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Abstract A cellular automatamodel is presented to describe the interaction between a grow-
ing tumor next to the presence of nutrient elements, and the immune response as well as the
immunotherapy intervention and its stimulator effect on immune cell activity. A comparison
between tumor growth before and after immunotherapy effect is discussed, and many char-
acteristics of simulated tumor growth patterns are extracted such as the fractal dimension,
the fractality of tumor boundary and the number of cancerous cells on tumor periphery. The
simulation results shed light on the factor that may play a central role in immunotherapy
effectiveness and which is related to tumor morphology.

Keywords Hybrid cellular automata · Immunotherapy · Interleukin-2 · Tumor morphology ·
CTL induction

Introduction

Cancer is still a main cause of death in the world, with approximately 14 million new cases
and 8.2 million cancer related deaths in 2012 (World cancer report 2014). Several scientific
investigations have been done or are in progress to understand the biological mechanisms of
cancer establishment and destruction in order to prevent and manage the disease by explor-
ing new treatment techniques. In the past few years, there has been a major breakthrough
concerning new treatments for cancer. One of the most important ones is immunotherapy.
The basic idea behind immunotherapy is to stimulate the immune system and increase its
effectiveness at eliminating cancer cells on its own.

Mathematical models are tools that help to understand the complexity of cancer growth,
the cell interaction as well as the therapeutic intervention and its effect on tumor development
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[4,7,15–17,25,32,33,45]. Two approaches have been used to describe the tumor growth: the
continuous models [1,21], and the discrete models [2,22,24,36,41,42,52] which may use
the cellular automata methods.

Cellular automata (CA) are mathematical models of systems where time, space and state
are discrete and each cell changes its state according to its current state, the state of nearest
neighbors and local rules. A number of characteristics make the CA models attractive for
simulating and studying tumor growth, such as the use of microscopic-scale in CA rules for
each time step, which help to understand the phenomena at a microscopic level, cell’s level.

Ferreira et al. [17] proposed a reaction–diffusionmodel for avascular tumor growth, includ-
ing the cell proliferation, motility and death as well as the competition between tumor and
normal cells for nutrients. Their results indicate that the tumor morphology may be affected
by the competition for nutrients among normal and cancer cells. What was not considered
in their model is the immune response intervention, which have lead [32] to develop a new
model where they have investigated the dynamics of tumor–immune system interactions by
including the natural killer cells and cytotoxic T lymphocytes and using a hybrid cellular
automata—a deterministic PDE, they have taken into account the immune cell migration and
death as well as the tumor lysis due to the immune cells. They found that depending on the
strength of T cell recruitment and T cell death parameters, tumor grewwith stable or unstable
oscillations and in some cases tumor was eradicated completely.

The major intention of this work is to further develop the CA model of [32] by including
more biological implementations of the immunotherapy intervention. Particularly, we con-
sider the effects of interleukin-2 on the immune response, the cytokine that plays a central
role in the activation and proliferation of immune cells, which make us able to describe
the interaction of tumor and immune cells after and before therapy intervention, to study
the effect of treatment on this interaction and to understand other factor that may affect the
therapy effectiveness.

The paper is organized as follows: in “CA Model” section we present a biological back-
ground of tumor and immune cells as well as the immunotherapy intervention, and the CA
method. In “Simulation and Results Without Immunotherapy Intervention” section, sim-
ulation and results without immunotherapy intervention are developed. Then, in “Tumor
Characteristics Obtained from the Growth Patterns” section, we discuss the tumor char-
acteristics obtained from the growth patterns. Finally, in “Simulation and Results with
Immunotherapy Intervention” section, simulation and results for the immunotherapy inter-
vention are presented.

CA Model

Biological Background

In normal cellular tissue there is a constant balance between proliferation and cell death.
The cells are born, complete their mission and start off their self destruction (apoptosis). The
immune system monitors the body with an innate or natural defense mechanism, it recruits a
coordinated set of innate immune cells includingNaturalKiller cells (NK).NKcells represent
the first line of defense against infected or cancerous cells, their action is determined via
activating and inhibitory receptors presented on their surface. NK cells intervene to protect
the body with a quick and immediate immune response, traveling through the blood stream
and the lymph system to the extracellular fluid, where they find and kill foreign cells [6]. NK
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cells don’t recognize in advance the target cell, their mode of action is the same whatever the
infectious agent met.

