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Abstract Acoupled nonlinear boundary value problem arising from amixed convective flow
of a non-Newtonian fluid at a vertical stretching sheet with variable thermal conductivity is
investigated in this paper. Casson fluid model is used to describe the non-Newtonian fluid
behavior. Using a similarity transformation, the governing equations are transformed into a
system of coupled, nonlinear ordinary differential equations and the analytical solutions for
the velocity and temperature fields are obtained via a semi-analytical algorithm based on
the optimal homotopy analysis method. To validate the method, comparisons are made with
the available results in the literature for some special cases and the results are found to be
in excellent agreement. The characteristics of the velocity and the temperature fields in the
boundary layer have been analyzed for several sets of values of the Casson parameter, the
Prandtl number, the temperature dependent thermal conductivity parameter, the velocity
exponent parameter and the mixed convection parameter. The presented results through
graphs and tables reveal substantial effects of the pertinent parameters on the flow and heat
transfer characteristics. Furthermore, an error analysis is offered using an exact residual error
and average residual error methods.
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List of symbols

U0 Stretching rate
u and v Fluid velocity components along the x and y axes respectively
A,C Constants
ei j i j th component of deformation rate
n Velocity exponent parameter
r Temperature exponent parameter
cp Specific heat at constant pressure
C f x Skin friction coefficient
f Dimensionless stream function
g Acceleration due to gravity
Grx Local Grashof number
k(T ) Temperature-dependent thermal conductivity
k∞ Thermal conductivity for away from the wall
Nux Local Nusselt number
Pr Prandtl number
Py Yield stress of fluid
Rex Local Reynolds number
T Fluid temperature
Tw Wall temperature
T∞ Ambient temperature
u Axial velocity component
Uw Stretching velocity
v Radial velocity component
x, y Cartesian coordinates along the surface and normal to it respectively

Greek symbols

τi j Stress teansor
π Product of the component of deformation rate with itself
πc Critical value of
β Casson parameter
βT Thermal expansion coefficient
γ Kinematic viscosity
ε Variable thermal conductivity parameter
η Similarity variable
θ Dimensionless temperature
μ Coefficient of viscosity
μB Plastic dynamic viscosity
λ Buoyancy parameter
ψ Stream function

Subscript

w Conditions at the stretching sheet
∞ Condition at infinity
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Superscript

‘ Differentiation with respect to η

Introduction

During the past few decades, several researchers proposed analytical and semi analytical
methods based on the topological concepts of homotopy which have become very popular
and efficient in solving nonlinear coupled differential equations [1,2]: these methods depend
on the h̄ curves. Recently Marinca et al. [3–5] introduced an optimal homotopy asymptotic
method which controls the convergence of the series solution. In general, the optimal homo-
topy asymptoticmethod is based on a generalized zeroth-order deformation equation and does
not consider the mth-order deformation equation as in homotopy analysis method (HAM).
Liao [6] was the first to introduce one of the easiest and highly reliable methods called the
optimal homotopy analysis method (OHAM). This method contains only three convergence
control parameters at any level of approximation which is computationally efficient. Liao
[6] further introduced a new kind of averaged residual error, which can be used to find the
optimal convergence-control parameters efficiently.

In recent years, researchers analyzed the coupled nonlinear boundary value problems
arising in technological industries by numerical methods. The study of fluid flow over a
stretching sheet is one such technologically interesting industrial problemwhich has attracted
numerous researchers due to its applications to problems such as food processing, petroleum
drilling, annealing and tinning of copper wires, manufacturing of plastic films, extraction of
polymer sheets, crystal growing, paper production, and so on. Seminal analysis by Crane [7]
reveals that, in a polymer industry, it is inevitable to consider plastic stretching sheet and
hence obtained a similarity solution to the problem of stretching sheet with a linear surface
velocity. The transfer of heat around these objects has applications in many fields, including
the design of spacecraft, the nuclear reactors and many types of transformers/generators. In
view of this, Carragher and Crane [8] analyzed the heat transfer at a stretching sheet under the
condition that the temperature difference between the surface and the free stream, namely,
(Tw − T∞) is appreciably large (for details see Refs. [9–18]).

