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Abstract In this paper, the nonlinear vibration of an embedded single-walled carbon nan-
otube conveying fluid is investigated numerically. The nonlocal continuum theory is applied
to simulate the nonlinear vibration of a single-walled carbon nanotube with fluid flow. The
Keller Box Method is used to solve the corresponding nonlinear differential equation. The
effects of the flow velocity, vibration amplitude, nonlocal parameter and stiffness of the
medium on the nonlinear frequency of carbon nanotube are studied.The results show that the
nonlinear flow-induced frequency alter from the linear frequency greatly when the amplitude,
flow velocity, and nonlocal parameter are high while for the carbon nanotubes embedded in
the mediums of high Pasternak parameters, the nonlinearity of the model does not demon-
strate a significant effect on the frequency.

Keywords Carbon nanotube · Keller Box Method (KBM) · Nonlinear vibration ·
Mathematical modelling · Fluid flow

Introduction

Nanotechnology is an industrial revolution and one of the hottest fields of research. In the
last few years, carbon nanotubes (CNTs) have attracted extensive research activities due to
their exceptional mechanical, physical, chemical and thermal properties. CNTs were first
discovered by Iijima [1] in 1991.

Carbon nanotubes (CNTs) are unique nanostructured materials that comprise a basic
element of nanotechnology. Given their extraordinary mechanical and physical properties,
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together with their large aspect ratio and low density, CNTs are ideal components of nan-
odevices. Carbon nanotube research is one of the most promising domains in the fields
of mechanics, physics, chemistry, and materials science. A wide range of applications of
CNTs have been reported in the literature, including applications in nanoelectronics, nan-
odevices, and nanocomposites [1–8]. It is important to have accurate theoretical models for
the vibrational behavior of CNTs. The natural frequencies of CNTs play an important role
in nanomechanical resonators.

Since the vibrations of CNTs are of considerable importance in a number of nanomechan-
ical devices such as oscillators, charge detectors, field emission devices and sensors, many
researches have been so far devoted to the problem of the vibration of CNTs [9–12]. A good
review on the vibration of CNTs is given by Gibson et al. [13] including a concise review
of as many of the relevant publications as possible. Based on the theory of thermal elasticity
mechanics, Wang et al. [14] studied the vibration and instability analysis of fluid-conveying
single-walled carbon nanotubes (SWNTs) considering the thermal effect.

However, most of the investigations conducted on the vibration of CNTs have been
restricted to the linear regime and fewer works were done on the nonlinear vibration of
these materials. Recently, Fu et al. [15] studied the nonlinear vibrations of embedded nan-
otubes using the incremental harmonic balancedmethod (IHBM). In that work, single-walled
nanotubes (SWNTs) and double-walled nanotubes (DWNTs) considered for the study.

Multi walled carbon nanotubes (MWCNT) composite nanofibers with various MWCNT
contents were fabricated by electrospinning process and their microwave absorption proper-
ties were evaluated in the frequency range of 8–12GHz at room temperature [16].

Mathematical modelling is a vantage point to reach a solution in an engineering prob-
lem, so the accurate modelling of nonlinear engineering problems is an important step to
obtain accuratre solutions [17–19]. Most differential equations of engineering problems do
not have exact analytic solutions so approximation and numerical methods must be used.
Recently some different methods have been introduced to solving these equations, such as
the Variational Iteration Method (VIM) [20], Local Fractional Variational Iteration Method
(LFVIM) [21,22], Adomian Decomposition Method (ADM) [23], Homotopy Perturbation
Method (HPM) [24], Local Fractional Homotopy Perturbation Method (LFHPM) [25,26],
Parameterized PerturbationMethod (PPM) [27], Differential TransformationMethod (DTM)
[28,29], TwoDimensional ExtendedDifferential Transform (TDEDT) [30],ModifiedHomo-
topy Perturbation Method (MHPM) [31], Least Square Method (LSM) [32–34], Collocation
Method (CM) [35], Galerkin Method (GM) [36], Optimal Homotopy Asymptotic Method
(OHAM) [37], asymptotic perturbation method [38], local fractional Fourier series method
[39,40] and Differential Quadrature Method (DQM) [41–43].

Nonlocal discrete and continuous models were developed for vibration analyses of two
and three-dimensional ensembles of SWCNTs subjected to laterally applied loads by Kiani
[44]. Using nonlocal Rayleigh beam theory, the discrete and continuous equations of motion
for two and three-dimensional ensembles of SWCNTs were developed, and then solved in
their corresponding space and time domains.

