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Abstract In this research, the steady nanofluid flow and heat transfer characteristics in
Jeffery–Hamel flow when the stationary rigid nonparallel plates are permitted to stretch
or shrink are investigated. Using appropriate transformations, the momentum and energy
equations that govern velocity and temperature fields are converted into nonlinear ordinary
differential equations. These resulting equations are solved analytically by applyingAdomian
decomposition method (ADM) and numerically using a fourth order Runge Kutta method
featuring shooting technique. In addition, the skin friction coefficient and the Nusselt number
as well as the velocity and temperature profiles are investigated subject to various parameters
of interest, namely Reynolds number, Prandtl number, Eckert number, nanoparticle volume
fraction and stretching/shrinking parameter. The results indicate that the stretchable or shrink-
able walls with the presence of alumina nanoparticles in a water base fluid produces more
heat and enhances significantly the heat transfer between nonparallel plane walls. It is also
demonstrated that the analytical results match perfectly with those of numerical Runge Kutta
method, thus justifying the higher accuracy of the ADM. Finally, a discussion whether the
nanofluid problem can be interpreted in terms of regular fluid is given.
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List of Symbols

a Constant
b Constant
An Adomian polynomials
Bn Adomian polynomials
C Stretching/shrinking parameter
Cc Critical stretching parameter
C f Skin friction coefficient
Cp f Effective specific heat of base fluid (J/kg K)
Cps Effective specific heat of solid nanoparticles (J/kg K)
Cpn f Effective specific heat of nanofluid (J/kg K)
Cψ Constant
Ec Eckert number
En Heat transfer enhancement
F Dimensionless velocity
g Function
G Dimensionless temperature
K f Effective base fluid thermal conductivity (W/m K)
Ks Effective thermal conductivity of solid nanoparticles (W/m K)
Knf Effective nanofluid thermal conductivity (W/m K)
Nu Nusselt number or nonlinear term
Nuc Critical Nusselt number
P Fluid pressure (N/m2)
Pr Prandtl number
r Radial coordinate (m)
s Stretching/shrinking rate
Re Reynolds number
T Temperature (Kelvin)
Tw Wall temperature (Kelvin)
u Function
un Solution terms
Vc Rate of movement at the centerline of channel (m2/s)
Vr Radial velocity (m/s)
Vmax Maximal velocity (m/s)
Vθ Aziumuthal velocity (m/s)
Vz Axial velocity (m/s)
VW Wall velocity (m/s)

Greek Symbols

η Dimensionless angle
ζ Dimensionless angle
α Channel half-angle (◦)
ψ Nanoparticle volume fraction (%)
ϕ Constant
φ Dimensionless temperature
τW Wall shear stress (N/m2)
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ρ f Effective base fluid density (kg/m3)
ρs Effective solid nanoparticles density (kg/m3)
ρn f Effective nanofluid density (kg/m3)
νn f Effective kinematic viscosity of nanofluid (m2/s)
μn f Effective dynamic viscosity of nanofluid (Pa s)

Subscripts

r Radial coordinate (m)
θ Angular coordinate (m)
z Axial coordinate (m)
f Fluid
s Solid
n f Nanofluid

Operators

∂ Derivative operator
L Linear operator
N Nonlinear operator
R Remainder operator

Introduction

Flow between nonparallel plane walls, commonly known as the Jeffery–Hamel flow, is of
paramount importance inmany engineering disciplines such as: fluidmechanics, mechanical,
chemical and bio-mechanical engineering. One canmention, for example, flow through blood
arteries, diffusers, nozzles and reducers. The theory of flow through convergent–divergent
channels has also been successfully used in understanding rivers and canals.

The steady two-dimensional flow between two inclined plates is highly considered as one
of the rare exact solutions of the Navier–Stokes equations. The mathematical investigations
of this type of flow were pioneered by Jeffery [1] and Hamel [2]. Thereafter, several authors
studied and discussed the Jeffery–Hamel flow. Rosenhead [3] expressed the solution of the
classical Jeffery–Hamel flow in terms of jacobian elliptic functions.Millsaps and Pohlhausen
[4] established the exact solutions of the energy equation governing the heat transfer problem
in Jeffery–Hamel flow. The stability problem of classical Jeffery–Hamel flow has been also
much attracted by the researchers [6–10]. In fact, due to the inflectional behaviour of velocity
(i.e. presence of backflow regions in diverging flow), authors concluded that the diverging
flow is unstable.

The problem of stretching–shrinking surfaces has also attracted the attention of
researcher’s community and finds applications in fluid mechanics, biomechanics and chem-
ical engineering as well as in manufacturing process from industry such as the aerodynamic
extrusion of plastic sheets, the extrusion process of polymers and the heat-treated materi-
als. In fact, in literature we can find a large number of studies dealing with the effect of
stretching/shrinking surfaces on the flow and heat transfer of viscous incompressible fluids.
For example, Blasius flow past stretching plate was studied by Crane [11]. In this contribu-
tion, heat conduction in the linear stretching case, skin friction coefficient and heat transfer
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rate were explored and discussed. An overall mathematical analysis of the heat and mass
transfer in the boundary layer over a stretching sheet under the effect of suction and blow-
ing was given by Gupta et al. [12]. The effect of stretching sheet issued from thin slit on
the temperature evolution of a viscous incompressible fluid flow was studied by Dutta et
al. [13]. They showed that the temperature decreases with the increase of Prandtl num-
ber. Fang et al. [14] solved analytically the magnetohydrodynamic (MHD) flow under slip
conditions over a shrinking sheet. They explored the effects of mass transfer, slip and mag-
netic parameters. On the other hand, Fang and Zhang [15] also studied heat transfer over a
shrinking sheet with mass transfer. They investigated the effects of the Prandtl number, the
wall mass transfer parameter and the power index on the wall heat flux, the wall temper-
ature and the temperature evolution. The effect of stretchable/shrinkable walls on the flow
and heat transfer in classical Jeffery–Hamel flow was studied by Turkyilmazoglu [16]. The
obtained results show that the stretching walls leads to production of more heat in the flow;
however, more cooling is achieved in the case of shrinking walls. Asad Mahmood et al.
[17] investigated hydromagnetic stagnation point flow and heat transfer over a nonlinearly
stretching/shrinking surface ofmicropolar fluid. They reported the dual solutions for different
values of magnetic and material parameters against the limited range of stretching/shrinking
parameter.

