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Abstract Using the classical Banach fixed point theorem, we propose a novel method to
obtain existence and uniqueness result pertaining to the solutions of semilinear elliptic partial
differential equation of the type�u+ f (x, u, Du) = 0, in� ⊂ R

n and u|∂� = 0, in a suitable
Sobolev space. Here f : �×R×R

n → R is either a linear or a non-linear Lipshitz continuous
function. The approach attempted here can be used as an algorithm by the numerical analysts
to determine a solution to a partial differential equation of the above type.

Keywords Fixed point · Contraction map · Sobolev space · Elliptic PDE · Fundamental
solution

Introduction

Elliptic partial differential equations have become amajor case of study since a very long time
owing to its applications inmany physical and engineering problems ([1,2] and the references
therein). It is also today one of the richly enhanced field of research in Mathematics. The
applications of elliptic partial differential equations are almost unrestricted spreading across
fields like Fluid Mechanics, Electro-magnetics, Biological systems and finance ([3–8] and
the references therein). Though many a times, one would attempt analytical solutions, the
real life problems may strictly demand numerical treatment. However, before investigating a
numerical solution, it is customary from Mathematician’s perspective to show the existence
and uniqueness of solution to a given boundary value problem. This process may take one
to situations where classical solutions are not supported and invites some restrictions on the
regularity of the solution. Many classical theories like the Riesz representation theorem [9],
Lax–Milgram theorem [10], various fixed point methods [11,12] etc. have been extensively
used to establish the existence and uniqueness results pertaining to the solution of elliptic
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partial differential equations. There are also a few number of classical texts and lecture
notes [13–15,18] and the references therein, which give a detailed exposition to the study
of elliptic Partial differential equations. One important class of an elliptic boundary value
problem is

�u + f (x, u) = 0, x ∈ R
n, n ≥ 1

u|∂� = g. (1)

An early evidence of existence and uniqueness result pertaining to the problem in (1) was
established by Picard [19], for the two-dimensional case. Such a type of problems are exten-
sively used in the study of convection diffusion limited processes dealing with heat and mass
transfer. However, we will not discuss anything about this physical phenomena in this paper.
Considered in the context of partial differential equations (n ≥ 1), the above equation has
been a subject of great study. Lair and Shaker [20,21] considered the following problem,

�u + p(x) f (u) = 0, ∀ x ∈ � ⊆ R
n,

u|∂� = 0, (2)

where f (u) is expected to satisfy one of the following three conditions—(i) f
′
(s) ≤ 0, (ii)

f (s) > 0, for s > 0, (iii)
∫ ε

0 f (s)ds < ∞ for some ε > 0, and showed that the problem in

(2) has a unique positive solution in H1,2
0 (�), if the function p is non-trivial, non-negative,

L2 function. We shall give the description of the spaces later and please refer the same for
details. The following semilinear elliptic equation was considered by Barroso [22]

− �u + λu = f (x, u, μ), ∀ x ∈ �,

u|∂� = 0, (3)

where � is a bounded domain in R
n, n ≥ 3 with C1,1 boundary, λ is a parameter close

to zero, f is a specific Caratheodory function and μ is a non-zero measure. The existence
and uniqueness results for this depend on the behaviour of f . Barroso [22] has shown exis-
tence and uniqueness using a variant of Krasnoselskiis fixed point theorem. Oloffson [23]
considered

− �u + f (u)μ = 0, ∀ x ∈ �, (4)

where � ⊆ R
n, n ≥ 2. The general solution of the above elliptic equation was considered

under relaxed regularity assumptions on �,μ and f .
In general, the two methods that have been extensively used are the Schauder’s fixed point

theorem and the Barrier method. It was shown by Sattinger [25] that if φ1, φ2 be an upper
and lower solution of the problem in (1), respectively, f is Hölder continuous in�,φ1 ≥ φ2,
then there exists a solution u such that φ1(x) ≥ u(x) ≥ φ2(x), for every x in�. Other notable
studies on semilinear elliptic PDEs can be found in [22–24] and the references therein. We
refer here to the monograph on applications of contraction mapping principle by Brooks et.
al. [26] wherein, the following general version was introduced

− �u = f (x, u, Du), (5)

where u ∈ H1,2
0 (�). This problem has been reduced to an equivalent fixed point problem

in L2(�), whose unique fixed point has been shown as the unique solution of the above
equation. However, the corresponding estimate is L1