A linear model was developed to take into account the van der Waals forces between
adjacent SWCNTs because of their bidirectional transverse displacements Kiani [45]. Using
Hamilton’s principle, the discrete equations of motion of free vibration of the nanostructure
were obtained based on the nonlocal Rayleigh, Timoshenko, and higher-order beam theories.

Transverse wave characteristics within 3D ensembles of SWCNTs was aimed to be care-
fully studied by Kiani [46]. He used nonlocal continuum theory of Eringen and Hamilton’s
principle to develop the nonlocal-discrete equations of motion of the problem based on the
Rayleigh, Timoshenko, and higher-order beam theories.
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Fig. 1 A single-walled carbon nanotube with fluid flow

In this study, the nonlocal continuum theory is utilized to simulate the nonlinear vibration
of a SWCNT conveying fluid, employing Pasternak-type elastic foundation. To solve the
governing equations of the problem, one of the strong numerical methods named the Keller
Box Method (KBM) is used. The effects of the flow velocity, vibration amplitude, nonlocal
parameter and stiffness of the medium on the nonlinear frequency variation are illustrated.

Mathematical Formulation

A single-walled carbon nanotube with fluid flow embedded in elastic medium is shown in
Fig 1. The nanotube is assumed to be simply supported at both ends and the effect of gravity
is negligible.

For Euler–Bernoulli beam theory, the relationship among the transverse shear force Q,
the bending moment of the model M, and the longitudinal force N are [47]:

∂Q

∂x
= ∂2M

∂2x
+ N

∂2w

∂2x
(1)

N and M are the stress resultants defined as follows:

M =
∫

z · σxxd Ac =
∫

z · Eεxxd Ac, N =
∫

σxxd Ac =
∫

Eεxxd Ac (2)

where E is the Young’s modulus of the SWCNT.
The nonlocal continuum theory, presented by Eringen in 1983, shows a more precise

constitutive rule for small-scale structures in comparison with the common local elastic
theories. This definition of nonlocal elasticity is based on lattice dynamics and observations
on phonon dispersion. The nonlocal constitutive equation for the uniaxial bending stress state
forms as:

σxx = Eεxx + (e0a)2
∂2σxx

∂x2
(3)

The parameter (e0a) shows the small-scale effect which is called the nonlocal parameter. In
which the parameter e0 is estimated such that the relations of the nonlocal elasticity model
could provide a good approximation of atomic dispersion curves of plane waves with those
of atomic lattice dynamics, and a expresses represents an internal length such as lattice
parameter and granular size

M − (e0a)2
∂2M

∂x2
=

∫
zEεxxd Ac (4)
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Based on the Euler–Bernoulli continuum theory, the displacement field of the model is
expressed as:

u(x, z, t) = u(x, t) − z · ∂w

∂x
, w(x, z, t) = w(x, t) (5)

Also the von-Karman strain based on the displacement field is approximately expressed [48]:

εxx ≡ ∂u(x, z, t)

∂x
+ 1

2

(
∂w(x, z, t)

∂x

)2

= ∂2u

∂x2
− z · ∂2w

∂x2
+ 1

2

(
∂w(x, z, t)

∂x

)2

(6)

From Eqs. (3) and (6), the nonlocal stress resultant can be defined as:

M − (e0a)2
∂2M

∂x2
= E I

∂2w

∂x2
(7)

where the following relation has been used
∫

zd Ac = 0,
∫

z2d Ac = I (8)

The equations of motion can now be expressed in terms of displacements. Substituting for
the second derivative of M from Eq. (1) into Eq. (8), we obtain

M = (e0a)2
[

∂Q

∂x
− N

∂2w

∂x2

]
+ E I

∂2w

∂x2
(9)

Now, substituting for M from Eq. (9) into Eq. (7), the governing equation of motion is readily
identified as

E I
∂4w

∂x4
+ ∂Q

∂x
− N

∂2w

∂x2
− (e0a)2

[
∂3Q

∂x3
− N

∂4w

∂x4

]
= 0 (10)

Hence, the governing equations for a fluid-conveying SWCNT can be written as

mc
∂2w

∂t2
+ E I

∂4w

∂x4
+ kew − kp

∂2w

∂x2
+ F

∂2w

∂x2
+ m f

(
2v

∂2w

∂x∂t
+ v2

∂2w

∂x2
+ ∂2w

∂t2

)

− (e0a)2
[
mc

∂4w

∂t2∂x2
+ ke

∂2w

∂x2
− kp

∂4w

∂x4
+ F

∂4w

∂x4

+m f

(
2v

∂2w

∂x3∂t
+ v2

∂4w

∂x4
+ ∂4w

∂x2∂t2

)
− E Ac

2L
· ∂4w

∂x4
·
∫ L

0

(
∂w

∂x

)2

dx

]

− E Ac

2L

∂2w

∂x2

∫ L

0

(
∂w

∂x

)2

dx = 0 (11)

The deflection of the nanotube is subjected to the following boundary conditions:

w(0, t) = ∂2w(0, t)

∂x2
= 0 at x = 0

w(L , t) = ∂2w(L , t)

∂x2
= 0 at x = L (12)

w(x, t) can be expanded as:

w(x, t) = q(t).φ1(x) (13)
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�1 performs as the normalized mode functions of the nanotube from the linear vibration
analysis due to the specified boundary conditions.