All the above researchers restricted their analyses to flow and heat transfer over a horizon-
tal plate. Most of the problems arising in technological industry, based on mixed convection
flow over a heated vertical sheet is of considerable interest and are challenge to physicists,
engineers and Mathematicians. The findings of such a physical phenomenon will have a
definite bearing on plastics, fabrics, and polymer industries. In view of this, Moutsoglou
and Chen [19] analyzed numerically the effect of buoyancy parameter on a continuously
moving inclined stretching surface. Further, Vajravelu [20] obtained exact solution for hydro-
magnetic convection at a continuous moving surface with uniform suction and established
that when (Tw > T∞) the fluid in the boundary-layer will be heated up and thus the free
convection currents will set in. Chen [21] extended the model by Vajravelu [20] and ana-
lyzed the laminar mixed convection in boundary layers adjacent to a vertical stretching
sheet by assuming the velocity and temperature of the sheet to vary as uw(x) = Bxm and
Tw(x) − T∞ = Axn . Recently, Ali et al. [22] examined mixed convection heat transfer in
an incompressible viscous fluid over a vertical stretching sheet by taking external magnetic
field into account.

It is interesting to note that, for all practical purposes of the industry, the non-Newtonian
fluids play a more vital and appropriate role than that of the Newtonian fluids. Some of
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the different types of non-Newtonian fluids are viscoelastic fluids, Rivlin–Erickson fluids,
Maxwell fluids, couple stress fluids, micro-polar fluids, power law fluids. Fluids such as
molten plastics, artificial fibers, flows related to the drilling of wells in petroleum industry,
food stuffs or slurries are considered as non-Newtonian. The complexity of these models
has made it difficult to report all its properties in a single constitutive equation. This non-
linear behavior between the stress and the rate of strain of the non-Newtonian fluids has
attracted researchers to analyze its characteristic behavior. However, in the literature, the
above mentioned non-Newtonian fluids were studied under several physical situations (see
for details Refs. [23–35]). In particular, Prasad et al. [35] studied extensively the power law
model for three different cases, namely the Newtonian model and non-Newtonian pseudo-
plastic model etc. There is one more non-Newtonian fluid model available in the literature
namely, Casson fluid model. The best examples for Casson fluid model are jelly, tomato
sauce, honey, soup and concentrated fruit juices etc. We more often encounter these flu-
ids in day to day life. The Casson fluid rheological model is preferred for human blood
and chocolate. At low shear rates this fluid describes the flow characteristics of blood
accurately. In the year 1959 Casson [36] presented the model for the flow of viscoelastic
fluids with prominent and distinct features. Further, Charm and Kurland [37] used Casson’s
equation to calculate the shear strength of blood and to describe its viscometry at shear
rates below 5 s−1. Recently, Mustafa et al. [38] obtained analytical solution for flow and
heat transfer of a Casson fluid via homotopy analysis method (HAM). Further, Pramanik
[39] used Casson fluid model to characterize the non-Newtonian fluid behavior and investi-
gated flow and heat transfer past an exponentially stretching surface in presence of thermal
radiation.

In view of the above studies, in the present paper, we analyze the effect of variable thermal
conductivity on the heat transfer of a non-Newtonian Casson fluid at a non-isothermal vertical
stretching sheet. This is in contrast to the work of Vajravelu [20] to Casson model where
the thermal conductivity was treated as constant. The governing equations for flow and
heat transfer have been nondimensionalized by using a suitable similarity transformation
and solved the resulting nonlinear coupled differential equations for several set of values of
the relevant parameters by an optimal homotopy analysis method (OHAM). The obtained
analytical results are analyzed for the flow and heat transfer characteristics. The analysis
reveals that the fluid flow is appreciably influenced by the physical parameters. It is expected
that the results obtained will not only provide useful information for industrial application
but also complement the existing literature.

Mathematical Formulation

Consider a mixed convective boundary layer flow of a viscous incompressible Casson fluid
past an impermeable stretching vertical heated sheet. Let the origin be at the slit, through
which the sheet (see Fig. 1) is drawn in the fluid.

