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Abstract This paper proposes a novel variational model to remove either independent addi-
tive or multiplicative noise from synthetic and natural digital images via the fractional-order
derivative operator. The non-local characteristics of fractional derivatives can help preserve
textures and eliminate the “blocky effect”. The proposed strategy uses the fractional-order
total variation (FOTV)-norm, combined with the fields of experts-image prior model, a filter-
based higher-order Markov Random Fields (MRF) method which is effective for image
restoration. The present model combines advantages of both FOTV and higher order MRF
and results in good restoration. In this study, a fast alternating minimization algorithm is
also employed to solve minimization problem. Compared with the other well-established
methods, experimental results show the effectiveness of the proposed method for de-noising
images contaminated by combined additive and multiplicative noises. In addition, we also
discuss parameter dependency and computational analysis in details.

Keywords Fields of experts (FoE) · Markov random fields (MRF) · Fractional-order total
variation (FOTV) · Synthetic aperture radar (SAR) · Maximum a posteriori (MAP)

Introduction

Image de-noising has been a well-studied problem in image processing and computer version
fields. It is a typical inverse problem, which approximates the original image describing a real
scene from the observed image of the same scene [7]. In many real world practices, images
are often degraded with noise, either because of the image acquiring process or because of
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naturally occurring phenomena. Therefore, the process of approximating the unknown image
of interest from the given noisy image, known as image restoration, plays an important
role in various fields. Applications that require a restoration step range from astronomy,
astrophysics, biology, chemistry, arts, geophysics, physics, hydrology, remote sensing and
other areas involving imaging techniques [8]. In many image formulated models, the additive
noise (AN) model is commonly found in acquiring images via digital devices. Most of the
literature deal with this type of image restoration models: given an original image u, it is
assumed to be corrupted by the additive noise η1. The goal is then to recover ‘u’ from the
data

f = u + η1 (1)

There are many effective methods to tackle this problem. Among the most famous ones are
wavelets approaches, stochastic approaches, principal component analysis-based approaches,
and variational approaches, introduced by ROF [22]. It became evident that variational
approaches to the image de-noising problemhave attractedmuch attention by directly approx-
imating the reflectance of the underlying scene and yield often excellent results. Due to the
edge-preserving and noise removing properties, total variation approach has been widely uti-
lized in the noise removal task. However, it has two main disadvantages: (a) In ROF model,
the structure of image is modeled as a function belonging to the bounded variation space
and therefore it favors a piecewise constant function in bounded variation space which often
causes the staircase effect, (b) The ROFmethod cannot preserve finer details such as textures
well. According to [28], the L2-norm cannot separate different oscillatory components with
different frequencies such as textures and noise, and therefore the textures are filtered out
with noise in the process of restoration. The interested reader is referred to [2,8,14,22,28]
for more details.

In practice, there exist different types of noise as well such as multiplicative noise. It can
also degrade an image. Multiplicative noise (also known as speckle) is a signal independent,
non-Gaussian and spatially dependent, i.e. variance is a function of signal amplitude. In
the case of multiplicative noise variance of the noise is higher when an amplitude of the
signal is higher. In other words, noise in bright regions have higher variations and could
be interpreted as features in the original image. Due to this degraded mechanism, mostly
all the information of the original image may be lost when it is corrupted by multiplicative
noise. The problem of removingmultiplicative noise occurs in many practices such as images
generated by coherent imaging modalities. For example, synthetic aperture radar, ultrasound,
and laser imaging, inevitably come with speckle (multiplicative noise), due to the coherent
nature of the scattering phenomenawhich prevents us from analyzing valuable information of
images such as edges, textures, point target and other image details [9]. Hence, the removal of
multiplicative noise is a very challenging task compared with additive Gaussian noise. In the
multiplicative noise model, the assumption is that the original image ‘u’ has been corrupted
by some multiplicative noise η2, the goal is then to recover ‘u’ from the data which can be
formulated uniformly as follows

f = uη2 (2)

Which obeys a Gamma law with mean one and its probability density function is given by

Gυ
η2

= LL

�(L)
ηL−1
2 e(−Lη2) (3)

where ‘L’ is the number of looks (in general, an integer coefficient) and �(·) is a Gamma
function. To the best of our knowledge, there exist several variational approaches devoted to
multiplicative noise removal problem. We refer the reader to the literature [2,3,8,10,13,14,
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22,23,26] and references included herein for an overview of the subject. In this paper, we
deal with the combined additive and multiplicative noise removal problem.

Image de-noising through classical algorithms do not approximate images containing
edges well. To overcome this, a technique based on the minimization of the total variation
norm is proposed in [22], which is also known as ROF-model. This technique has been
proved to be able to achieve a good trade-off between edge preservation and noise removal
but the images resulting from the application of this method in the presence of noise tends to
produce the so-called staircase (blocky) effects on the images because it favors a piecewise
constant solution in bounded variation space. Thus, the image features in the original image
may not be recovered satisfactorily and ramps will give piecewise constant regions (staircase
effect). To deal with blocky effects, the improved methods of total variation (TV) are divided
into two kinds; the high order derivative and the fractional order derivative. In this paper, we
focus on the fractional-order total variation (FOTV) based method.

As a compromise between the first-order total variational regularized models and high-
order derivative based models, some fractional-order derivative based models have been
introduced in for additive and multiplicative noise removal and subsequently used for image
restoration and super resolution [4–7,27,28]. They can ease the conflict betweenblocky-effect
elimination and edge preservation by choosing the order of derivative properly. Moreover,
the fractional-order derivative operator has a non-local behavior because the fractional-order
derivative at a point depends on the characteristics of the entire function and not just the
values in the vicinity of the point, which is beneficial to improve the performance of texture
preservation [28].

