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Abstract In this paper, we consider the Riemann problem and wave interactions for a quasi-
linear hyperbolic system of partial differential equations governing the one dimensional
unsteady simple wave flow of an isentropic, non-ideal, inviscid and perfectly conducting
compressible fluid, subject to a transverse magnetic field. This class of equations includes, as
a special case of ideal isentropic magnetogasdynamics. We study the shock and rarefaction
waves and their properties, and show the existence and uniqueness of the solution to the
Riemann problem for arbitrary initial data under certain conditions and then we discuss the
vacuum state in non-ideal isentropic magnetogasdynamics. We discuss numerical tests and
study the solution influenced by the van der Waals excluded volume for different initial data
along with all possible interactions of elementary waves.

Keywords Magnetogasdynamics · van derWaals gas ·Riemann problem ·Wave interactions

Introduction

In the recent past, analysis of magnetogasdynamics has been the subject of great interest
both from mathematical and physical point of view due to its applications in the variety of
fields such as astrophysics, nuclear science, engineering physics and plasma physics, etc
(see, [1–6] and the references cited therein). Lax [7] solved the Riemann problem for the
case when the initial data consisting of constant states Ul and Ur are such that Ul and Ur

are sufficiently small; here U is the vector of conserved variable with Ul to the left of x = 0
and Ur to the right of x = 0 separated by a discontinuity at x = 0. Smoller [8] solved the
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Riemann problem by considering Ul and Ur to be arbitrary constant vectors; for details and
methodologies, the reader is referred to the book by Smoller [9]. Smoller and Temple [10]
demonstrated the existence of solutions with shocks for equations describing a perfect fluid in
special relativity; thisworkwas generalized byChen [11] for the general isentropic relativistic
gases. The striking features of wave interactions as well as the variety of engineering and
physical situations where this phenomenon has to be faced gave rise over the years to a great
and growing interest on this subject. For interaction of elementary waves in unsteady one-
dimensional Euler equations, we refer to Smoller [9], and Chang and Hsiao [12]. Liu [13] is
concerned with the interactions of the elementary waves for the nonlinear degenerate wave
equations. Curro and Usco [14] investigated the nonlinear wave interactions for quasilinear
hyperbolic 2 × 2 systems. Ji and Zheng [15] are concerned with classical solutions for the
interaction of two arbitrary planar rarefaction waves for the self-similar Euler equations in
two space dimensions. The interaction of steady rarefaction waves, and the interaction of a
rarefactionwave in a supersonic jet streamout of an orifice into the atmosphere is presented by
Chen and Qu [16]. Liu and Sun [17] discussed the existence and uniqueness of the solutions
for the Riemann problem in magnetogasdynamics and investigated the interactions of the
elementary waves. Kuila and Raja Sekhar [18] investigated the elementary waves of the
Riemann problem in magnetogasdynamics and construct the exact solution for it in different
approach and compare exact solutions with numerical solutions. Solution of the Riemann
problem in magnetogasdynamics have been obtained by Singh and Singh [19]. Radha and
Sharma [20] studied the interaction of a weak discontinuity wave with the elementary waves
of the Riemann problem for the one-dimensional Euler equations. Interactions of forward
and backward centered rarefaction waves for pressure-gradient equations are presented by
Zhang et al. [21]. Using the theory of progressive waves and some related procedures, waves
of finite and moderately small amplitudes, influenced by the effects of non-linear convection,
attenuation and geometrical spreading are studied by Ambika et al. [22] in an imperfect gas
modeled by the van der Waals equation of state. Chadha and Jena [23] used the Lie group
of transformations and obtained the whole range of self-similar solutions to the problem of
propagation of shock waves through a non-ideal dusty gas.

Recently, Raja Sekhar and Sharma [24] studied the Riemann problem and elementary
wave interactions for the one-dimensional unsteady simple flow of an isentropic, inviscid
and perfectly conducting compressible fluid, subject to a transverse magnetic field

ρt + (ρu)x = 0,

(ρu)t + (p + ρu2 + B2/2μ)x = 0, (1)

where ρ, u, p, B and μ denotes the density, velocity, pressure, transverse magnetic field and
magnetic permeability respectively; p = Aργ for ideal polytropic gas, A is positive constant
and γ is the adiabatic constant lies 1 < γ < 2 for most gases and B = k2ρ where k2 is a
positive constant.

In this paper, we consider a van der Waals gas obeying the equation of state [25,26]:

p = k1

(
ρ

1 − aρ

)γ

, (2)

where k1 is the constant and a the van der Waals excluded volume, which lies in the range
0 ≤ a ≤ 0.05 [25] and satisfying 1 � aρ ≥ 0 [26]. It may be noticed that the case a = 0
corresponds to the ideal gas. Our main purpose is to discuss all possible interactions of the
elementary waves obtained in solving the Riemann problem for (3). By analyzing the explicit
expressions of the shock waves and the rarefaction waves of the left state Ul and the right
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stateUr in the (ρ, u) plane, we discuss the interactions of shock waves and rarefaction waves
from the different family and the same family.

This paper is organized as follows. In Sect. 2, we study the elementary wave solutions
and their properties of the Riemann problem, i.e., shock waves and rarefaction waves. In
Sect. 3, we consider the Riemann problem for arbitrary initial data and show the existence
and uniqueness of the solution under certain conditions and then we discuss the vacuum state
in isentropic non ideal magnetogasdynamics. In Sect. 4, we present numerical examples for
different initial data and discuss the solutions under the effect of van der Waals excluded
volume a. We study all possible interaction of elementary waves in Sect. 5. Section 6 is
devoted to some concluding remarks and ideas for further future work.

Elementary Waves and Their Properties

We consider the Riemann problem for the system (1), with piecewise constant initial data,
separated by a discontinuity at x = x0, in conservation form

∂U

∂t
+ ∂ F(U )

∂x
= 0, (3)

where U = (ρ, ρu)tr , F(U ) = (ρu, p + ρu2 + B2/2μ)tr , tr denote the transformation and

U (x, t0) =
{

Ul , x < x0,

Ur , x > x0.
(4)

To carry out the characteristic analysis of (3), it is convenient to use the primitive variables
V = (ρ, u)tr . Then for smooth solution, system (3) is equivalent to

∂V

∂t
+ M(V )

∂V

∂x
= 0, (5)

where M(V ) is a 2 × 2 matrix having components Mi j with nonzero entries M11 = M22 =
u, M12 = ρ, M21 = w2

ρ
, where w = √

b2 + c2; b2 = k22ρ/μ and c2 = k1γργ−1/(1 −
aρ)γ+1. The eigenvalues of the system (5) are λ1 = u − w and λ2 = u + w. As the
eigenvalues of M are real and distinct when w > 0; so it is strictly hyperbolic. Let r(1) =
(−ρ,w)tr , r(2) = (ρ,w)tr , be the right eigenvectors corresponding to eigenvalues λ1 and λ2,
respectively. Since ∇λi .r(i) �= 0 for i = 1, 2, so both the characteristic fields are genuinely
nonlinear. Thus the elementary wave solutions of the system (3) consists of shocks or centred
rarefaction waves.

