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Abstract This article introduces a delayed HIVmodel arising out of incorporating the intra-
cellular delay. It has been assumed that intracellular delay τ is constant and some of the
infected T cell actually dies out due to infection and only a portion of infected T cell which
remain alive a time lag of τ after infection will produce newly HIV particles. The mathe-
matical analysis on the present model suggests that infection free equilibrium is still always
possible. The endemic equilibrium point exists if number of virus particle produced is greater
than eδ2τ and δ3 < δ3, where δ2 and δ3 are the mortality rate of infected T cell and virus
respectively. The local stability analysis and Hopf Bifurcation analysis have been carried out
on the proposed model and same supported by numerical simulation. The proposed model
exhibit some interesting dynamical behaviour of the HIV infection.
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Introduction

The emergent of AIDS is considered to be one of the most dangerous disease in the history
of mankind. This unique disease targets the immune system of the human thereby decreasing
the potential of human to fight for the other disease and eventually result in death. In the
study of the AIDS, the most important component of the body of human is immune system
composed of CD4+ T cell, is a type of lymphocytes or simply white blood cells [20]. On
the other hand, Human Immunodeficiency Virus or HIV is class of virus which invades
the immune system or simply it infects the healthy T Cell. These T Cells are commonly
regarded as helper T cells as these cells inhibit the key factors for the production of other
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cell populations in the immune system. For a normal and healthy person, the nominal CD4+
T Cell count varies around 1000mm−3. When it decreases to a value around 200mm−3, the
person is regarded as having AIDS [22]. Healthy T cells inside the body usually die and again
grow due to its internal mechanism and therefore it is possible that the may infection may
lead to hampering of the mechanism which controls the development of new T Cell thereby
decreasing its overall count. The sharp decline in the T cell count is not clearly explained.
There are also other peculiar features of HIV infections such as the time lag of approximately
10years lag between the instant of infection and onset of AIDS and this time lag is not clearly
explained as yet. All this properties of infection is because of the importance of the CD4+
T Cell count in immune regulation. Although, there are many intermediate process through
which, a healthy person can exhibits AIDS, but broadly there are three main stages of HIV
infection, viz. primary infection stage or acute symptom phase, chronic infection phase or
latency phase and finally AIDS. A perfect mathematical model should be able to explain all
the three phase characteristics of HIV dynamics. The literatures of mathematical model in
HIV are abundant but a very few have been able to model all the three phases of the HIV
dynamics.

The mathematical model can be of great use in these kind of situation which requires a lot
of investments to carry out in-vivo analysis. There has been some remarkable studies of HIV
model using mathematical models and the governing models have been able to explain a lot
of properties of virus dynamic inside human [1,2,5,9,11,18,19,21,24,26,28]. The pioneer
reviewwork by Perelson et al. [22] is worthmentioning. They have given a very good account
of different mathematical model and their worthiness to understand virus dynamics in details.
Their works also explain some of the drug therapy model of HIV dynamics which are most
prominent one [29,30]. However, they have not given any history of delayed mathematical
model which are available in literature. It is well established in literature that delay can
have very pronounced effects on stability of mathematical model [12,27]. There are in fact
quite a number of delayed HIV model which gives good insight for the understanding of
the Virus dynamics. Li et al. [13] have proposed a FDE model incorporating delay as the
time between instant of infection and infected T cell starts producing virus and they have
shown that delay can sometimes do not have any impact on the asymptotic stability of
infected equilibrium state. Similarly, other authors have also proposed their DDE of HIV
infection [1,6,7,15,17,25]. Some of the authors have taken intracellular delay into account
and studies their dynamical behaviour [14,16,23].

The proposed mathematical model incorporates the intracellular delay into account and
studies the its implication on the long term dynamics of HIV infection. The model assume a
simple logistic proliferation of healthy T cell and assumes that death of the infected T cell
follows exponential distribution. It has been shown that the intracellular delay and other key
parameter in the model can leads to variety of rich dynamics of HIV model which other
model lacks.