The experimental results in the literature [4,20,21,27,28] have demonstrated that the
fractional-order derivative performs well for eliminating staircase effect and preserving
textures. It has been proved in [20] that the fractional-order derivative satisfies the lateral
inhibition principle of the biological visual system better than the integer-order derivative. In
Pu et al. [21] have discussed the kinetic physical meaning of the fractional-order derivative
and proposed fractional inspection methods for images texture details.

In this section, we present the numerical experiment below, to illustrate the efficiency and
feasibility of fractional-order total variational filter for reducing staircase effect. Consider a
one-dimension sine signal �(x) = 4sin(2πx) + 8sin(3πx) which is degraded by Gaussian
noise with SD = 0.6. The contaminated signal is shown in Fig. 1. The difference between the
integer-order TV and fractional-order TV is obvious and one can see that the restoration result
of FOTV based algorithm looks more natural and does not produce false edges whereas the
integer order TV-denoising algorithm approximates the observed signal with a step signal.
From the PSNR results, it is concluded that the fractional order TV algorithm can reduce
blocky effect effectively comparing with the traditional integer-order TV algorithm.

Recently, the newly developed Fields of Expert (FoE) image prior model has been proved
to be the more effective variational model than TV and TGV-based models. The variational
model based on a FoE prior have demonstrated state of the art performance for image restora-
tion problems such as theFoE image priormodel for de-specklingwhich involve an expressive
image prior Model-FoE and a highly efficient non-convex optimization algorithm-iPiano,
show competitive de-speckling performance with respect to the state of the art method SAR-
BM3D [9]. In a subsequent work, iPiano-algorithm has been applied to a forward-backward
splitting algorithm, for solving a sub-part of our minimization problem. It can be seen as a
non-smooth split version of the heavy-ball method from Polyak [16].

Motivated by these works, in order to restore the observed images degraded by mixed
additive noise and multiplicative noise, a new variational model based on FOTV-norm com-
bined with the FoE-image prior is proposed. A fast alternating minimization algorithm is
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Fig. 1 One-dimension signal processed by Fractional Order-TV with α = 1.0, 1.5

applied to solve our minimization problem. We report some numerical experiments which
show that the proposed method achieves the state of the art restoration results, both visually
and quantitatively and substantially improves the PSNR of images, preserve textures and
avoid the staircase effect comparing to corresponding restoring methods.

The outline of this paper is as follows.A reviewof the previouswork is presented in Sect. 2.
In Sect. 3 our new model for addressing the problem is introduced.Alternating minimization
algorithm (AMA) is described for solving the minimizer of the proposed energy functional
efficiently in Sect. 4. In order to demonstrate the performance of the proposed method and
discuss parameter sensitivity analysis,computational analysis, and some restoration results
are provided in Sect. 5. Section 6 concludes the paper.

Previous Work

In this section, the following variationalmodels for the additive noise (AN) andmultiplicative
noise (MN) removal problems are reviewed, from which our new model was developed. As
can be seen, each model able to offer high quality of restored images.

FOTV Based Additive Noise Removal Model

Total variation functional TV (u) is being used on large scale since it was introduced by
Rudin et al. [22].

TV(u) is defined as TV(u) = ∫
�

|Du| = sup
p∈C1

0 ,‖|p|‖∞

∫
�
u divp d�

This leads for L1(�) functions with weak first derivatives in L1(�) as

TV(u) =
∫

�

|∇u |d�.
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Using property of total variational filter as edge preserver, ROF [22] proposed the following
variational method for the mentioned problem

û = argmin
u∈BV (�)

{

E(u) =
∫

�

|∇u |d� + ζ

2
‖ u − f ‖22

}

(4)

where BV (�) denotes the bounded variation space and ζ > 0 is the regularization parameter
which controls the quantity of noise to be removed. In this paper, we focus on the fractional-
order total variational (FOTV) filter based denoising model which is described by

û = argmin
u∈BV (�)

{

E(u) =
∫

�

ζ |∇αu|d� + 1

2
‖ u − f ‖22

}

(5)

where ∇αu = (∂α
x u, ∂α

y u)T and |∇αu| = |∂α
x u| + |∂α

y u|.The parameter ζ > 0 is a trade-off
parameter. So the fractional-order total variation model can be seen as the generalization of
the typical integer-order total variation model.

FOTV Based Multiplicative Noise Removal Model

The fractional order total variation (FOTV) based multiplicative noise removal models have
been studied recently. However, we consider two fractional order TV based models for
multiplicative noise removal as follows:

(a.) The fractional order AA model [1]

min
u

{

E(u) =
∫

�

|∇αu|d� + λ

∫

�

(

log(u) + f

u

)

dxdy

}

; 1 ≤ α ≤ 2 (6)

(b.) The fractional order I-divergence model [26]

min
u

{

E(u) =
∫

�

|∇αu|d� + λ

∫

�

(u − f logu)dxdy

}

; 1 ≤ α ≤ 2 (7)

where the first term is the FOTV based regularization term, λ > 0 is the regularized
parameter and the second term is the data fidelity term. When α = 1 the first term is the
TV regularized term as usual. In recent times, Huang et al. [15] applied the logarithmic
transformation ω = logu with the fitting term of AA model and thus obtained the
following fractional-order restoration model for the mentioned problem

min
w

{

E(u) =
∫

�

|∇αew|d� + λ

∫

�

(ω + f e−w)dxdy

}

; 1 ≤ α ≤ 2 (8)

Which reduces the non-convex data term to a convex function via commonly used logarithmic
transformation or exponential transformation.