Nowadays, the so-called nanofluids, created by dispersing micro-sized solid particles
(less than 100 nm) like Cu, CuO, Al2O3 and SiC in a conventional base fluid such as:
water, ethylene glycol and engine oil, are considered as a highly efficient class of solid–
liquid suspensions. The first use of nanofluid term is proposed by Choi [18], of the Argonne
National Laboratory, USA. Since then, nanofluids have received much attention and studied
intensively by many authors due to their anomalously high thermal conductivities. In fact,
numerous experimental and theoretical investigations on the nanofluids were undertaken.
Experimentally, thermal conductivity of nanofluids was measured by several researchers
[19–22]. The obtained results show that the nanofluids exhibit significantly higher thermal
conductivities than base fluids.

By numerical means, the effect of suspended nanoparticles in a conventional base fluid
on heat transfer characteristics has been also investigated by many researchers. For example,
Khanafer et al. [23] developed a model to analyze heat transfer performance of nanoflu-
ids inside an enclosure taking into account the solid particle dispersion. This study gives
a heat transfer correlation of the average Nusselt number for various Grashof numbers
and volume fractions. Obtained results showed that the nanoparticles enhance significantly
the heat transfer rate at any Grashof number. Kuznetsov and Nield [24] investigated ana-
lytically the natural convection of nanofluid flow past a vertical semi-infinite plate. They
showed that the solution mainly depends on a Lewis number, a buoyancy-ratio number, a
Brownian motion number, and a thermophoresis number. Sheikholeslami and Ganji [25]
investigated heat transfer of a nanofluid flow which is squeezed between parallel plates.
This investigation uses the Homogony perturbation method (HPM) and results show that
the Nusselt number increases with the increase of nanoparticle volume fraction and the
squeeze number when two plates are separated, while it decreases with the increase of
the squeeze number when two plates are squeezed. Raza et al. [26] studied the hydro-
magnetic three-dimensional flow of a nanofluid in a rotating channel. They consider, on
the one hand, simultaneous effects of energy and concentration of the nanoparticles. On
the other hand, they utilized velocity, thermal and concentration slip conditions in order to
make the analysis more interesting. Sun et al. [27] studied the flow and convective heat
transfer characteristics of the nanofluids inside a plate heat exchanger. They demonstrated
that, at the same Reynolds number, the overall heat transfer coefficient and resistance coef-
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ficient are enhanced with the addition of nanoparticles. Also, they showed that the overall
heat transfer coefficient was improved significantly with the increase of the mass fraction
of nanoparticles, while the resistance coefficient did not significantly increase. Alam et al.
[28] investigated the magnetohydrodynamic stability of Jeffery–Hamel flow using different
nanoparticles. They studied numerically the effect of nanoparticles volume fraction on critical
values and bifurcation diagrams of channel angle and flow Reynolds number. This investi-
gation also shows the critical relationships among the physical parameters of the studied
problem.

On the other hand, many authors considered the nanofluids as random processes and
consequently use concepts from probabilities theory in order to obtain models of nanoparti-
cles and the thermal conductivity of nanofluids. With this intent, by considering the fractal
character of solid nanoparticles in the nanofluids, Feng et al. [29] developed the probabil-
ity model for nanoparticle size distribution and the effective thermal conductivity model.
In this research work, the Monte Carlo simulations were performed and compared with the
available experimental data for nanofluids. Kaminski and Ossowski [30] have used a variety
of statistical and probabilistic methods to find numerically the effective physical properties
of nanofluids. They investigated a new problem of homogenization of the fluids filled with
a random volume fraction of nanoparticles using a probabilistic approach in the form of a
higher order stochastic perturbation method. Usocwicz et al. [31] developed a new physical–
statistical model for predicting the effective thermal conductivity of nanofluids. The proposed
model shows a good agreement with the available experimental results and gives an efficient
prediction for the effective thermal conductivity of nanofluids compared to existing models.

In recent decades, several methods were developed in order to solve analytically the non-
linear initial or boundary values problems, such as the homotopy analysis method (HAM)
and the variational iteration method (VIM). Same as the HAM and the VIM, the Adomian
decompositionmethod (ADM) [32] developed since 1980s provides the solution of nonlinear
problems in the form of a polynomial series and can be applied directly to nonlinear differ-
ential equations without requiring perturbation or discretization. These analytical methods
have been extensively used by several authors. In fact, they give the approximate solutions to
a wide variety of linear or nonlinear differential equations [33–37]. Also, these methods were
successfully applied [38–40] to solve the traditional nonlinear problemof Jeffery–Hamel flow
and results show that the obtained solutions match perfectly with numerical Runge–Kutta
solution used as a guide, thus justifying the validity, the applicability and the effectiveness
of the analytical methods.

