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Abstract In this paper, the global dynamical behavior of a hepatitis B virus (HBV) infection
model with HBV DNA-containing capsids and cytotoxic T lymphocytes (CTLs) immune
response is investigated.We derive the conditions for global asymptotic stability of the steady
states of the model in terms of the basic reproduction number R0 and the immune response
reproduction number RCTL . By constructing appropriate Lyapunov functions, it is shown that
the disease-free steady state is globally asymptotically stable when R0 ≤ 1, the immune-free
steady state is globally asymptotically stable when RCTL ≤ 1 < R0 and the endemic steady
state is globally asymptotically stable when RCTL > 1. Further, we incorporate two discrete
delays in the model to account for the intracellular delays in the production of productively
infected hepatocytes and capsids.We also derive the global properties of this two-delaymodel
in terms of R0 and RCTL . Finally, illustrative numerical simulations are presented to support
our theoretical findings.

Keywords HBV infection ·CTL response ·Delays ·Global stability ·Numerical simulation

Introduction

Hepatitis B virus (HBV) infection which is a hepatic condition resulting from infection of
the hepatocytes (or the liver cells), is a disease of critical concern for public health at a
global level [1]. The prognosis of HBV infection is typically acute or chronic in nature. The
chronic cases can potentially have severe long term implications such as liver cirrhosis and
hepatocellular carcinoma (HCC) [2]. The fairly complex process of HBV replication has
been discussed in detail by Rebeiro et al. [2] and Lewin et al. [3]. About 2 billion individuals
are believed to be infected with HBV at some point in their life span resulting in about 350
million chronically infected and carriers of the virus [4]. The chronic infection leads to an
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estimated annual casualty of 1 million [4] which makes HBV infection a subject of serious
research.

The study of virus dynamics models using mathematical techniques is useful in under-
standing the viral infections such as human immunodeficiency virus (HIV), hepatitis C virus
(HCV) and HBV infections etc. Nowak et al. [5] introduced the basic virus infection model
which has been widely used by researchers in the studies of virus infection dynamics. Several
mathematical models and their qualitative analysis for HBV infection can be found in [6–9].
Since biological processes are not instantaneous in nature, there are some intracellular time
delays involved in these processes. While the above mentioned models did not account for
delays, some delay induced HBV infection models and analysis of their dynamical behaviors
can be found in [10–12]. Nowak and Bangham [13] extended the basic virus infection model
by incorporating the cytotoxic T lymphocytes (CTLs) immune responses for HIV, HBV,
human T cell leukemia virus-1 (HTLV-1) infections. Some other HBV infection models with
CTL immune responses and their analysis can be found in [4,14,15].

In a recent article, Manna and Chakrabarty [16] presented and analyzed a HBV infection
model with HBV DNA-containing capsids. Their model involved four populations such as
uninfected hepatocytes (H ), infected hepatocytes (I ), capsids (D) and virions (V ). Themodel
presented in [16] is as follows:

dH(t)

dt
= s − μH(t) − kH(t)V (t),

dI(t)

dt
= kH(t)V (t) − δ I (t),

dD(t)

dt
= aI(t) − (β + δ)D(t),

dV(t)

dt
= βD(t) − cV (t), (1)

where s represents the constant production rate, μ is the natural death rate of uninfected
hepatocytes and k is the conversion rate of the uninfected hepatocytes to infected ones. δ is
the death rate of infected hepatocytes and capsids with a being the production rate of capsids
from infected hepatocytes. Capsids lead to viral replication at the rate β accompanied by the
natural death of the virions at a rate of c. It is assumed that μ ≤ δ which is a reasonable
assumption because otherwise that would lead to a low chance of patient survival [16]. The
CTL immune response which was not a part of the model (1) has been included in this work
and then investigated for global dynamical behavior.

The organization of this paper is as follows. In the next section, we present the model
with CTL immune responses and establish some of the basic properties. In section “Global
Analysis”, the global asymptotic stability of the steady states are established. In section
“DelayModel”, we incorporate two discrete delays in themodel and present some of the basic
results. In section “Global Analysis of the DelayModel”, we present the global properties for
the delay model. In the subsequent section, we present illustrative numerical simulations to
validate the theoretical results. Finally, section ”Conclusion” concludes the results obtained.