The Proposed Model

Let u1, u2 and u3 denotes the number of healthyT cells, infectedT cells andHIVparticle in the
system. The basic growth dynamics of healthy CD4+ T cells in humans can be approximately
assumed to follow the logistic type growthmodel. If Q represents the rate at which newCD4+
T cells are created by the body and at the same time it can also proliferate to give new T
cell, then overall growth rate can be modelled by Q + αu1

(
1 − u1

K

)
where K represents the

maximum level of T cell at which proliferation shut off and α being proliferation rate of T
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cell. Also, it is more logical to think of natural death rate δ1 of T cell and may be assumed to
be constant so that overall dynamics in absence of HIV can be described as

du1
dt

= Q − δ1u1 + αu1
(
1 − u1

K

)

In the presence of HIV, CD4+ T cell is assumed to follow law of mass-action type interaction
and therefore interaction between virus and T cell is given byβu1u3,β being rate of infection.
Keeping this in mind, the T cell dynamics can now be written as:

du1
dt

= Q − δ1u1 + αu1
(
1 − u1

K

)
− βu1u3

For infected T cell, the argument is as follows. It is assumed that there is a delay due to
intracellular delay τ which is the time span between the instant of interaction between the
healthy T cell and virus; and emergence of infected T cell as a result of interaction. During
this time lag, some of the T cell will actually die out and only those T cell which remains
alive after this time from the instant of infection will take part in the dynamics of the infected
T cell. In this time span, it is assumed that number of infected T cell follows exponential
distribution i.e if δ2 is the natural death rate of infected T cell then the total number of infected
T cell at time ’t’ is the sum of all the infected cell at previous time [3,10,23] i.e.

u2(t) =
∫ τ

0
βe−δ2T u1 (t − T ) u3 (t − T ) dT

In order to write the above equation in differential form, change the variable by using the
linear transformation t − T = φ, then the above relation takes the form,

u2(t) =
∫ t

t−τ

βe−δ2(t−φ)u1 (φ) u3 (φ) dφ

For the dynamics of the virus, it is assumed that the after infection, the helper T cell produce
N copies of virus which will infect other helper T cells. The death rate of healthy T cell is
equal to e−δ2Tβu1(t − T )u3(t − T ) and total number of virus produced with this death is
Ne−δ2Tβu1(t − T )u3(t − T ). The natural mortality rate δ3 of virus is also assumed and it is
constant. The balanced equation for virus dynamics can be thus modelled by the following
law,

du3
dt

= Nβe−δ2T u1(t − τ)u3(t − τ) − δ3u3 − βu1u3

Hence, the proposed model for HIV infection in terms of rate law is assumed to be governed
by the equation:

du1
dt

= Q − δ1u1 + αu1
(
1 − u1

K

)
− βu1u3

du2
dt

= βu1u3 − βe−δ2τu1(t − τ)u3(t − τ) − δ2u2

du3
dt

= Nβe−δ2τu1(t − τ)u3(t − τ) − δ3u3 − βu1u3 (1)

where N ≥ 1, τ ∈ (0,∞), δi ∈ [0,∞), Q, α, β, K ∈ R+ = (0,∞). The initial conditions
for the above system is defined by
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u1(θ) = φ1(θ)

u3(θ) = φ3(θ)

u2(0) =
∫ 0

−τ

βeδ2φu1 (φ) u3 (φ) dφ (2)

θ ∈ [−τ, 0], φi (θ) ∈ C([−τ, 0]), the set of all continuous functions defined on interval
[−τ, 0]. The model being a biological model, the conditions φi (θ) ≥ 0, φi (0) > 0, i = 1, 3
are further imposed so that the model system (1) is biologically feasible.

Some Preliminary Results

Theorem 1 All solutions of the system (1) remain positive for all time t ≥ 0 if initial history
u1(0), u2(0) and u3(0) are positive.