Motivated by the conducted investigations on the nanofluids, the present paper considers
the problem of flow of Al2O3–water nanofluid between stretchable/shrinkable nonparallel
planewalls. In this study, the resulting nonlinear ordinary differential equations governing the
velocity and temperature fields are solved analytically and numerically. The analytic solution
is investigated by an efficient technique of computation, called Adomian decomposition
method, while the numerical solution is obtained via fourth order Runge–Kutta method.
It should also be pointed out that the effect of nanoparticles on the flow and heat transfer
characteristics in such configurations is not addressed yet. The effects of various physical
parameters on velocity and temperature profiles as well as on skin friction and Nusselt
number are tabulated, plotted and therefore discussed. The principal aim is, on the one
hand, to find an approximate analytical solution of the studied problem, and, on the other
hand, to investigate the effects of nanoparticle volume fraction on the flow and heat transfer
characteristics between stretchable/shrinkable inclined walls.
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Fig. 1 Geometry of Jeffery–Hamel flow of nanofluids

Basic Equations

In this research, the steady two-dimensional flow and heat transfer of Al2O3–water nanofluid
between two stretchable or shrinkable nonparallel plates are investigated analytically using
Adomian decomposition method. As for the traditional case, we assume that the nanofluid
flow is symmetric andhas (Fig. 1) a purely radialmotion.Due to this assumption, the nanofluid
velocity is only along radial direction and mainly depends on r and θ. Consequently, we have:
(Vr = V (r, θ) ; Vθ = Vz = 0).

On the other hand, the walls could radially stretch or shrink and consequently we have:

Vr = Vw = s

r
(1)

where, s: is the stretching/shrinking rate. Vw: Velocity of the wall.
In cylindrical coordinates (r, θ, z), the continuity equation, Navier–Stokes equation and

energy equation for stretchable/shrinkable Jeffery–Hamel flow of nanofluids are expressed
as:

ρn f

r
· ∂

∂r
(r · Vr ) = 0 (2)

Vr · ∂Vr
∂r

= − 1

ρn f
· ∂P

∂r
+ νn f ·

[
∂2Vr
∂r2

+ 1

r
· ∂Vr

∂r
+ 1

r2
· ∂2Vr

∂θ2
− Vr

r2

]
(3)

− 1

ρn f · r · ∂P

∂θ
+ 2 · νn f

r2
· ∂Vr

∂θ
= 0 (4)

(
ρ.cp

)
n f Vr

∂T

∂r
= Knf

[
1

r

∂

∂r

(
r
∂T

∂r

)
+ 1

r2
∂2T

∂θ2

]

+μn f

[
2.

((
∂Vr
∂r

)2

+
(
Vr
r

)2
)

+
(
1

r

∂Vr
∂r

)2
]

(5)

where Vr is the radial velocity, T is the temperature, ρn f is the effective nanofluid density,
μnf is the effective dynamic viscosity of nanofluid, νn f is the effective kinematic viscosity
of nanofluid, P is fluid pressure, cpn f is the effective specific heat of nanofluid at constant
pressure and Knf is the effective nanofluid thermal conductivity.
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The boundary conditions are expressed as follows:

– At the centerline of channel:

∂Vr
∂θ

= 0,
∂T

∂θ
= 0, Vr = VC

r
(6)

– At the body of channel: due to the stretching/shrinking of the convergent–divergent
channels, we have:

Vr = Vw = s

r
, T = Tw

r2
(7)

where Tw: is the constant wall temperature. Vc: rate of movement in the radial direction
(Vc = r · Vmax ).

On the other hand, the effective density ρn f , the effective dynamic viscosity μn f , the
effective heat capacity

(
ρ · cp

)
n f and the effective thermal conductivity Knf of the nanofluid

are given as [41]:

ρn f = (1 − ψ) ρ f + ψ · ρs, μn f = μ f

(1 − ψ)2.5
,

(
ρ · cp

)
n f

= (1 − ψ) · (
ρ · cp

)
f + ψ · (

ρ · cp
)
s ,

Knf

K f
=

(
ks + 2k f

) − 2ψ
(
k f − ks

)
(
ks + 2k f

) + ψ
(
k f − ks

) (8)

where ψ is the volume fraction of nanoparticles. The subscript f denotes the base fluid and
s the solid nanoparticles.

Now by introducing the dimensionless parameters [16]:

F (η) = f (θ)

Vc
, η = θ/α (9)

together with a transformation:
T

Tw

= G (θ)

r2
(10)

And eliminating the pressure term between (3) and (4), we obtain:

F
′′′ + 2Re · α ·

[
(1 − ψ)|2.5 ·

(
(1 − ψ) + ψ · ρs

ρ f

)]
· FF

′ + 4α2F
′ = 0 (11)

G
′′ + 4α2G + C1

C2
2α2Pr FG + Pr · Ec

Re · C2 · (1 − ψ)2.5

(
4α2F2 + F

′2
)

= 0 (12)

With:

C1 = (1 − ψ) + ψ · ρs · cps
ρ f · cp f

(13)

C2 =
(
ks + 2k f

) − 2ψ
(
k f − ks

)
(
ks + 2k f

) + ψ
(
k f − ks

) (14)
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The Reynolds, Prandtl and Eckert numbers of the Jeffery–Hamel flow of nanofluids are
introduced as:

Re = Vc · α

ν f

{
Vc > 0, α > 0 Divergent channel
Vc < 0, α < 0 Convergent channel

(15)

Pr = ρ f · Cp f · Vc
K f

(16)

Ec = α · V 2
c

Cp f · Tw

(17)

Accordingly, in terms of F (η) and G (η), the boundary conditions are converted into:

At the centerline of channel : F(0) = 1, F
′
(0) = 0, G

′
(0) = 0 (18)

At the body of channel : F(1) = C, G(1) = 1 (19)

where C = s
Vc

is the shrinking (C < 0) or stretching (C > 0) parameters.
The quantities of engineering interest for the studied problem are the skin friction coeffi-

cient and the Nusselt number that give an indication of the physical wall shear stress and the
rate of heat transfer, respectively. In fact, the Skin friction coefficientC f can be expressed as:

C f = τw

ρ · V 2
c

(20)

where the wall shear stress is expressed as

τw = μn f

(
1

r
· ∂u

∂θ

)∣∣∣∣
θ=α

(21)

By substituting Eq. (21) into Eq. (20), and using the dimensionless quantities (9) and (10),
the Skin friction coefficient is written as:

C f = 1

Re· · (1 − ψ)2.5
· F ′

(1) (22)

On the other hand, the Nusselt number is defined as follows:

Nu = r · qw|θ=α

K · Tw

(23)

where, the heat flux qw is expressed as:

qw = −Knf ·
(

∂T

∂r
+ 1

r
· ∂T

∂θ

)
(24)

Finally, by substituting Eq. (24) into Eq. (23), and using the dimensionless quantities (9) and
(10), the Nusselt number is written as:

Nu = Knf

K f
·
[
2 − G

′
(1)

α

]
(25)
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Adomian Decomposition Method

In this section, we present the basic principle of Adomian decomposition method. Consider
the following nonlinear differential equation:

L (y) + N (y) = f (t) (26)

where L = dn
dxn is the n-order derivative operator, N is a nonlinear operator and f is a given

function.
Assume that L−1 is an inverse operator that represents n-fold integration for an n-th order

of the derivative operator L . Applying the inverse operator L−1 to both sides of (26) yields:

L−1L (y) = L−1 f − L−1N (y) (27)

As a result, we obtain:
y = β + L−1 f − L−1N (y) (28)

where β is a constant determined from the boundary or initial conditions.
Now based on the Adomian decomposition procedure, the solution y of the Eq. (26) can

be constructed by a sum of components defined by the following infinite series:

y =
∞∑
n=0

yn (29)

Also, the nonlinear term is given as follows:

Ny =
+∞∑
n=0

An (y0, y1, . . . , yn) (30)

where
y0 = β + L−1 f, yn+1 = −L−1 (An) . (31)

An
′s are called the Adomian polynomials. The recursive formula that defines the Adomian

polynomials [32] is given as follows:

An (y0, y1, . . . , yn) = 1

n!

[
dn

dλn

[
N

( ∞∑
n=0

λi yi

)]]

λ=0

, n = 0, 1, 2, . . . . (32)

Finally, after some iterations, the solution of the studied equation can be given as an infinite
series by:

y ∼= y0 + y1 + y2 + y3 + · · · + yn . (33)

TheAdomian decompositionmethod (ADM) is a powerful techniquewhich provides efficient
algorithms for several real applications in engineering and applied sciences. The main advan-
tage of this method is to obtain the solution of both nonlinear initial value problems (IVPs)
and boundary value problems (BVPs) as fast convergent series with elegantly computable
terms and does not need linearization, discretization or any perturbation.

Implementation of Adomian Decomposition Method

In this study, the Adomian decomposition method is applied to the ordinary nonlinear dif-
ferential equations (11) and (12) governing dimensionless velocity and temperature profile
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of nanofluid flow between nonparallel plates. In order to apply the Adomian decomposition
method, the linear operators are given as follows:

L1 = d3

dη3
(34)

L2 = d2

dη2
(35)

Differential equations of Jeffery–Hamel nanofluid flow (11) and (12), after applying Eqs.
(34) and (35) become:

L1F = −2Re · α ·
[
(1 − ψ)2.5 ·

(
(1 − ψ) + ψ · ρS

ρ f

)]
· FF

′ + 4α2F
′

(36)

L2G + Pr · Ec

Re · C2 · (1 − ψ)2.5

(
4α2F2 + F ′2) = −4α2G − 2α2C1

C2
Pr FG (37)

The inverse of the operators L1 and L2 can be expressed as follows:

L−1
1 =

∫ η

0

∫ η

0

∫ η

0
dη dη dη (38)

L−1
2 =

∫ η

0

∫ η

0
dη dη (39)

Operating with L−1
1 and L−1

2 on Eqs. (36) and (37) and after applying boundary conditions,
we obtain:

F (η) = F (0) + F
′
(0)η + F

′′
(0)

η2

2
+ L−1(Nu1) (40)

G (η) = G (0) + L−1 (Nu2) (41)

where

Nu1 = 2Re · α ·
[
(1 − ψ)2.5 ·

(
(1 − ψ) + ψ · ρS

ρ f

)]
· FF

′ + 4α2F
′

(42)

Nu2 = −4α2G − 2α2C1

C2
Pr FG (43)

On the other hand, the application of boundary conditions leads to the following expressions:

F (η) =
∞∑
n=0

Fn = F0 + L−1 (Nu1) (44)

G (η) =
∞∑
n=0

Gn = G0 + L−1 (Nu2) (45)

where F0 and G0 are expressed as follows:

F0 = 1 + a
η2

2
(46)

G0 = b + 1

2Re (1 − ψ)2.5 · C2
Ec Pr

(
F

′2 + 4 α2F2
)

η2 (47)
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By applying the recursive formula (31), the terms of Adomian polynomials for the nanofluid
flow are expressed as:

A0 = −2a

(
(1 − ψ) + ψ · ρS

ρ f

)
(1 − ψ)2.5 Reαη − 4aα2η − C2 (1 − ψ)2.5 Reαη3

(48)

A1 = 2

3
a

((
(1 − ψ) + ψ.