Mathematical Model

In this section, we propose a modified HBV infection model by incorporating CTL immune
responses in the model (1). Here, Z(t) represents the number of CTL cells at time t . We
propose the following modified model:
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dH(t)

dt
= s − μH(t) − kH(t)V (t),

dI(t)

dt
= kH(t)V (t) − δ I (t) − pI(t)Z(t),

dD(t)

dt
= aI(t) − (β + δ)D(t),

dV(t)

dt
= βD(t) − cV(t),

dZ(t)

dt
= qI(t)Z(t) − σ Z(t), (2)

with the initial conditions H(0) > 0, I (0) > 0, D(0) > 0, V (0) > 0 and Z(0) > 0.
The infected hepatocytes are removed by CTLs at the rate p while q denotes the CTL
responsiveness and σ represents decay rate for CTLs in absence of stimulation. It can be
shown that the solutions of the model (2) with positive initial conditions will remain positive.
Now, we prove the boundedness of the solutions of the model (2) for t ≥ 0. For this purpose,
let us define a new variable T (t) = H(t) + I (t) + p

q Z(t). Then, from the first two and last
equations of (2), we have

dT(t)

dt
= s − μH(t) − δ I (t) − pσ

q
Z(t)

≤ s − μ1T (t),

where μ ≤ δ and μ1 = min{μ, σ }. Therefore, we have lim supt→∞ T (t) ≤ s
μ1

and in a

similar manner, we can obtain lim supt→∞ D(t) ≤ as
μ1(β+δ)

and lim sup
t→∞

V (t) ≤ aβs
cμ1(β+δ)

.

Hence, all solutions of the model (2) are bounded. For our model (2), the basic reproduction
number of the virus is introduced as R0 = aβsk

cδμ(β+δ)
and the immune response reproduction

number is introduced as RCTL = aβskq
δ{cqμ(β+δ)+aβσk} . Here, R0 represents the average number of

the newly infected hepatocytes generated from one infected hepatocyte at the beginning of the
infectious process in absence of a CTL immune response and RCTL represents reproduction
number in presence of CTL immune response. Also, it can be shown that RCTL < R0 is
always true. The model (2) has three steady states:

1. The disease-free steady state, E0 = (H0, I0, D0, V0, Z0) =
(

s
μ
, 0, 0, 0, 0

)
.

2. The immune-free steady state, E1 = (H1, I1, D1, V1, Z1), where H1 = cδ(β+δ)
aβk , V1 =[

aβs
cδ(β+δ)

− μ
k

]
, D1 =

[
c
β

]
V1, I1 =

[
β+δ
a

]
D1 and Z1 = 0. The immune-free steady

state, E1, exists provided the basic reproduction number R0 > 1.
3. The endemic steady state, E∗ = (H∗, I ∗, D∗, V ∗, Z∗), where H∗ = scq(β+δ)

cqμ(β+δ)+aβσk ,

I ∗ = σ
q , D

∗ = a
(β+δ)

I ∗, V ∗ = β
c D

∗, Z∗ = δ
p

[
aβskq

δ{cqμ(β+δ)+aβσk} − 1
]
. The endemic

steady state, E∗, exists provided the immune response reproduction number RCTL > 1.

Global Analysis

In this section, the global asymptotic stability of the three steady states is studied through
the method of Lyapunov function construction. For this purpose, we present some useful
inequalities [17–19]. Here we consider the function G(x) = x − 1 − ln x for x > 0. Note
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that G(x) ≥ 0,∀x and that G(x) = 0 if and only if x = 1. Let x1, x2, . . . , xn be positive
real numbers. Then

1 − xi + ln xi = −G(xi ) ≤ 0, ∀i = 1 : n. (3)

Taking summation of (3) over i = 1 : n, we get

n −
n∑

i=1

xi + ln

(
n∏

i=1

xi

)
≤ 0. (4)

For xi = pi
qi

where pi > 0, qi > 0 for i = 1 : n, it follows that

n −
n∑

i=1

pi
qi

+ ln

(
n∏

i=1

pi
qi

)
≤ 0. (5)

If p1 p2 . . . pn = q1q2 . . . qn , then
∏n

i=1
pi
qi

= 1 and we have

n −
n∑

i=1

pi
qi

≤ 0. (6)

Theorem 1 The disease-free steady state E0 is globally asymptotically stable if R0 ≤ 1.

Proof We define a Lyapunov function L1 as follows:

L1(t) = H0G

(
H

H0

)
+ I (t) + δ

a
D(t) + δ(β + δ)

aβ
V (t) + p

q
Z(t).