Shock Waves

Suppose U is a weak solution of (3) such that Ul and U are C1 and extend continuously
to the shock x = x(t). Let [U ] = Ul − U be the jump discontinuity across the shock and
s = dx/dt the shock speed. Then, the following Rankine–Hugoniot (RH) jump conditions
hold across the shock

s[ρ] = [ρu], (6)

s[ρu] = [p + ρu2 + B2/2μ]. (7)

We have the following lemma.
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Lemma 1 Let the states Ul and U satisfy the Rankine–Hugoniot jump conditions (6) and (7).
Let S1 = S1(Ul) and S2 = S2(Ul) respectively denote 1-shock and 2-shock curves associated
with λ1 and λ2 characteristic fields. Then the shock curves satisfy

u = ul − h(ρl , ρ), (8)

where h(ρl , ρ) =
√(

p + B2

2μ − pl − B2
l

2μ

) (
ρ−ρl
ρρl

)
such that for 1 < γ < 2, we have for

ρ > ρl , u′ < 0 and u′′ > 0 on S1, whilst for ρ < ρl we have u′ > 0 and u′′ < 0 on S2.

Proof Using (6) and (7), we get (8). Let φ(ρ) = h2(ρl , ρ); then differentiating (8) with
respect to ρ we obtain u′ = − φ′(ρ)

2
√

φ(ρ)
. Since φ and φ′ are positive for ρ > ρl and therefore,

u′ < 0. Let ψ(ρ) = (φ′(ρ))2 − 2φ(ρ)φ′′(ρ) and so ψ ′(ρ) = −2φ(ρ)φ′′′(ρ). Further, for
1 < γ < 2, φ′′(ρ) > 0, whilst φ′′′(ρ) < 0 and hence ψ ′(ρ) > 0. Thus ψ(ρ) > ψ(ρl) for

ρ > ρl and ψ(ρl) = 0. For 1 < γ < 2, we have u′′ = (φ′(ρ))2−2φ(ρ)φ′′(ρ)

4φ(ρ)3/2
> 0 on S1. In a

similar manner, it follows that for ρ < ρl and 1 < γ < 2, we have u′ > 0 and u′′ < 0 on S2.

Here we are going to prove that the shock curves satisfy the Lax entropy conditions.

Theorem 2 Across 1-shock (respectively, 2-shock), ρl < ρ and ul > u (respectively, ρl > ρ

and ul > u) if, and only if, the Lax conditions hold, i.e.,

s1 < λ1(Ul), λ1(U ) < s1 < λ2(U ), (9)

and
λ1(Ul) < s2 < λ2(Ul), λ2(U ) < s2. (10)

Proof First, let us consider 1-shocks and prove λ1(Ul) > s1. Since p′ > 0 and p′′ > 0, by
Lagrange’smeanvalue theorem, there exists a ξ ∈ (ρl , ρ) such that p′(ξ) = (p−pl)/(ρ−ρl).

Furthermore, since p′′ > 0, we have p′(ξ) > p′
l = c2l and thus c2l < p′(ξ)ρ/ρl , which

implies that

c2l <
(p − pl)ρ

ρl(ρ − ρl)
. (11)

Since (ρ + ρl)/2 > ρl , we have k22(ρ + ρl)/2μ > k22ρl/μ thereby implies that (B2 −
B2

l )ρ/2μρl(ρ − ρl) > (B2 − B2
l )/2μ(ρ − ρl) > B2/μρl , and therefore

b2l <
(B2 − B2

l )ρ

2μρl(ρ − ρl)
. (12)

From (11) and (12), we obtain

w2
l <

ρ

ρl(ρ − ρl)

(
p − pl + B2 − B2

l

2μ

)
, (13)

this implies

−ρ

√
(p − pl + (B2 − B2

l )/2μ)((1/ρl) − (1/ρ))

ρ − ρl
< −wl . (14)

In view of (9), the above inequality yields ρ(u − ul)/(ρ − ρl) < −wl , and hence s1 <

λ1(Ul) = ul − wl .
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Next, since p′′ > 0 and ρl < ρ for 1-shockwave, we have p′(η) = (p− pl)/(ρ−ρl) < p′
for some η ∈ (ρl , ρ), and hence

c2l >
(p − pl)ρl

ρ(ρ − ρl)
. (15)

Furthermore, since (ρ + ρl)/2 < ρ, it follows that

b2l >
(B2 − B2

l )ρl

2μρ(ρ − ρl)
, (16)

and hence from (15) and (16), we obtain

b2l + c2l >
(B2 − B2

l )ρl

2μρ(ρ − ρl)
+ (p − pl)ρl

ρ(ρ − ρl)
, (17)

thereby implying that

ρl

√
(p − pl + (B2 − B2

l )/2μ)((1/ρl) − (1/ρ))

ρ − ρl
> −w. (18)

Also, from (6)–(9) imply that u − w < (ρu − ρlul)/(ρ − ρl) = s1, and hence λ1(U ) < s1.
Lastly, we show that s1 < λ2(U ). From (19), we have√

(B2 − B2
l )ρl

2μρ(ρ − ρl)
+ (p − pl)ρl

ρ(ρ − ρl)
< w.

For 1-shock curve, using (8) we obtain (u−ul )ρl
ρ−ρl

< w, which implies that s1 < λ2(U ).

Therefore 1-shock satisfies Lax conditions; proof for 2-shocks follows on similar lines.
Conversely, we want to prove that for 1-shock Lax conditions hold. It follows from (11)

that for 1-shock waves, we have s1 < ul − wl , where s1 is the speed of the one-shock wave,
which implies that wl < ũl and u −w < s1 < u +w, and hence |ũ| < w. From (6), we have
ρũ = ρl ũl . Since ρ and ρl are positive, so both ũ and ũl must have the same sign. Therefore,
ũ > 0 and ũl > 0, the gas speed on both sides of the shock is greater than the shock speed,
so particles cross the shock from the left to the right for one-shock waves. In the case of
2-shock waves, the shock inequalities give |ũl | < wl and ũ < −w < 0, which imply that
the shock speed is greater than the gas speed on both sides of the shock, and so the particles
cross 2-shocks from the right to the left.

For both the shock families, ũl and ũ are non-zero so that L = ρũ = ρl ũl �= 0. Thus, for
1-shock waves, we have ũ2

l > w2
l and w2 > ũ2. From (7), yields

p + ρũ2 + B2/2μ = pl + ρl ũl
2 + B2

l /2μ, (19)

which, by virtue of the fact that ũ2
l > w2

l and w2 > ũ2, yields

p + ρw2 + B2/2μ > pl + ρlw
2
l + B2

l /2μ

that is, (
1 + γ

1 − aρ

)
p + 3k22

2μ
ρ2 >

(
1 + γ

1 − aρl

)
pl + 3k22

2μ
ρ2

l ,

which implies that p > pl and ρ > ρl , hence B > Bl , u < ul . Since for one-shock waves, ũ
and ũl are positive. In similar way, for 2-shock waves, we can prove that p < pl and B < Bl ,

hence ρ < ρl , u < ul . Therefore, both the shock waves are compressive.
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Now we show that the shock curves are starlike with respect to (ρl , ul).

Theorem 3 The 1-shock and 2-shock curves are starlike with respect to (ρl , ul) when p =
k1

(
ρ

1−aρ

)γ

and B = k2ρ for values of γ lying in the range 1 < γ < 2.

Proof We shall show that any ray through the point (ρl , ul) intersects 1-shock curve in at
most one point; for this, it is sufficient to show that for any two rays through (ρl , ul) and two
different points (ρ1, u1), (ρ2, u2) on the 1-shock curve, their slopes are different.