λ1
+ L2√

λ1
< 1 where the constants L1 and

L2 are such that

| f (x, u, Du)| ≤ | f (x, 0, 0)| + L1|u| + L2|Du|
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and λ21 is the first and the smallest eigenvalue of−� on H1,2
0 (�). We derive motivation from

the above [26] and consider the following problem

�u + f (x, u, Du) = 0,

u|∂� = 0, (6)

� is a bounded domain in R
n, f (x, ., .) is a Lipshitz continuous function which satisfies the

condition

| f (x, y1, z1) − f (x, y2, z2)| ≤ K |y1 − y2| + L|z1 − z2|
for every pair (x, y1, z1), (x, y2, z2) ∈ � × R × R

n, f (., u(.), Du(.)) is an L2(�) and

Du =
(

∂u
∂x1

, ∂u
∂x2

, . . . , ∂u
∂xn

)
.

Description of the Spaces

We begin by defining the derivative of a function in L p(�) in the weak sense.
Weak derivative A function in L p(�) is said to be weakly differentiable if there exists
v ∈ L1

loc(�) such that
∫

�

uDβψdx = (−1)|β|
∫

�

vψdx ∀ ψ ∈ C∞
0 (�).

In general, Sobolev spaces are defined as follows.

Hk,p(�) = {u ∈ L p(�): Dβu ∈ L p(�), |β| ≤ k},

with norm ||u||k,p =
⎧
⎨

⎩

(∑
|β|≤k ||Dβu||pL p(�)

) 1
p
, 1 ≤ p < ∞

∑
|β|≤k ||Dβu||L∞(�), p = ∞

whereβ = (β1, β2, . . . , βn),

βi ∈ N
⋃{0} for 1 ≤ i ≤ n, |β| = β1 + β2 + · · · + βn . Thus Dβ = ∂β1

∂x
β1
1

∂β2

∂x
β2
2

. . . ∂βn

∂xβn
n
. Here

Dβu are the derivatives of u in the weak sense. However, this space gives no information
about the behaviour of its functions on the boundary ∂� which forms an integral part of the
Dirichlet (Neumann andRobin) boundary value problems.Hence to tackle the boundary value
problems one appeals to the trace theorem [13,16,17] to extend the functions in Hk,p(�),
which is defined in �, to the boundary ∂�. One important class of boundary condition is the
vanishing of the function on the boundary, i.e., u|∂� = 0. In this paper, the space in which
we seek for a solution is defined as

H1,2
0 (�) = {

u ∈ H1,2(�): u|∂� = 0
}
.

This definition of the space preserves the completeness of the space with respect to the
norm ||..||1,2 (for a proof, refer [13]). In fact H1,2

0 (�) is compactly embedded in L2(�).
Throughout the paper the derivative of u, Du, will be treated as a weak derivative.

Mathematical Approach

In this section we will prove the existence of unique solution to the problem in Eq. (6).
We know from the Malgrange–Ehrenpries theorem [27,28] that there exists a fundamental
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solution to a linear differential operator with constant coefficients. Hence, from the consid-
erations in the problem, there exists a fundamental solution to the operator −�, say F(x)
where F(x) ∈ H1,1

loc (Rn) (refer “Appendix”), i.e., −�F(x) = δy(x), where δ is the Dirac
distribution. This simple yet powerful result will be used here except that the fundamental
solution will be replaced with the Green’s function [13]—denoted by G(., .)—satisfying the
boundary condition. Using this result, we restate the problem, so as to find a fixed point to
the operator defined on the right hand side of the following equation

u = −
∫

�

G(x, y). f (y, u(y), Du(y))dy, x ∈ �

= T (u) (say). (7)

Observe that if there exists a solution to (7), say u, then

�u = −
∫

�

�G(x, y) f (y, u, Du)dy,

= −
∫

�

δx (y) f (y, u, Du)dy,

= − f (x, u, Du), a.e.. (8)

We use the idea due to Zhao [29] to represent a Green’s function defined over an arbitrary
domain � ⊂ R

n with boundary ∂�. The representation is as follows.