ρS

ρ f

)
(1 − ψ)2.5

)2

Re2α2η3

+ 8

3
a

(
(1 − ψ) + ψ · ρS

ρ f

)
(1 − ψ)2.5Reα3η3 + 8

3
aα4η3

+ 3

5
a2

((
(1 − ψ) + ψ · ρS

ρ f

)
(1 − ψ)2.5

)2

Re2α2η5

+ 6

5
a2

(
(1 − ψ) + ψ.

ρS

ρ f

)
(1 − ψ)2.5Reα3η5

+ 1

15
a3

((
(1 − ψ) + ψ.

ρS

ρ f

)
(1 − ψ)2.5

)2

Re2α2η7 (49)

...

Therefore, the first iterations of solution are given as:

F0 = 1 + aη2

2
(50)

F1 = − 1

12
a

(
(1 − ψ) + ψ · ρS

ρ f

)
(1 − ψ)2.5 Reαη4

−1

6
aα2η4 − 1

120
a2

(
(1 − ψ) + ψ · ρS

ρ f

)
(1 − ψ)2.5 Reαη6 (51)

...

The application of the recursive formula (31) on heat transfer problem leads to the fol-
lowing expressions:

B0 =
(

−4α2 − 2

C2

(
FC1 Pr

2
α

)) (
b − 1

2Re (1 − ψ)2.5 C2

(
Ec Pr

(
F

′2 + 4
2
α F2

)
η2

)

(52)

B1 = − 1

Re(1 − ψ)2.5C2
3

(2 · C2 + FC1 Pr) α2η2
(
F ′2Ec Pr

(
0.166667FC1Prα

2η2

+C2
(−1. + 0.333333α2η2

))
+ α2

(
b (1 − ψ)2.5C2 (−4 · C2 − 2 · FC1Pr) Re + EcF2 Pr (−4 · C2

+ 1.33333 A α2η2 + 0.666667FC1 Pr α2η2
)))

. (53)
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...

G0 = b + 1

2Re (1 − ψ)2.5 · C2
Ec Pr

(
F

′2 + 4
2
α F2

)
η2 (54)

G1 = −
(

1

2Re(1 − ψ)2.5C2

)
F ′2 Ec Pr η2

− 2 b α2 η2 − 1

C2
b F C1Prα

2 η2 − 2

Re(1 − ψ)2.5C2
Ec F22Prα2 η2

+ 0.166667

Re(1 − ψ)2.5C2
F

′2 EcPr
4
α η4

+ 0.0833333

Re(1 − ψ)2.5C2
2

F ′2 Ec F C12Pr α2 η4 + 0.666667

Re(1 − ψ)2.5C2
Ec F2Prα4 η4

+ 0.333333

Re(1 − ψ)2.5C2
2

Ec F3C1 Pr
2 α4 η4

(55)
...

Finally, the approximate solutions for the studied problem are:

F (η) = F0 + F1 + F2 + F3 + · · · + Fn (56)

G (η) = G0 + G1 + G2 + G3 + · · · + Gn (57)

The accuracy of ADM solution increases by increasing iterations number (n). Also, the
constants a and b can be easily determined with the boundary conditions (18) and (19).

Results and Discussions

Nanofluid flow and heat transfer between two stretchable or shrinkable walls coinciding at
an angle 2α are investigated analytically and numerically. The main goal of this study is
to have an insight on the nanofluid flow behaviour and the heat transfer performances. The
analytic solution is developed using an efficient method of computation, called Adomian
decomposition method; while the Numerical solution is obtained with mathematica package.
In fact, this software uses a Runge–Kutta method as default to solve the boundary value
problems (BVPs) numerically.

According to the Adomian decomposition method (ADM), we can obtain an elevate
order of series solutions. In this paper, we have only presented the expression of the second
approximate solution because the results are too long.

Numerical and analytical results of the present study are drawn in Figs. 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16 and 17. These figures display velocity and temperature profiles,
Nusselt number and Enhancement parameter through convergent–divergent channels. On the
other hand, the thermo-physical properties of the studied nanofluid flow are given in Table 1.

The analytical ADM results in this investigation are compared with numerical results used
as a guide (Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 and Tables 2, 3, 4, 5, 6,
7). It is found that the results are similar to each other, thus justifying validity, applicability
and the higher accuracy of Adomian decomposition method.
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Fig. 2 Effect of stretching parameter on velocity profiles in convergent channel

Fig. 3 Effect of shrinking parameter on velocity profiles in convergent channel

Nanofluid Flow Behaviour

The effects of stretching/shrinking of the convergent–divergent channels on the behaviour
of fluid velocity are depicted in Figs. 2, 3, 4, 5. For the stretching case, it is clear that the
wall moves in the direction of flow; however, the wall has an opposite movement in the case
of shrinking. On the other hand, at a fixed value of the stretching parameter (i.e. C = 1),
it should be pointed out that the wall and the nanofluid flow have a same velocity, which is
physically expected.