Proof As Q > 0, the fist equation of (1) gives

du1
dt

≥ −δ1u1 + αu1
(
1 − u1

K

)
− βu1u3. (3)

Therefore, separating variable u1 and integrating the inequality gives

u1(t) ≥ u1(0) exp
{
−δ1t + α

(
1 − u1

K

)
t − βu3t

}
(4)

which proves that u1(t) remains positive as long as u1(0) is positive and thus proving its
positively invariant properties.
For proving positively invariant of u3, consider the interval [0, τ ] in which using the positivity
of φ1(θ) and φ3(θ),

u1(t − τ)u3(t − τ) = φ1(θ)φ3(θ) ≥ 0. (5)

Hence, in [0, τ ], third equation of (1) gives

du3
dt

≥ −δ3u3 − βu1u3. (6)

Therefore, separating variable u3 of Eq. (6) and then integration yields

u3(t) ≥ u3(0) exp {− (δ3 + βu1) t} (7)

Similarly, in [τ, 2τ ] and using positivity of u3(t) on [0, τ ] and third equation of (1) again
gives differential inequality (6) which on separating variable u3 and then integration yields

u3(t) ≥ u3(τ ) exp {− (δ3 + βu1) t} (8)

Continuing in this way, the above technique can be easily generalised to any finite interval
[0, t] and this proves that u3(t) remains positive for all t ≥ 0.
Now, to prove positivity of u2(t), consider the relation of u2,

u2(t) =
∫ τ

0
βe−δ2T u1 (t − T ) u3 (t − T ) dT . (9)

Since the quantities β, e−δ2T , u1 (t − T ) and u3 (t − T ) are all positive for T ∈ [0, τ ], the
integrand is the integral (9) is positive and hence by property of definite integral, integral will
also remain positive for all time t . Therefore positivity of u1 and u3 proved earlier gives the
positivity of u2(t). Hence, all solutions of (1) is positively invariant. ��
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Lemma 1 For the differential inequality

dy

dt
+ ay ≤ b, y(0) = y0, (10)

the solution satisfies

y(t) ≤ b

a
(1 − e−at ) + y0e

−at

and therefore

lim sup
t→+∞

y(t) ≤ b

a
. (11)

Proof Note that for the first order equation

dy

dt
+ ay = b

the integrating factor is eat . Therefore multiplying both sides of differential inequality (10)
gives the exact differential

d

dt
(eat y) ≤ beat , y(0) = y0, (12)

On integrating both sides within [0, t],

y(t)eat − y0 ≤ b

a
(eat − 1) (13)

which on some manipulation gives the required inequality. Again taking the limit t → ∞,
the final form of solution can be obtained. ��
Theorem 2 If the solutions of the system (1) are positively invariant, then all the solution
are also ultimately bounded in the domain

Σ =
{
(u1, u2, u3) : ‖u1‖ ≤ Ω

2α
, ‖u1 + u2‖ ≤ 2Q + Ω

2δ
,

∥∥∥u1 + u2 + u3
N

∥∥∥ ≤ 2Q + Ω

2δ∗

}

Proof Let Ω = K (α − δ1) + √
K 2 (α − δ1) 2 + 4αK Q which is always positive for all

values of the parameters. On solving for u1 from equation

Q − δ1u1 + αu1
(
1 − u1

K

)
= 0 (14)

u1 = Ω
2α , and for this value the first equation of (1) gives,

du1
dt

= Q − δ1u1 + αu1
(
1 − u1

K

)
− βu1u3

= −βu1u3 (15)

Therefore positivity of u1 and u3 in Eq. (15) implies that maximum value of u1 that can be
achieved is Ω

2α , since the rate
du1
dt < 0 and so,

lim sup
t→+∞

u1(t) ≤ Ω

2α
. (16)
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Again, on adding first two equations,

d

dt
(u1 + u2) = Q − δ1u1 + αu1

(
1 − u1

K

)
− βe−δ2τu1(t − τ)u3(t − τ)

≤ Q + Ω

2
− δ1u1 − δ2u2

≤ Q + Ω

2
− δ(u1 + u2)

where δ = min{δ1, δ2} and therefore applying Eq. (11) of Lemma 1 gives,

lim sup
t→+∞

(u1(t) + u2(t)) ≤ Q + Ω/2

δ
. (17)

Similarly,

d

dt

(
u1 + u2 + u3

N

)
= Q + αu1

(
1 − u1

K

)
− δ1u1 − δ2u2 − δ3

N
u3 − β

N
u1u3

≤ Q + Ω

2
− δ1u1 − δ2u2 − δ3

N
u3

≤ Q + Ω

2
− δ∗ (

u1 + u2 + u3
N

)

where δ∗ = min{δ1, δ2, δ3} and this again, on applying Eq. (11) of Lemma 1 gives

lim sup
t→+∞

(
u1 + u2 + u3

N

)
≤ Q + Ω/2

δ∗ . (18)