In the case of cancer, cells are born, do their task, and refuse apoptosis. Cancer cells
continue to proliferate uncontrollably and anarchic which leads to an imbalance between
cell proliferation and cell death. A tumor cell can mutate in two ways: the signals telling
cells not to divide are turned off or the signals telling cells to begin dividing are left on
continuously [20]. The NK cells recognize and kill cancer cells and wait for the development
of the complementary adaptive immune response. In contrast to the innate immunity, the
specific defense mechanism is based on specific recognition of the infectious agent. Specific
immunity has a different mode of action for each infectious agent, a variety of immune
cells intervene to destroy abnormal cells, note in this regard the cytotoxic T lymphocytes
(CTL), which play a central role in the specific immunity. In the case of solid tumor, T cells
circulate by the peripheral vessels and colonize the tumor [3], they stop once they induce
tumor cells death. When the tumor cells in the peripheral regions are eliminated, the T cells
regain their mobility and look for a live tumor cells in the deeper regions of tumor. This
sequential repetition “static cytotoxicity/ mobility” leads to the infiltration and the gradual
elimination of the tumor, from the periphery to the center [3]. T cells kill the target cells in
different ways: they can put signals that lead to the target apoptosis, or they can bind to the
Fas ligand on the target surface and causing its apoptosis [13].

The growth and development of solid tumors take place in two distinct stages: the avascular
growth phase and the vascular growth phase [7]. Each stage is an important indicator of
tumor development, its aggressiveness and the choice of its treatment. Generally, tumor
sets out avascular, the nutrients necessary for its growth are supplied via diffusion from
distant blood vessels [12]. In addition of its rapid proliferation, tumor develops its own blood
system by the process of angiogenesis, otherwise it stays dormant. In order to accomplish
its neovascularization, tumor secretes chemical substances into the surrounding tissues to
activate a blood support. Several studies have been done to know the nature of these substances
and their effect on the endothelial cells since the first research of [18]. The second phase of
tumor growth is when the tumor is attaches to a blood vessel. The blood vessel penetrates
into the tumor mass and provide it with a constant source of nutrients which leads to a new
lease of tumor life in new neighboring tissues and creates more metastases [23]. Tumors
develop various strategies to escape immune surveillance [10], which makes the immune
cell’s mission difficult and sometimes ineffective in eradicating the cancerous cells. When
the tumor reaches this stage, treatment should step in.

Immunotherapy is one of the most recent approaches to cancer therapy, it is based on
stimulating the body’s defenses against cancer cells with activators. One such activator is
interleukin-2 (IL-2) which is themain cytokine responsible for the activation of lymphocytes.
IL-2 is produced by CD4+T cells and by CD8+T (CTL) cells and NK in lesser quantities. The
types of cancers treated in general with immunotherapy by continuous infusion or injections
of IL-2, are the renal carcinomas and some types ofmelanomas. For this reason, the simulated
patterns in our work may refer to the growth of renal cell carcinoma or melanoma. Several
lines of evidence suggest that the use of immunotherapy with the cytokine IL-2 can boost the
immune system to fight cancer. The use of the interleukin-2 on human and animal immune
system was studied by Rosenberg et al. [46], the experiments have demonstrated that IL-2
partially restores the immune deficiencies and immune response, it allows the generation
of lymphokine-activated killer cell (LAK) and stimulates the activated T cell migration.
IL-2 improves also the activity of CTL in different stages of the disease [25,43,49,50]
and promotes CTL proliferation [30], also increases the NK cells cytotoxicity [8,40,53].
Experimental studies on animals [26,34,37] and humans [47] have shown that treatment
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with maximal dose of IL-2 could produce regression of the tumor but it has a variety of
toxic effects that limit its use. The usage of IL-2 with low-dose has double benefits, it
enhances the anti-tumor action of IL-2 and at the same time minimizes its toxicity. In [46]
trials, the administration of IL-2 at low doses had no side effects and could also lead to the
regression of tumor for patients with melanoma and renal carcinoma for different ways of
IL-2 administration, only or in combination with LAK.