G(x, y) = |x − y|2−n min

{

1,
d(x, ∂�)d(y, ∂�)

|x − y|2
}

,

= |x − y|2λ(x, y) (say), (9)

where d(w, ∂�) = inf{|w − z|: z ∈ ∂�}. It is easy to check that the function λ(x, .) is
in C∞

0 (�) for a fixed x ∈ � (or a fixed y ∈ �) except possibly on a set of measure zero.
We will now prove that the operator T which is linear if f is linear and non-linear if f is
non-linear, is a contraction map on X = H1,2

0 (�) where we will use the H1,2
0 -norm defined

by ||u||1,2 = (∫
�

|Du|2dx) 12 .

||Tu − T v||1,2 =
⎡

⎣
∫

�x

∣
∣
∣
∣
∣

∫

�y

DxG(x, y)( f (y, u, Du) − f (y, v, Dv))dy

∣
∣
∣
∣
∣

2

dx

⎤

⎦

1/2

,

≤
⎡

⎣
∫

�x

(∫

�y

|DxG(x, y)||( f (y, u, Du) − f (y, v, Dv))|dy
)2

dx

⎤

⎦

1/2

,

=
[∫

�x

(∫

�y

∣
∣
∣
∣|x − y|2−nDxλ(x, y) + (2 − n)|x − y|1−nλ(x, y)

(x − y)

|x − y|
∣
∣
∣
∣

|( f (y, u, Du) − f (y, v, Dv))|dy
)2

dx

]1/2

.

≤ M

(∫

�x

(∫

�y

||x − y| + (2 − n)||x − y|1−n |( f (y, u, Du)

− f (y, v, Dv))|dy
)2

dx

)1/2

,
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≤ M

(∫

�x

(∫

�y

(|x − y| + |(2 − n)|)|x − y|1−n |( f (y, u, Du)

− f (y, v, Dv))|dy
)2

dx

)1/2

,

≤ MC(n,�)|||�x |1−n ||1||( f (., u, Du) − f (., v, Dv))||2,
≤ MC(n,�)|||�x |1−n ||1

(
K

λ1
+ L

)

||u − v||1,2. (10)

whereC(n,�) = |2−n|+diam(�), M = max{M1, M2}>0, M1 = supx,y∈�{|Dxλ(x, y)|},
M2 = supx,y∈�{|λ(x, y)|}. Hence

||Tu − T v||1,2 ≤ MC(n,�)|||�x |1−n ||1
(
K

λ1
+ L

)

||u − v||1,2 (11)

where we have used the Lipshitz condition on f , the Young’s inequality, the Cauchy-
Schwartz inequality and the Poincare inequality on H1,2

0 (�) to obtain (10). The application
of the Young’s inequality involved the extension of the functions |�x |1−n ∈ L1(�) and
f (., u(.), Du(.)) ∈ L2(�) to R

n by defining it as ‘0’ in R
n\�. The mapping T will be

a contraction map if MC(n,�)|||�x |1−n ||1
(

K
λ1

+ L
)

< 1. Hence, if this condition is met,

then we can guarantee the existence of a unique fixed point to the operator T which will also
satisfy (6). Thus we have the main result of this paper in the following theorem.

Theorem 1 Let � ⊂ R
n, n ≥ 3 be a relatively compact domain with a smooth boundary

and let

f : � × R × R
n → R

be a Lipshitz continuous function satisfying

| f (x, y1, z1) − f (x, y2, z2)| ≤ K |y1 − y2| + L|z1 − z2|

for every pair (x, y1, z1), (x, y2, z2) ∈ �×R×R
n and f (., u(.), Du(.)) ∈ L2(�), then the

elliptic boundary value problem

�u + f (x, u, Du) = 0,

u|∂� = 0, (12)

admits a unique solution to (10) in H1,2
0 (�), provided

MC(n,�)|||�x |1−n ||1
(
K

λ1
+ L

)

< 1. (13)

Note:
If � ⊂ R

2 then the Green’s function has the following representation

G(x, y) ≈ log

(

1 + d(x, ∂�)d(y, ∂�)

|x − y|2
)

.
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A Few Important Consequences and Examples of Theorem 1

Consider the semilinear elliptic partial differential equation

Lu + f (x, u, Du) = 0,

u|∂� = 0, (14)

where L is an elliptic operator in a divergence form, i.e.,

L =
n∑

k, j=1

∂

∂xk

(

akj
∂

∂x j

)

