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Abstract The combined effect of heat and mass transfer in Jeffrey fluid flow through porous
medium over a stretching sheet subject to transverse magnetic field in the presence of heat
source/sink has been studied in this paper. The surface temperature and concentration are
assumed to be of the power law form. The linear Darcy model takes care of the flow through
saturated porousmediumwith uniform porosity. Further, first order chemical reaction rate has
been considered to account for the effect of the reactive species, exhibiting non-Newtonian
behaviour of Jeffery fluid model. Moreover, the present study analyses the result of previous
authors’ as a particular case. The present work warrants attention to analytical method of
solution by applying confluent Hypergeometric function and the fluid model considered here
represents fluids of common interest such as solvent and polymers with zero shear-rate.
The method of solution involves similarity transformation. The coupled non-linear partial
differential equations representing momentum, concentration and non homogeneous heat
equation are reduced into a set of non-linear ordinary differential equations. The transformed
equations are solved by applying Kummer’s function. The effect of pertinent parameters
characterizing the flow has been presented through the graph. Contributions of elasticity of
the fluid, magnetic field and the porous matrix resist the motion of Jeffery fluid resulting a
thinner boundary layer where as magnetic field and porous matrix contribute to enhance the
temperature distribution in the flow domain.
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List of symbols

C Concentration
Cw Wall concentration
D Diffusion coefficient
l Characteristic length
M Magnetic parameter
pr Prandtl number
S Stress tensor
T Fluid temperature
u, v Velocity components
cp Specific heat
C∞ Ambient concentration
r Wall temperature parameter
Kp Permeability of the porous medium
Sc Schmidt number
R1 Rivlin–Ericksen tensor
Tw Wall temperature
T∞ Ambient temperature

Greek symbols

β Deborah number
η Similarity variable
υ Kinematic fluid viscosity
γ Heat generation\absorption parameter
ψ Stream function
λ1, λ Material parameters
μ Dynamic viscosity
ρ Fluid density

Introduction

Various non-Newtonian fluid models have been proposed in the literature keeping in view of
their different rheological features. Jeffery fluid is one class of non-Newtonian fluid which
attracts many researchers for it’s simplicity. Literature survey indicates that interest in the
flows over a stretched surface has grown during the past few decades. These flows are arisen
in metal and polymer extrusion, drawing of plastic sheets, cable coating, textiles and paper
industries, etc. The rate of heat transfer over a surface has a pivotal role in the quality of
final product. Industrial applications include fibres spinning, hot rolling, manufacturing of
plastic and rubber sheet, continuous casting and glass blowing.MHDflowwith heat andmass
transfer has been a subject of interest of many researchers because of its varied application
in science and technology. Such phenomena are observed in buoyancy induced motions in
the atmosphere, in water bodies, quasi-solid bodies such as earth, etc. In natural processes
and industrial applications, many transportation processes exist where transfer of heat and
mass takes place simultaneously as a result of thermal diffusion and diffusion of chemical
species.
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Crane [1] studied the boundary layer flow of an incompressible viscous fluid towards a
linear stretching sheet. An exact similarity solution for the dimensionless differential system
was obtained. Such closed form similarity solutions were obtained for the models exhibiting
the features like viscoelasticity, magneto hydrodynamics, suction, porosity and heat andmass
transfer (Andersson et al. [2]). Chamkha [3] studied theMHDflowof uniformly stretched ver-
tical permeable surface in the presence of heat generation/absorption and a chemical reaction.

Nadeem et al. [4] have discussed on an optimized study of mixed convection flow of a
rotating Jeffrey nanofluid on a rotating vertical cone. Mehmood et al. [5] investigated the
effects of transverse magnetic field on a rotatingmicropolar fluid between parallel plates with
heat transfer. Theoretical analysis of slip flow on a rotating cone with viscous dissipation
effects is studied by Saleem et al. [6]. Akbar et al. [7] investigated numerically the biocon-
vection in a suspension of gyrotactic microorganisms and nanoparticles in a fluid flow over a
stretching sheet. Moreover, Noor et al. [8] have considered the mixed convection stagnation
flow of a micropolar nanofluid along a vertically stretching surface with slip effects.