Y. Chen Model for Multiplicative Noise Removal

Chen et al. [9] proposed a novel variational model for speckle removal which involves an
expressive image prior Model-FoE and a highly efficient iPiano algorithm which gives state
of the art performance, can be written uniformly as follows:

argmin
u

EFoE(u, f ) =
⎡

⎣
N f∑

i=0

θiρ(ki ∗ u) + λ G(u, f )

⎤

⎦ (9)
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where the first term is the FoE-image prior, the second term is the data fidelity term, λ > 0
is the regularized parameter and u is the underlying unknown image.

K. Hirakawa TLS Image Approximation Model (M1)

Hirakawa et al. [12] proposed a method for restoring images corrupted with additive, mul-
tiplicative and mixed noise, in the total least squares (TLS) sense, taking into account the
stochastic nature of the noise and allowing small perturbations in the system. Furthermore, a
de-noising algorithmwas employed that, while effective in removing additivewhite Gaussian
noise, removes the signal-dependent noise (multiplicative noise) as well. They proposed the
following deterministic image approximation model

S̃0 + e0 = (X̂ + E)α (10)

where ‘S’ is an ideal clean image, ‘x’ is its noise corrupted version and S0 ∈ Rm be an image
patch from ‘S’. S̃0 = S0 − S0 ∈ Rm, x̃ = xi − xi ∈ Rm(i th column of X̃) and S0, xi ∈ R
are the average values of elements in S0 and xi respectively. The interested reader is referred
to [12] for a more thorough discussion.

N. Chumchob Model (M2)

Chumchob et al. [8] proposed a new variationalmodel for removing noise from digital images
corrupted with additive, multiplicative andmixed noise and employed a fast non-linear multi-
grid algorithm via a robust fixed-point smoother for its numerical solution. They proposed
the following variational model

min
u

{

E(u) =
∫

�

|∇u|d� + γ1

2

∫

�

(u − f )2d� + γ2

∫

�

(u + f e−u) d�

}

(11)

where γ1, γ2 > 0 are the regularization parameters used to balance between the additive and
multiplicative noise fidelity terms. In the next section, we give a description of our proposed
model.

The Proposed Image Restoration Variational Model (M3)

In this section, our aim is to propose a novel variational model for restoring images con-
taminated with additive (AN), multiplicative (MN) and mixed noise, with the assumption
that AN and MN are both independent or not related to each other. This type of situation is
likely to occur in many real-world applications when they come from different channels. For
example, synthetic aperture radar (SAR) images are usually corrupted by the multiplicative
noise as a consequence of image formation under coherent radiation and the additive noise
due to thermal vibrations in the electronic components of the image capture instruments. The
following suitable image formulation model is proposed for this case is as follows

f = u + χ0ν1 + χ1uν2 (12)

Where χ0, χ1 are constants ν1, ν2 are AN and MN components respectively [8].
In this paper, a novel noise removal model based on the variational method and a filter

based higher-orderMarkovRandomfields (MRF)which explicitly characterizes the statistics
properties of natural images is proposed. It combines a fractional-order total variational filter
with an expressive FoE image prior filter. The combined algorithm takes the advantage of both
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filters since it is able to preserve textures, sharp edges while avoiding the staircase effect in
smooth regions. Given an observation image, ‘f’ contaminated by additive and multiplicative
noise, the following image restoration model to remove both AN and MN is proposed for
minimization

û = argmin
u

E(u, f ) = [J α
FOTV (u) + μJFoE (u) + HDFT ( f, u)

]
(13)

where ‘u’ is the noiseless image, J α
FOTV (u) and JFoE (u) are regularization terms, the third

term HDFT ( f, u) is the data fidelity term and μ ∈ [0, 1] is the weight parameter.

FOTV-Based Filter Used in Our Variational Model (M3)

The fractional-order total variational (FOTV) filter [4,5] for an image ‘u’ is formulated as

J α
FOTV (u) =

∫

�

|∇αu|dxdy ≈
∑

i, j

{
|∇α

x ui, j | + |∇α
y ui, j |

}
(14)

From Grünwald-Letnikov fractional derivative definition, the finite fractional difference can
be defined by

∇α
x ui, j =

K−1∑

k=0

C (α)
k ui−k, j ; ∇α

y ui, j =
K−1∑

k=0

C (α)
k ui, j−k (15)

where C (α)
k = (−1)kC (α)

k ,C (α)
k = �(α+1)

�(k+1)�(α−k+1) denotes the generalized binomial coeffi-

cient and �(x) is the Gamma function. The coefficientsC (α)
k can also be obtained recursively

from C (α)
0 = 1, C (α)

k = (1 − α+1
k )C (α)

k−1, k = 1, 2, 3 . . . K − 1. When α = 1,C1
k = 0 for

k > 1. Equation (14) becomes the TV of ‘u’ as usual and therefore FOTV can be cast as an
extension of the traditional total variation [4–7].