, (15)

where ai j are constants and the function f having the same properties as that given in theorem.
Weconclude that the fundamental solution to the operator L is also in H1,1

loc (Rn) (refer “Appen-
dix”). Hence by a result due to Escauriaza [30] that c1FLaplacian(x, y) ≤ Fsemi linear(x, y) ≤
c2FLaplacian(x, y), we conclude that there exists a unique solution to (14) in H1,2

0 (�).
Another important and immediate consequence of the Theorem 1 can be seen if

f (x, 0, 0) = 0∀x ∈ � and f is linear in u, Du. Under these assumptions T is linear in
u. From the theorem, if the multiplying factor to ||u − v||1,2 is smaller than 1, then T has a
unique fixed point. But T is linear and no matter what it always fixes the ‘0’ vector thereby
allowing us to conclude that the only solution to the problem is the trivial solution—similar
to ‘Hopf’s principle. We will now give few examples of partial differential equations of the
type given in (6) to guarantee the existence of a solution using the condition given in (12).

Example 1 Consider the problem with dimension n = 1 and � = (0, 1)

− u
′′ = f (x, u, u

′
),

u|∂� = 0. (16)

The Green’s function corresponding to the operator − d2

dx2
with u(0) = u(1) = 0 is

G(x, y) =
{ |x − y| − y(1 − x), x ≤ y

|x − y| − x(1 − y), x ≥ y
and the corresponding first eigen value is π2. Thus DxG(x, y) = y − 1, for x ≤ y and is
equal to y for x ≤ y. Using similar arguments given earlier or otherwise by virtue of Theorem
1 we have the following.

||Tu − T v||1,2 ≤
∫ 1

0

(∣∣
∣
∣

∫ x

0
y( f (., u, Du) − f (., v, Dv))dy

+
∫ 1

x
(y − 1)( f (., u, Du) − f (., v, Dv))dy

∣
∣
∣
∣

2

dx

)1/2

≤
(
K

π
+ L

)

||u − v||1,2.

Thus the problem in (16) will have a unique solution if K
π

+ L < 1.

Example 2 Consider the problem

− �u = f (x, u, Du),

u|∂� = 0, (17)

where � = (0, 1) × (0, π).
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When�⊂R
2 weuse the representation, due toZhao [29],G(x, y)= log

(
1+ d(x,∂�)d(y,∂�)

|x−y|2
)
.

For ε << 1 we consider,

||Tu − T v||1,2

=
(∫

�

∣
∣
∣
∣

∫

�

DxG(x, y)( f (y, u, Du) − f (y, v, Dv))dy

∣
∣
∣
∣

2

dx

)1/2

=
(∫

�

∣
∣
∣
∣

∫

B(x,ε)
Dx (2 log d(x, ∂�) + 2 log |x − y|)( f (y, u, Du) − f (y, v, Dv))dy

∣
∣
∣
∣

2

dx

+
∫

�

∣
∣
∣
∣

∫

�\B(x,ε)
Dx log

(

1 + d(x, ∂�)d(y, ∂�)

|x − y|2
)

( f (y, u, Du) − f (y, v, Dv))dy

∣
∣
∣
∣

2

dx

)1/2

The metric d(., ∂�) is differentiable almost everywhere and hence bounded.
Let us analyze the following integral

∫

B(x,ε)
|(Dx2 log |x − y|)( f (y, u, Du) − f (y, v, Dv))|dy

=
∫ ε

0

∫ 2π

0
|(Drx ,θ2 log rx )( f (rx , θ, u, Du) − f (rx , θ, v, Dv))|rxdrxdθ

where rx = |y − x |, Drx ,θ = êrx
∂

∂rx
+ êθrx

∂
∂θ
. Since f (., u(.), Du(.)) ∈ L2(�) ⊂ L1(�)

we have 0 ≤ ∫ ε

0

∫ 2π
0 |2( f (rx , θ, u, Du) − f (rx , θ, v, Dv))|drxdθ < ∞. Hence,

∫

B(x,ε)
|(Dx2 log |x − y|)( f (y, u, Du) − f (y, v, Dv))|dy

≤ ε

∫ ε

0

∫ 2π

0
|2( f (rx , θ, u, Du) − f (rx , θ, v, Dv))|drxdθ → 0

as ε → 0.

Similarly for x ∈ �we have | ∫B(x,ε) Dx2 log(d(x, ∂�))( f (y, u, Du)− f (y, v, Dv))dy| →
0 as ε → 0. Thus we have

||Tu − T v||1,2 ≤ M

(
K

λ1
+ L

)

||u − v||1,2, (18)

where M = sup�×�

{
|Dx log

(
1 + d(x,∂�)d(y,∂�)

|x−y|2
)

|
}
.