CA Rules

In our previous work [56], a free avascular cancer growth was simulated, including tumor
cell proliferation, motility and death in the absence of an immune response. In this work,
the interaction between tumor cells and immune system will be presented, in addition to
the immunotherapy effect. The simulation starts with one tumor cell in healthy tissue. The
tissue is represented by a square lattice of size (L + 1) × (L + 1), any site, with coordinates
x = (i, j), i, j = 0, 1, 2, . . . , L , is occupied by only one of cell types: healthy cell, immune
cell (NK or CTL) or tumor cell which may pile up with other tumor cells at the same site.
Each cellular automata grid element is assumed to correspond in size to 10µm, the real
biological size cells (10–20µm [2,31]), with 1 tumor cell = 10 µm = 0.001 mm. The
tissue is supplied with his own capillary vessel localized at the top of the lattice at x = 0, as
well as the capillary vessel of his neighboring tissue at the bottom of the lattice at x = L ,
these vessels are the only source of nutrient for all cells of the tissue. The nutrient elements
are supposed divided into two groups: nutrients essential for cell proliferation and nutrients
essential for cell survival. The both nutrient types are diffused continuously from the distant
capillary vessels throughout the tissue and are consumed by all tissue cells. The nutrient
species obey the following deterministic PDEs given by [17] and developed by [32], which
present the continuous vessel diffusion:

∂N

∂t
= ∇2N − α2(H + I )N − λNα2T N (1)

∂M

∂t
= ∇2M − α2(H + I )M − λMα2T M (2)

where N is the nutrient essential for cell proliferation, M is the nutrient essential for cell
survival, H is the total number of normal tissue cell, I is the total number of immune cell and T
is the total number of tumor cell, α is the rate of consumption of nutrient by host and immune
cells, λN is the excess consumption factor of N nutrient by tumor over non-tumor cells, λM

is the excess consumption factor of M nutrient by tumor over non-tumor cells. The boundary
conditions on the capillary vessels are: N (0, y) = M(0, y) = 1, N (L , y) = M(L , y) = 1.
The periodic boundary conditions along the x-axis are: N (x, 0) = M(x, 0) = 1, N (x, L) =
M(x, L) = 1. The Neumann boundary conditions ∂N (L ,y)

∂t = ∂M(L ,y)
∂t = 0, are imposed to

the border of the tissue (Fig. 1). All parameters are presented in Table 1. Probabilistic rules
is used in order to assign the stochastic nature of the tumor–immune interaction.

Tumor Cells

At each temporal iteration, which corresponds to the division cycle of tumor (a period of
approximately 0.5–10days, it depends on the cell type in question [25,44]), each cancer cell
can divide, migrate or die. A random number is chosen at each grid point and compared to
the calculated probability values to determine the action that will be carried out.
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Table 1 Variables and model parameters

Variable Description

N (x, y, t) Proliferation nutrient concentration

M(x, y, t) Survival nutrient concentration

H Normal cell number

T Tumor cell number

I Immune cell number

D Interleukin-2 concentration

Parameter Description

α Rate of consumption of nutrient by host and immune cells

λN Excess consumption factor of tumor over non-tumor cells of N nutrient

λM Excess consumption factor of tumor over non-tumor cells of M nutrient

Pdiv Probability of tumor cell division

Pmov Probability of tumor cell migration

Pdth Probability of tumor cell death

Pimdth Probability of tumor cell death due to the immune system

Pnk Probability of the production of a new natural killer cell

Pind Probability of induction of a CTL due to CTL/T interaction

PDctl Probability of CTL death

PPL Probability of CTL proliferation due to IL-2 injection

θdiv Shape parameter for cell division probability curve

θmov Shape parameter for migration probability curve

θdth Shape parameter for death probability curve

θind Shape parameter for CTL induction probability curve

θDctl Shape parameter for CTL death probability curve

θPL Shape parameter for CTL proliferation probability curve

I0 Level of natural killer cells

Fig. 1 Schematic of the cellular
automata. The conditions
imposed on the boundaries are
indicated