The FoE Image Prior Utilized in Our Variational Model (M3)

The FoE image prior model is based on a set of learned/linear filters. According to [9], the
student-t distribution based FoE image prior model for an image ‘u’ is defined as

JFoE =
N f∑

i=0

θiρ(ki ∗ u) (16)

where ρ(ki ∗ u) = ∑N
p=1 ρ((ki ∗ u))p , ‘N’ is the number of pixels in image ‘u’, N f is

the number of linear filters, ki is the set of learned filters with the corresponding weights
θi > 0, ki ∗ u denotes the convolution of the filter ki with a two-dimensional image ‘u’ and
ρ(.) denotes the non-convex potential function and their associated derivatives are given by

ρ(q) = log(1 + q2) and ρ̇(q) = 2q
1+q2

; ρ(q) = √q2 + ε2 and ρ̇(q) = q√
q2+ε2

ρ(q) = log(1 − ε +√q2 + ε2) and ρ̇(q) = q

(
√

q2+ε2)(1−ε+
√

q2+ε2)

(17)

Here we used ρ(q) = log(1+ q2) as a penality function which is derived from the student-t
distribution. In this paper, we make use of the learned filters of a previous work [9] which is
shown in Fig. 2.
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Fig. 2 48 learned filters of size 7 × 7 exploited in our model. The first number in the bracket is the norm of
the filter and the second one is the weight θi [9]

Modeling of the Data Fidelity Terms

In this subsection, modeling of the data fidelity terms for both AN and MN is discussed. In
case of Gaussian noise, the data fidelity term [22] can be formulated as

HDFT1( f, u) =
∫

�

‖ u − f ‖22dxdy (18)

Now the MAP-based multiplicative noise modeling from the statistical point of view by
using Bayesian formulation is considered. Let ‘f’ be the given noisy image which follows a
Nakagami distribution depending on the underlying restored image amplitude ‘u’, the square
root of the reflectivity [8,11,14,15,23].

P( f/u) = LL

�(L)uL
f L−1exp

(−L f

u

)

(19)

where ‘L’ is the number of looks of the image and �(.) is the Gamma function. Using the
MAP frameworks, according to the Gibbs prior, this likelihood leads to the following energy
term via E = −log P(f/u).

HDFT 2( f, u) =
∫

�

(

logu + f

u

)

dxdy (20)

Note that the data term is not convex w.r.t ‘u > 0’, which generally will make the corre-
sponding problem difficult to solve. Following previous works of modeling the MN image
intensity, the I-divergence based data term for the amplitude model is given by

HDFT 3( f, u) =
∫

�

(u2 − 2 f 2logu)dxdy (21)

Which is strictly convex with respect to ‘u > 0’. The non-convex data term in (20) can
be converted to a convex function via commonly used logarithmic transformation i.e ω =
logu ⇔ u = eω.As a result, our novel variational model for both AN andMN incorporating
these three data terms comes out as follows

123



Int. J. Appl. Comput. Math (2017) 3:1999–2019 2007

û = arg min
u

⎡

⎣E(u, f ) =
∫

�

|∇αu|dxdy + μ

N f∑

i=0

θiρ(ki ∗ u) + α1

2

∫

�

‖ u − f ‖22dxdy

+α2

2

∫

�

(

logu + f

u

)

dxdy + α3

2

∫

�

(u2 − 2 f 2logu)dxdy

]

(22)

Under the logarithmic transformation, i.e ω = logu ⇔ u = eω, (22) can be rewritten as
follows

arg min
ω

⎡

⎣E(eω, f ) =
∫

�

|∇αeω|dxdy + μ

N f∑

i=0

θiρ(ki ∗ eω) + α1

2

∫

�

‖ eω − f ‖22dxdy

+α2

2

∫

�

(
ω + f e−ω

)
dxdy + α3

2

∫

�

(e2ω − 2 f 2ω)dxdy

]

with u = eω. (23)

where α1, α2 and α3 are the regularization parameters used to keep a balance between the
additive andmultiplicative noise fitting terms. The existence and uniqueness of the solution of
the energy functional (23) and convergence of iPiano-algorithm, can be proved along similar
lines to Refs. [8,9,16,24]. In the next section, we give description of the numerical method
for the solution of the arisen equation.

Numerical Methods

In this work, alternate minimization algorithm (AMA) is employed to solve (23), with the
simultaneous operations of Newton method, explicit time marching scheme and a recently
published non-convex optimization algorithm-iPiano [9].

iPiano Algorithm:
The iPiano algorithm composed of a smooth (non-convex) function say ‘F’ and a convex
(possibly non-smooth) function ‘G’, is designed for a structured non-smooth/ non-convex
optimization problem which can be formulated as follows

arg min
u

H(u) = F(u)
Regularizer Term

+ G(u)
Data Fidelity term

(24)

Comparing (23) with (24), we have

F(ω) =
∫

�

|∇αeω|dxdy + μ

N f∑

i=0

θiρ(ki ∗ eω) and (25)

G(ω) = α1

2

∫

�

‖ eω − f ‖22dxdy + α2

2

∫

�

(ω + f e−ω)dxdy

+α3

2

∫

�

(e2ω − 2 f 2ω)dxdy (26)

To use the iPiano algorithm, we need to calculate the gradient of ‘F’ and the proximal map
w.r.t ‘G’ which can be calculated as follows

∇ωF = (−1)α∇α ·
(

∇αeω

√|∇αeω|2 + ε

)

+ μ

N f∑

i=0

θiW K T
i ρ̇(Ki ∗ eω) (27)
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where Ki is N×N highly sparsematrix implemented as 2D convolution of the image ‘u’ with
filter kernel ki i.e Kiu ⇔ ki ∗u, ρ̇(Kiu) = (ρ̇(Kiu)1), . . . , ρ̇(Kiu)N ))T ∈ RN with ρ̇(q) =
2q

1+q2
and W = diag(eω).