Substituting Eq. (13) in Eq. (11) leads to:

q̈(t)+
[
1+e2

(
Ke+Kp−T−U 2

)+Ke+Kp−T−U 2
] · ω2

0

1 + e2
· q(t)+ ω2

0

4r2
· q3(t) = 0

(14)

These equations can be made dimensionless by using the following definitions

ω0 = π2

L2

√
E I

mc + m f
, e = π

L
(e0a), Ke = L4

π4

1

E I
ke, Kp = L2

π2

1

E I
kp,

T = L2

π2

1

E I
F, U = L

π

√
m f

E I
, r =

√
I

Ac
(15)

Flexural and shear frequencies are two types of frequencies in nonlocal Timoshenko theory.
To study the flexural vibration characteristics of composite beams, one may resort to the

Timoshenko beam model [49]. Such a model assumes that, during transverse vibration, each
plane cross section of the beam remains plane but not necessarily normal to the centerline
of the beam. These assumptions constitute a first order approximation to rotary inertia and
transverse shear deformation.

The Bernoulli-Euler beam model neglects both rotary inertia and transverse shear defor-
mation.

Standard tests like ASTM D790 are available to characterize the flexural moduli of com-
posite beams [50]. The advantages of this method are derived from the ease of running and
instrumenting. This test, however, is not recommended for thick beam samples as the pres-
ence of both transverse shear and transverse normal deformations would adversely affect the
results. Such effects are more pronounced in composite beams which have a small transverse
shear modulus as compared to the flexural modulus. Fischer et al. [51] proposed a method
for the simultaneous determination of both flexural and shear moduli of thick beams using a
three-point bending test.

In the proposedmodel,the vibrationmode is classified into the two distinct groups: flexural
and torsional modes. In the flexural mode, the effect of rotatory inertia reduces the natural
frequencies,which is more significant for higher modes.The natural frequencies for the tor-
sional mode exist independently. The natural frequencies generally increase with increasing
thickness ratio, and there is dynamic optimal thickness ratio for the torsional mode, which
is the best thickness ratio for attaining a strongest beam for the vibration.

Numerical Procedure

In this study, Keller BoxMethod (KBM) is used as an efficient numerical method for solving
the problem using Maple 15.0 software. The Keller Box scheme is a face-based method for
solving partial differential equations that has numerous attractive mathematical and physical
properties. It is shown that these attractive properties collectively follow from the fact that
the scheme discretizes partial derivatives exactly and only makes approximations in the
algebraic constitutive relations appearing in the PDE. The exact Discrete Calculus associated
with the Keller-Box scheme is shown to be fundamentally different from all other mimetic
(physics capturing) numericalmethods.Actually,KellerBox is a variation of the finite volume
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approach in which unknowns are stored at control volume faces rather than at the more
traditional cell centers. The name alludes to the fact that in space-time, the unknowns sit at
the corners of the space-time control volume which is a box in one space dimension on a
stationary mesh. The original development of the method [52] dealt with parabolic initial
value problems such as the unsteady heat equation. The method was made better known by
Bradshaw et al. [53] as a method for the solution of the boundary layer equations.

Keller Box method is one of the important techniques for solving the parabolic flow
equation, especially the boundary layer equations [54]. This scheme is implicit with second
order accuracy in both space and time and allows the step size of time and space to be
arbitrary (nonuniform). This makes it efficient and appropriate for the solution of parabolic
partial differential equations. The disadvantage of the method is that the computational effort
per time step is expensive due to its step which has to replace the higher derivative by first
derivatives, so that the second-order diffusion equation can be written as a system of two
first-order equations [55].

There are a large variety of numerical methods which are used to solve mathematical
physical problems. Two particularmethods, the Box scheme and the Crank-Nicolson scheme,
seem to dominate in most practical applications. Keller [56] himself preferred and stressed
the Box scheme. This scheme was devised in Keller [52] for solving diffusion problems, but
it has subsequently been applied to a broad class of problems. It has been tested extensively
on laminar flows, turbulent flows, nonlinear vibration, separating flows and many other such
problems [57].