Taking the derivative of L1 along the solutions of the model (2), we obtain

dL1
dt

=
(
1 − H0

H

)
dH

dt
+ dI

dt
+ δ

a

dD

dt
+ δ(β + δ)

aβ

dV

dt
+ p

q

dZ

dt

=
(
1 − H0

H

)
[s − μH − kHV ] + [kHV − δ I − pIZ] + δ

a
[aI − (β + δ)D]

+ δ(β + δ)

aβ
[βD − cV ] + p

q
[qIZ − σ Z ]

= s

[
2 − H

H0
− H0

H

]
+

[
kH0 − cδ(β + δ)

aβ

]
V − pσ

q
Z

= s

[
2 − H

H0
− H0

H

]
+ cδ(β + δ)

aβ
[R0 − 1]V − pσ

q
Z

= − s

HH0
(H − H0)

2 + cδ(β + δ)

aβ
[R0 − 1]V − pσ

q
Z .

Therefore, dL1
dt ≤ 0 if R0 ≤ 1. Assume that M is the largest invariant set in {(H, I, D,

V, Z)| dL1dt = 0}. Note that dL1
dt = 0 if and only if H = H0 = s

μ
, I = 0, D = 0, V = 0 and

Z = 0. Hence, M = {E0} = {( s
μ
, 0, 0, 0, 0)}. Thus, by the Lyapunov-LaSalle invariance

principle [14,16,18], E0 is globally asymptotically stable if R0 ≤ 1. �	
Theorem 2 The immune-free steady state E1 is globally asymptotically stable if RCTL ≤
1 < R0.
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Proof We define a Lyapunov function L2 as follows:

L2(t) = H1G

(
H

H1

)
+ I1G

(
I

I1

)
+ δ

a
D1G

(
D

D1

)
+ δ(β + δ)

aβ
V1G

(
V

V1

)
+ p

q
Z(t).

Taking the derivative of L2 along the solutions of the model (2), we obtain

dL2
dt

=
(
1 − H1

H

)
dH

dt
+

(
1 − I1

I

)
dI

dt
+ δ

a

(
1 − D1

D

)
dD

dt

+ δ(β + δ)

aβ

(
1 − V1

V

)
dV

dt
+ p

q

dZ

dt

=
(
1 − H1

H

)
[s − μH − kHV ] +

(
1 − I1

I

)
[kHV − δ I − pIZ]

+ δ

a

(
1 − D1

D

)
[aI − (β + δ)D] + δ(β + δ)

aβ

(
1 − V1

V

)
[βD − cV ]

+ p

q
[qIZ − σ Z ]

= μH1

[
2 − H

H1
− H1

H

]
+ δ I1

[
4 − H1

H
− HI1V

H1IV1
− ID1

I1D
− DV1

D1V

]

−
(
1 − I1

I

)
pIZ + p

q
[qIZ − σ Z ]

= μH1

[
2 − H

H1
− H1

H

]
+ δ I1

[
4 − H1

H
− HI1V

H1IV1
− ID1

I1D
− DV1

D1V

]

+ ps

δRCTL
[RCTL − 1]Z

= − μ

H
(H − H1)

2 + δ I1

[
4 − H1

H
− HI1V

H1IV1
− ID1

I1D
− DV1

D1V

]

+ ps

δRCTL
[RCTL − 1]Z

Taking p1 = H1, p2 = HI1V, p3 = ID1, p4 = DV1, q1 = H, q2 = H1IV1, q3 =
I1D, q4 = D1V and using the inequality (6) for n = 4, we obtain

4 − H1

H
− HI1V

H1IV1
− ID1

I1D
− DV1

D1V
≤ 0.

Therefore, dL2
dt ≤ 0 if RCTL ≤ 1. Assume that M is the largest invariant set in {(H, I, D,

V, Z)| dL2dt = 0}. Note that dL2
dt = 0 if and only if H = H1, I = I1, D = D1, V = V1

and Z = Z1 = 0. Hence, M = {E1}. Since E1 exists whenever R0 > 1, then by the
Lyapunov-LaSalle invariance principle [14,16,18], E1 is globally asymptotically stable if
RCTL ≤ 1 < R0. �	
Theorem 3 The endemic steady state E∗ is globally asymptotically stable if RCTL > 1.