Division: For a selected tumor cell, the chance of division increases with the ratio of nutrient
concentration essential for cell proliferation to the number of cancerous cells. If the selected
cell is inside the tumor, the daughter cell will occupy the same mother site, they pile up at
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that site. If the selected cell is on the tumor border, his daughter will occupy randomly the
nearest site containing a normal or a necrotic cell. The probability form of cell division used
by Ferreira et al. [17] is:

Pdiv = 1 − exp

[
−

(
N

T θdiv

)2
]

(3)

Migration: A tumor cell may migrate when the number of cancerous cells in its microenvi-
ronment is high due to the competition between cells for nutrients. It is also possible that a
tumor cell moves from the areas in which the concentration of nutrients is low, or when the
level of concentration of essential nutrients necessary for survival is high, possibly because
nutrients promote the cell migration. The probability term proposed by [17] adopts the third
viewpoint, which is given by:

Pmov = 1 − exp

[
−T

(
M

θmov

)2
]

(4)

If the selected cell is inside the tumor, it will move to a nearest neighbor site chosen at
random. If the selected cell is on the tumor border and there is no other cells in the same site,
it will migrate by interchanging its position with the position of a normal cell. If the selected
cell is on the tumor border and there is another cell in the same site, then it will occupy the
position of nearest normal or necrotic cell.

Death: A tumor cell may die in two different ways: the nutrient elements are insufficient, in
this case the probability term used by Ferreira et al. [17] is given by:

Pdth = exp

[
−

(
M

T θdth

)2
]

(5)

This probability term implies that for a tumor cell, the chance to die increases as the ratio
of the nutrient M to the number of tumor cells decreases. Tumor cell may die also due to the
immune cells, the probability term proposed by Mallet et al. [32] is given by:

Pimdth = 1 − exp

⎡
⎢⎣−

⎛
⎝∑

j∈η

I j

⎞
⎠

2
⎤
⎥⎦ (6)

This probability term takes into account the strength of the local immune system in the
tumor cell’s neighborhood which is considered as a major factor in tumor death processes. In
other words, the probability of tumor death increases as the number of neighboring immune
cells increases. The summation counts the total number of immune cells in the neighborhood
η (the eight CA surrounding element j of the current tumor cell).

Immune Cells

NK cell production: When cancerous cells divide, the immune cells intervene and NK cells
are the first line of defense. It is assumed that the number of NK cells is stable around a
constant I0 in order to keep a normal level of NK cells, where I0n2 is the number of the Nk
cells placed over the tissue. Mallet et al. [32] have proposed a form of birth as a probabilistic
term of natural killer cell’s production Pnk . At each time step and for all grid site, a random
number is compared with Pnk , if the random number is less than Pnk and the grid element
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is not occupied by a tumor cell, than a NK cell will be placed in that element. This strategy
aims to allow the NK cells to come in open spaces such as from the below of the grid or the
space near to the blood vessel. The probability of NK cell production is given by:

Pnk = I0 − 1

n2

n,n∑
i, j=0,0

Ii, j (7)

where n2 is the size of the square domain and the summation counts the number of NK cells
in all CA.

CTL induction: It is considered that the CTL cells will be recruited to the tumor location in
two different ways. Firstly, when NK cell comes in contact with a tumor cell it is possible
that the tumor cell will be killed and the NK cell will be destroyed also with the tumor cell,
in this case NK grid place will signal the CTL induction at the next time step. Secondly, the
induction processes will also be initiated when a CTL cell comes in contact with a tumor
cell, the surrounding CA elements signal the CTL induction. The probability term for CTL
induction proposed by Mallet et al. [32] is given by:

Pind = exp

⎡
⎣−

(
θind∑
j∈η Tj

)2
⎤
⎦ (8)

For each neighboring cell, a random number is compared with Pind to determine if the
induction will be carried out or not. The summation counts the number of tumor cells in the
neighborhood η of the current CA element. Pind is defined to be equal zero if there are no
tumor cells nearby.

Immune cell death:

– If the immune cell is NK cell, then it will be dying when it is in contact with a tumor cell.
– If the immune cell is CTL cell, it is assumed to die if no tumor cells are detected in its

neighborhood, this death take place with a probability suggested by Mallet et al. [32]
such as:

PDctl = 1 − exp

⎡
⎣−

(
θDctl∑
j∈η Tj

)2
⎤
⎦ (9)

The summation count the total number of tumor cells in the neighborhood of CTL cell.
The probability is defined to be unity when there are no neighboring tumor cells.