Combining Eqs. (16)–(18), it is established that the solution of the system is ultimately
bounded in the domain Σ . ��
Mathematical Analysis

Then, the system (1) permits two equilibrium points:

1. a unique disease free equilibrium point E0 (ū1, 0, 0), where always exists and

ū1 = Ω

2α

2. and a unique endemic equilibrium point E1 (ũ1, ũ2, ũ3) which exits if

N > eδ2τ and δ3 <
Ωβ

(
Ne−δ2τ − 1

)

2α

and the values of the coordinates of this equilibrium point are

ũ1 = δ3eδ2τ

β
(
N − eδ2τ

)

ũ3 = α − δ1

β
− αδ3eδ2τ

β2K
(
N − eδ2τ

) + Q
(
Ne−δ2τ − 1

)

δ3

ũ2 = β
(
1 − e−δ2τ

)

δ2
ũ1ũ3
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Local Stability of E0

To study the stability behaviour of the disease free equilibrium point, first it is required to
have linearised system around (ū1, 0, 0) which is

du1
dt

=
(

α − δ1 − Ω

K

)
u1 − βΩ

2α
u3

du2
dt

= −βΩe−δ2τ

2α
u3(t − τ) + βΩ

2α
u3 − δ2u2

du3
dt

= NβΩe−δ2τ

2α
u3(t − τ) −

(
δ3 + βΩ

2α

)
u3 (19)

Therefore, corresponding transcendental characteristic equation is given by

(λ + μ)

(
λ − α + δ1 + Ω

K

) (

δ3 + βΩ
(
1 − Ne−τ(λ+δ2)

)

2α
+ λ

)

= 0.

The two eigenvalues can be readily obtained as −δ2 and α − δ1 − Ω
K which are always

negative since Ω = K (α − δ1) + √
K 2 (α − δ1) 2 + 4αK Q > K (α − δ1) i.e. α < δ1 + Ω

K .
So stability can be achieved if the equation

δ3 + βΩ
(
1 − Ne−τ(λ+δ2)

)

2α
+ λ = 0 (20)

permits only roots having negative real parts. The following theorem gives the sufficient
condition for disease free equilibrium point to be locally stable.

Theorem 3 If δ3 >
(N−1)βΩ

2α , then disease free equilibrium point (ū1, 0, 0) is always locally
stable for all values of delay parameter τ .

Proof Assume that equilibrium point (ū1, 0, 0) of system (1) is stable at τ = 0, which means
that Eq. (20) at τ = 0 have all roots having negative real part i.e.

λ <
(N − 1) βΩ

2α
− δ3 < 0

which gives δ3 >
(N−1)βΩ

2α . Now assume that τ is continuously varied in positive direction
so that there exists a value of τ ∗ at which one pair of purely imaginary eigenvalue emerges
say λ = ±iρ, ρ > 0. Therefore, substituting λ = ±iρ, ρ > 0 in Eq. (20),

(
δ3 + βΩ

2α
− βΩNe−δ2τ cos τρ

2α

)
+ i

(
βΩNe−δ2τ sin τρ

2α
+ ρ

)
= 0

The above equation leads to the following system of equation in sin τρ and cos τρ.

βΩNe−δ2τ cos τρ

2α
= βΩ

2α
+ δ3

βΩNe−δ2τ sin τρ

2α
= −ρ

On eliminating sin τρ and cos τρ, the ρ is given by the equation

ρ2 =
(

βΩNe−δ2τ

2α

)2

−
(

δ3 + βΩ

2α

)2

(21)
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Form Eq. (21), it can be deduced easily that ρ2 < 0 always if δ3 >
(N−1)βΩ

2α and this proves
the theorem. ��

Basic Reproduction Number R0 and Stability Conditions

For the proposed model (1), the basic reproduction number can be defined by

R0 = Ωβ
(
Ne−δ2τ − 1

)

2αδ3

With the above definition of basic reproduction number, the following theorem concerning
the stability of infection free equilibrium point E0 and existence of disease equilibrium point
can be stated.