Proof We define a Lyapunov function L3 as follows:

L3(t) = H∗G
(

H

H∗

)
+ I ∗G

(
I

I ∗

)
+ (δ + pZ∗)

a
D∗G

(
D

D∗

)

+ (δ + pZ∗)(β + δ)

aβ
V ∗G

(
V

V ∗

)
+ p

q
Z∗G

(
Z

Z∗

)
.
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Taking the derivative of L3 along the solutions of the model (2), we obtain

dL3
dt

=
(
1 − H∗

H

)
dH

dt
+

(
1 − I ∗

I

)
dI

dt
+ (δ + pZ∗)

a

(
1 − D∗

D

)
dD

dt

+ (δ + pZ∗)(β + δ)

aβ

(
1 − V ∗

V

)
dV

dt
+ p

q

(
1 − Z∗

Z

)
dZ

dt

=
(
1 − H∗

H

)
[s − μH − kHV ] +

(
1 − I ∗

I

)
[kHV − δ I − pIZ]

+ (δ + pZ∗)
a

(
1 − D∗

D

)
[aI − (β + δ)D] + (δ + pZ∗)(β + δ)

aβ

(
1 − V ∗

V

)

[βD − cV ] + p

q

(
1 − Z∗

Z

)
[qIZ − σ Z ]

= − μ

H
(H − H∗)2 + (δ I ∗ + pI∗Z∗)

[
4 − H∗

H
− HI∗V

H∗IV∗ − ID∗

I ∗D
− DV∗

D∗V

]

+ (kH∗V ∗ − δ I ∗ − pI∗Z∗) V

V ∗ .

Since kH∗V ∗ = δ I ∗ + pI∗Z∗, we have

dL3
dt

= − μ

H
(H − H∗)2 + (δ I ∗ + pI∗Z∗)

[
4 − H∗

H
− HI∗V

H∗IV∗ − ID∗

I ∗D
− DV∗

D∗V

]
.

Now, taking p1 = H∗, p2 = HI∗V, p3 = ID∗, p4 = DV∗, q1 = H, q2 = H∗IV∗, q3 =
I ∗D, q4 = D∗V and using the inequality (6) for n = 4, we obtain

4 − H∗

H
− HI∗V

H∗IV∗ − ID∗

I ∗D
− DV∗

D∗V
≤ 0.

Therefore, dL3dt ≤ 0. Assume that M is the largest invariant set in {(H, I, D, V, Z)| dL3dt = 0}.
Note that dL3

dt = 0 if and only if H = H∗, I = I ∗, D = D∗, V = V ∗ and Z = Z∗. Hence,
M = {E∗}. Since E∗ exists whenever RCTL > 1, then by the Lyapunov-LaSalle invariance
principle [14,16,18], E∗ is globally asymptotically stable if RCTL > 1. �	

Delay Model

In this section, we include two discrete delays in the model (2) and discuss the basic proper-
ties such as positivity and boundedness of the solutions. In two recent articles by Manna and
Chakrabarty [16,18], one intracellular delay was incorporated in the production of produc-
tively infected hepatocytes from the uninfected ones for HBV infection model. Also, another
delay in the production of matured intracellular HBV DNA-containing capsids which in turn
contributes to the production of virions was taken into account in [18]. Taking into account
these two delays, we propose the following model with two intracellular delays:
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dH(t)

dt
= s − μH(t) − kH(t)V (t),

dI(t)

dt
= kH(t − τ1)V (t − τ1) − δ I (t) − pI (t)Z(t),

dD(t)

dt
= aI (t − τ2) − (β + δ)D(t),

dV(t)

dt
= βD(t) − cV (t),

dZ(t)

dt
= qI(t)Z(t) − σ Z(t), (7)

where τ1 represents the delay in the production of productively infected hepatocytes and τ2
represents the delay in the production of capsids. The initial conditions of the model (7) are
given by H(θ) > 0, I (θ) > 0, D(θ) > 0, V (θ) > 0 and Z(θ) > 0 for θ ∈ [−ρ, 0], where
ρ = max{τ1, τ2}. It can be shown that the solutions of the model (7) with positive initial
conditions will remain positive. For proving the boundedness of the solutions of the model
(7), let us define a new variable

T1(t) = H(t) + I (t + τ1) + δ

2a
D(t + τ1 + τ2) + δ

2a
V (t + τ1 + τ2) + p

q
Z(t + τ1).