Immune cell migration: As well as the tumor cell is not found, the immune cells continue to
move randomly towards the grid element, once they find cancer cells they will intervene to
eradicate one at random.

Immunotherapy Intervention

In general, immunotherapy may be used as an attack treatment (general treatment) for all
of the body, by injecting the system with the immune system activators such as IL-2, with
a continuous perfusion or injections. The treatment with IL-2 alone or in conjunction with
other therapy has produced beneficial effects in the treatment of metastatic melanoma [51]
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and metastatic renal cancer [55]. Immunotherapy can be also used in preventive fashion, to
prevent the recurrences after a surgery ablation, in this case the treatment is local and the
immunity is stimulated only locally. This kind of treatment may be taken for the bladder and
the cervical cancers. Immunotherapy treatment is based on a clinical staging which depends
on whether cancer has spread to regional lymph nodes or distant sites. It may be taken every
day, week, or month, some immunotherapies are given in cycles followed by a period of rest.

IL-2 doses are adjusted for the size of the patient body, either his weight in kilograms,
in this case the amount of a dose will be given in milligrams of drug per kilogram of body
weight abbreviated mg/kg (or IU/kg). Or by measuring the body surface area (BSA). BSA is
measured in square meters, abbreviated m2, in this case the amount of a dose will be given
in milligrams of drug per square meter abbreviated mg/m2 (or IU/m2) [14].

The administration of IL-2 depends on the type of cancer and how advanced it is, the
type of immunotherapy and how the body reacts to treatment. The optimum dose of IL-2
is unknown, it is generally administrated for metastatic renal cell carcinoma and metastatic
melanoma such that: 600,000 IU/kg (0.037mg/kg) IV over 15min every 8h for a maximum
of 14 doses, then 9days of rest, then a maximum of 14 more doses [9]. IL-2 can be taken in
higher or lowest doses, the high-dose therapy appears to be associated with higher response
rates but with more toxic effects. The low-dose of interleukin-2 is usually given as a shot
under the skin (subcutaneous injection), in some situations, patients may be able to give
themselves these injections at home.

For renal cell cancer, the high-dose used in [19] is the most used regimen in the United
States. This therapy consists of 600,000–720,000 IU/kg administered over a time frame of
15min by IV bolus every 8h. A course consists of a maximum of 14 doses in 5days, then
the patient rests for 5–9days. Courses are repeated every 6–12weeks. In contrast, the low
dose used in [55] is 72,000 IU/kg administered by IV bolus every 8h. A course is up to
14 doses in 5days, which is followed by a rest period of 7–10days. Courses are repeated
every 8weeks. For melanoma, there are several treatment methods which have advantages
and disadvantages. In the Rosenberg scheme [48], IL-2 is given in high doses (50–70 million
units/m2/day). In theWest Scheme [54], IL-2 is administered to intermediate dose (18million
units/m2/day by continuous perfusion).

In thiswork, the immunotherapy is used as an attack treatment in lowdoses, four injections,
four times perweek during 18–27weeks. The administration of IL-2 at lowdoses in long term,
has no side effects and leads to the regression of tumors [46]. It is assumed in our simulations
that when the tumor size reaches 7mm, the immunotherapy treatment with IL-2 starts. In
addition, we simulate other cases when the immunotherapy starts for tumors reaching 300,
500 or 900mm. At these tumor sizes and beyond 2mm, the tumor has already developed his
blood circulation by the process of angiogenesis [38]. For this reason, we will consider that
their is a third capillary vessel which is developed by the angiogenesis process and provides
nutrient elements to the tumor (it is not visible in the simulation patterns, but it is considered
in our mathematical calculations).

IL-2 Joins the blood via absorption and get dispersed by blood circulation throughout
the body, then reaches various parts of the system via blood vessels, and finally get diffused
into targeted organs via capillary vessels [39]. In our immunotherapy simulations the low
dose of IL-2 is equivalent to the low diffusion of IL-2 by the capillary vessels. We consider
a diffusion equation of IL-2 where the first term represents the diffusion of IL-2, and the
second serves as a consumption term of IL-2 by immune cells as follow:

∂D

∂t
= ∇2D − α2 I D (10)
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The boundary conditions are: D(0, y) = D0, D(L , y) = D1, D(x, 0) = D2, D(x, L) =
D3.