Bhukta et al. [9] have studied heat andmass transfer onMHDflowof viscoelastic fluid over
a shrinking sheet embedded in a porous media. Baag et al. [10] have carried out a numerical
investigation on MHD micropolar fluid flow past a vertical surface in the presence of heat
source and chemical reactive species. Further, Kar et al. [11] have studied 3-dimensional free
convective MHD flow on a vertical channel through porous medium with heat source and
chemical reaction. This flow is restricted to Newtonian fluid only. Recently, Baag et al. [12]
have considered the viscoelastic fluid flow subject to magnetic field through porous medium
and studied the effect of heat and mass transfer. All these above studies are restricted to
viscoelastic model of Walters B’ model or Newtonian model. But in the present study we
consider a simple viscoelastic model i.e. Jeffery’s model, which represents viscoelastic fluid
of common interest.

The effect of temperature-dependent viscosity on mixed convection flow from vertical
plate is investigated by several authors (Hossain and Munir [13] and Mustafa [14]). Ishak
et al. [15] investigated theoretically the unsteady mixed convection boundary layer flow and
heat transfer due to a stretching vertical surface in a quiescent viscous and incompressible
fluid. Mahapatra and Gupta ([16,17]) considered the stagnation flow on a stretching sheet.
Cipolla [18] studied the temperature jump in polyatomic gas, also Kao [19] and Latyshev and
Yushkanov [20] studied the temperature jump. The flow and heat transfer of Jeffry fluid near
stagnation point on a stretching/shrinking sheet with parallel external flow was investigated
by Turkyilmazoglu and Pop [21]; Akram and Nadeem [22] discussed the peristaltic motion
of a two dimensional Jeffry fluid. Authors in [23–26] studied more properties of Jeffrey fluid.
Different non-Newtonian fluids were considered in studies by Pandey and Tripathi [27,28],
Mishra et al. [29], Pandey et al.[30] and Tripathi [31]. Qasim [32] discussed heat and mass
transfer effect on Jeffrey fluid.

The saturated porousmedium considered here is having uniform porosity and it is assumed
that the flow properties such as thermal conductivity and solid matrix (Porous medium)
properties are identical.

The driving force necessary to move a specific volume of fluid through porous medium
is in equilibrium with resistance force generated by the internal friction between the fluid
and the pore structure. This resistance force is characterized by Darcy’s semi-emperical law
established by Darcy [33].

The 3-dimensional generalisation of the Darcy law is

V = Kp

μ
(−∇ p + ρg) (1)
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where V is the average velocity, Kp is the permeability of the porous medium, −∇ p is
the resistance force that results from a pore pressure gradient, ρg is the gravitational force.
Since the constitutive equations of Newtonian and non-Newtonian fluids are different, the
contribution of the term characterizing the permeability of the medium affects the flow
phenomena differently.

The Darcy law is valid for low speed flow and works well for a wide domain of flows. It
is valid for flow of liquids with small Prandtl number, but in the case of liquids with high
velocity or for gas at very low and very high velocities Darcy’s law becomes invalid. The
authors in the present study are aware of the limitations. However, the authors [34,35] have
considered the Darcy model which contributes substantially to the flows of Newtonian and
non-Newtonianfluids. The authors [36–38] have considered theDarcyflowof non-Newtonian
fluid in saturated porous medium.

The novelties of the present study are:

(1) The viscoelastic fluid model considered here, is a dash pot and a voigt model in series.
The Voigt model is good for viscoelastic solids and not for fluids but the Jeffery’s model
is good for fluids and not for solids. Themodel is interesting because theMaxwell model
is a particular case. Further, the Newtonian fluids arise from Jeffery’s model when the
relaxation and retardation times are equal (Joseph [39]).

(2) The magnetic field in conjunction with permeability of the medium, resulting two addi-
tional forces, is the main concerned of the present study which has not been addressed
so far to the best of authors’ knowledge.

(3) In earlier study [32] the effect of heat source in energy equation has been considered
without considering the effect of first order chemical reaction which is of same order of
heat source. As far as possible, effects of above phenomena are depicted in the present
discussion and the work of previous author is discussed as a particular case.

Formulation of the Problem

Let us consider a particular type of visco-elastic fluid called Jeffrey fluid given by Akram
and Nadeem [22]:

T = −pI + μ

1 + λ

(
R1 + λ1

(
∂R1

∂t
+ V .∇

)
R1

)
,

where T , the Cauchy stress tensor, p, the pressure μ, the viscosity, λ the retardation time,
λ1 the relaxation time of the fluid and R1 is the Rivlin–Ericken tensor defined by R1 =
∇v + (∇v)t .