Then, using the equations of (7), we get

dT1(t)

dt
= s − μH(t) − δ

2
I (t + τ1) − δ2

2a
D(t + τ1 + τ2)

− cδ

2a
V (t + τ1 + τ2) − pσ

q
Z(t + τ1)

≤ s − μ2T1(t),

whereμ ≤ δ andμ2 = min{μ, δ
2 , c, σ }. Therefore, we have lim supt→∞ T1(t) ≤ s

μ2
. Hence,

all solutions of the model (7) are bounded for sufficiently large t . The model (7) has
the same three steady states as the non-delay model (2), namely, the disease-free steady

state E0 = (H0, I0, D0, V0, Z0) =
(

s
μ
, 0, 0, 0, 0

)
, the immune-free steady state E1 =

(H1, I1, D1, V1, Z1) which exists whenever R0 > 1 and the endemic steady state E∗ =
(H∗, I ∗, D∗, V ∗, Z∗) which exists whenever RCTL > 1.

Global Analysis of the Delay Model

In this section, we study the global asymptotic stability for the delay model (7).

Theorem 4 The disease-free steady state E0 is globally asymptotically stable for any delay
τ1 > 0, τ2 > 0 if R0 ≤ 1.

Proof We define a Lyapunov function L4 as follows:

L4(t) = H0G

(
H

H0

)
+ I (t) + δ

a
D(t) + δ(β + δ)

aβ
V (t) + p

q
Z(t)

+ k
∫ t

t−τ1

H(ξ)V (ξ)dξ + δ

∫ t

t−τ2

I (ξ)dξ.
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Taking the derivative of L4 along the solutions of the model (7), we obtain

dL4
dt

=
(
1 − H0

H

)
dH

dt
+ dI

dt
+ δ

a

dD

dt
+ δ(β + δ)

aβ

dV

dt
+ p

q

dZ

dt
+ k[HV − H(t − τ1)V (t − τ1)] + δ[I − I (t − τ2)]

=
(
1 − H0

H

)
[s − μH − kHV ] + [kH(t − τ1)V (t − τ1) − δ I − pIZ]

+ δ

a
[aI(t − τ2) − (β + δ)D] + δ(β + δ)

aβ
[βD − cV ] + p

q
[qIZ − σ Z ]

+ k[HV − H(t − τ1)V (t − τ1)] + δ[I − I (t − τ2)]
= s

[
2 − H

H0
− H0

H

]
+ cδ(β + δ)

aβ
[R0 − 1]V − pσ

q
Z

= − s

HH0
(H − H0)

2 + cδ(β + δ)

aβ
[R0 − 1]V − pσ

q
Z .

Therefore, dL4
dt ≤ 0 if R0 ≤ 1. Assume that M is the largest invariant set in

{(H, I, D, V, Z)| dL4dt = 0}. Note that dL4
dt = 0 if and only if H = H0 = s

μ
, I = 0, D = 0,

V = 0 and Z = 0. Hence, M = {E0} = {( s
μ
, 0, 0, 0, 0)}. Thus, by the Lyapunov-LaSalle

invariance principle [14,16,18], E0 is globally asymptotically stable if R0 ≤ 1. �	

Theorem 5 The immune-free steady state E1 is globally asymptotically stable for any delay
τ1 > 0, τ2 > 0 if RCTL ≤ 1 < R0.

Proof We define a Lyapunov function L5 as follows:

L5(t) = H1G

(
H

H1

)
+ I1G

(
I

I1

)
+ δ

a
D1G

(
D

D1

)
+ δ(β + δ)

aβ
V1G

(
V

V1

)
+ p

q
Z(t)

+ kH1V1

∫ t

t−τ1

G

(
H(ξ)V (ξ)

H1V1

)
dξ + δ I1

∫ t

t−τ2

G

(
I (ξ)

I1

)
dξ

= L1
5 + L2

5 + L3
5,

where

L1
5 = H1G

(
H

H1

)
+ I1G

(
I

I1

)
+ δ

a
D1G

(
D

D1

)
+ δ(β + δ)

aβ
V1G

(
V

V1

)
+ p

q
Z(t),

L2
5 = kH1V1

∫ t

t−τ1

G

(
H(ξ)V (ξ)

H1V1

)
dξ,

L3
5 = δ I1

∫ t

t−τ2

G

(
I (ξ)

I1

)
dξ.