When it corresponds to the day of injection, the concentration of IL-2 is calculated to
determine the low dose of IL-2 diffused into the tissue. The immune cells localized on high
IL-2 concentration area have the best chance to benefit from this stimulator treatment. When
it is the day of rest and there is no injection to take, IL-2 concentration is assumed to be equal
to zero.

As it is described in “Biological Background” section, the use of immunotherapy with
IL-2, promotes CTL proliferation and increases the NK cell cytotoxicity. We introduce the
IL-2 effect on CTL cells to the model by adding a probabilistic term of CTL cell proliferation
due to IL-2 injections as follows:

PPL = 1 − exp

[
−

(
D

(Nbctl)θPL

)2
]

(11)

where Nbctl is the number of CTL cells in all of the grid, θPL is the shape parameter for CTL
proliferation probability curve. This probability term implies that for a CTL cell, the chance
of proliferation increases with the ratio of interleukin-2 concentration D to the number of
CTL cells.

After the IL-2 injection, the NK cell cytotoxicity enhances, we simulate this effect of IL-2
on NK cells, at the NK cell death level. We assume that during the immunotherapy treatment,
the NK cells don’t die along with tumor cell in their first contact, but they adopt such a
competence to destroy more than one cancerous cell, we use k to represent the number of
tumor cell killed, with k ≤ 2.

Simulation and Results Without Immunotherapy Intervention

Algorithms

The basic outline of the code can be summarized through the following stages:

1. Construct the data structures.
2. Get parameters and assign values.
3. Initialize system, the cellular automata configuration starts with one tumor cell in the

middle of the grid,
4. Solve the diffusion equations in the steady- state, to obtain initial nutrient concentrations.
5. Begin for-loop

– Assign random numbers to all CA sites for use in next cell action.
– For each selected cancer or immune cell, calculate probabilities to define the cell

action (tumor division, tumor or immune migration, tumor or immune death, CTL
cell induction, NK cell production).

– Move immune cells around.
– Regenerate NK cells as needed.
– Update the CA structure according to the changed states.
– Recalculate nutrient element distributions.
– If ((the tumor size reaches 7mm) or (the immunotherapy is started)) and (the duration

of therapy is not yet finished) then
– Calculate the immunotherapy chemical diffusion equation.

123



1086 Int. J. Appl. Comput. Math (2017) 3:1077–1101

– Test the end conditions (until reaching the final time).

End for-loop
6. Plot the results.

Fig. 2 Tumor morphology at the end of a simulation. a Parameter values are: α = 1/L , λN = 100, λM = 10,
θdiv = 0.3, θmov = 10000, θdth = 0.01. b Parameter values are: α = 2/L , λN = 25, λM = 10, θdiv = 0.3,
θmov = 0.1, θdth = 0.01, I0 = 0.02. a Compact morphology. b Disconnected morphology

Tumor Morphology

One of the main tumor characteristic is the morphology, which may be affected by sev-
eral factors. In [17] work on free growth of an avascular tumor (without immune response
intervention), the nutrient consumption by normal and cancer cells, controlled by the model
parameters α, λN and λM , played an important role in morphology determination and cor-
respond to the competition between normal and tumor cells for nutrients. The simulated
patterns were compact for low α values and lowest λN and became papillary for high λN ,
and more papillary for higher α. This results were investigated in [32] and have taken into
consideration the immune system response. Another factor has studied in [16] which played
a central role in tumor morphology, the simulations showed that for low cell motility proba-
bility the simulated patterns were compact. In contrast, for high cell motility probability the
simulated patterns were disconnected and tumor cells were dispersed on the tissue.

In this work, two types of tumor morphology are studied, the compact morphology and
the disconnected morphology as it is shown in Fig. 2. For low consumption rate of nutrient α
and for λN=100 and with low cell migration, the tumor morphology is compact, which may
be explained by the low competition between tumor and normal (healthy and immune) cells
for nutrients. For high α value and with the cell migration process, the tumor morphology is
disconnected, the cancerous cells are dispersed due to the high competition, and they keep
looking for nutrients throughout the tissue.