Proximal Maps w.r.t G(u, ω)

The proximal map with respect to ‘G’ is simply point wise operations. For the case HDFT1,
it is given by

1. u = (I + δ1∂G)−1(û) ⇔ u p = û p + δ1α1u0p
1 + δ1α1

, p = 1, 2, . . . , N . (28)

The proximal map w.r.t HDFT 2 is given as the following minimization problem

2. (I + β1∂G)−1(ω̂) = arg min
ω

|ω − ω̂|22
2

+ β1α2

2
〈ω + f e−ω, 1〉. (29)

and the proximal map w.r.t HDFT 3 is given by the following point-wise calculation

3. (I + τ∂G)−1(û) ⇔ u p =
û p +

√
û2p + 4(1 + τα3)τα3 f 2p

2(1 + τα3)
(30)

Note the proximal map w.r.t G is solved by using Newton’s method as this scheme has a quite
fast convergence about less than 10-iterations [9,25].

iPiano-algorithm is a forward-backward splitting algorithm incorporating an inertial
force. In the forward step, β1 decides the step size in the direction of the gradient of
the differentiable function ‘F’, which aggregated with the inertial force from the pre-
vious iteration, weighted by β2. Then the backward step is the result of the proximity
operator for the function ‘G’ with the weight β1. According to [9], a iPiano is an iner-
tial force enhanced forward-backward splitting algorithm with the following basic update
rule

u(n+1) = (I + β1∂G)−1(u(n) − β1∇F(u(n)) + β2(u
(n) − u(n−1))) (31)

where β1 and β2 are the step size parameters. To conclude, the algorithm is done in the
following steps

Algorithm-1 Inertial Proximal Algorithm for non-convex Optimization (iPiano)
[16]

1. Procedure
Initialization: Choose a starting point u(0) ∈ dom H and set
u(−1) = u(0) Moreover, define sequences of step size parameters

2. Iterations n ≥ 0:update
u(n+1) =

(I+β1∂G)−1(u(n)−β1∇F(u(n))+β2(u
(n)−u(n−1))) (32)

Where β1 and β2 are the step size parameters
3. End Procedure
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Note the step size parameters should be selected appropriately in order to make the algo-
rithm specific and convergent.

The Alternating Minimization Algorithm

Alternating minimization algorithm is developed to find the minimizer of the objective
functional efficiently. For this purpose, the energy functional (23) can be re-written as
follows

arg min
ω

⎡

⎣E(ω, f ) =
∫

�

|∇αeω|dxdy + μ

N f∑

i=0

θiρ(ki ∗ eω) + α1

2

∫

�

‖ eω − f ‖22dxdy

+α2

2

∫

�

(ω + f e−ω)dxdy + α3

2

∫

�

(e2ω − 2 f 2ω)dxdy

]

(33)

where α1, α2, α3 > 0 are the regularization parameters used to balance between the additive
noise and multiplicative noise fitting terms. To solve (33), we need to consider the following
three minimization subproblems.

1. Determine the solution of

argmin
ω

{
|ω − ω̂|22

2
+ β1G(ω)

}

with u = eω (34)

We utilized Newton’s method to solve (34).

2. Apply iPiono algorithm (Algorithm-1) to obtain the restored image ω∗.
3. Then evaluate ω(n+1) as

ω
(n+1)
i, j = (ω∗

i, j )
(n) + �t

⎡

⎢
⎢
⎣G((ω∗

i, j )
(n)) + (−1)α∇α ·

⎛

⎜
⎜
⎝

∇α((ω∗)
(n)
i, j )

√∣
∣
∣∇α

(
(ω∗)(n)

i, j

)∣∣
∣
2 + ε

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦

Output u = e(ω(n+1)) (35)

where �t is the step size, ε > 0 is introduced to avoid singularity and α ∈ [1, 2]. There
is an issue of choosing the optimal step size �t which can ensure fast convergence. Due
to the non-linearity of the equation however such an optimal step size is difficult to obtain
theoretically and expensive computationally. Instead we took an experimental approach and
noted that a good step size is 0.03.

To summarize, the numerical algorithm is performed in the following steps.
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Algorithm-2 Alternating Minimization Algorithm (AMA)

1. Procedure
Input: choose an initial guess

ω(0) = f, α1, α2, α3, β1, β2 > 0, α ∈ [1, 2], μ > 0
2. Apply the Newton’s iterative method to compute

argmin
ω

{ |ω−ω̂|22
2 + β1G(ω)

}

(36)

3. Use the iPiono-algorithm (Algorithm-1) to compute ω∗
4 Then evaluate ω(n+1) as

ω
(n+1)
i, j =

(
ω∗
i, j

)(n) +

�t

⎡

⎢
⎣G

(
(ω∗

i, j )
(n)
)

+ (−1)α∇α ·
⎛

⎜
⎝

∇α((ω∗)
(n)
i, j )√

|∇α
(
(ω∗)

(n)
i, j

)
|2+ε

⎞

⎟
⎠

⎤

⎥
⎦ (37)

Output u = e(ω
(n+1))

Where �t is the step size, ε > 0 is introduced to avoid singularity and
α ∈ [1, 2]

5 Check the stopping criteria. If a stopping criterion is satisfied, then exit
with the restored image u; otherwise let n=n+1 and go to step (2)

6 Output u = e(ω
(n+1))

End procedure

Experimental Results

In this section, some numerical experiments are presented to demonstrate the performance
of our proposed model M3. The results are compared with M1 and M2 methods, which are
introduced by Hirakawa et al. [12] and Chumchob et al. [8]. In the experiments, the noise
levels are determined by different values of χ0 and χ1. The AMA-algorithm is tested on
different images (real and synthetic) of size (2562 − 10242). In this paper, the peak signal
to noise ratio (PSNR) and structural similarity index (SSIM) are used to measure the image
quality. These measures are given by

PSN R = 10∗log10

⎡

⎢
⎢
⎣

N 2m1m2
m1∑

i=1

m2∑

i=1
û(i, j) − u(i, j))2

⎤

⎥
⎥
⎦ (38)