Two equal and opposite forces are applied along the x-axis so that the sheet is stretched,
keeping the origin fixed. The coordinate system has its origin located at the centre of the
sheet with the x-axis extending along the sheet, while the y-axis is measured normal to the
surface of the sheet and is positive in the direction from the sheet to the fluid. The continuous
stretching surface is assumed to have a power law velocity variations Uw = U0xn and a
temperature difference Tw − T∞ = Axr . Here, U0(U0 > 0) is the parameter related to
the surface stretching speed, the stretching sheet is assumed to be warmer than that of the
ambient fluid such that A > 0 and n, r are the exponents. The positive and negative values
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Fig. 1 Physical model and
coordinate system (heated sheet)
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of n indicate that the surface is accelerated and decelerated from the slot respectively. The
rheological equation of state for an isotropic and incompressible Casson fluid is given by
(see for details Mustafa et al. [38])

τi j =
{
2

(
μB + Py/

√
2π

)
ei j , π > πc

2
(
μB + Py/

√
2πc

)
ei j , π < πc

, (1)

where π = ei j ei j and ei j is the (i, j)th component of deformation rate, π is the product of
the component of deformation rate with itself, πc is a critical value of this product based on
the non-Newtonian model, μB is the plastic dynamic viscosity of non-Newtonian fluid and
Py is the yield stress of the fluid. Using the Boussinesq and boundary layer approximations
(see for details Prasad et al. [26]), the governing equations for mass, momentum and energy
for the Casson fluid model are given by

ux + vy = 0, (2)

uux + vuy = ν

(
1 + 1

β

) (
uy

)
y ± g βT (T − T∞), (3)

uTx + vTy = (
k(T )Ty

)
y . (4)

The suffix denotes partial differentiation with respect to the independent variables, where u
and v are the velocity components in the x and y directions respectively, ν is the kinematic
viscosity, β = μB

√
2πc/Py is the non-Newtonian Casson parameter, g is the gravitational

acceleration, βT is the thermal expansion coefficient, T is the temperature, T∞ is the temper-
ature of the fluid far away from the stretching surface and k(T ) is the temperature dependent
thermal conductivity given by

k(T ) = k∞
(
1 + ε

(T − T∞)

�T

)
, (5)

where �T = Tw − T∞, ε is a small parameter depending on the nature of the fluid, k∞
are the thermal conductivity of the fluid far away from the stretching surface (see for details
Chiam [40]). The second term on the right hand side of Eq. (3) represents the buoyancy force,
and its ‘+’ and ‘−’ signs indicate buoyancy assisting and opposing the flow respectively. In
case of buoyancy assisting flow, the x-axis points upwards along the direction of stretching
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sheet, whereas in case of buoyancy opposing flow, the x-axis points vertically downwards.
Substituting Eq. (5) in Eq. (4), we obtain

u
∂T

∂x
+

(
v − k∞ε

�T

∂T

∂y

)
∂T

∂y
=

[
k∞

(
1 + ε

�T
(T − T∞)

)] ∂2T

∂y2
. (6)

The appropriate boundary conditions for the problem are

u (x, y) = Uw = U0 x
n, v (x, y) = 0, T (x, y) = Tw (x) = T∞ + Axr at y = 0,

u (x, y) → 0, T (x, y) → T∞ as y → ∞. (7)

HereUw, Tw are the sheet velocity and sheet temperature respectively. Nowwe transform the
system of Eqs. (2)–(5) into a dimensionless form. Let the dimensionless similarity variable
be

η = y

√
U0(n + 1)

2ν
x

n−1
2 , (8)

and the dimensionless stream function ψ(x, y), the dimensionless temperature distribution
θ (η) be

ψ(x, y) = f (η)

√
2

n + 1
U0 ν (x)n+1/2 , θ (η) = (T − T∞)/(Tw − T∞), (9)

whereψ (x, y) identically satisfies the continuity Eq. (2). Using (9), the velocity components
can be written as

u = Uw f ′(η) and v = −
√

ν
n + 1

2
U0 x

n−1
2

[
f (η) + η f ′(η)

(
n − 1

n + 1

)]
. (10)

Here a prime denotes differentiation with respect to η.With the use of Eqs. (8)–(10), Eqs. (3),
(6) and (7) reduce to (