Taking the derivative of L1
5 along the solutions of the model (7), we obtain

dL15
dt

=
(
1 − H1

H

)
dH

dt
+

(
1 − I1

I

)
dI

dt
+ δ

a

(
1 − D1

D

)
dD

dt

+ δ(β + δ)

aβ

(
1 − V1

V

)
dV

dt
+ p

q

dZ

dt
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=
(
1 − H1

H

)
[s − μH − kHV ] +

(
1 − I1

I

)
[kH(t − τ1)V (t − τ1)

− δ I − pIZ] + δ

a

(
1 − D1

D

)
[aI(t − τ2) − (β + δ)D]

+ δ(β + δ)

aβ

(
1 − V1

V

)
[βD − cV ] + p

q
[qIZ − σ Z ]

=
(
1 − H1

H

)
[s − μH − kHV ] +

(
1 − I1

I

)
[kHV − δ I − pIZ]

+ δ

a

(
1 − D1

D

)
[aI − (β + δ)D] + δ(β + δ)

aβ

(
1 − V1

V

)
[βD − cV ]

+ p

q
[qIZ − σ Z ] + k

(
1 − I1

I

)
[H(t − τ1)V (t − τ1) − HV ]

+ δ

(
1 − D1

D

)
[I (t − τ2) − I ]

= μH1

[
2 − H

H1
− H1

H

]
+ δ I1

[
4 − H1

H
− HI1V

H1IV1
− ID1

I1D
− DV1

D1V

]

+ ps

δRCTL
[RCTL − 1]Z + k

(
1 − I1

I

)
[H(t − τ1)V (t − τ1) − HV ]

+ δ

(
1 − D1

D

)
[I (t − τ2) − I ]

= μH1

[
2 − H

H1
− H1

H

]
+ δ I1

[
4 − H1

H
− H(t − τ1)I1V (t − τ1)

H1IV1
− I (t − τ2)D1

I1D

− DV1

D1V

]
+ ps

δRCTL
[RCTL − 1]Z + kH1V1

[
H(t − τ1)V (t − τ1)

H1V1
− HV

H1V1

]

+ δ I1

[
I (t − τ2)

I1
− I

I1

]

= − μ

H
(H − H1)

2 + δ I1

[
4 − H1

H
− H(t − τ1)I1V (t − τ1)

H1IV1
− I (t − τ2)D1

I1D

− DV1

D1V

]
+ ps

δRCTL
[RCTL − 1]Z + kH1V1

[
H(t − τ1)V (t − τ1)

H1V1
− HV

H1V1

]

+ δ I1

[
I (t − τ2)

I1
− I

I1

]
.

Also,

dL25
dt

= kH1V1

[
HV

H1V1
− H(t − τ1)V (t − τ1)

H1V1
+ ln

H(t − τ1)V (t − τ1)

HV

]
,

dL35
dt

= δ I1

[
I

I1
− I (t − τ2)

I1
+ ln

I (t − τ2)

I

]
.
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Therefore, the derivative of L5 along the solutions of the model (7) is

dL5
dt

= dL15
dt

+ dL25
dt

+ dL35
dt

= − μ

H
(H − H1)

2 + δ I1

[
4 − H1

H
− H(t − τ1)I1V (t − τ1)

H1IV1
− I (t − τ2)D1

I1D

− DV1

D1V
+ ln

H(t − τ1)V (t − τ1)I (t − τ2)

HVI

]
+ ps

δRCTL
[RCTL − 1]Z .

Taking p1 = H1, p2 = H(t −τ1)I1V (t −τ1), p3 = I (t −τ2)D1, p4 = DV1, q1 = H, q2 =
H1IV1, q3 = I1D, q4 = D1V and using the inequality (5) for n = 4, we obtain

4 − H1

H
− H(t − τ1)I1V (t − τ1)

H1IV1
− I (t − τ2)D1

I1D
− DV1

D1V

+ ln
H(t − τ1)V (t − τ1)I (t − τ2)

HVI
≤ 0.

Therefore, dL5
dt ≤ 0 if RCTL ≤ 1. Assume that M is the largest invariant set in

{(H, I, D, V, Z)| dL5dt = 0}. Note that dL5
dt = 0 if and only if H = H1, I = I1, D = D1,

V = V1 and Z = Z1 = 0. Hence, M = {E1}. Since E1 exists whenever R0 > 1, then by
the Lyapunov-LaSalle invariance principle [14,16,18], E1 is globally asymptotically stable
if RCTL ≤ 1 < R0. �	
Theorem 6 The endemic steady state E∗ is globally asymptotically stable for any delay
τ1 > 0, τ2 > 0 if RCTL > 1.