The steady two dimensional flow of an electrically conducting visco-elastic fluid (Jeffrey
model) over a stretching sheet in the presence of heat source/sink has been considered. The
effect of first order chemical reaction has also been considered in this study. The sheet in
xz-plane is stretched along the x-direction such that the velocity component in the x-direction
varies linearly along it (Fig. 1). The governing boundary layer equations are

∂u

∂x
+ ∂v

∂y
= 0 (2)
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Fig. 1 Physical model and co-ordinate system
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(3)

ρCp

(
u

∂T

∂x
+ v

∂T

∂y

)
= K

∂2T

∂y2
+ Q(T − T∞) (4)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
− k∗

c (C − C∞) (5)

The corresponding boundary conditions are:

u=U (x)=cx, v=0, T =Tw = T∞ + A1

( x
l

)r
,C = Cw = C∞ + A2

( x
l

)r
, at y = 0

u → 0, T → T∞,C → C∞, as y → ∞

}

(6)

Solution of the Flow Field

Equation (2) is satisfied if we chose a dimensionless stream function ψ(x, y) so that

u = ∂ψ

∂y
, v = −∂ψ

∂x
. (7)

Introducing the similarity transformations

η = y

√
c

υ
, ψ(x, y) = x

√
υc f (η), u = cx f ′(η), v = −√

cν f (η), (8)

and substituting in (3), we get

f ′′′ + (1 + λ)
(
f f ′′ − f ′2) − β

{
f f ′′′′ − f ′′2} − (

M + 1/Kp
)
f ′ = 0, (9)
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The corresponding boundary conditions are:

f (0) = 0, f ′(0) = 1, f ′(∞) = 0, f ′′(∞) = 0. (10)

where f is the dimensionless stream function and η is the similarity variable. β = λ1c, the
Deborah number, (where λ1 is the relaxation time of fluid), M = σ B2

0/ρc, the magnetic
parameter.

The exact solution of Eq. (9) with boundary conditions (10) is obtained as

f (η) = 1 − e−αη

α
, α > 0 (11)

where α =
√
1 + λ + M + 1/Kp

1 + β
(12)

Heat Transfer Analysis

Introducing non-dimensional quantities θ(η) = T−T∞
Tw−T∞ , non-dimensional temperature, Pr =

ρCp/K , Prandtl number, γ = Qυ
ρCp

, Heat source parameter and using Eq. (8), Eq. (4) becomes

θ ′′ + Pr f θ
′ + Pr (γ − r f ′)θ = 0 (13)

and corresponding boundary conditions become

θ(0) = 1, θ(∞) = 0. (14)

Further, introducing the variable ξ = Pr e−αη

α2 the Eq. (13) is transformed to

ξ
d2θ

dξ2
+

(
1 − Pr

α2 + ξ

)
dθ

dξ
−

(
r − γ

α2ξ

)
θ = 0 (15)

with the boundary conditions

θ

(
ξ = Pr

α2

)
= 1, θ(ξ = 0) = 0 (16)

Now, the solution of Eq. (15) is obtained as follows by using Kummer’s function (Wang and
Guo [40]), given in “Appendix”.

θ(ξ) =
(

α2ξ

Pr

)a+b
1F1 (a + b − r, 1 + 2a,−ξ)

1F1
(
a + b − r, 1 + 2a,−Pr/α2

) (17)

where, a = Pr/2α2, b =
√

(Pr)2 − 4α2γ /2α2 and 1F1(α1, α2; x) is the Kummer’s function

defined by 1F1(α1, α2; x) = 1 +
∞∑
n=1

(α1)n
(α2)n

xn
n! , α2 = −1,−2 . . ..