Existence of a unique solution is guaranteed if M
(

K
λ1

+ L
)

< 1.

Example 3 Alarcón et al. [31] considered the following problem

− �u + αu = g(|Du|) + λh(x), ∀ x ∈ �,

u = 0, x ∈ ∂�, (19)

where � ⊂ R
n is a smooth bounded domain with boundary ∂�, α > 0, g is an arbitrary

C1 function which is increasing, g is Lipshitz continuous with Lipshitz constant L , h is a

non-negative function in C1(�). Hence if MC(n,�)|||�x |1−n ||1
(

α
λ1

+ L
)

< 1, where λ1 is

as described previously, then there exists a unique solution to the problem (19) in H1,2
0 (�).
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Conclusions

An existence and uniqueness result of a solution to the partial differential equation

�u + f (x, u, Du) = 0, x ∈ � ⊂ R
n

u|∂� = 0,

has been established using the classical Banach fixed point theorem. The result was then
demonstrated by considering few important examples. The method introduced here can be
used by numerical analysts to determine a weak solution to the partial differential equation
of the above kind.
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Appendix

Consider

− �F(x) = δ(x). (20)

On applying Fourier transform to (16), we obtain

F̂(ξ) = 1

|ξ |2 . (21)

Inverse Fourier transform helps us to recover the fundamental solution of the Laplacian �

which is as follows

F(x) = −
∫

Rn

ei〈x,ξ〉

|ξ |2 dξ. (22)

It is a well known result that the fundamental solution of the Laplacian is represented in a
closed form as

F(x) = 1

|ωn |
1

|x |n−2 , n ≥ 3,

= log(|x |), n = 2 (23)

where ωn is the surface area of a sphere in n dimensions, Sn−1. It can be seen that for n ≥ 3

∂F

∂xl
= (2 − n)

ωn

xl
|x |n , (24)

for l = 1, 2, . . . , n and hence |∇F | = 1
ωn

(2−n)

|x |n−1 . This shows that |∇F | ∈ L1
loc(R

n). A similar
argument can be used for n = 2 as well with K being an arbitrary compact set in R

n . Hence

if L =∑n
k=1
∑n

j=1 akj
∂2

∂xk∂x j
is an elliptic operator satisfying

n∑

k=1

n∑

j=1

akjξkξ j > γ |ξ |2, (25)
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then the fundamental solution corresponding to L , say F , also belongs to H1,1
loc (Rn). This is

because

∣
∣
∣
∣

∂

∂xl
Flaplacian

∣
∣
∣
∣ =

(∣
∣
∣
∣

∫

Rn

ξl cos < x, ξ >

|ξ |2
∣
∣
∣
∣

2

+
∣
∣
∣
∣

∫

Rn

ξl sin < x, ξ >

|ξ |2
∣
∣
∣
∣

2
) 1

2

(26)

and hence
∫

K

∣
∣
∣
∣
∂F

∂xl

∣
∣
∣
∣ dx =

∫

K

∣
∣
∣
∣
∣

∫

Rn

iξl ei<x,ξ>

∑
k, j ak j ξkξ j

dξ

∣
∣
∣
∣
∣
dx

=
∫

K

⎛

⎝

∣
∣
∣
∣
∣

∫

Rn

ξl cos < x, ξ >
∑

k, j ak j ξkξ j
dξ

∣
∣
∣
∣
∣

2

+
∣
∣
∣
∣
∣

∫

Rn

ξl sin < x, ξ >
∑

k, j ak j ξkξ j
dξ

∣
∣
∣
∣
∣

2
⎞

⎠

1
2

dx

≤ 1

γ

∫

K

(∣
∣
∣
∣

∫

Rn

ξl cos < x, ξ >

|ξ |2
∣
∣
∣
∣

2

+
∣
∣
∣
∣

∫

Rn

ξl sin < x, ξ >

|ξ |2
∣
∣
∣
∣

2
) 1

2

dx, holds from (30)

= 1

γ

∫

K

∣
∣
∣
∣

∂

∂xl
Flaplacian

∣
∣
∣
∣ dx

< ∞, (27)

for every l = 1, 2, . . . ,m. Note that we have used the condition of L being uniformly elliptic.
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