1 + 1

β

)
f ′′′ + f f ′′ − 2n

n + 1
f ′2 + λθ = 0, (11)

[
(1 + εθ) θ ′]′ + Pr

(
f θ ′ − 2r

n + 1
f ′θ

)
= 0, (12)

where λ = ±Grx/Re2x is the mixed convection or buoyancy parameter parameter, Pr =
μCp/K∞ is the Prandtl number, Grx = gβT (Tw − T∞) x3/ν2 is the local Grashof number
and Rex = Uwx/ν is the local Reynolds number. It can be shown that λ is independent of x,
if r = 2n − 1. Hence, the similarity solutions are obtained under this limitation for λ �= 0.
Here, λ > 0 and λ < 0 correspond to the assisting flow and opposing flow, respectively,
while λ = 0 ( i.e., Tw = T∞) represents the case when the buoyancy force is absent (pure
forced convection flow). On other hand, if λ is of order greater than one then the buoyancy
forces will be predominant and the flow will be due to free convection. Hence, combined
convection flow exists for λ = O(1). The appropriate boundary conditions in dimensionless
form are:

f (0) = 0, f ′ (0) = 1, θ (0) = 1, θ (∞) = 0, f ′ (∞) = 0. (13)

We notice that in the absence of variable thermal conductivity parameter, Casson fluid para-
meter and when n = 1 (linear stretching case), the equations reduce to those of Vajravelu
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[20], while in the absence of Casson fluid parameter and when n �= 1 the equations reduce
to those of Vajravelu [12] under different physical situations. Further, with constant thermal
conductivity parameter and no Casson fluid parameter equations reduce to those of Ishak et
al. [13]. From the engineering point of view, the important physical quantities are the local
skin friction C f x and the local Nusselt number Nux . They are defined as

C fx = τw

ρU 2
w

and Nux = xqw

k (Tw − Tx )
,

where τw is the skin friction and qw is surface heat flux introduced as

τw = μ

(
∂u

∂y

)
y=0

, qw = −k

(
∂T

∂y

)
y=0

.

Applying the non-dimensional transformations (9), we obtain

C fx = 2
√

(n + 1/2)

(
1 + 1

β

)
(Rex )

−1/2 f ′′ (0) ,

Nux = −√
(n + 1/2) (Rex )

1/2 θ ′ (0) , (14)

where Rex = Uwx/ν is the local Reynolds number.

Exact Solutions for Some Special Cases

Here we present exact solutions for some special cases. Such solutions are useful, in that they
serve as a benchmark for comparison with the solutions obtained via numerical /analytical
schemes. In the absence of Casson parameter and when n �= 1, the present results are in good
agreement with those of Hsiao [29] for different values of mixed convection parameter in the
absence of wedge, magnetic and viscoelastic parameter.

No Free Convective Currents and Linear Stretching (λ = 0 and n = 1)

In the limiting case ofλ = 0 and (λ = 0 and n = 1) the boundary layer flow and heat transfer
problem degenerates. In this case the solution for the velocity field is given by, namely,

fη (η) = 1 − e−αη where α = ±1/
√
1 + 1/β. (15)

Perturbation Analysis in the Absence of Free Convection Currents and Linear
Stretching (λ = 0 and n = 1) and in the Presence of Variable Thermal
Conductivity

We follow a perturbation expansion approach to solve Eq. (12). Suppose

θ (η) = θ0 (η) + εθ1 (η) + ε2θ2 (η) + · · · (16)

Substituting this into Eq. (12) and equating like powers of ε ignoring quadratic and higher
order terms in ε, we obtain

θ ′′
0 + Pr

(
f θ ′

0 − r f ′θ0
) = 0, (17)
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with boundary conditions θ0 (0) = 1, θ0 (∞) = 0, and

θ ′′
1 + Pr f θ

′
1 − Pr(r f ′ − β)θ1 = −θ0θ

′′
0 − θ

′2
0 , (18)

with the boundary conditions θ1 (0) = 0, θ1 (∞) = 0.
The solution for the Eq. (17) is expressed in terms of Confluent hypergeometric series,

namely, Kummer’s function, M , to wit:

θ0 (η) = exp

(
−α

(a0 + b0) η

2

)
M (a1, b1, z)

M (a1, b1,−b0)
, (19)

where z = − (
Pr /α2

)
e−αη, b0 = Pr/α2, a1 = (Pr+b0 − 2) /2, b1 = 1 + b0. We now

analyse Eq. (18), which gives the first-order correction term εθ1. Note that Eq. (12) is linear
and inhomogeneous and therefore it is possible to obtain a power series solution for θ1. How-
ever, it becomes very tedious to obtain various values of θ1 using this power series solution.
Instead, we employ the following semi-analytical algorithm based on Optimal Homotopy
Analysis Method (OHAM) method to solve the coupled boundary value problem.

Semi-Analytical Solution: Optimal Homotopy Analysis Method

In order to obtain optimal HAM solutions for the system (11)–(13), we assume the following
initial guesses for dimensionless velocity f (η) and temperature θ(η) : (see for details Refs.
[41–43])

f0(η) = 1 − e−η, (20)

θ0(η) = e−η. (21)

Now we choose linear operators L1 and L2 as

L1( ) = d3

dη3
− d

dη
, L2( ) = d2

dη2
+ Pr

d

dη
, (22)

such that L1
[
c1 + c2eη + c3e−η

] = 0 and L2
[
c4 + c5e−η

] = 0 where ci ’s (i =
1, 2, 3, 4, 5) are arbitrary constants. Now let us define homotopy operators H1 and H2 as

H1

(
f̂ , q

)
≡ (1 − q) L1

(
f̂ (η, q) − f0(η)

)
− qh̄N1

(
f̂ (η, q) , θ̂ (η, q)

)
(23)

H2

(
θ̂ , q

)
≡ (1 − q) L2

(
θ̂ (η, q) − θ0(η)

)
− qh̄N2

(
θ̂ (η, q) , f̂ (η, q)

)
(24)

and by considering the equations H1

(
f̂ , q

)
= 0 and H2

(
θ̂ , q

)
= 0, we have the so-called

zeroth order deformation equation given by

(1 − q)L1

[
f̂ (η, q) − f0(η)

]
= qhN1

[
f̂ (η, q), θ̂ (η, q)

]
, (25)

(1 − q)L2

[
θ̂ (η, q) − θ0(η)

]
= qh̄N2

[
θ̂ (η, q), f̂ (η, q)

]
, (26)
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with conditions

f̂ (0, q) = 0, f̂ ′(0, q) = 1, f̂ ′(∞, q) = 0, θ̂ (0, q) = 1, θ̂ (∞, q) = 0. (27)

where q ∈ [0, 1] is an embedding parameter, h̄ �= 0 is the convergence control parameter
and N1, N2 are nonlinear operators defined as

N1 =
(
1 + 1

β

)
d3 f̂ (η, q)

dη3
+ f̂ (η, q)

d2 f̂ (η, q)

dη2
−

(
2n

n + 1

)
d f̂ (η, q)

dη

2

+ λθ̂(η, q),

(28)

N2 =
((

1 + εθ̂(η, q)
)

θ̂ ′(η, q)
)′ + Pr f̂ (η, q)

d θ̂ (η, q)

dη

−
(

2r

n + 1

)
Pr

d f̂ (η, q)

dη
θ̂(η, q). (29)

FromEqs. (23) and (24), atq = 0,wehave L1[ f̂ (η, 0) − f0(η)] = 0 and L2[θ̂ (η, 0) − θ0(η)]
= 0, which imply that f̂ (η, 0) = f0(η) and θ̂ (η, 0) = θ0(η) respectively. Whereas at

q = 1, we have N1

[
f̂ (η, 1), θ̂ (η, 1)

]
= 0 and N2[θ̂ (η, 1), f̂ (η, 1)] = 0, which imply that

f̂ (η, 1) = f (η), and θ̂ (η, 1) = θ(η), respectively. Hence, by defining

fm(η) = 1

m!
dm f (η, q)

dηm

∣∣∣∣
q=0

, θm(η) = 1

m!
dmθ(η, q)

dηm

∣∣∣∣
q=0

, (30)

we expand f̂ (η, q), θ̂ (η, q) by means of Taylor’s series as

f̂ (η, q) = f0(η) +
∞∑

m=1

fm(η)qm, θ̂ (η, q) = θ0(η) +
∞∑

m=1

θm(η)qm . (31)