Theorem 4 If R0 < 1, then disease free equilibrium point E0 is always locally stable for
all values of delay parameter and if R0 > 1, then endemic equilibrium points exists.

Proof It is very clear from the definition and proof of Theorem (3) that if
Ωβ

(
Ne−δ2τ −1

)

2αδ3
< 1,

then all conditions of theorem remains valid. Moreover, the condition
Ωβ

(
Ne−δ2τ −1

)

2αδ3
> 1 is

the one of the conditions for existence of positive equilibrium point. The other condition for
existence follows since for R0 > 1, N > eδ2τ . ��

The basic reproduction number R0 gives also the global stability conditions which is clear
from the following conditions

Theorem 5 If R0 < 1, then disease free equilibrium point E0 is always globally stable for
all values of delay parameter. On the contrary if R0 > 1, then E0 is unstable and in this
case, endemic equilibrium points exists.

Proof Consider the following Lyapunov function

L
(
ut1, u2(t), u

t
3

) = eδ2τ

N
ut3(0) + β

∫ 0

−τ

ut1(θ)ut3(θ)dθ

where ut1(θ) = u1(θ + t) and ut3(θ) = u3(θ + t) for θ = [−τ, 0]. Then the time differential
of above function gives,

L ′ (ut1, u2(t), ut3
) = eδ2τ

N
u̇3

t (0) + βu1(t)u3(t) − βu1(t − τ)u3(t − τ)

= β

(
1 − eδ2τ

N

)
u1(t)u3(t) − δ3eδ2τ

N
u3

≤ β

(
1 − eδ2τ

N

)
Ω

2α
u3(t) − δ3eδ2τ

N
u3

≤ Ne−δ2τ

δ3
(R0 − 1) u3

Thus if R0 < 1, L ′ (ut1, u2(t), ut3
)

< 0, and hence E0 is globally asymptotically stable.
Moreover, if R0 > 1 then from the fact that R0 = ū1/ũ1, E1 will exists and E0 will be
unstable in this case. ��
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Local Stability of E1 and Hopf Bifurcation Analysis

The characteristic equation of the Jacobian matrix at the endemic equilibrium point
(ũ1, ũ2, ũ3) is

λ3 + a1λ
2 + a2λ + a3 + e−λτ e−δ2τ

(
b1λ

2 + b2λ + b3
) = 0 (22)

where the coefficients are given by the following:

a1 = −α + δ1 + δ2 + δ3 + ũ1

(
β + 2α

K

)
+ βũ3

a2 = 2αũ1
K

(δ2 + δ3 + βũ1) + δ1δ2 + δ3δ2 + δ1δ3

+ βũ1 (−α + δ1 + δ2) + (δ2 + δ3) (βũ3 − α)

a3 = δ2

(
2αδ3ũ1

K
+ 2αβũ21

K
− αβũ1 + βδ1ũ1 − αδ3 + δ1δ3 + βδ3ũ3

)

b1 = −Nβũ1

b2 = Nβũ1

(
−α + δ1 + δ2 + 2αũ1

K

)

b3 = Nβδ2ũ1

(
α − δ1 − 2αũ1

K

)

To begin the bifurcation analysis of the system, first it is assume that τ = 0 in Eq. (22) in such
a way that it gives all root of Eq. (22) having negative real part. At this point, the theorem
by Routh–Hurwitz can be applied to get the desired conditions for roots of Eq. (22) having
negative real part and hence, the stability of algebraic polynomial of Eq. (22). On applying
the Routh-Hurwitz theorem, the following conditions are obtained

a1 + b1 > 0, a3 + b3 > 0, (a1 + b1)(a2 + b2) − (a3 + b3) > 0 (23)

As the delay parameter τ is continuously increased from τ = 0, some of the roots with
negative real part in left half complex plane shift to right half complex plane. This way the
endemic equilibrium point will become unstable. The condition for Hopf Bifurcation is that
the equation should permits at least one root with positive part as the bifurcation parameters
are continuously varied. This is possible if the roots of equation also permits the root with
zero real parts by By Rouche’s Theorem. Therefore assume that λ = iw at some value of
parameter τ say τcr . Putting this in Eq. (22), the following equation in w is obtained.