The slope of the lines joining (ρl , ul) with (ρ1, u1) and (ρ2, u2) are respectively u1−ul
ρ1−ρl

and u2−ul
ρ2−ρl

. For the 1-shock curve, (8) implies that
(

u−ul
ρ−ρl

)2 = f1(ρ)+ f2(ρ),where f1(ρ) =
p−pl

ρlρ(ρ−ρl )
and f2(ρ) = B2−B2

l
2μρlρ(ρ−ρl )

.

Now we show that f ′
1(ρ) < 0 and f ′

2(ρ) < 0. Differentiate f1(ρ) with respect to ρ, we
get

f ′
1(ρ) = ρlρ(ρ − ρl)p′ − ρl(p − pl)(2ρ − ρl)

ρ2
l ρ2(ρ − ρl)2

.

Let g1(ρ) = ρlρ(ρ − ρl)p′ − ρl(p − pl)(2ρ − ρl), so that g1(ρl) = 0. Now g′
1(ρ) =

ρlρ(ρ − ρl)p′′ − 2ρl(p − pl) and g′
1(ρl) = 0. Further, using p = k1

(
ρ

1−aρ

)γ

, we get

g′′
1 (ρ) = − k1γρlρ

γ−2

(1−aρ)γ+3 [((2−γ (γ −1))ρ+(5γ −3)aρlρ+(γ −1)2ρl+4a2ρlρ
2)−4(γ +1)aρ2].

Therefore, g′′
1 (ρ) < 0 for 1 < γ < 2, 0 ≤ a ≤ 0.05 and 1 � aρ ≥ 0. Across 1-shock

wave, we have ρl < ρ and g′
1(ρ) < g′

1(ρl) = 0, implying thereby that g1(ρ) is a decreasing
function of ρ. Thus, g1(ρ) < g1(ρl), and f ′

1(ρ) < 0. Again, we substitute B = k2ρ in

f2(ρ) and differentiate with respect to ρ obtain f ′
2(ρ) = − k22

2μρ2 < 0. Therefore,
(

u−ul
ρ−ρl

)
is

an increasing function of ρ, since ρ > ρl and u < ul for 1-shock wave, and hence 1-shock
curve is starlike with respect to (ρl , ul). Similarly, we can show that 2-shock curve is also
starlike with respect to (ρl , ul).

Rarefaction Waves

Here we construct the rarefaction wave curves. For an i rarefaction wave (i = 1, 2), the
two constant states Vl and V are connected through a smooth transition in i-th genuinely
nonlinear characteristic field, is a solution to (5) of the form

V (x, t) =

⎧⎪⎨
⎪⎩

Vl ,
x
t ≤ λi (Vl)

V ( x
t ), λi (Vl) ≤ x

t ≤ λi (V )

Vr ,
x
t ≥ λi (V ),

(20)

with λi (Vl) ≤ λi (V ). If we set 
 = x
t , then the system (5) becomes (M − 
I )(ρ̇, u̇)tr = 0,

where I is a 2 × 2 identity matrix and an overhead dot denotes differentiation with respect
to the variable 
. If (ρ̇, u̇)tr = (0, 0) then ρ and u are constant; but as we are interested in
non-constant solutions, we consider (ρ̇, u̇)tr �= (0, 0) and then it follows that (ρ̇, u̇)tr is an
eigenvector of the matrix M corresponding to the eigenvalue 
. Since the matrix M has two
real and distinct eigenvalues, λ1 < λ2, there are two families of rarefaction waves, R1 and
R2 which denote, respectively, 1-rarefaction waves and 2-rarefaction waves.
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First we consider 1-rarefaction waves. Since (M − λ1 I )(ρ̇, u̇)tr = 0 with λ1 = u − w,

we have, wρ̇ + ρu̇ = 0, implying thereby that

�1 = u +
∫ ρ w(θ)

θ
dθ = constant, (21)

which represents R1 curveswith�1 as the 1-Riemann invariant. Similarly, 2-rarefactionwave
curves are given by

�2 = u −
∫ ρ w(θ)

θ
dθ = constant, (22)

and �2 is the 2-Riemann invariant.

Theorem 4 The R1 curve is convex and monotonic decreasing while R2 curve is concave
and monotonic increasing.

Proof The 1-rarefaction wave is given by

u = ul +
∫ ρl

ρ

w(θ)

θ
dθ, if ρ ≤ ρl (23)

which on differentiating with respect to ρ, yields du
dρ

= −w
ρ

< 0, and subsequently,

d2u

dρ2 = w

ρ2 − w′

ρ
. (24)

From (24), for 1 < γ < 2 yields d2u
dρ2 =

k1γργ−1

(1−aρ)γ+2 [2−(γ−1)−4aρ]+ k22ρ

μ

2ρ2w
> 0 and, therefore,

u is convex with respect to ρ for 1-rarefaction waves. In similar way, we can prove for
2-rarefaction waves.

Lemma 5 Across 1-rarefaction waves (respectively, 2-rarefaction waves), ρ < ρl and u >

ul (respectively, ρ > ρl , and u > ul ) if and only if, the characteristic speed increases from
left hand to right hand state, i.e.,

λi (Vl) < λi (V ), i = 1, 2. (25)

Proof Let the characteristic speed increases from left hand to right hand state. Therefore
from the inequality (25) implies that

w − wl < u − ul , (26)

Further, since in 1-rarefaction wave region �1 is constant, we have u + ∫ ρ w(θ)
θ

dθ = ul +∫ ρl w(θ)
θ

dθ , which by virtue of (26) yields u + ∫ ρ w(θ)
θ

dθ < ul +
∫ ρl w(θ)

θ
dθ ; which implies

ρl > ρ and ul < u. Similarly, for 2-rarefaction waves, we can prove that ρ > ρl and u > ul .
Conversely, for one-rarefaction wave, we assume that ρl > ρ and ul < u. Then prove

that the characteristic speed increases from the left to the right, that is, λ1(Vl) ≤ λ1(V ).

Since dw/dρ = (p′′ + (B ′)2/μ)/2w > 0, w is an increasing function of ρ; this implies
that for one-rarefaction waves, w(ρ) ≤ w(ρl) or equivalently −wl ≤ −w. From ul ≤ u
and −wl ≤ −w imply that λ1(Vl) ≤ λ1(V ). In similar way, we can prove this for the
2-rarefaction waves.
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The Riemann Problem

We solve the Riemann problem (3) and (4) in the class of functions consisting of constant
states, separated by either shocks or rarefaction waves. The solution of the Riemann problem
consists of at most three constant states (including Ul and Ur ), which are separated either by
a shock or a rarefaction wave. The Riemann invariant coordinates are

�1 = u +
∫ ρ w(θ)

θ
dθ,

�2 = u −
∫ ρ w(θ)

θ
dθ. (27)

Lemma 6 The mapping (ρ, u) −→ (�1,�2) is one to one and the Jacobian of this mapping
is nonzero when ρ > 0.

Proof From (27), we have ∂�1
∂ρ

= w
ρ
, ∂�1

∂u = 1, ∂�2
∂ρ

= −w
ρ
and ∂�2

∂u = 1. Thus, the Jacobian
of the mapping (ρ, u) −→ (�1,�2) is 2w(ρ)/ρ, which is one to one and onto when ρ > 0.

When Ur is sufficiently close to Ul , the existence and uniqueness of the solution of Riemann
problem for system (3) in the class of elementary waves follow from the general theorem
of Lax, which applies to any system of conservation laws that is strictly hyperbolic and
genuinely nonlinear in each characteristic field (see [6,7]). For arbitrary data we discuss the
existence of the solution of the Riemann problem for the system (3).