If the series in Eq. (31) converges at q = 1, we get the homotopy series solution as

f (η) = f0(η) +
∞∑

m=1

fm(η), θ(η) = θ0(η) +
∞∑

m=1

θm(η). (32)

It should be noted that f (η) and θ(η) in Eq. (32) contain an unknown convergence control
parameter h̄ �= 0, which can be used to adjust and control the convergence region and the
rate of convergence of the homotopy series solution. The mth order deformation equations
and the conditions are

L1
[
fm(η) − χm fm−1(η)

] = h̄ R f
m(η),

L2
[
θm(η) − χmθm−1(η)

] = h̄ Rθ
m(η), (33)

fm(0) = 0, f ′
m(0) = 0, f ′

m(∞) = 0, θm(0) = 0, θm(∞) = 0, (34)

where

R f
m =

(
1 + 1

β

)
f ′′′
m−1(η) +

m−1∑
k=0

f ′′
m−1−k fk

−
(

2n

n + 1

) m−1∑
k=0

f ′
m−1−k f

′
k + λθm−1(η) (35)
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Rθ
m = θ ′′

m−1(η) + ε

(
m−1∑
k=0

θ ′′
m−1−kθk +

m−1∑
k=0

θ ′
m−1−kθ

′
k

)
+ Pr

m−1∑
k=0

θ ′
m−1−k fk

−
(

2r

n + 1

)
Pr

m−1∑
k=0

f ′
m−1−kθk (36)

and

χm =
{
0, m ≤ 1
1, m > 1

(37)

Appropriate selection of convergence control parameter h̄ �= 0 plays an important role in
determining the convergence region and convergence rate. Here we find optimal value of h̄
about which the Eq. (32) not only converges but it also ensures the fastest convergence. Now
we evaluate squared residual error of governing equation and minimize it over h in order to
obtain optimal value of h and least possible error.

Error Analysis and CPU Time

In the process of error analyses two different methods are employed, namely, exact residual
error and average residual error. For different order approximation, CPU time required for
evaluation of f ′′(0) is observed. It is evident that, the values of f ′′(0) evaluated using both
the method are almost same (for details see Table 1). As for as CPU time is concerned
average residual error needs very less time compared to that of exact residual error. The
time required to calculate average residual error is 28.9, 9.1, 14.6, 15.7, 21.0, and 21.2% for
m = 1, 2, 3, 4, 5, 6 respectively that of CPU time required to calculate exact residual error.
Practically, the evaluation of Ê f

m(h̄) and Êθ
m(h̄) is time consuming. In order to speed up the

calculations we employ average residual error instead of the exact residual error. For themth

order deformation equation, the exact residual error is given by

Ê f
m(h̄) =

∞∫
0

(
N1

[
m∑

n=0

fn(η)

])2

dη, Êθ
m(h̄) =

∞∫
0

(
N2

[
m∑

n=0

θn(η)

])2

dη (38)

Table 1 Comparison of f ′′(0)
and CPU time (s) incurred to
evaluate mth order approximation
by exact residual error and
average residual error when
Pr = 1.0, β = 1.0, λ = 0.5,
ε = 0.1, n = 1

Order m Using exact residual error Using average residual error

f ′′(0) CPU time (s) f ′′(0) CPU time (s)

1 −0.580939 2.28 −0.59442 0.66

2 −0.576133 25.47 −0.575892 2.31

3 −0.579912 26.39 −0.577209 3.84

4 −0.583422 41.59 −0.581493 6.52

5 −0.581406 73.19 −0.580791 15.37

6 −0.580714 111.65 −0.580485 23.62
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and the average residual error is given by

E f
m(h̄) = 1

M + 1

M∑
k=0

(
N1

[
m∑

n=0

fn(ηk)

])2

, Eθ
m(h̄) = 1

M + 1

M∑
k=0

(
N2

[
m∑

n=0

θn(ηk)

])2

(39)

where ηk = k�η = k/M, k = 0, 1, 2, . . . , M (M = 20 for Blasius flow problem). We
minimize the error functions E f

m(h̄) and Eθ
m(h̄) in h̄ and obtain the optimal values of h̄, sep-

arately for f and θ . Substituting this optimal value of h̄ into Eq. (32), we get the approximate
solutions for Eqs. (11) and (12) satisfying the conditions (13).