As drawn in Figs. 2, 3, 4, 5 in the case of stationary rigid walls (i.e. C = 0), we notice that
the fluid velocity appeared as an increasing function from F(1) = 0 at the body of channel to
F(0) = 1 at the centerline of channel. On the other hand, as displayed in Fig. 2, it is clear that
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Fig. 4 Effect of stretching parameter on velocity profiles in divergent channel

Fig. 5 Effect of shrinking parameter on velocity profiles in divergent channel

the increase of stretching of a convergent channel (i.e. after C = 1) intensifies the presence
of particles near the walls. In this zone, the entire fluid moves faster and consequently the
velocity shows a higher magnitude in comparison with the centerline velocity Vc. From a
practical viewpoint, this means that particles will intensify near the wall, for example, in
polymer science, the polymers will concentrate near the convergent channels and show a
reverse behaviour to that observed in the classical Jeffery–Hamel flow (i.e. nonstretched
rigid walls) where the velocity is concentrated at the centerline of the channel.

As depicted in Table 2, the skin friction coefficient increases with the stretching of a
convergent channel. This can be explained by the higher wall shear stress near the walls.

Figure 3 shows the effect of shrinking of a convergent channel on the fluid velocity
behaviour. In this case, we notice a reverse behaviour to that observed in the case of stretching
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Fig. 6 Effect of nanoparticle volume fraction on velocity profile in diverging channel

Fig. 7 Effect of nanoparticle volume fraction on velocity profile in diverging channel

(Fig. 2). In fact, due to the opposite movement of the wall, it is clear that the fluid particles
are obliged to reverse near the wall. Consequently the velocity profile tends to show an
inflectional behaviour at high values of shrinking parameter. On the other hand, we notice
that the high velocity is occurred near the wall. As displayed in Table 3, the skin friction, in
a convergent channel, is a decreasing function at the low values of the shrinking parameter
(C < 1); however, it is an increasing function after a certain critical value of the shrinking
parameter. In this case, the decrease in fluid velocity and the negative skin friction coefficient
are mainly due to the opposite movement of the wall.

As shown in Figs. 4 and 5, we observe that the effect of stretching of a divergent channel
(Fig. 4) on fluid velocity is similar to that observed in the case of stretching of a convergent
channel. The shrinking of a divergent channel (Fig. 5) shows also a similar behaviour as
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Fig. 8 Effect of stretching of the convergent channel on the evolution of temperature

Fig. 9 Effect of stretching of the divergent channel on the evolution of temperature

noticed in the case of a shrinking of convergent channel. On the other hand, it is well clear
that the velocity profile (Fig. 4), shows an inflectional behaviour after a critical value of the
stretching parameter. According to this behaviour, the backflow phenomenon may occur for
large values of stretching of the divergent channel, thus signalling the start of separation.

As drawn in Table 4, we notice that the skin friction increases for low values of stretching
of the divergent channel; however, it decreases after a certain critical value of stretching
parameter. This decrease clearly indicates on the beginning of the backflow phenomenon. In
Table 5, we notice a decrease in skin friction coefficient with the increase of shrinking of a
divergent channel.

Effects of the nanoparticle volume fraction on velocity profile in the case of stretching of
a diverging channel are depicted in Figs. 6 and 7. In fact, we notice that the fluid velocity
increases with the increase of nanoparticle volume fraction and consequently the backflow
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Fig. 10 Effect of shrinking of the convergent channel on the evolution of temperature

Fig. 11 Effect of shrinking of the divergent channel on the evolution of temperature

phenomenon starts. On the other hand, after a certain critical value of nanoparticle volume
fraction, it can be seen that increasing nanoparticle volume fraction causes fluid velocity to
decrease. As consequence the backflow is slowed.

Thermal Distributions

To visualize the effects of stretching/shrinking of convergent–divergent channels on the
temperature profile in Jeffery–Hamel flow of nanofluids, Figs. 8, 9, 10 and 11 are drawn
with α = ±3◦, Re = 50, ψ = 0.1 and Ec=0.5. As mentioned above, the stretching of
convergent–divergent channels generates more shear stress near the walls. In fact, this shear-
ing leads to the increased thermal boundary layer as depicted in Figs. 8, 9. According to Figs.
10, 11, shrinking leads to reducing of thermal boundary layer for both converging–diverging
channels. On the other hand, as depicted in Table 6, it is clear that the stretching enhances
the heat transfer rate between nonparallel plates; however, the shrinking generates less heat
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Fig. 12 Effects of shrinking parameter and nanoparticle volume fraction on the Nusselt number

Fig. 13 Effects of stretching parameter and nanoparticle volume fraction on the Nusselt number

Fig. 14 Heat transfer enhancementEn versus shrinking diverging channel for different values of nanoparticle
volume fraction
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Fig. 15 Heat transfer enhancementEn versus stretching diverging channel for different values of nanoparticle
volume fraction

Fig. 16 Heat transfer enhancement En versus stretching converging channel for different values of nanopar-
ticle volume fraction

in converging/diverging channels and consequently the heat transfer rate will be decreased
as presented in Table 7.