We consider the physical variables as coordinate system. We divide the (ρ, u)-plane into
four disjoint open regions namely I, I I, I I I and I V ; separated by the curves S1, S2, R1, R2

as well as S∗
1 , S∗

2 , R∗
1 , R∗

2 for a = 0.03 and a = 0.0 respectively; these curves are drawn in
Fig. 1 for a given left state Ul . Indeed, we fix Ul and allow Ur to vary; if Ur lies on any of
the above four curves, then we have seen how to solve the problem. We thus assume that Ur

belongs to one of the four open regions I, I I, I I I and I V as shown in Fig. 1.
As in [9], we define, for U ∈ R

+ × R,

Si (U ) = {(ρ, u) : (ρ, u) ∈ Si (U )},
Ri (U ) = {(ρ, u) : (ρ, u) ∈ Ri (U )},

Fig. 1 Wave curves in ρ − u plane for a = 0.0 and a = 0.03 as dotted and solid line respectively
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Fig. 2 Ur is in region I

and

Ti (U ) = Si (U ) ∪ Ri (U ), i = 1, 2.

For fixed Ul ∈ R
+ × R, we consider the family of curves S = {T2(U ) : U ∈ T1(Ul)}. As

the (ρ, u) plane is covered univalently by the family of curves S, i.e., through each point Ur ,
there passes exactly one curve T2(U ) of S, the solution to the Riemann problem is given as
follows; we connect U to Ul on the right by a 1-wave (either shock or rarefaction wave), and
then we connect Ur to U on the right by a 2-wave (either S2 or R2). Indeed, depending on
the position of Ur we have different wave configurations.

Theorem 7 Let Ul , Ur ∈ R
+ ×R with Ul fixed, and Ur is allowed to vary then the Riemann

problem is solvable.

Proof Suppose first that Ur lies in region I. Let the vertical line ρ = ρr meet R2(Ul) at B,
and let it meet S1(Ul) at A, as shown in Fig 2. We observe that the subfamily of curves in
S, consisting of the set {T2(U ) ≡ T2(ρ, u) : ρl ≤ ρ ≤ ρr }, induces a continuous mapping
g −→ ϕ(g) from the arc Ul A to the line segment AB, see Smoller [9]; indeed, the region I
is covered by curves in S. So, let us suppose that (ρm, um) is the point which is mapped to
Ur . Then

u = ul +
∫ ρr

ρ

w(θ)

θ
dθ −

√
(p − pl + (B2 − B2

l )/2μ)((1/ρl) − (1/ρ)) (28)

which on differentiation yields du
dρ

|ρ=ρm < 0, implying thereby that (ρm, um) is unique.
Similarly, we can prove that uniqueness if Ur is in region I I, I I I and I V .

Thus if Ur ∈ I , then the solution to Riemann problem consists of 1-shock and a 2-
rarefaction wave connecting Ul to Ur . Suppose Ur is in region I I, then the solution consists
of shocks S1 and S2 joining Ul to Ur . If Ur ∈ I I I, then the solution of Riemann problem is
obtained by connectingUl toUr by R1, followed by S2. IfUr is in region I V, then the solution
consists of 1-rarefaction wave and 2-rarefaction wave. Thus the set {T2(U ) : U ∈ T1(Ul)}
covers the region I, I I, I I I and I V in a 1-1 fashion. Therefore, the solution to the Riemann
problem is solvable for arbitrary Ur lying in any of the regions I, I I, I I I and I V .

However the vacuum state (ρ = 0) does occur in some cases and we have the following
result:
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Lemma 8 If �1(ρl , ul) − �2(ρr , ur ) ≤ 0, then the vaccum occurs.

Proof Across 1-rarefaction wave, 1-Riemann invariant is constant, i.e., �1(ρl , ul) =
�1(ρm, um) and similarly across 2-rarefaction wave, 2-Riemann invariant is constant, i.e.,
�2(ρm, um) = �2(ρr , ur ). So �1(ρm, um) − �2(ρm, um) = �1(ρl , ul) − �2(ρr , ur ) ≤ 0.
But, �1(ρm, um) − �2(ρm, um) = 2

∫ ρm w(θ)
θ

dθ , which implies that ρm = 0. Hence the
proof.

Numerical Results and Discussions

For a given left stateUl and a right stateUr , we give numerical algorithm to find the unknown
state Um (see table 2) in (x, t) plane.
Case a For ρl < ρm and ρr ≥ ρm , we eliminating um from (8) and (22) to obtain

ur − ul + h(ρl , ρm) +
∫ ρm

ρr

w(θ)

θ
dθ = 0. (29)

Case b For ρl ≥ ρm and ρr ≥ ρm , we obtain from (21) and (22), that

ur − ul +
∫ ρm

ρl

w(θ)

θ
dθ +

∫ ρm

ρr

w(θ)

θ
dθ = 0. (30)

Case c For ρl ≥ ρm and ρr < ρm , we eliminating um from (21) and (8), we get

ur − ul +
∫ ρm

ρr

w(θ)

θ
dθ + h(ρm, ρr ) = 0. (31)

Case d For ρl < ρm and ρr < ρm , we eliminating um from (8),we get

ur − ul + h(ρl , ρm) + h(ρm, ρr ) = 0. (32)

Thus, for all the four possible wave patterns (29)–(32), we obtain a single nonlinear equation

fr (ρm, Ur ) + fl(ρm, Ul) + ur − ul = 0, (33)

where

fl(ρm, Ul) =
{

h(ρl , ρm) if ρm > ρl ,∫ ρm
ρl

w(θ)
θ

dθ if ρl ≥ ρm,

and

fr (ρm, Ur ) =
{

h(ρm, ρr ) if ρm > ρr ,∫ ρm
ρr

w(θ)
θ

dθ if ρr ≥ ρm .

We solve (33) for ρm by using Newton–Raphson iterative procedure with a stop criterion
when the relative error is less than 10−8; the initial guess for ρm is taken to be the average
value of ρl and ρr . Once ρm is known, the solution for the particle velocity um can be
obtained from (8) or (21) (respectively, from (8) or (22) depending on whether the 1-wave
(respectively, 2-wave) is a shock or a rarefaction wave, the slope of the characteristic from
(0, 0) to (x, t) is

dx

dt
= x

t
= u − w, (34)
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Table 1 Initial data for Riemann
problem

Test ρl ul ρr ur

1 5.99924 19.5975 5.99242 −6.19633

2 1.0 0.08 10.8 1.11

3 10.0 0.0 1.125 0.0

4 10.0 −2.0 5.40279 2.0

Table 2 Solution of the Riemann problem for a = 0.0, a = 0.015 and a = 0.03 with the initial data from
Table 1

Test a = 0.0 a = 0.015 a = 0.03
ρm um ρm um ρm um

1 44.31059 6.70499 37.58569 6.70513 26.73968 6.70549

2 3.55414 −2.69535 3.61808 −2.81311 3.71766 −2.97709

3 4.16399 3.03778 4.20448 3.14363 4.27171 3.28749

4 4.04394 1.12198 4.15932 1.17591 4.31459 1.25619

where the particle velocity u and the magneto-acoustic speedw are functions of the unknown
ρ. Since �1 is constant in 1-rarefaction wave region we have

u = ul +
∫ ρl

ρ

w(θ)

θ
dθ, (35)

which in view of (34) yields

ul +
∫ ρl

ρ

w(θ)

θ
dθ − x

t
− w = 0. (36)

Equation (36) is solved for ρ using Newton–Raphson method and then u is found from (35).
In a similar way, we find the solution inside the 2-rarefaction wave.