SSI M = (2μû + a1)(2σûu + a2)

(σ 2
û + σ 2

u + a1)(σ 2
û + σ 2

u + a2)
(39)

where ‘N’ is the maximal gray level of the image, ‘u’ is the original image, û is the
restored image, μû, μu, σ

2
û , σ 2

u , σûu, a1, a2 are the average values of û, u, variance of û, u
covariance of û, u and two small positive constants respectively. Note,that all numerical
algorithms are implemented in MATLAB-R2013a and all tests were carried out on Intel(R)
Core(TM) i3-4160 CPU @360GHz 3.60 GHz, 8.00 Gb of RAM and 64-bit operating
system.
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Table 1 Images (Peppers and
boats) with size 512 2 corrupted
by combination of different
values of (χ0, χ1), the third,
fourth and fifth columns show the
PSNR values obtained from M1,
M2, and M3

The last column lists the SSIM
values for our proposed model
M3 respectively

Problem (χ0, χ1) M1 [12] M2 [8] M3 M3
PSNR PSNR PSNR SSIM

Peppers (10, 0) 33.73 34.13 34.68 0.9398

(25, 0) 29.32 30.18 30.39 0.8947

(25, 0.1) 27.47 28.39 28.70 0.9398

(25, 0.2) 26.05 26.80 27.15 0.8805

(50, 0) 25.82 26.67 27.11 0.8605

Boats (10, 0) 33.44 35.56 35.73 0.9568

(25, 0) 29.16 30.61 30.71 0.8672

(25, 0.1) 27.28 28.65 28.76 0.8352

(25, 0.2) 25.94 26.84 26.92 0.8060

(50, 0) 25.82 27.18 27.20 0.8075

Comparison of Our Proposed Method M3 with M1 in [12] and M2 in [8]

First inTable 1,we give the details of ten experimental setups likewise; the problems; the noise
levels determined by (χ0, χ1); the PSNR results reported in [12] for M1; the PSNR values
showed in [8] for M2; the PSNR results obtained from the proposed restoration method
M3 and SSIM values for M3. Algorithm-2 was run with the parameters, α = 1.5, α1 =
0.005, α2 = 325, α3 = 0.003, β1 = 1e−5, β2 = 0.75,�t = 0.03 and number of iterations
equal to 600. As shown in the third, fourth and fifth columns of Table 1, the proposed image
restoration model M3 performs a clear improvement over the existing methods M1, M2,
when images are corrupted by an increased level of noise.

Qualitative Results

Secondly, we present the numerical results on different noisy images (synthetic and
real) of size 10242 pixels below, to illustrate the efficiency and feasibility of our
novel method. The results are compared with M2-method. For this purpose, three
images (natural and synthetic) namely Problem1, Problem2, Problem3 are considered for
tests.

In thefirst experiment, theProblem1 is contaminatedby combinationof bothmultiplicative
and additive noise and recorded its PSNR equal to 14.30. We tune the following empirical
choice for the parameters α1 = 0.003, α2 = 190, α3 = 0.006, α = 1.3, number of iterations
equal to 620. For iPiano algorithm the optimal values of the step size parameters are adjusted
and notedβ1 = 1e−5 or 1e−4, β2 = 0.75 or β2 = 0.85. The results in Fig. 3 and Table 2
demonstrate that our proposed method can improve the visual quality of the images and
PSNR better than M2-method.

In the second test, the Problem2 is corrupted by both multiplicative and additive noise
showed in Fig. 4 with PSNR equal to 12.32. For this experiment, the parameters values are
tuned as α1 = 0.004, α2 = 220, α3 = 0.05, α = 1.5, number of iterations equal to 600.
From Fig. 4f and Table 2, it can be observed that our proposed method improves the PSNR
of the image better than M2-method.

In the third experiment, in order to further show the efficiency of our proposed
model in combined multiplicative and additive noise removal, it was extended to a syn-
thetic image such as Problem3.For this test, the parameter values are chosen as α1 =
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Fig. 3 a, d Original image of size 10242; b, e Problem1; c De-noised image by M2 with α1 = 6.0, α2 =
0.01, β = 1e−4, w = 1.25, number of cycles = 9; f Restored image by M3

Table 2 Images with size 10242 corrupted by both additive and multiplicative noise

Image Size (χ0, χ1) Noisy M2 M2 M3 M3
PSNR PSNR SSIM PSNR SSIM

Problem 1 10242 (25, 0.2) 14.29 28.13 0.9042 28.77 0.9290

Problem 2 10242 (30, 0.2) 12.32 25.92 0.8879 26.10 0.8906

Problem 3 10242 (40, 0.3) 11.65 23.65 0.4294 24.39 0.4344

The fourth, fifth and seventh column show the PSNR values of noisy and restored images by M2 and M3.
The sixth and last column list the SSIM values for M2 and our model M3 respectively

0.003, α2 = 450, α3 = 0.005, α = 1.5, number of iterations equal to 600. The
restored result of our method is optimal, which is shown in Fig. 5. Therefore, from the
PSNR and SSIM values showed in Table 2 and Figs. 3, 4 and 5 restoration results,
it is reasonable to conclude that our proposed model is best in the sense that it has
piecewise smooth intensities, sharp edges and avoiding the staircase effect better than
M2-method.
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Fig. 4 a, d Original image of size 10242; b, e Problem2; c De-noised image by M2 with α1 = 10.0, α2 =
0.02, β = 1e−4, w = 1.25, number of cycles = 7; f Restored image by M3

Computational Analysis

Here, the effect of variation in size of the image, noise level and step size parameters β1, β2

on the performance of our model and algorithm is analyzed. The values of the other para-
meters are kept fixed. For this purpose, the Problem1 of size 1282 − 10242is used as a test
image.