The Immune System Effectiveness

When the immune system fights tumor on his own, in the absence of therapeutic interven-
tion, his effectiveness depends on his strength, his ability to recognize cancerous cells and
his response to destroy tumor. In this section, tumor–immune interaction in the absence of
immunotherapy is presented, the CTL recruitment parameter is used as an indicator of strong
or weak immune system.
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Fig. 3 The effect of high CTL induction on tumor and totlal (NK+CTL) immune cell over time. Parameter
values are: 60×60 square lattice, α = 1/L , λN = 100, λM = 10, θdiv = 0.3, θmov = 10000, θdth = 0.01,
θind = 2, θDctl = 0.3, I0 = 0.02

High CTL Induction

For high CTL induction, which corresponds to the lowest value of θind , tumor cell popula-
tion shows few oscillations without exceeding 200 cells, while the immune cell population
increases over time, as shown in Fig 3b. A strong immune system may eradicate or keep the
tumor mass in controls in the absence of therapeutic intervention. Two-dimensional illustra-
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tion of tumor–immune interaction at several times of simulation with high CTL induction are
shown in Fig 3a. The parameters of the compact-tumor are used in this simulation. Similar
results were observed in simulations using disconnected-tumor parameters.

Low CTL Induction

For low CTL induction, which corresponds to the higher value of θind , tumor cell population
grows over time, while the immune cell population remains low due to the low recruitment
of CTL cells as shown in Fig 4b. Two-dimensional illustration of tumor–immune interaction
at several times of simulation with low CTL induction is shown in Fig 4a. In this case, the
immune system alone is not sufficient to eradicate tumor cells in the absence of therapeu-
tic intervention. The parameters of the compact-tumor are used in this simulation. Similar
results were observed in simulations using disconnected-tumor parameters. In “Simulation
and Results with Immunotherapy Intervention” section, we introduce the immunotherapy
with IL-2 to the low CTL induction case in order to stimulate the immune system against the
cancerous cells.

The Growth Curve

All tumors follow a standard growth pattern, growing fastest in the beginning and eventually
reaching a maximum size. The exponential growth model fails to model this behavior in vivo,
while the Gompertz model [27] is type of models where growth is slower at the end of a time
period. In [17] , the progress on time of the tumor cells population follows the Gompertz
curve, which has the functional form as follow:

NC (t) = A exp[− exp(−B(t − tc))] (12)

where NC (t) is the total number of tumor cells present at time t, the parameters A and B
evaluated by the least-square methods. In [32], the tumor cells population has not a functional
form. In our simulations, also the tumor cells has not a functional form and the total number
of tumor cells increases as long as the tumor cells divide, and decreases when they died. The
simulated tumor growth curve and the fitted Gompertz function are represented in Fig 5c.

Tumor Characteristics Obtained from the Growth Patterns

We aim to extract some tumor characteristics from the simulated tumor growth patterns such
as tumor fractal dimension, the fractality of the boundary and the number of cells on tumor
periphery. We discuss their biological implications and we evoke the experimental results
and observations for tumor growth of other researchers.

Tumor Fractality

Tumor growth canbe described in termsofmathematicalmodels fromdifferent points of view,
such as exploiting the geometrical features of growth, using the theory of fractal geometry.
Oneof the characteristics of cancerous tumors is the extreme irregularity of their boundaries, it
is an important prognostic indicator of tumor invasion and dynamic behavior of tumor (Keefe
et al. 1990). Thus, the oncologists have posed the problem of finding a mathematical tool
to quantify the irregularity of cancerous tumors. This tool is fractal dimension (a measure
of complexity degree). The concept and measurement of fractal dimension by using the
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Fig. 4 The effect of low CTL induction on tumor and total (NK+CTL) immune cell over time. Parameter
values are: 60×60 square lattice, α = 1/L , λN = 100, λM = 10, θdiv = 0.3, θmov = 10000, θdth = 0.01,
θind = 9, θDctl = 0.3, I0 = 0.02