Four Riemann problems are selected to test the performance of numerical scheme high-
lighting the influence of vanderWaals excludedvolume,which enters into calculation through
the parameter a. From the solution of the Riemann problem, we illustrate some typical wave
patterns using MATLAB. Table 1 presents the data for all the four tests in terms of primitive
variables. In all these cases, we consider the ratio of specific heat as γ = 1.4. The solutions
of the Riemann problem with the given data (Table 1) for k1 = 1.0, k2 = 1.0, μ = 1.0 and
a = 0.0, a = 0.015, a = 0.03 are respectively given in Table 2.

Let us now focus on the influence of the van der Waals excluded volume through the
parameter a. The main differences are related to the velocity, wave speed, position and the
values of the intermediate states (region of unknown solutions) of each structure.

In test 1, the solution of the Riemann problem consists of a left and right shock waves; the
solution profiles at time t = 0.085 are shown in Fig. 3. Consequently, as it can be observed
looking at density (ρ) that the left shock wave is located at x = 0.39832, x = 0.36179 and
x = 0.25299, and the right wave is located at x = 0.74142, x = 0.77794 and x = 0.88671
for a = 0.0, a = 0.015 and a = 0.03, respectively (see Fig. 3). It is observed that the left
shock speed decreases and right shock speed increases when the van der Waals excluded
volume a increases.
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Fig. 3 Test 1: The solution for density and velocity at time t = 0.085 for different values of a
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Fig. 4 Test 2: The solution for density and velocity at time t = 0.16 for different values of a
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Fig. 5 Test 3: The solution for density and velocity at time t = 0.20 for different values of a

In test 2, the solution consists of a left shock wave and right rarefaction wave; the solution
profiles at time t = 0.16 are shown in Fig. 4. In this case, the velocity decreases when the
van der Waals excluded volume a increases. In particular, the intermediate states for density
and velocity are higher when a is higher.

In test 3, the solution consists of a left rarefactionwave and a right shockwave; the solution
profiles at time t = 0.20 are shown in Fig. 5. Let us focus on the position of head of the left
rarefaction wave and the right shock wave for density profile. The head of the left rarefaction
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Fig. 6 Test 4: The solution for density and velocity at time t = 0.15 for different values of a

wave is located at x = −0.73529, x = −0.77959 and x = −0.85504, and the right shock
wave is located at x = 0.83247, x = 0.85841 and x = 0.89256 for a = 0.0, a = 0.015 and
a = 0.03. The velocity increases for the van der Waals excluded volume a increases.

In test 4, the solution consists of a left rarefaction wave and right rarefaction wave; the
solution profiles at time t = 0.15 are shown in Fig. 6. From this test case, we noticed that
the intermediate states and velocity increases for the increases of a. For the density profile,
the wave speed for right rarefaction wave increases when a increases but decreases for left
rarefaction wave.

Interaction of Elementary Waves

The interaction of elementary waves, obtained from the Riemann problem (4), gives rise to
new emerging elementarywaves.We define the initial function, with two jump discontinuities
at x1 and x2, as follows:

U (x, t0) =

⎧⎪⎨
⎪⎩

Ul , −∞ < x ≤ x1
U∗, x1 < x ≤ x2
Ur , x2 < x < ∞,

(37)

with an appropriate choice of U∗ and Ur in terms of Ul and arbitrary x1 and x2 ∈ R. With the
above initial data, we have two Riemann problems locally. An elementary wave of the first
Riemann problem may interact with an elementary wave of the second Riemann problem,
and a new Riemann problem is formed at the time of interaction.

Here, we use the notation S2R1 → R1S2, which means that a 2-shock wave, S2, of
first Riemann problem (connecting Ul to U∗) interacts with 1-rarefaction, R1, of second
Riemann problem (connectingU∗ toUr ), and the interaction leads to a newRiemann problem
(connectingUl toUr viaUm), the solution of which consists of 1-rarefaction, R1, and 2-shock
wave S2 (i.e., R1S2). The possible interactions of elementary waves belonging to different
families are R2R1, R2S1, S2R1 and S2S1 while the elementary waves belonging to same
families are R2S2, S2R2, S1R1, R1S1, S1S1 and S2S2.

Interaction of Elementary Waves from Different Families

(i) Collision of two shocks (S2S1): We consider that Ul is connected to U∗ by 2-shock, S2,
of first Riemann problem and U∗ is connected to Ur by a 1-shock, S1, of second Riemann
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Fig. 7 Collision of S2S1

problem. In other words, for a given Ul , we choose U∗ and Ur in such a way that ρ∗ <

ρl , u∗ = ul − h(ρl , ρ∗) and ρ∗ < ρr , ur = u∗ − h(ρ∗, ρr ). Since speed of 2-shock of the
first Riemann problem is positive and speed of 1-shock of the second Riemann problem is
negative, S2 overtakes S1. In order to show that for any arbitrary state Ul , the state Ur lies in
the region I I (see Fig. 7), it is sufficient to prove that h(ρ∗, ρ) − h(ρl , ρ) + h(ρl , ρ∗) > 0
for ρ∗ < ρl and ρ∗ < ρ. Suppose h(ρ∗, ρ) − h(ρl , ρ) + h(ρl , ρ∗) ≤ 0. Then h2(ρl , ρ∗) +
h2(ρ∗, ρ) + 2h(ρl , ρ∗)h(ρ∗, ρ) ≤ h2(ρl , ρ), which implies that

(
p∗ + B2∗

2μ
− p − B2

2μ

) (
1

ρl
− 1

ρ∗

)
+

(
p∗ + B2∗

2μ
− pl − B2

l

2μ

) (
1

ρ
− 1

ρ∗

)

+ 2h(ρl , ρ∗)h(ρ∗, ρ) ≤ 0. (38)

But the left hand side of (38) is strictly positive, which leaves us with a contradiction. Hence
h(ρ∗, ρ) − h(ρl , ρ) + h(ρl , ρ∗) > 0, i.e., the curve S1(U∗) lies below the curve S1(Ul), and
thereforeUr lies in the region I I . Thus, in view of the result presented in a preceding section,
it follows that the interaction result is S2S1 → S1S2; the computed results illustrate this case
in Fig. 7.