Size-Dependence Test

In Table 3, the size dependence of our method is demonstrated. It implies performance
variations with respect to different sizes of the image (Problem1). Our algorithm was run
with parameters α = 1.5, α1 = 0.003, α2 = 405, α3 = 0.005, number of iterations equal
to 100, noise level equal to (25, 0.1) and β1 = 1e−5, β2 = 0.75,�t = 0.03 for all tests.
Obviously the performance of our algorithm gets better as the size of the image increases in
term of PSNR and SSIM values. Although CPU time increase when the size of the image
increases. For more details, see Table 3.
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Fig. 5 a, d Original image of size 10242; b, e Problem3; c De-noised image by M2 with α1 = 6.0, α2 =
0.03, β = 1e−4, w = 1.25, number of cycles = 9; f restored image by M3

Table 3 Problem1 with size
1282 − 10242 corrupted by both
additive and multiplicative noise

Test results from varying image
size

Image Size (χ0, χ1) M3 M3 CPU
PSNR SSIM time

Problem 1 1282 (25, 0.1) 22.91 0.7638 7.69

2562 (25, 0.1) 23.88 0.7840 27.97

5122 (25, 0.1) 24.99 0.8525 135.79

10242 (25, 0.1) 25.52 0.8998 545.26

Noise Level Test

In Table 4, the performance of our algorithm is presented for different noise levels. Our
algorithm was run with the parameters α = 1.5, α1 = 0.003, α2 = 405, α3 = 0.005,
β1 = 1e−5, β2 = 0.75,�t = 0.03 and number of iterations=100 and size equal to 2562

for all tests. It can be seen that PSNR and SSIM values get decrease with the increase noise
level. Note that optimal number of iterations should be selected with the varying noise levels
to get better PSNR and SSIM results. For more details, see Table 4.

β1-Dependent Test

Here our aim for this experiment is to observe how the proposed variational method and our
algorithm (mainly iPiano) are affected by changes in values of β1 i.e from 1e−1 to 1e−5. Our
algorithmwas runwith the parameters, α = 1.5, α1 = 0.003, α2 = 405, α3 = 0.005,number
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Table 4 Problem1 with size
2562 corrupted by both additive
and multiplicative noise

Test results from varying noise
level

Image Size (χ0, χ1) M3 M3 CPU
PSNR SSIM time

Problem 1 2562 (20, 0.1) 24.36 0.7897 29.41

2562 (25, 0.2) 23.22 0.7813 29.02

2562 (30, 0.3) 21.36 0.7013 29.50

2562 (40, 0.3) 18.57 0.4756 29.35

Table 5 Problem1 with size
2562 corrupted by both additive
and multiplicative noise

Test results from varying β1
values

Image Size (χ0, χ1) β1 M3 M3 CPU
PSNR SSIM time

Problem 1 2562 (25, 0.1) 1e−1 23.95 0.6536 30.04

1e−2 23.94 0.6530 28.35

1e−3 23.76 0.6415 28.23

1e−4 26.50 0.8187 28.03

1e−5 24.57 0.7947 28.36

Table 6 Problem1 with size
2562 corrupted by both additive
and multiplicative noise

Test results from varying β2
values

Image Size (χ0, χ1) β2 M3 M3 CPU
PSNR SSIM time

Problem 1 2562 (25, 0.1) 0.3 18.04 0.6550 28.32

0.4 18.83 0.6784 28.14

0.5 19.79 0.7034 28.13

0.6 21.04 0.7316 27.97

o.75 23.88 0.7840 27.93

0.85 26.55 0.8123 27.94

0.99 20.17 0.3548 28.17

of iteration=100, β2 = 0.75, noise level equal to (25, 0.1), �t = 0.03 and size equal to 2562

for all tests. Theoretically β1 may be selected to be small as possible. As clearly given in
Table 5, β1 = 1e−5or β1 = 1e−4 is the optimal value to remove this type of noise with the
good PSNR and SSIM values if we select well-adjusted iteration steps. For more details, see
Table 5.

β2-Dependent Test

Here our aim for this experiment is to observe how our variational method and algorithm
(mainly iPiano) are affected by varying the values of β2 ∈ [0.3, 0.85]. Our algorithmwas run
with the parameters, α = 1.5, α1 = 0.003, α2 = 405, α3 = 0.005, β1 = 1e−5orβ1 = 1e−4,
noise level equal to (25, 0.1), �t = 0.03, the number of iteration equal to 100 and size equal
to 2562 for all tests. As clearly shown in Table 6, β2 = 0.75 or β2 = 0.85 is the optimal
value to remove this type of noise with the good PSNR and SSIM values. For more details,
see Table 6.
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Table 7 Problem1 with size
5122 corrupted by multiplicative
noise

Test results from varying �t
values

Image Size σ2 Step size M3 CPU
Noise Level �t PSNR time

Problem 1 5122 (25, 0.1) 0.001 23.97 28.18

5122 0.01 24.57 28.80

5122 0.03 31.39 28.14

5122 0.07 29.59 29.80

5122 0.09 26.46 28.22

0.3 11.34 28.43

Fig. 6 Relative error curve for Algorithm-2

�t-Dependent Test

Here our aim for this experiment is to demonstrate how the proposed variational method
and our algorithm are performed by changes in values of �t .Our algorithm was run with
the parameters, α = 1.5, α1 = 0.003, α2 = 405, α3 = 0.005, number of iterations equal
to 100β1 = 1e−5, noise level equal to (25, 0.1), β2 = 0.75 and size equal to 2562 for all
tests. Theoretically �t may be selected to be small as possible. As clearly given in Table 7,
�t = 0.03 is the optimal value to remove this type of noise with the good PSNR value. For
more details, see Table 7.