Here(α1)n and (α2)n are the Pochhammer’s symbols defined as

(α1)n = α1(α1 + 1)(α1 + 2) · · · (α1 + n − 1)

(α2)n = α2(α2 + 1)(α2 + 2) · · · (α2 + n − 1) (18)

In terms of variable η Eq. (17) can be written as

θ(η) = 1F1(a + b − r, 2a + 1,−Pr/α2e−αη)

1F1(a + b − r, 2a + 1,−Pr/α2)
e−α(a+b)η (19)
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Mass Transfer Analysis

Introducing the non-dimensional variable ϕ(η) = C−C∞
Cp−C∞ and using (8), the Eq. (5) becomes,

ϕ′′ + Sc f ϕ
′ − Sc(r f

′ − kc)ϕ = 0 (20)

With the boundary conditions
ϕ = 1 at η = 0
ϕ → 0 as η → ∞ (21)

Again introducing a new variable ζ = − Sc
α2 e

−αη, the Eq. (20) becomes

ζ
d2ϕ

d2ζ
+

[
1 − Sc

α2 + ζ

]
dϕ

dζ
−

(
r − kc

α2ζ

)
ϕ = 0 (22)

The corresponding boundary conditions are

ϕ(ζ = 0) = 0, ϕ′
(

ζ = Sc
α2

)
= 1 (23)

The solution of Eq. (22) in terms of Kummer’s function using the boundary condition (23)
is given by

ϕ(η) = 1F1(Sc/α2 − r, 2Sc/α2 + 1,−Sc/α2e−αη)

1F1(Sc/α2 − r, 2Sc/α2 + 1,−Sc/α2)
e−(Sc/α)η (24)

Results and Discussion

The Non-Newtonian property of Jeffery’s fluid model is exhibited through material parame-
ters λ and λ1. This model represents Newtonian fluid when the relaxation and retardation
times are equal. If the stress is put to zero, then the strain relaxes and its time of relaxation
becomes the time of retardation. The Jeffery’s model allows for relaxation of stress and strain
rate and, in general, they relax at different times Joseph [39]. The following discussion reveals
the effects of interaction of the material property of the fluid with the applied magnetic field
on the flow past a stretching sheet embedded in a saturated porous medium in the presence
of chemically reactive species.

In course of discussion, the work of Qasim [32] is derived as a special case in the absence
of magnetic field and porous matrix. The flow, heat and mass transfer phenomena are char-
acterised by Deborah number β, Magnetic parameter M , Prandtl number Pr and Schmidt
number Sc. Figure 2 exhibits the streamline patterns towards the free stream.

It is seen from Fig. 3 that decrease in Deborah number, decreases the velocity of fluid for
bothM=0 andM=1.0 in the absence of porous matrix (Kp=100). This observation, agrees
well with Qasim [32] in the case of absence of magnetic field (M=0). The physical inter-
pretation of this effect runs as follows. The decrease of Deborah number (relaxation time)
decreases the velocity producing thinner boundary layer, consequently gathers less momen-
tum during the flow. This occurs both in presence/absence of magnetic field. Moreover, it
is revealed that the retarding effect of magnetic field reduces the velocity further, producing
less momentum in the flow field.

On careful observation of Fig. 4 reveals that presence of porous matrix opposes the fluid
motion reducing the momentum of flow significantly resulting a thinner boundary layer.
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Fig. 2 Streamlines for different sections

Fig. 3 Influence of Deborah number on longitudinal velocity profiles

Figure 5 exhibits the effect of elastic parameter, λ, on velocity profile. An increase in
the value of λ decreases the velocity irrespective of presence/absence of porous matrix or
magnetic field. This well agrees with the observation of Qasim [32].

Figure 6 shows the effect of β on the temperature distribution. The number β (= λ1c)
contributes to thematerial property aswell as stretching rate of the sheet/plate. It is interesting
to note that the temperature distribution remains invariant under the individual or combined
effects of magnetic field and permeability of the porous medium in a layer little far off the
stagnation point i.e. η = 4.5 but no such characteristic is exhibited in the absence of both
(Curve-I). This result is a striking outcome of the present study in the absence of magnetic
field and porous medium, not reported earlier. Another point is to note that the temperature
decreases significantly in all the layers in the absence of the retarding force due to magnetic
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Fig. 4 Longitudinal velocity profiles

Fig. 5 Influence of λ on longitudinal velocity profiles

filed and permeability of medium. Further, it is interesting to note that an increase in β

reduces the temperature in the layer nearer to the stagnation point. Thereafter, reverse effect
is observed. This may be attributed to the elastic property of the fluid which absorbs some
heat near the stagnation point.

From Fig. 7 it is remarked that high Prandtl number fluid i.e. flow with low thermal diffu-
sivity, produces thinner thermal boundary layer in the presence of magnetic field irrespective
of the presence or absence of porous matrix but the magnetic field enhances the temperature
significantly at all the layers(Curves-I and II).