(ii) Collision of a shock and a rarefaction (S2R1): Here U∗ ∈ S2(Ul) and Ur ∈ R1(U∗).
That is, for a given Ul , we choose U∗ and Ur such that ρ∗ < ρl , u∗ = ul − h(ρl , ρ∗)
and ρr ≤ ρ∗, ur = u∗ + ∫ ρ∗

ρr

w(θ)
θ

dθ. Since 2-shock has positive velocity and 1-rarefaction
wave has negative velocity, it follows that S2 overtakes R1. Moreover, since for any given
Ul ,

∫ ρl
ρ

w(θ)
θ

dθ − ∫ ρ∗
ρ

w(θ)
θ

dθ + h(ρl , ρ∗) > 0 for ρ < ρ∗ < ρl , it follows that the curve
R1(U∗) lies below the curve R1(Ul); hence Ur lies in the region I I I, and subsequently
S2R1 → R1S2. The computed results illustrate this case in Fig. 8.
(iii) Collision of two rarefaction waves (R2R1):We considerU∗ ∈ R2(Ul) andUr ∈ R1(U∗).
In other words, for a givenUl , we chooseU∗ andUr such that ρl ≤ ρ∗, u∗ = ul +

∫ ρ∗
ρl

w(θ)
θ

dθ

andρr ≤ ρ∗, ur = u∗+
∫ ρ∗
ρr

w(θ)
θ

dθ.Since the trailing end of 2-rarefactionwave has a positive
velocity (bounded above) in (x, t)-plane and that 1-rarefaction wave has a negative velocity
(bounded above), interaction will take place. Since ρl < ρ∗ and

∫ ρ∗
ρ

w(θ)
θ

dθ − ∫ ρl
ρ

w(θ)
θ

dθ +∫ ρ∗
ρl

w(θ)
θ

dθ > 0, it follows that the curve R1(U∗) lies above the curve R1(Ul); hence Ur lies
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Fig. 8 Collision of S2R1

Fig. 9 Collision of R2R1

in the region I V and the interaction result is R2R1 → R1R2. The computed results illustrate
this case in Fig. 9.

(iv) Collision of a rarefaction wave and a shock (R2S1): Here U∗ ∈ R2(Ul) and Ur ∈
S1(U∗), i.e., for a given Ul , we choose U∗ and Ur such that ρl ≤ ρ∗, u∗ = ul + ∫ ρ∗

ρl

w(θ)
θ

dθ

and ρ∗ < ρr , ur = u∗ − h(ρ∗, ρr ). Since 1-shock speed of second Riemann problem is less
than the speed of trailing end of 2-rarefaction wave of first Riemann problem in (x, t)-plane,
and therefore S1 penetrates R2. For any given Ul , we show that Ur lies in the region I ; for
this, it is enough to show that

∫ ρ∗

ρl

w(θ)

θ
dθ + h(ρl , ρ) − h(ρ∗, ρ) > 0. (39)

Since h(ρl , ρ) is a decreasing functionwith respect to the first variable ρl , we have h(ρl , ρ) >

h(ρ∗, ρ) for ρl < ρ∗; hence, the inequality (39) follows that the curve S1(U∗) lies above the
curve S1(Ul), and Ur lies in the region I. Thus the interaction result is R2S1 → S1R2; the
computed results illustrate this case in Fig. 10.
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Fig. 10 Collision of R2S1

Interaction of Elementary Waves from Same Families

(i) 1-shock wave overtakes another 1-shock wave (S1S1): We consider the situation in which
Ul is connected to U∗ by a 1-shock of first Riemann problem and U∗ is connected to Ur by a
1-shock of secondRiemann problem. In other words, for a given left stateUl , the intermediate
state U∗, and the right state Ur are chosen such that ρl < ρ∗ and u∗ = ul − h(ρl , ρ∗) with
Lax stability conditions

s1(Ul , U∗) < λ1(Ul), λ1(U∗) < s1(Ul , U∗) < λ2(U∗), (40)

and ρ∗ < ρr and ur = u∗ − h(ρ∗, ρr ) with Lax stability conditions

s1(U∗, Ur ) < λ1(U∗), λ1(Ur ) < s1(U∗, Ur ) < λ2(Ur ), (41)

where s1(Ul , U∗) is the speed of shock connecting Ul to U∗, and similarly s1(U∗, Ur ) is the
speed of shock connectingU∗ toUr . From (40) and (41) we obtain s1(U∗, Ur ) < s1(Ul , U∗),
i.e., the 1-shock of second Riemann problem overtakes 1-shock of the first Riemann problem
at a finite time, and gives rise to a newRiemann problemwith dataUl andUr . In order to solve
this problem, wemust determine the region in whichUr lies with respect toUl . We claim that
Ur lies in region I so that the solution of the new Riemann problem consists of S1 and R1. In
other words, to prove our claim, we need to show that S1(Ur ) lies entirely in the region I ; to
show this we are required to prove that for ρl < ρ∗ < ρ, h(ρl , ρ)−h(ρ∗, ρ)−h(ρl , ρ∗) > 0.
Let us assume on the contrary that h(ρl , ρ) − h(ρ∗, ρ) − h(ρl , ρ∗) ≤ 0 for ρl < ρ∗ < ρ.

Then, it follows that h2(ρl , ρ)+h2ρl , ρ∗)−2h(ρl , ρ)h(ρl , ρ∗) ≤ h2(ρ∗, ρ),which showing
thereby that

[(
p + B2

2μ
− pl − B2

l

2μ

) (
1

ρl
− 1

ρ∗

)
−

(
p∗ + B2∗

2μ
− pl − B2

l

2μ

) (
1

ρl
− 1

ρ

)]2

≤ 0,

(42)
which is a contradiction as the left hand side of inequality (42) is positive. Hence, S1S1 →
S1R2; the computed results illustrate this situation in Fig. 11.
(ii) 2-shock wave overtakes another 2-shock wave (S2S2): The analytical proof that Ur lies
in the region I I I , so that S2S2 → R1S2, is similar to the previous case (see Fig. 12).
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Fig. 11 S1 overtakes S1

Fig. 12 S2 overtakes S2

(iii) 1-rarefaction wave overtakes 1-shock wave (R1S1): In this case, Ul is connected to U∗
by 1-rarefaction wave of the first Riemann problem and U∗ is connected to Ur by a 1-shock
of second Riemann problem. That is, for a given Ul , we choose U∗ and Ur in such a way
that ρ∗ ≤ ρl , u∗ = ul + ∫ ρl

ρ∗
w(θ)

θ
dθ and ρ∗ < ρr , ur = u∗ − h(ρ∗, ρr ). First we show that

S1(U∗) lies below the curve R1(Ul) for ρ∗ < ρ ≤ ρl ; in other words, for ρ∗ < ρ ≤ ρl

h(ρ∗, ρ) +
∫ ρl

ρ

w(θ)

θ
dθ −

∫ ρl

ρ∗

w(θ)

θ
dθ > 0.

Let us define F1(ρ) = h(ρ∗, ρ) + ∫ ρl
ρ

w(θ)
θ

dθ − ∫ ρl
ρ∗

w(θ)
θ

dθ , so that F1(ρ∗) = 0. Differenti-
ating F1(ρ) with respect to ρ, we obtain F ′

1(ρ) > 0, implying thereby that F1(ρ∗) < F1(ρ)

i.e., F1(ρ) > 0; hence S1(U∗) lies below the curve R1(Ul) for ρ∗ < ρ ≤ ρl .
Next we prove that S1(Ul) lies above the curve S1(U∗) for ρl ≤ ρ; for this it is sufficient

to prove that

h(ρ∗, ρ) − h(ρl , ρ) −
∫ ρl

ρ∗

w(θ)

θ
dθ > 0,
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Fig. 13 R1 overtakes S1

for ρl ≤ ρ. Let us define F2(ρ) = h(ρ∗, ρ) − h(ρl , ρ) − ∫ ρl
ρ∗

w(θ)
θ

dθ. Let us assume that

h(ρ∗, ρ)−h(ρ∗, ρl) ≤ h(ρl , ρ) for ρ∗ < ρl < ρ, which implies that h2(ρ∗, ρ)+h2(ρ∗, ρl)−
2h(ρ∗, ρ)h(ρ∗, ρl) ≤ h2(ρl , ρ), implying thereby that

(
pl − p∗ + B2

l −B2∗
2μ

)( 1
ρ∗ − 1

ρ

) + (
p −

p∗ + B2−B2∗
2μ

)( 1
ρ∗ − 1

ρl

) ≤ 2h(ρ∗, ρ)h(ρ∗, ρl); or equivalently
[(

pl − p∗ + B2
l − B2∗
2μ

) (
1

ρ∗
− 1

ρ

)
−

(
p − p∗ + B2 − B2∗

2μ

)(
1

ρ∗
− 1

ρl

)]2

≤ 0.