The Nusselt number is known as the ratio of convective to conductive heat transfer. It
is also well known that the convection terms include both advection and diffusion. Also
the presence of nanoparticles in a base fluid leads to increased thermal conductivity of the
nanofluids. This increase is accompanied by an increase in thermal diffusivity; consequently a
drop in temperature gradients is occurred, thus leading to increase in the thickness of thermal
boundary layer. Increased thermal boundary layer reduces the Nusselt number; however, as
presented in Eq. 25, the Nusselt number is defined as amultiplication of thermal conductivity

ratio
(
Kn f
K f

)
and the temperature gradient. According to Figs. 12, 13, the Nusselt number

increases with the increase of volume fraction of Alumina nanoparticles. In fact, with the
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Fig. 17 Heat transfer enhancementEnversus shrinking converging channel for different values of nanoparticle
volume fraction

Table 1 Thermophysical
properties of Al2O3–water
nanofluid

ρ(kg/m3) Cp (J/kg K) K (W/m K)

Water 997.1 4179 0.613

Alumina, Al2O3 3970 765 40

Table 2 Effect of stretching on
Skin friction coefficient in
convergent channel Re = 50,
α = −3◦ and ψ = 0.1

C=0 C=1 C=2 C=5 C=10

Numerical –2.51241 0.0000 3.0769 15.1596 42.9173

ADM –2.51241 0.0000 3.07692 15.1595 42.9172

Table 3 Effect of shrinking on Skin friction coefficient in convergent channel Re= 50, α = −3◦ andψ = 0.1

C = 0 C = −1 C = −2 C = −3 C = −4

Numerical −2.51241 −4.37785 −5.47571 −5.61186 −4.42033

ADM −2.51244 −4.37784 −5.47572 −5.61185 −4.42032

presence of nanoparticles, thermal conductivity ratio is higher than reduction in temperature
gradient; therefore an enhancement in Nusselt number is taking place with the increase of
nanoparticle volume fraction.

As displayed in Fig. 12, an increase in Nusselt number is well observedwhen the shrinking
parameter increases. Also, as shown in Fig. 13, it is clear that the Nusselt number decreases
with the increase of the stretching parameter (C ∈ [0–1]). After a certain critical value of
the stretching parameter (C ∼= 1 in our case), we notice that the Nusselt number increases
as the stretching parameter increases. In Tables 8 and 9 we visualize the critical Nusselt
number and the corresponding critical stretching parameter. The results shown are depicted
versus Reynolds number (Re) and the nanoparticles volume fraction (ψ). We notice, that
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Table 4 Effect of stretching on Skin friction coefficient in divergent channel when: Re=50, α = 3◦ and
ψ = 0.1

C=0 C=1/2 C=1 C=3/2 C=2 C=5/2 C=3 C=7/2 C=4

Numerical −1.46573 −0.629199 0.0000 0.394088 0.514471 0.303878 −0.331399 −1.57153 −3.89933

ADM −1.46572 −0.629197 0.0000 0.394087 0.514472 0.303879 −0.331397 −1.57152 −3.89931

Table 5 Effect of shrinking on Skin friction coefficient in divergent channel Re=50, α = 3◦ and ψ = 0.1

C=0 C= −1 C = −2 C = −5 C = −10

Numerical −1.46573 −3.68143 −6.52636 −18.1309 −45.4298

ADM −1.46573 −3.68144 −6.52635 −18.1308 −45.4297

Table 6 Effect of stretching on heat transfer rate in converging/diverging channel

α = 3◦, Re = 50, Ec = 0, ψ = 0.2 and Pr=7

Converging channel Diverging channel

C −G′
Numerical (1) −G′

ADM (1) −G′
Numerical (1) −G′

ADM (1)

0 0.0261995 0.0261995 0.0245354 0.0245355

0.5 0.029473 0.029473 0.0284624 0.0284624

1.0 0.0326303 0.0326303 0.0326303 0.0326303

1.5 0.0356832 0.0356832 0.0370889 0.0370894

2.0 0.0386417 0.0386415 0.0419078 0.0419117

Table 7 Effect of shrinking on heat transfer rate in converging/diverging channel

C α = 3◦, Re = 50, Ec = 0, ψ = 0.2 and Pr=7

Converging channel Diverging channel

−G′
Numerical (1) −G′

ADM (1) −G′
Numerical (1) −G′

ADM (1)

0 0.0261995 0.0261995 0.0245354 0.0245355

−0.5 0.0227956 0.0227956 0.0208124 0.0208124

−1.0 0.0192439 0.019244 0.0172648 0.0170474

−1.5 0.0155228 0.0155229 0.0138702 0.0138702

−2.0 0.0116046 0.0116047 0.0106106 0.0106107

the magnitude of Nucritical and Ccritical decreases with the increase of Reynolds number;
however, it increases with the increase of nanoparticle volume fraction.

On the other hand, the presence ofAl2O3 nanoparticles in a base fluid leads to the increased
in thermal conductivity and enhances significantly the Nusselt number for both stretching
and shrinking of convergent–divergent channels as displayed in Figs. 12 and 13.