ξ3 + c1ξ
2 + c2ξ + c3 = 0, ξ = w2 (24)

c1 = a21 − 2a2 − b21e
−2δ2τcr

c2 = a22 − 2a1a3 − b22e
−2δ2τcr + 2b1b3e

−2δ2τcr

c3 = a23 − b23e
−2δ2τcr

For Hopf bifurcation to take place, the Eq. (24) should have at least one real root. Since the
delay τcr is present explicitly in Eq. (24), this makes almost impossible to calculate the value
of critical value τcr of the parameter in usual way. In 2002, Beretta et al. [4] proposed a
geometric switch criteria for the calculation of critical value of delay parameter in such kind
of delay dependent parameter system.Without any loss of generality, the following theorems
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and lemma are given onwhich this technique are based. Since the delay are explicitly occurs in
the system as one of the parameter, it is assumed that the characteristic equation of system (1)
is

Φ(λ, τ) = R(λ, τ ) + S(λ, τ )e−λτ = 0 (25)

with

R(λ, τ ) = λ3 + a11λ
2 + a12λ + a13 (26)

S(λ, τ ) = a21λ
2 + a22λ + a23 (27)

where coefficients are given by

a11 = a1, a12 = a2, a13 = a3,

a21 = e−δ2τb1, a22 = e−δ2τb2, a23 = e−δ2τb3

It should be noted that the coefficients ai j in above defined functions R and S are functions
of delay parameter τ . Now, for the given system (1), the positive equilibrium point exists if

0 ≤ τ < min

{
1

δ2
ln

(
NΩβ

Ωβ + 2αδ3

)
,
ln N

δ2

}
(28)

In order to ascertain the stability switch criteria, the function R and S define above must
fulfil some conditions which are listed below

Lemma 2 Assume τ ∈ [0, τm) with τm = min
{

1
δ2
ln

(
NΩβ

Ωβ+2αδ3

)
, ln N

δ2

}
and R and S satisfy

the following conditions:

1. λ = 0 is not a zero of Φ(λ, τ), i.e. R(0, τ ) + S(0, τ ) �= 0,
2. If λ = iω, then Φ(iω, τ) = R(iω, τ) + S(iω, τ) �= 0,

3. lim sup
{∣∣∣ S(λ,τ )

R(λ,τ )

∣∣∣ : |λ| → ∞, λ ≥ 0
}

< 1 for any τ ,

4. F(ω, τ) = |R(iω, τ)|2 − |S(iω, τ)|2 has at most finite number of real zeros for any τ ,
5. All positive roots ω(τ) of F(ω, τ) = 0 is continuously differentiable functions of τ if it

exists.

Proof Observe that

R(λ, τ ) =λ3 + a11λ
2 + a12λ + a13

S(λ, τ ) =a21λ
2 + a22λ + a23

1. Hence R(0, τ )+ S(0, τ ) = a13 + a23 = a3 + e−δ2τb3 �= 0, therefore λ = 0 is obviously
not a zero of Φ(λ, τ).

2. Secondly it can be easily verified that R(iω, τ) + S(iω, τ) �= 0.

3. Since,
∣∣∣ S(λ,τ )
R(λ,τ )

∣∣∣ =
∣∣∣ a21λ2+a22λ+a23
λ3+a11λ2+a12λ+a13

∣∣∣ → 0 as |λ| → ∞, hence

lim sup
{∣∣∣ S(λ,τ )

R(λ,τ )

∣∣∣ : |λ| → ∞, λ ≥ 0
}

< 1.

4. Now a usual calculation yields that

F(ω, τ) = ω6 + (
a211 − a221 − 2a12

)
ω4

+ (
a212 − a222 − 2a11a13 + 2a21a23

)
ω2 + (

a213 − a223
)

(29)
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which being a purely algebraic polynomial has at most six zeros i.e. F(ω, τ) has finite
number of zeros for all τ .

5. As, the coefficients ai j in F(ω, τ) are all continuous functions of τ , therefore all zeros
ω(τ) of F(ω, τ) are continuously differentiable functions of τ . ��

For the assumptions of the theorem regarding the stability switch, define the interval I as
follows,

I = {τ : F(ω, τ) = 0 and ω > 0} ∩ [τ0, τm).