(43)
But the left hand side of inequality (43) is positive, which leaves us with a contradiction.

Hence, h(ρ∗, ρ) − h(ρl , ρ) > h(ρ∗, ρl) for ρ∗ < ρl < ρ, which implies that h(ρ∗, ρ) −
h(ρl , ρ) − ∫ ρl

ρ∗
w(θ)

θ
dθ > h(ρ∗, ρl) − ∫ ρl

ρ∗
w(θ)

θ
dθ = F2(ρl) > 0.

Lastly, we show that S2(Ul) and S1(U∗) intersect at some point (ρ̃1, ũ1),where ρ∗ < ρ̃1 <

ρl . To prove this, we define a new function F3(ρ) = h(ρ∗, ρ) − h(ρl , ρ) − ∫ ρl
ρ∗

w(θ)
θ

dθ for
ρ∗ ≤ ρ ≤ ρl . Since F3(ρ∗) < 0, by virtue of monotonicity and intermediate value property,
there exists a ρ̃1 between ρ∗ and ρl , such that F3(ρ̃1) = 0. Thus, the intersection of S2(Ul)

and S1(U∗) is uniquely determined; the computed results are shown in Fig. 13. Depending
on the value of ρr we distinguish three cases.

(a) When ρr < ρ̃1, Ur ∈ I I I and the interaction result is R1S1 → R1S2; indeed, 1-shock
is weak compared to 1-rarefaction wave.

(b) When ρr = ρ̃1, Ur lies on S2(Ul) and the interaction result is R1S1 → S2; indeed,
when two waves of first family interact, they annihilate each other, and give rise to a
wave of second family.

(c) When ρr > ρ̃1, Ur ∈ I I and the interaction result is R1S1 → S1S2; indeed, the 1-
shock of second Riemann problem, which is strong compared to the 1-rarefaction of
first Riemann problem, overtakes the trailing end of 1-rarefaction wave, and a reflected
shock S2(Um, Ur ), connecting a new constant state Um on the left to Ur on the right,
is produced. The transmitted wave, after interaction, is the 1-shock that joins Ul on the
left and Um on the right.

(IV) 1-shock wave overtakes 1-rarefaction wave (S1R1): Here U∗ ∈ S1(Ul) and Ur ∈
R1(U∗). That is, for a given Ul , we choose U∗ and Ur in such a way that ρl < ρ∗, u∗ =
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ul − h(ρl , ρ∗) and ρr ≤ ρ∗, ur = u∗ + ∫ ρ∗
ρr

w(θ)
θ

dθ . In the (x, t) plane the speed of trailing
end of 1-rarefaction wave, λ1(U∗), is less than 1-shock speed s1(Ul , U∗) and therefore 1-
shock from left overtakes 1-rarefaction wave from right after a finite time. First we show
that R1(U∗) lies below the curve S1(Ul) for ρl ≤ ρ ≤ ρ∗; for this we need to show
h(ρl , ρ∗) − h(ρl , ρ) − ∫ ρ∗

ρ
w(θ)

θ
dθ > 0 for ρl ≤ ρ < ρ∗. To prove this, we define a

new function G1(ρ) = h(ρl , ρ∗) − h(ρl , ρ) − ∫ ρ∗
ρ

w(θ)
θ

dθ > 0 for ρl ≤ ρ < ρ∗. This, in
view of the expression for ψ(θ) and h(ρl , ρ), yields

G ′
1(ρ) = −

[(
p − pl + B2−B2

l
2μ

)
1
ρ2 −

(
p′ + B B′

μ

) (
1
ρl

− 1
ρ

)]2

2h(ρl , ρ)
< 0,

which implies that G1(ρ) > G1(ρ∗); but since G1(ρ∗) = 0, we have G1(ρ) > 0.
Next we show that R1(Ul) lies above the curve R1(U∗) for ρ ≤ ρl < ρ∗, i.e., g(ρl , ρ∗) +∫ ρl

ρ
w(θ)

θ
dθ − ∫ ρ∗

ρ
w(θ)

θ
dθ > 0 for ρl ≤ ρ < ρ∗.

Since the left hand side of this inequality, ρ ≤ ρl < ρ∗, turns out to be G1(ρl), which has
already been shown to be positive, the conclusion follows.

Lastly, we show that R1(U∗) and S2(Ul) intersect uniquely at some point, say, (ρ̃2, ũ2);
for this, it is enough to show that the equation h(ρl , ρ∗) − h(ρl , ρ) − ∫ ρ∗

ρ
w(θ)

θ
dθ = 0 has

unique root ρ̃2 such that ρ̃2 < ρl . To establish this, we define a new function G2(ρ) =
h(ρl , ρ∗) − h(ρl , ρ) − ∫ ρ∗

ρ
w(θ)

θ
dθ ; since G2(ρl) > 0, and G2(ρ) takes negative value as ρ

is close to zero, in view of monotonicity and intermediate value property, it follows that the
curves R1(U∗) and S2(Ul) intersect uniquely; here againwe distinguish three cases depending
on the value of ρr .

(a) When ρr > ρ̃2, Ur ∈ I I and the interaction result is S1R1 → S1S2; indeed, the 1-shock
is sufficiently strong compared to 1-rarefaction wave which, after interaction, produces
a new elementary wave.

(b) When ρr = ρ̃2, Ur ∈ S2(Ul) and the interaction result is S1R1 → S2. The interaction of
elementary waves of first family gives rise to a new elementary wave of second family.

(c) When ρr < ρ̃2, Ur ∈ I I I and the interaction result is S1R1 → R1S2. The computed
results shown in Fig. 14.

(V) 2-shock wave overtakes 2-rarefaction wave (S2R2): The S2R2 interaction takes place
when U∗ ∈ S2(Ul) and Ur ∈ R2(U∗). In other words, for a given Ul , we choose U∗ and Ur

in such a way that ρ∗ < ρl , u∗ = ul − h(ρl , ρ∗) and ρ∗ ≤ ρr , ur = u∗ + ∫ ρr
ρ∗

w(θ)
θ

dθ .
First we show that for ρ∗ < ρ ≤ ρl , S2(Ul) lies above R2(U∗), i.e.,

h(ρl , ρ∗) − h(ρl , ρ) −
∫ ρ

ρ∗

w(θ)

θ
dθ > 0,

for ρ∗ ≤ ρl . To prove this we define a new function M1(ρ) = h(ρl , ρ∗) − h(ρl , ρ) −∫ ρ

ρ∗
w(θ)

θ
dθ > 0. Since M ′

1(ρ) > 0, we have M1(ρ) > M1(ρ∗); further since M1(ρ∗) = 0,
it follows that M1(ρ) > 0, implies thereby that S2(Ul) lies above R2(U∗) for ρ∗ < ρ ≤ ρl .