As mentioned above, the presence of nanoparticles plays a significant role on the evolu-
tion of Nusselt number. The enhancement in heat transfer due to the presence of alumina
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Table 8 Critical values of Nusselt number and stretching parameter in the classical flow (ψ = 0)

α = 3◦, Ec = 0.6, ψ = 0 and Pr = 7

Reynolds number (Re) 10 20 30 40 50

Critical Nusselt number (Nuc) 3.04529 2.99868 2.98123 2.9709 2.96302

Critical stretching parameter (Cc) 0.985 0.975 0.955 0.94 0.915

Table 9 Critical values of Nusselt number and Stretching parameter in nanofluid flow (ψ = 0.1)

α = 3◦, Ec = 0.6, ψ = 0.1 and Pr = 7

Reynolds number (Re) 10 20 30 40 50

Critical Nusselt number (Nuc) 3.72335 3.66402 3.64302 3.63137 3.62324

Critical stretching parameter (Cc) 0.99 0.98 0.965 0.955 0.94

nanoparticles in a water base fluid was evaluated. In fact, the enhancement parameter “En”
is calculated between the cases of ψ = 0.1, 0.2 and 0.3 and the pure fluid case as follows:

En = Nu(nanof luid) − Nu(base f luid)

Nu(base f luid)

× 100 (58)

The enhancement evolution versus the stretching/shrinking parameters for different values
of nanoparticle volume fraction, ψ, is displayed in Figs. 14, 15, 16, 17. In the case of
stretching/shrinking of a divergent channel, the enhancement in heat transfer increases as
the shrinking increases but it decreases with the increase of the stretching parameter. A
reverse behaviour is observed in the case of stretching/shrinking of a convergent channel.
In fact, the enhancement decreases as the shrinking increases, while it increases with the
increase of the stretching values. Also, it is well observed that the enhancement increases
with the increase of nanoparticle volume fraction.

Note on the Correspondence Between Nanofluid Flow and Standard Fluid Flow

As given above, Eqs. (11) and (12) with the boundary conditions (18) and (19) consider
a steady two-dimensional nanofluid flow between stretchable–shrinkable nonparallel plane
walls. It should be mentioned that these equations depend explicitly upon the nanoparticle
volume fraction parameter (ψ).

Now, we propose the following transformations:

F (η) = 1

Cψ

· F (ζ ) , G (η) = φ (ζ ) , ζ = η (59)

with

Cψ = (1 − ψ)2.5 ·
(

(1 − ψ) + ψ · ρS

ρ f

)
(60)

Which leads to the rescaled system:

F
′′′

(ζ ) + 2Re · α · F (ζ ) · F ′ (ζ ) + 4α2F ′ (ζ ) = 0 (61)

φ
′′
(ζ ) + 4α2φ (ζ ) + P∗

r · 2α2 · F (ζ ) · φ (ζ ) + P∗
r · Ec

Re
·
[
4α2F2 (ζ ) + F

′2 (ζ )
]

= 0

(62)
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where

P∗
r = Pr

C2 · C3
(63)

with

C2 =
(
ks + 2k f

) − 2ψ
(
k f − ks

)
(
ks + 2k f

) + ψ
(
k f − ks

) (64)

C3 = (1 − ψ)2.5 (65)

In this situation, the boundary conditions can be expressed as follows:

At the centerline of channel (ζ = 0) : F (ζ ) = 1, F
′
(ζ ) = 0, φ

′
(ζ ) = 0 (66)

At the body of channel (ζ = 1) : F (ζ ) = C, φ (ζ ) = 1 (67)

Equation (61) is not explicitly dependent on the nanoparticle volume fraction (ψ). In fact,
this equation is equivalent to Eq. (11) in the case of regular fluid when the parameter ψ is
equal zero (i.e. ψ = 0). Moreover, Eq. (62) can be also considered independent from ψ for
a fixed P∗

r .
Physical parameters of interest which are the skin friction coefficient C f and the Nusselt

number Nu can also be easily evaluated by using Eq. (59). In fact, the quantities F
′
(1) and

G
′
(1), for η = ζ = 1, can be replaced by the following expressions:

F
′
(η) = 1

cψ

F
′
(ζ ) (68)

G ′ (η) = φ′ (ζ ) (69)

Conclusions

In this research, effects of stretching/shrinking of convergent/divergent channels and nanopar-
ticle volume fraction on the flow and heat transfer characteristics have been investigated
analytically and numerically.

The main conclusions, which we can draw from this study, are:

– Near the walls, the entire fluid moves faster. Consequently, fluid velocity is higher for
both stretching and shrinking of convergent/divergent channels when compared to that
observed at the centerline of channel.

– Skin friction coefficient increases with the stretching of a convergent channel. This can
be explained by the high shear stress near the walls.

– Skin friction coefficient in a convergent channel is a decreasing function at the low values
of the shrinking parameter; however, it is an increasing function after a certain critical
value of the shrinking parameter.

– A decrease in skin friction coefficient may occur with the increase of shrinking of a
divergent channel.

– Skin friction coefficient increases at low values of the stretching parameter of a divergent
channel; however, it decreases after a certain critical value of this parameter.

– Backflow phenomenon may occur at large values of the stretching parameter of a diver-
gent channel, thus signalling the start of separation.

– Stretching of both converging–diverging channels lead to an increase in thermal boundary
layer, generate more heat and act for improving heat transfer rate.
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– Shrinking leads to reducing of thermal boundary layer for both converging–diverging
channels.

– Nusselt number increases as the magnitude of shrinking increases; however, it increases
after a certain critical value of the stretching parameter.

– The magnitude of Nucritical and Ccritical decreases with the increase in Reynolds num-
ber; however, it increases with the increase of nanoparticle volume fraction.

– The presence of Al2O3 nanoparticles in a water base fluid enhances significantly heat
transfer characteristics and consequently the Nusselt number increases with the increase
of nanoparticle volume fraction.

– Analytical results match perfectly with those of numerical Runge–Kutta method, thus
justifying the efficiency and the higher accuracy of the used Adomian decomposition
method.

– A detailed discussion was given whether the nanofluid problem can be interpreted in
terms of regular fluid.
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