Results and Discussion

The system in Eqs. (11)–(12) is highly nonlinear and coupled ordinary differential equa-
tions with variable coefficients. The appropriate analytical solutions for these equations
with boundary condition (13) are obtained using optimal homotopy analysis method (see
for details Liao [6,41,42], Fan and You [43]). In order to validate the method used in this
study and to judge the accuracy of the present analysis, the wall temperature gradient results
are compared with the previously published results of Grubka and Bobba [9], Chen and
Char [10], Ali [11], and Mabood et al. [17] for several special cases in which the buoy-
ancy force and thermal conductivity are neglected: The obtained results are found to be in
excellent agreement and are shown in Tables 2 and 3. The computations have been carried
out by the method of OHAM as described above for different values of the pertinent para-
meters, such as the mixed convection parameter λ, the thermal conductivity parameter ε,
the velocity power index parameter n, the Prandtl number Pr and the Casson parameter β.
We present the results graphically for the horizontal velocity profile f ′(η) and the temper-
ature profile θ(η) for several sets of values of the parameters in Figs. 2, 3, 4, 5, 6. It is
observed from these figures that both f ′(η) and θ(η) monotonically decreases and tends to
zero asymptotically as the distance increases from the boundary. The computed analytical
values for the skin friction f ′′(0) and the wall temperature gradient θ ′(0) are presented in
Table 4.

Figure 2a, b elucidate the effects of β on f ′(η) and θ(η). Here we considered the val-
ues of β in the range of 1 ≤ β ≤ 5. It is observed that, for increasing values β, fluid
flow produces resistance, hence f ′(η) decreases. That is, as β approach higher values, the

Table 2 Comparison between
exact and analytical solution by
HAM for − f ′′(0) when
n = 1, λ = 0

β Exact solution HAM solution
(15th approximation)

Relative error

Infinity −1.0000 −1.0000 0

1.0 −0.70710678 −0.707107 0.00003111269

2.0 −0.81649658 −0.816497 0.00005143928

3.0 −0.866025414 −0.866025 0.00004780460

4.0 −0.894427191 −0.894427 0.0000213544

5.0 −0.912870929 −0.912871 0.00000777766
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Table 3 Comparison of wall temperature gradient θ ′ (0) for different values of Prandtl number when ε =
0.0, λ = 0 and β = 0

Pr n = 0.5 n = 1.0

Present results Grubka and
Bobba [9]

Chen and
Char [10]

Ali [11] Mabood
et al. [17]