Further, let

Sn(τ ) = τ − θ(τ ) + 2nπ

ω(τ)
(30)

where, ω(τ) is a positive root of F(ω, τ) = 0 and θ(τ ) ∈ [0, 2π] is solution of equations

sin θ(τ ) = a22ω
(
a11ω2 − a13

) + (
a12ω − ω3

) (
a23 − a21ω2

)

a221ω
4 + a222ω

2 − 2a21a23ω2 + a223

cos θ(τ ) = −a22ω
(
a12ω − ω3

) + (
a13 − a11ω2

) (
a23 − a21ω2

)

a221ω
4 + a222ω

2 − 2a21a23ω2 + a223
(31)

The following theorem can now be stated which gives a way to find the critical value of τ

for which Hopf bifurcation [8,12] occurs in the system.

Theorem 6 Assume that the ω(τ) is a positive zero of the function F(ω, τ) for τ ∈ I and
there exists a τcr ∈ I such that for some values of n = 0, 1, 2, . . . ,

Sn(τcr ) = 0;
then a purely simple conjugate pair of imaginary roots ±ω(τcr ) of characteristic Eq. (22)
exists at τ = τcr which transverse the imaginary axis from left to right or right to left
according as χ(τcr ) > 0 or χ(τcr ) < 0 where

χ(τcr ) = sign

{
dReλ

dτ

∣∣∣∣
λ=iω(τcr )

}

= sign
{
F ′

ω (ω(τcr ), τcr )
}
sign

{
dSn(τ )

dτ

∣∣∣∣
τ=τcr

}

Proof For proof, the reader may consult Berreta et al. [4]. ��
In the following section, the existence of Hopf bifurcation and critical value of bifurcation
parameter τcr , is explored through numerical calculation. The other nonlinear properties of
the system such as multi periodic oscillations and chaotic attractors are also explored.

Computer Simulations

For the numerical computations of the system, the following set of parameters which can be
found in literatures [6,22,28] have taken for bifurcation analysis of the system.

α = 0.95, β = 1.1 × 10−3, δ1 = 0.03, δ2 = 0.03, δ3 = 3.0,

N = 60, K = 1500, Q = 60.

For the above parametric values, the system has positive equilibrium point for all values
of parameter τ ∈ [0, 102.158]. On plotting the Sn(τ ) for various values of n, versus delay
parameter τ , the stability switches can be determine. Figure 1 shows the existence of positive
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Fig. 1 Positive roots of F(ω, τ) = 0

Fig. 2 Plot of Sn(τ ) for n = 0, 1, 2, . . . , 19

roots of F(ω, τ) = 0 as τ is varied and accordingly the Fig. 2 can be drawn for Sn(τ )

versus τ . It is obvious from Fig. 2 that there are in fact 22 values of τ at which stability
switch occurs but the system is stable in the interval τ ∈ [0, τ1) ∪ (τ22, τm) and unstable
or periodic oscillation exists in τ ∈ (τ1, τ22) with τ1 = 14.845406, τ22 = 72.927895 and
τm = 102.157591.

Moreover, the bifurcation at τ = τ1 is forward and at τ = τ22 is backward sinceχ(τ1) > 0
and χ(τ22) < 0 respectively (using Figs. 3, 4). The time series plot for different values of τ

are shown in Figs. 5, 6 and 7.
The further nonlinear properties of the proposed model is explored by drawing bifurcation

diagram of the system w.r.t. to important parameters such as α, β, δ1, δ2, δ3, N and τ . It
may be observed from the following bifurcation diagrams and sensitivity analysis that the
systempossess variety of dynamical propertieswhich includes periodic,multi-periodic, quasi
periodic and chaotic behaviour.

The first bifurcation diagram shown in Fig. 8 shows the system behaviour with respect to
intrinsic growth rate i.e. α or T cell proliferation rate. It is observed that for lower and higher
value of α, the system is chaotic but it has multi-periodic window in the range α ∈ (6.6, 9.0).