Figure 8 exhibits the effect of heat source/sink on the temperature field in the presence of
both magnetic field and porous medium. It is evident that magnetic field as well as permeabil-
ity of themedium increases the temperature at all the layers in the presence of source/sink. An
interesting feature is that a point of intersection of the temperature profiles irrespective of the
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Fig. 6 Influence of Deborah number on temperature profiles

Fig. 7 Influence of Prandtl number on temperature profiles

presence of heat source is marked near η = 4.5 due to interplay of the effect of high magnetic
field and permeability of the medium. This is also supported by the velocity distribution.

Figure 9 shows the effect of surface temperature variation on temperature profiles. The
two cases are discussed; for r=1 (linear) and r=2(quadratic). The nonlinear variation of
surface temperature reduces the fluid temperature in all the layers incompareson with linear
one.

Figure 10 displays the concentration distribution in the presence of first order chemical
reaction with nonlinear variation of wall concentration (r = 2.0). It is seen that presence
of magnetic field contributes to enhance slightly the concentration where as the chemical
reaction parameter, Kc increases significantly but the reverse effect is observed with an
increasing value of Sc that is for heavier reactive species. Thus, it is concluded that the
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Fig. 8 Influence of heat source/sink on temperature profiles

Fig. 9 Influence of surface temperature on temperature profiles

reactive species with positive reaction rate coefficient enhances the concentration level where
as species with low diffusivity i.e. for high values of Sc decreases it.

Conclusions

• In the absence of magnetic field and porous medium the results of the present study
coincide with the observation made by Qasim [32] and hence generality and consistency
of the findings are assured of.

• Contribution of elasticity of the fluid, magnetic field on a conducting fluid and the pres-
ence of porous medium resists the motion of Jeffery fluid resulting a thinner boundary
layer where as magnetic field and porosity enhances the temperature distribution.

123



1236 Int. J. Appl. Comput. Math (2017) 3:1225–1238

Fig. 10 Influence of Schmidt number on concentration profiles

• The temperature distribution becomes independent of the effects of magnetic field, elas-
ticity and permeability at a particular point under the influence of either magnetic field
or permeability or both.

• Elasticity of the fluid reduces the temperature near the bounding surface.
• The reactive species with positive reaction rate contribute to the growth of concentration

level where as heavier reactive species causes a decay.

Acknowledgements Authors express their deepest sense of gratitude to the learned referee for their constitu-
tive suggestions and authorities of Siksha ‘O’ Anusandhan University and Centurion University for providing
the facilities to carry on the work.

Appendix

The new equation obtained from a differential equation by the confluence of two or more
of its singularities is called the confluent equation of original equation. After confluence,
the singularities of the new equation usually have properties more complicated than those of
original ones; it follows that the properties are different. According to theory of differential
equation only the singularities of differential equation could be the singularities of its solution.

The equation

z
(
1 − z

b

) d2y

dz2
+

[
γ − (α + β + 1)

z

b

] dy

dz
− α

β

b
y = 0

The singularities of the above equation are 0, b,∞ all being regular. Now let b = β → ∞
we obtain

z
d2y

dz2
+ [γ − z]dy

dz
− αy = 0

This new confluent hypergeometric equation (Kummer’s equation) has only two singularities
0 and ∞; the former is still a regular singularity, but the latter, being the confluence of
two original regular singularity, becomes an irregular singularity. The Kummer’s function
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F(α, γ, z) is a single valued analytic function in the whole Z-plane whose properties are
different from hypergeometric function F(α, β, γ, z).

Further, solution of Kummer’s function depends upon roots of the indicial equation i.e.
ρ = 0 and 1 − γ , when 1 − γ is not an integer we obtain two linear independent solutions
known as confluent hypergeometric function also known as Kummer’s function.

When γ is an integer, sign of γ will decide only one solution among the earlier two i.e. for
1−γ is not an integer. Another solution or the second solution can be obtained independently
by other method.

The integral representation of Kummer’s function is as follows

F(α, γ, z) = �(γ )

�(α)�(γ − α)

1∫
0

ezt tα−1(1 − t)γ−α−1dt

where Re(γ ) > Re(α) > 0, arg(t) = arg(1 − t) = 0.
The integral representation, though comparatively simple, are rather restricted in its para-

meters α and γ .
These are the limitations of Kummer’s function.
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