Present results

0.01 −0.01017936 −0.0099 0.0091 – – –

0.72 −0.4631462 −0.4631 −0.46315 −0.4617 – –

1.0 −0.5826707 −0.5820 −0.58199 −0.5801 −0.95478 −0.954781

3.0 −1.16517091 −1.1652 −1.16523 −1.1599 −1.86909 −1.86907

5.0 −1.56800866 – – – −2.50012 −2.50012

10.0 −2.308029 −2.3080 −2.30796 −2.2960 – –

100.0 −7.769667 −7.7657 – – – –

momentum boundary layer thickness squeezes and the velocity distribution becomes linear
for higher values of n but the impact is quite the opposite in the case of θ(η). Physically,
increase in β means, a decrease in the yield stress, in this case the fluid behaves like a
Newtonian fluid. Further, it is interesting to note that the fluid velocity is prominent for
linear stretching (for n = 1) than that of nonlinear stretching sheet (for n = 2, n = 5);
where as in the case of the temperature field it is more suppressed for linear stretching than
that of the nonlinear stretching sheet; see Fig. 2a, b. Figure 3a, b exhibit the effect of n on
f ′(η) and θ(η). It is noticed that both the velocity and the temperature fields decrease as
n increases leading to thinning the velocity and thermal boundary layer. The effect of n is
negligible: That is, the coefficient 2n/(n + 1) in Eq. (11) approaches 2 as n → ∞. This
phenomenon is true even in the case of skin friction (see Table 4). The effect of the mixed
convection parameter λ on f ′(η) and θ(η) is demonstrated in Fig. 4a, b, respectively. The
presence of thermal buoyancy effects are revealed by the finite value of λ(λ �= 0) which
has a propensity to enhance the flow along the surface. It is seen that an increase in the
value of λ leads to an enhancement in f ′(η). Physically λ > 0 means heating of the fluid
or cooling of the surface, λ < 0 means cooling of the fluid or heating of the surface, and
λ = 0 corresponds to the absence of the mixed convection parameter. Increase in λ means
an increase in the temperature difference (Tw − T∞) which leads to an enhancement in
f ′(η) due to the enhanced convection, and thus an increase in the momentum boundary
layer thickness. The effect of λ on temperature profile is quite opposite. The effect of λ

on θ(η) is illustrated in Fig. 4b: With an increase in λ, the temperature field is suppressed
and consequently thermal boundary layer thickness becomes thinner. Hence the magnitude
of the rate of heat transfer from the surface increases. This is due to effects of buoyancy
force.

Figures 5 and 6 depict the effects of Pr and ε on θ(η) for increasing values of n. Increase in
Pr leads to a decrease in the temperature: This is due to decrease in the thermal conductivity
k∞. That is, as Pr increases the thermal boundary layer thickness reduces. Hence, cooling of
the heated surface can gradually be improved by choosing a proper coolant with a large Pr.
Fluid temperature is found to increase with increasing values of ε which leads to a fall in the
rate of heat transfer. That is, the assumption of temperature dependent thermal conductivity
suggests a reduction in the magnitude of the transverse velocity by a quantity ∂k(T )/∂y
which can be seen in Eq. (4). Therefore, the rate of cooling is much faster for the coolant
material with low values for the thermal conductivity parameter.
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Fig. 2 a Horizontal velocity profile for different values of β and n with ε = 0.1, Pr = 1.0, λ = 0.5
b Temperature profile for different values of β and n with ε = 0.1, Pr = 1.0, λ = 0.5

Table 4 is prepared to observe the variations of skin-friction coefficient and wall temper-
ature gradient for various values of pertinent parameters. One can observe that both f ′′(0)
and θ ′(0) decrease with increasing values of n where as in the case of β it is observed that
f ′′(0) decreases and quite the opposite in the case of increasing λ. For increasing values of
Pr there is a decrease in θ ′(0) where as in the case of ε it is reversed.
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Fig. 3 a Horizontal velocity profile for different values of n and β with ε = 0.1, Pr = 1.0, λ = 0.1
b Temperature distribution profile for different values of n and β with ε = 0.1,Pr = 1.0, β = 0.1

Conclusions

Heat transfer with variable thermal conductivity in a Casson fluid flow over a vertical stretch-
ing sheet is analyzed using an analytical method, namely, the optimal homotopy analyses
method. Some of the interesting findings are as follows.
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Fig. 4 a Horizontal profile for different values of λ and n with ε = 0.1, Pr = 1.0, β = 1.0. b Temperature
profile for different values of λ and n with ε = 0.1, Pr = 1.0, β = 1.0

• The velocity boundary layer thickness reduces and the thermal boundary layer thickness
increases with increasing values of the Casson parameter.

• The effect of the variable thermal conductivity parameter is to enhance the temperature
field; whereas for higher values of the Prandtl number the temperature field decrease and
hence the thermal boundary layer thickness is reduced.
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Fig. 5 Temperature profile for different values of Pr and n with ε = 0.1, β = 2.0, λ = 0.5
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Fig. 6 Temperature profile for different values of ε and n with Pr=1.0, β = 1.0, λ = 0.1

• Mixed convection parameter has reverse effects on velocity and temperature fields.
• The effect of the velocity power index parameter is to reduce both the velocity and the

thermal boundary layers.
• Average residual error method is less time consuming compared to that of exact residual

error method.
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