The second bifurcation diagramw.r.t. parameter β shows two chaotic windowswith single
and multi-periodic windows in between for β = (0, 0.004), see Fig. 9. The other bifurcation
diagrams (Figs. 10, 11, 12, 13, 14, 15) also have some chaotic windows with single/multi
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Fig. 3 Plot of Sn(τ ) for n = 0, 10, 11

Fig. 4 Plot of derivative of F(ω, τ)

(a) (b)

(c) (d)

Fig. 5 Time series and phase plot diagram for τ = 10 showing stability behaviour. a Time series plot for u1,
b time series plot for u2, c time series plot for u3, d phase plot in u1, u2 plane
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(a) (b)

(c) (d)

Fig. 6 Time series and phase plot diagram for τ = 15 showing stability behaviour. a Time series plot for u1,
b time series plot for u2, c time series plot for u3, d phase plot in u1, u2 plane

(a) (b)

(c) (d)

Fig. 7 Time series and phase plot diagram for τ = 80 showing stability behaviour. a Time series plot for u1,
b time series plot for u2, c time series plot for u3, d phase plot in u1, u2 plane

periodic window. The chaotic window in above bifurcation diagram can easily be identified
by checking the system towards sensitivity to initial conditions as depicted in Fig. 16.

The proposed model also explain the one property of HIV infection in human where
the symptoms of HIV infection can be seen after one year as depicted in Fig. 17a, b. The
emergence of HIV is obvious as the virus concentration shoots up abruptly after 600 days
of infection. The CD4+ T cell counts also falls sharply and it oscillates around 400 which is
clear sign of AIDS.
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Fig. 8 Bifurcation diagram with respect to α

Fig. 9 Bifurcation diagram with respect to β

Fig. 10 Bifurcation diagram with respect to δ1
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Fig. 11 Bifurcation diagram with respect to δ2

Fig. 12 Bifurcation diagram with respect to δ3

Fig. 13 Bifurcation diagram with respect to N
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Fig. 14 Bifurcation diagram with respect to Q

Fig. 15 Bifurcation diagram with respect to τ

Fig. 16 Sensitivity towards initial conditions
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Fig. 17 Time series plot of u1 and u3

(a) (b)

(c) (d)

(e) (f)

Fig. 18 Time series plot of u1 and u3 with different values of Q. a Q = 0, b Q = 50, c Q = 100, d Q = 150,
e Q = 200, f Q = 250

Remarks

This article introduces a intracellular delay model for the HIV model by assuming a time lag
between the instant of infection and the death of infected CD+ T cell. The number of infected
T cell also follow exponential distribution. The resulting model as a result posses two unique
equilibrium point namely a disease free equilibrium point and a endemic equilibrium point.
Further analysis of the model suggest that the endemic equilibrium point exists only if the
number virus particle produced by one CD4+ T cell and death rate of HIV particle satisfy
the following relation:
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N > eδ2τ = N and δ3 <
Ωβ

(
N − e−δ2τ

)

2α
= δ3

The above two relations gives a bound on τ , as τ ∈ [0, τm) with

τm = min

{
1

δ2
ln

(
NΩβ

Ωβ + 2αδ3

)
,
ln N

δ2

}

Therefore there exists a upper limit on the value of intracellular delay which can lead to
endemic equilibrium point or in biological term, the emergence of AIDS.

The bifurcation diagrams plotted against model parameters reveals a lot of dynamical
properties such as periodic, quasi-periodic and chaotic behaviour. The chaotic behaviour
here signify that the system is highly sensitive to the initial perturbation and different people
will show different T Cell count and viral load in HIV infections under same set of conditions.

One of the main property of HIV infection is that the people shows symptoms after about
year or so which is clearly explained by the the proposed model as depicted in Fig. 17. The
number of helper cell initially maintaining a level which is regarded as latency phase. In
this phase, the viral load is also low, but once this phase is over, viral concentration starts
to increase while the CD4+ T cell count sharply decreases, and keeps on oscillating. In this
oscillation, there are times where CD4+ cell count falls below 200mm−3 which is a clear
sign of full blown AIDS and the patient can succumb to HIV infection finally.

If somehow, CD+ cell count can be constantly supplied, the person can have chance of
survival. This can be clearly observed in Fig. 18, as the rate of influx of T cell have stabilising
behaviour on the viral infection.
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