Next we show that the curve R2(Ul) lies above the curve R2(U∗) for ρ∗ < ρl ≤ ρ; for
this it is enough to prove h(ρl , ρ∗) − ∫ ρ

ρ∗
w(θ)

θ
dθ + ∫ ρ

ρl

w(θ)
θ

dθ > 0 for ρ∗ < ρl ≤ ρ. We
notice that the left hand side of this inequality is M1(ρl) which has already been shown to
be positive, and hence the curve R2(Ul) lies above R2(U∗) for ρ∗ < ρl ≤ ρ.

Lastly, we show that R2(U∗) and S1(Ul) intersect uniquely, say, at (ρ̃3, ũ3) for ρ∗ < ρl <

ρ̃3.

Now we define M2(ρ) = h(ρl , ρ) − h(ρl , ρ∗) + ∫ ρ

ρ∗
w(θ)

θ
dθ for ρ∗ < ρl ≤ ρ so that

M2(ρl) < 0, and we can choose a constant k > 0 such that M2(ρ) > 0 for all ρ > k. Then,

123



1828 Int. J. Appl. Comput. Math (2017) 3:1809–1831

Fig. 14 S1 overtakes R1

Fig. 15 S2 overtakes R2

there exits a ρ̃3 such that M2(ρ̃3) = 0. Thus R2(U∗) and S1(Ul) intersect uniquely at (ρ̃3, ũ3)

as R2(U∗) and S1(Ul) are monotone; the computed results are shown in Fig. 15. Here again
the following cases arise.

(a) When ρr < ρ̃3, Ur ∈ I I and the interaction result is S2R2 → S1S2; indeed, the strength
of R2 is small computed to the elementary wave S2, and S2 annihilates R2 in a finite
time. The strength of reflected S1 wave is small compared to the incident waves S2 and
R2.

(b) When ρr = ρ̃3, Ur lies on S1(Ul) and the interaction result is S2R2 → S1. The reflected
shock S1 is weak computed to incident waves S2 and R2.

(c) When ρr > ρ̃3, Ur ∈ I and the interaction result is S2R2 → S1R2; indeed, R2 is
stronger than S2.

(vi) 2-rarefactionwave overtakes 2-shockwave (R2S2): HereU∗ ∈ R2(Ul) andUr ∈ S2(U∗).
That is, for a given Ul , we choose U∗ and Ur such that ρl ≤ ρ∗, u∗ = ul + ∫ ρ∗

ρl

w(θ)
θ

dθ and
ρr < ρ∗, ur = u∗−h(ρ∗, ρr ). Nowwe show that R2(Ul) lies above S2(U∗) for ρl ≤ ρ < ρ∗,
i.e.,
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Fig. 16 R2 overtakes S2

h(ρ∗, ρ) +
∫ ρ

ρl

w(θ)

θ
dθ −

∫ ρ∗

ρl

w(θ)

θ
dθ > 0,

for ρl ≤ ρ < ρ∗. To prove this we define a new function N1(ρ) = h(ρ∗, ρ) + ∫ ρ

ρl

w(θ)
θ

dθ −∫ ρ∗
ρl

w(θ)
θ

dθ for ρl ≤ ρ ≤ ρ∗ so that N1(ρ∗) = 0. This, in view of the expressions for w(θ)

and h(ρ∗, ρ), yields

N ′
1(ρ) = −

[(
p′ + B B′

μ

) (
1
ρ

− 1
ρ∗

)
−

(
p∗ − p + B2∗−B2

2μ

)
1
ρ2

]2
2h(ρ∗, ρ)

< 0,

implying thereby that N1(ρ) > N1(ρ∗) = 0. Hence, the result.
Next we show that S2(U∗) lies below the curve S2(Ul) for ρ ≤ ρl < ρ∗; for this it is

sufficient to prove h(ρ∗, ρ) − h(ρl , ρ) − ∫ ρ∗
ρl

w(θ)
θ

dθ > 0 for ρ ≤ ρl < ρ∗. If h(ρ∗, ρ) −
h(ρl , ρ) > h(ρ∗, ρl) then h(ρ∗, ρ) − h(ρl , ρ) − ∫ ρ∗

ρl

w(θ)
θ

dθ > h(ρ∗, ρl) − ∫ ρ∗
ρl

w(θ)
θ

dθ =
N1(ρl) > 0.

Let us assume on the contrary that h(ρ∗, ρ) − h(ρl , ρ) ≤ h(ρ∗, ρl). Then, it follows
that h(ρ∗, ρ) − h(ρ∗, ρl) ≤ h(ρl , ρ), implying thereby that h2(ρ∗, ρ) + h2(ρ∗, ρl) −
2h(ρ∗, ρ)h(ρ∗, ρl) ≤ h2(ρl , ρ); this, in view of the expressions for h(ρ∗, ρ), h(ρ∗, ρl)

and h(ρl , ρ) yields
(

pl − p∗ + B2
1−B2∗
2μ

)( 1
ρ∗ − 1

ρ

) + (
p − p∗ + B2−B2∗

2μ

)( 1
ρ∗ − 1

ρl

) ≤
2h(ρ∗, ρ)h(ρ∗, ρl), or equivalently

[(
pl − p∗ + B2

l − B2∗
2μ

) (
1

ρ∗
− 1

ρ

)
−

(
p − p∗ + B2 − B2∗

2μ

)(
1

ρ∗
− 1

ρl

)]2

≤ 0.

(44)
But the left hand side of (44) is positive forρ ≤ ρl < ρ∗,which leaves uswith a contradiction.
Hence, h(ρ∗, ρ) − h(ρl , ρ) > h(ρ∗, ρl) for ρ ≤ ρl < ρ∗.

Lastly, we show that S2(U∗) and S1(Ul) intersect uniquely at a point, (ρ̃4, ũ4) for ρl <

ρ̃4 < ρ∗. The proof for this follows on similar lines as discussed earlier; here also we
encounter three possibilities.
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(a) When ρr > ρ̃4, Ur ∈ I and the interaction result is R2S2 → S1R2; indeed, R2 is strong
compared to the elementary wave S2, and the strength of reflected S1 is small compared
to the incident waves S2 and R2.

(b) When ρr = ρ̃4, Ur ∈ S1(Ul) and the interaction result is R2S2 → S1.
(c) When ρr < ρ̃4, Ur ∈ I I and the interaction result is R2S2 → S1S2; indeed,the ele-

mentary wave S2 is strong compared to R2. The computed results illustrate this case in
Fig. 16.

Conclusion

TheRiemann problem for the one-dimensional unsteady simple flowof an isentropic, inviscid
and perfectly conducting compressible fluid, subject to a transverse magnetic field, is solved,
at any point (x, t) in the relevant domain of interest xl < x < xr ; t > 0, with xl < 0 and
xr > 0 under the influence of van derWaals excluded volume through the parameter a. It has
been observed that the position, velocity, shock speed and the values of the intermediate states
of each structure in the flow, i.e., rarefaction wave and shock wave, is strongly influenced by
the van der Waals excluded volume a. It is observed that the left shock speed decreases and
right shock speed increases when the van der Waals excluded volume a increases in test 1. In
test 2, the velocity decreases when the van der Waals excluded volume a increases and but
the velocity increases for test 3. It is noticed that for the density profile of test 4, the wave
speed for right rarefaction wave increases when a increases but decreases for left rarefaction
wave. We have discussed all possible wave interactions of the Riemann problem. We will
extend this analytical procedure to construct the exact solution and wave interactions to the
case of non-isentropic flows in future.
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