Convergence Result for Algorithm-2

In the following Fig. 6 convergence of Algorithm-2 is demonstrated. For this purpose, the
Problem1 of size 2562with noise level (50, 0.1) is used as a test image. Algorithm-2 was run
with the parameters, α = 1.7, α1 = 0.003, α2 = 425, α3 = 0.004, β1 = 1e−5, β2 = 0.75
and �t = 0.03. In the Fig. 6, the x-axis is the number of iterations and y-axis is the relative
error between the restored image and the original image. It can be seen that the relative error
of the proposed algorithm is small and the speed of convergence is optimal.
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Sensitivity Analysis of Regularization Parameters

Changing the values of regularization parameters may lead towards different restoration
results. In image processing selection of parameters is a challenging task, in this regards
sensitivity is playing a vital role. Here, we discuss sensitivity of our model with respect to
parameters α1, α2, α3. It is worth noting that sometimes a small deviation from the optimal
parameter or selecting a wrong parameter may lead to significantly wrong/poor results.

To obtain acceptable restoration results, it requires to choose dozens of hand-tuned para-
meters and it seems a great benefit to use sensitivity analysis to identify those parameters
that have a strong influence on the result. It identifies the importance of parameters, the
parameters with the strongest influence on the result, and parameter ranges where the result
is sensitive to small variations of these parameters [17,18,21,28].

To demonstrate the sensitivity analysis of our proposed model (M3), a test image
(Problem1) of size 256 × 256, which is corrupted by both AN and MN with noise level
= (25, 0.1) is utilized. Our algorithm was run with the optimal values of parameters,
α = 1.5, α1 = 0.003, α2 = 405, α3 = 0.005, fixed number of iterations = 100, β1 = 1e−5

or β1 = 1e−4 and β2 = 0.75 or β2 = 0.85 with time step �t = 0.03 according to the image
size 2562. The values of α1, α2 and α3 are increased and decreased by (50, 75, 100/99%)

around its optimal values and noted its PSNR results for the recovered image.
To briefly comment on the choice of the various regularization parameters used in the

algorithm described above, it must be noted that according to our experience, the three
parameters α1, α2 and α3 are more complicated to choose. However, its optimal values are
adjusted and tuned according to the noise variance and so on. It was observed that the
allowable ranges of values are α ∈ [1.2, 1.7], α1 ∈ [0.001, 0.009], α2 ∈ [50, 980] and
α3 ∈ [0.004, 0.009] while the number of iterations are considered to be in the range [100,
800] for natural and synthetic images according to the noise variance. Using these ranges
better restoration results could be obtained with improved PSNR and SSIM. Results are
presented in Tables 8 and 9.

For the sake of brevity, the following notations are utilized in Tables 8 and 9.

1. (·)% increase-↑, and (·)% decrease-↓
2. For example (0.45) ↓ stands for 0.45% decrease in PSNR
3. (0.25) ↑ Stands for 0.25% increase in PSNR

Tables 8 and 9 indicate that parameters α1, α2 and α3 are important for improving restora-
tion performance. It is noteworthy that the value ofα andα2 should not be greater than 1.9 and
1000 and should not be less than 1.2 and50,while the value ofα1 andα3 should not be less than

Table 8 PSNR and SSIM values of the restored image with optimal values of α1, α2 and α3 equal to 26.69
and 0.7932

Image 50% (↑) 75% (↑) 100% (↑)

α1 α2 α3 PSNR α1 α2 α3 PSNR α1 α2 α3 PSNR

Pb. 1 0.0045 607.5 0.0075 22.58 0.0053 708.75 0.0088 18.67 0.006 810 0.01 18.5

15.4 (↓) 30.05 (↓) 30.65 (↓)

Parameter sensitivity analysis for our proposedmodel (M3) by percentage increased in values of the parameters
α1, α2, α3, contaminated by both AN and MN (25, 0.1), with the resultant percentage increase or decrease in
PSNR of the de-noised image of size (2562)

123



2018 Int. J. Appl. Comput. Math (2017) 3:1999–2019

Table 9 PSNR and SSIM values of the restored image with optimal values of α1, α2 and α3 equal to 26.69
and 0.7932

Image 50% (↓) 75 % (↓) 100% (↓)

α1 α2 α3 PSNR α1 α2 α3 PSNR α1 α2 α3 PSNR

Pb. 1 1.5e-3 202.5 2.5e-3 21.10 7.5e-4 101.25 1.25e-3 17.28 3e-5 4.05 5e-5 15.87

20.94 (↓) 35.26 (↓) 40.54 (↓)

Parameter sensitivity analysis for our proposedmodel (M3) by percentage decrease in values of the parameters
α1, α2, α3, contaminated by both AN and MN (25, 0.1), with the resultant percentage increase or decrease in
PSNR of the de-noised image of size (2562)

0.001 and 0.004. Hence the availability of information about the uncertainty of the de-noising
results with respect to the user-chosen parameters is helpful to avoid incorrect decisions.

Conclusion

In this paper, a novel variational model was proposed using fractional-order total variational
filter combined with FOE-image prior for restoration of images corrupted at one time by
independent AN and MN. Alternating minimization algorithm (AMA) was exploited for
solving non-linear PDE arisen from minimization of the proposed functional. Experimental
results demonstrate that the proposed model improves PSNR better thanM1 andM2method.
Parameters dependence was also discussed. Developing fast algorithms for solving partial
differential equations arisen frommodelminimizationmight be considered in future research.
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