t)
is given by

f (x, y, t) = 6t3−αex+y
(
α2 − 5α + 6

)
	(2 − α)

− 2t3ex+y + 3t2ex+y . (55)

As previous example, Fig. 6 presents the absolute error of approximateMLPG solutions at
different time levels with	t = 0.05 and N = 247 for α = 1.2. Also, the approximateMLPG
solutions u(x, 0.5, t) atmany different time levels and different values of time fractional order
i.e. α have been plotted in Fig. 7, while the corresponding exact solutions have been shown
in Fig. 8. Moreover, Table 2 shows the convergence with respect to 	t .

Conclusions

In this paper, an efficient and accurate computational method namely meshless local Petrov–
Galerkin (MLPG) method, which is based on the Galerkin weak form and moving least
squares (MLS) approximation, has been applied to the time fractional two-dimensional
diffusion-wave equation. The time fractional derivative has been defined by Caputo sense
for (1 < α < 2). We have considered a arbitrary 2-D domain, which can be non-regular in
general, while Dirichlet boundary conditions are prescribed to the boundaries of the domain.
We have used meshless Galerkin weak form for the interior nodes whereas the meshless
collocation technique has been applied to the nodes on the boundaries of the domain. As a
consequence of imposingDirichlet boundary conditions directly, the general domains are also
applicable easily. In the proposedMLPGmethod, themoving least square (MLS) approxima-
tion has been used to construct shape functions which plays important rule in the convergence
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and stability of the method. Two numerical experiments have been presented and satisfactory
agreements are obtained.
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