Proof We define a Lyapunov function L6 as follows:

L6(t) = H∗G
(

H

H∗

)
+ I ∗G

(
I

I ∗

)

+ (δ + pZ∗)
a

D∗G
(

D

D∗

)
+ (δ + pZ∗)(β + δ)

aβ
V ∗G

(
V

V ∗

)

+ p

q
Z∗G

(
Z

Z∗

)
+ kH∗V ∗

∫ t

t−τ1

G

(
H(ξ)V (ξ)

H∗V ∗

)
dξ

+ (δ I ∗ + pI∗Z∗)
∫ t

t−τ2

G

(
I (ξ)

I ∗

)
dξ

= L1
6 + L2

6 + L3
6,

where

L1
6 = H∗G

(
H

H∗

)
+ I ∗G

(
I

I ∗

)
+ (δ + pZ∗)

a
D∗G

(
D

D∗

)

+ (δ + pZ∗)(β + δ)

aβ
V ∗G

(
V

V ∗

)
+ p

q
Z∗G

(
Z

Z∗

)
,

L2
6 = kH∗V ∗

∫ t

t−τ1

G

(
H(ξ)V (ξ)

H∗V ∗

)
dξ,

L3
6 = (δ I ∗ + pI∗Z∗)

∫ t

t−τ2

G

(
I (ξ)

I ∗

)
dξ.
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Taking the derivative of L1
6 along the solutions of the model (7), we obtain

dL16
dt

=
(
1 − H∗

H

)
dH

dt
+

(
1 − I ∗

I

)
dI

dt
+ (δ + pZ∗)

a

(
1 − D∗

D

)
dD

dt

+ (δ + pZ∗)(β + δ)

aβ

(
1 − V ∗

V

)
dV

dt
+ p

q

(
1 − Z∗

Z

)
dZ

dt

=
(
1 − H∗

H

)
[s − μH − kHV ] +

(
1 − I ∗

I

)
[kH(t − τ1)V (t − τ1)

−δ I − pIZ] + (δ + pZ∗)
a

(
1 − D∗

D

)
[aI(t − τ2) − (β + δ)D]

+ (δ + pZ∗)(β + δ)

aβ

(
1 − V ∗

V

)
[βD − cV ] + p

q

(
1 − Z∗

Z

)
[qIZ − σ Z ]

= − μ

H
(H − H∗)2 + (δ I ∗ + pI∗Z∗)

[
4 − H∗

H
− H(t − τ1)I ∗V (t − τ1)

H∗IV∗

− I (t − τ2)D∗

I ∗D
− DV∗

D∗V

]
+ kH∗V ∗

[
H(t − τ1)V (t − τ1)

H∗V ∗ − HV

H∗V ∗

]

+ (δ I ∗ + pI∗Z∗)
[
I (t − τ2)

I ∗ − I

I ∗

]
.
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Fig. 1 Dynamics of the model (2) when R0 ≤ 1 with three different initial conditions IC1, IC2, IC3
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Also,

dL26
dt

= kH∗V ∗
[

HV

H∗V ∗ − H(t − τ1)V (t − τ1)

H∗V ∗ + ln
H(t − τ1)V (t − τ1)

HV

]
,

dL36
dt

= (δ I ∗ + pI∗Z∗)
[
I

I ∗ − I (t − τ2)

I ∗ + ln
I (t − τ2)

I

]
.

Therefore, the derivative of L6 along the solutions of the model (7) is

dL6
dt

= dL16
dt

+ dL26
dt

+ dL36
dt

= − μ

H
(H − H∗)2 + (δ I ∗ + pI∗Z∗)

[
4 − H∗

H
− H(t − τ1)I ∗V (t − τ1)

H∗IV∗

− I (t − τ2)D∗

I ∗D
− DV ∗

D∗V
+ ln

H(t − τ1)V (t − τ1)I (t − τ2)

HVI

]
.

Taking p1 = H∗, p2 = H(t−τ1)I ∗V (t−τ1), p3 = I (t−τ2)D∗, p4 = DV∗, q1 = H, q2 =
H∗IV∗, q3 = I ∗D, q4 = D∗V and using the inequality (5) for n = 4, we obtain
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Fig. 2 Dynamics of the model (2) when RCTL > 1 with three different initial conditions IC1, IC2, IC3
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4 − H∗

H
− H(t − τ1)I ∗V (t − τ1)

H∗IV∗ − I (t − τ2)D∗

I ∗D
− DV∗

D∗V

+ ln
H(t − τ1)V (t − τ1)I (t − τ2)

HVI
≤ 0.