Results and Discussion

Figure 2 shows the behavior of nonlinear frequency for different values of nonlocal parame-
ters. The figure shows that the nonlinear frequency increases with an increase of the nonlocal
parameter. The reason is that the nonlocal theory introduces a more flexible model and with
increasing the flexibility, the effect of the nonlinearity on the model becomes more signifi-
cant. The Pasternak model expresses the base of the SWCNT. The Pasternaktype foundation,
also named the two-parameter foundationmodel, models the interaction between themedium
and the nanotube using two different parameters. These two paramters are: Winkler constant
(Ke) which shows normal pressure and Pasternak constant (Kp), which express transverse
shear stress due to the interaction of shear deformation of the surrounding elastic medium.

Figure 3 shows the nonlinear frequency variation against the nonlinear amplitude as a
function of axial tension. It is shown that that axial tension of the SWCNT can decrease
the difference between the nonlinear and the linear resonant frequency, and this effect is
profound for high vibration amplitude. It means that increasing the axial tension F can
control the nonlinearity.

Figures 4 and 5 display the influences of Winkler constants (Ke) and Pasternak constants
(Kp) on nonlinear frequency variation. Figure 4 indicated that by increasing the Winkler
constant, the nonlinear frequency decreases, especially for low vibration amplitudes. This
means that as the nanotube vibrates in a stiff medium, the nonlinear frequency turn to the
linear frequency. It means that for low amplitudes and stiff elastic foundations, the linear
simulation of the SWCNT shows a precise theoretical model for transverse flow-induced
vibrations.

Figure 5 depicts the effects of Pasternak constant on the nonlinear frequency. It can be
seen an increase in the shear stiffness of the medium results in the decrease of the nonlinear
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Fig. 2 The variation of nonlinear frequency against the maximum nonlinear amplitude for different nonlocal
parameters

Fig. 3 The variation of nonlinear frequency against the maximum nonlinear amplitude for different axial
tensions

frequency for the small vibration amplitudes, and also the nonlinear flow-induced frequency
reduces to the linear.

The influence of the effect nonlocal parameter on the nonlinear frequency variation against
the flow velocity is shown in Fig. 6. It is resulted that the influence of the nonlocal parameter
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Fig. 4 The variation of nonlinear frequency against the maximum nonlinear amplitude for different Winkler
constants

Fig. 5 The variation of nonlinear frequency against the maximum nonlinear amplitude for different Pasternak
constants

is greater at higher flow velocities in comparison with lower flow velocities. This effect is
more significant when the nonlocal parameter increases.

Figure 7 illustrates the nonlinear frequency variation against the flow velocity for various
axial tensions. The result shows that for low flow velocities, the effect of axial tension on
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Fig. 6 The variation of nonlinear frequency against the dimensionless fluid velocity for different nonlocal
parameters

Fig. 7 The variation of nonlinear frequency against the dimensionless fluid velocity for different axial tensions

the nonlinear frequency variation is little. For high flow velocities, the nonlinear frequency
variation decreases with increment in axial tensions.

Figure 8 depicts the influence of theWinkler constant on the nonlinear frequency variation
against the flow velocities. It shows that the nonlinear frequency variation does not change
greatly for low fluid velocities and the mediums with rigid elastic properties origin the
difference between the nonlinear and linear frequency to remain unchanged with respect to
flow velocity. Furthermore, for flexible mediums, the nonlinear frequency variation increases
with the flow velocity.
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Fig. 8 The variation of nonlinear frequency against the dimensionless fluid velocity for different Winkler
constants

Fig. 9 The variation of nonlinear frequency against the dimensionless fluid velocity for different Pasternak
constant

The effect of the Pasternak constant on the nonlinear frequency variation with the dimen-
sionless flow velocity is shown in Fig. 9. The result shows that for low fluid velocities
(U < 0.5) and as the shear stiffness of the elastic medium increases, the nonlinear frequency
variation decreases and for the higher flow velocities it remains constant. This shows that the
nonlinear vibration behavior of the SWCNT is independent of the fluid flow.
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Conclusion

In this paper, the Keller BoxMethod (KBM) is used to solve the nonlinear vibration model of
a fluid-conveying singel-walled carbon nanotube embedded in a Pasternak foundation. The
results show that the axial tension restricts the nonlinear effect and limits the flow induced-
vibration of the nanotube at high flow velocity and for high vibration amplitudes.

It is resulted that influence of the nonlocal parameter is greater at higher flow velocities
in comparison with lower flow velocities. Also, It can be concluded that by increasing the
Winkler constant, the nonlinear frequency decreases, especially for low vibration amplitudes.
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