Therefore, dL6dt ≤ 0. Assume that M is the largest invariant set in {(H, I, D, V, Z)| dL6dt = 0}.
Note that dL6

dt = 0 if and only if H = H∗, I = I ∗, D = D∗, V = V ∗ and Z = Z∗. Hence,
M = {E∗}. Since E∗ exists whenever RCTL > 1, then by the Lyapunov-LaSalle invariance
principle [14,16,18], E∗ is globally asymptotically stable if RCTL > 1. �	

Numerical Simulation

In this section, we illustrate the theoretical results through numerical simulations. We first
consider the parameter values s = 2.6 × 107, μ = 0.01, k = 3 × 10−13, δ = 0.053, p =
0.95, a = 150, β = 0.87, c = 3.8, q = 0.12 andσ = 0.05.Here, the values of p, q andσ are
taken from [4]while other parameter values are chosen from [16,18]. For this set of parameter
values, we have R0 < 1. For the case RCTL > 1, we consider k = 1.67×10−12 [16,18] while
other parameter values are same as before. For these two cases, we have considered three
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Fig. 3 Dynamics of the model (7) when R0 ≤ 1 with four sets of delays (τ1, τ2) =
{(5, 5), (5, 30), (30, 5), (30, 30)} = {DS1,DS2,DS3,DS4} in days respectively
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Fig. 4 Dynamics of the model (7) when RCTL > 1 with four sets of delays (τ1, τ2) =
{(5, 5), (5, 30), (30, 5), (30, 30)} = {DS1,DS2,DS3,DS4} in days respectively

different initial conditions. For thefirst case (i.e., R0 < 1), numerical simulationwas observed
for a period of 400days. From Fig. 1, it can be seen that the solutions eventually approach the
disease-free steady state (E0) and it supports our theoretical result in this case. For the second
case (i.e., RCTL > 1), numerical simulation was observed for a period of 5000days. In this
case, the solutions eventually approach the endemic steady state (E∗) which is illustrated in
Fig. 2. It can be seen from Fig. 2 that oscillations of the solutions are decreasing and if we
run the simulation for a longer period of time the solutions eventually converge to E∗. A set
of feasible (clinically valid) parameter values for the case RCTL ≤ 1 < R0 was not available
in the literature for our model, and consequently the numerical illustration for this case is
omitted.

For the delay model, we consider the above two sets of parameter values, one initial con-
dition and four sets of time delays (in days), namely, (τ1, τ2) = {(5, 5), (5, 30), (30, 5),
(30, 30)}. Figure 3 illustrates numerical simulation of the model (7) when R0 < 1. In
this case, the simulation is carried out for a period of 1000days and it is evident from
Fig. 3 that the delays and their lengths do not affect the global asymptotic stability of
E0. For the case RCTL > 1, the simulation is observed for a period of 5000days and
it can be observed that the solutions converge to E∗ (from Fig. 4). From Figs. 2 and 4,
interestingly it can be seen that the solution trajectories of the model with two delays con-
verge to the endemic steady state much faster than the solutions of the model without any
delay.
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Conclusion

In this paper, a modified HBV infection model with intracellular HBV DNA-containing cap-
sids and CTL immune responses has been studied. This model admits three steady states,
namely, disease-free steady state (E0), immune-free steady state (E1) and endemic steady
state (E∗). The global properties of these three steady states have been analyzed by construct-
ing suitable Lyapunov functions and using the Lyapunov-LaSalle invariance principle. The
results have been obtained in terms of the basic reproduction number (R0) and the immune
response reproduction number (RCTL). It is shown that E0 is globally asymptotically stable
whenever R0 ≤ 1, E1 is globally asymptotically stable whenever RCTL ≤ 1 < R0 and E∗ is
globally asymptotically stable whenever RCTL > 1.

Further,wehave incorporated twodelays in themodelwhere onedelay is for the production
of productively infected hepatocytes from the uninfected ones and another delay is for the
production of matured capsids. These two delays have been included in the model to see if
these delays can result in any periodic oscillation and Hopf bifurcation. But, the results show
that inclusion of these delays does not cause periodic oscillations and Hopf bifurcations and
the global dynamics of the delay model is unaltered as in the case for non-delay model.
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