box-counting method is given by [5,11]. The Box-counting method is useful to determine
fractal properties of a 1D segment, a 2D image or a 3D array. An investigation on malignant
melanomas has been done by two groups in [11], the study was conducted involving clinical
colour photographic slides of 43 melanomas and 45 benign lesions, their results show that
the irregularity was a strong discriminating factor to distinguish the benign and malignant
melanomas. The fractal dimension of the boundary found was in the range of 1.05–1.30.
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Fig. 5 a Simulated tumor growth on a 60 × 60 square lattice, the proliferating cell of the tumor and its
boundary. b Fractal dimension by using the box-counting method. c Simulated tumor growth curve with the
fitted Gompertz growth function. Parameter values for the simulated tumor growth are: 60×60 square lattice,
α = 1/L , λN = 100, λM = 10, θdiv = 0.3, θmov = 10000, θdth = 0.01, θind = 2, θDctl = 0.3, I0 = 0.02.
The best fitting is obtained for the parameters A = 860.2748 and B = 0.0094

Bru et al. [5] have worked on human and animal solid tumors in order to analyze the
fractal nature of 16 types of human tumors, which were surgically removed from patients
and developed in vivo (the tissue sections were 4µm thick), their experimental data found
for the fractal dimension boundary of tumors was in the range of 1.09–1.34. Landini et al.
[28] and [29] have studied a dysplastic and malignant epithelial lesions in the oral cavity
using a complex method of fractal analysis, the range of fractal dimensions was wide 1.00
for normal epithelium to 1.61 for invasive carcinoma. In [16], a model for the growth of
primary carcinoma, including cell proliferation, motility and death. The fractal dimension
found increases as well as the total number of tumor cells increases too. We define the
boundary cells of simulated solid tumor, assuming that they are the outermost tumor cells
which have at least a normal neighboring cell as it is shown in Fig 5a. Our fractal dimension
of simulated tumor boundaries in time steps 300 is 1.24 as it is exhibited in Fig 5b, where
n represents the number of squares needed for a fractal shape to be completed, r is the
respective square size. The value of fractal dimension FD of the shape corresponds to the
value where the first derivative − d ln(n)

d ln(r) remains constant for a space of r [35]. In addition,
we notice that the fractal dimension increases as well as the total number of tumor cells
increases too, this observation is consistent with [16] observation for primary carcinoma
growth.
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Fig. 6 Simulated tumor growth on a 60×60 square lattice and their peripheral cells (yellow color). Parameter
values for the disconnected morphology are: α = 2/L , λN = 25, λM = 10, θdiv = 0.3, θmov = 0.1,
θdth = 0.01, θind = 9, θDctl = 0.3, I0 = 0.02. Parameter values for the compact morphology are: α = 1/L ,
λN = 100, λM = 10, θdiv = 0.3, θmov = 10000, θdth = 0.01, θind = 9, θDctl = 0.3, I0 = 0.02

Number of Cells on Tumor Periphery

One of the characteristics of a tumors is the number of cancer cells in their periphery. These
cells are in contact with the healthy environment where oxygen is not lacking, and where
they divide continuously. The peripheral cells in our simulations are defined as the outermost
tumor cells which have at least a normal neighboring cell as it is viewed in Fig 6. We notice
that the peripheral cells in this work depend on cell motility. For low cell motility, the number
of times that the tumor migration probability Pmov is carried out over the CA configurations
is near or equal to zero as it is shown in Fig 7c, the patterns morphology are compact from
the beginning, which explain the small number of the peripheral cells as it is shown in Fig 7d.
While, for high cell motility, the number of times that the tumor migration probability is
carried out over the CA configurations is high as it is shown in Fig 7a, the growth patterns
are constituted by single cells highly dispersed on the tissue and the great majority of them
are in the tumor outermost region, which explain the high number of the peripheral cells as it
is shown in Fig 7b. Our observations are in good agreement with [16] for primary carcinoma
growth.
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Fig. 7 Disconnected morphology: a Number of times that every probability (division, migration, death) is
carried out. b Number of cells on tumor periphery. Parameter values are: α = 2/L , λN = 25, λM = 10,
θdiv = 0.3, θmov = 0.1, θdth = 0.01, θind = 9, θDctl = 0.3, I0 = 0.02. Compact morphology: c Number
of times that every probability is carried out in CA configurations. d Number of cells on tumor periphery.
Parameter values are: α = 1/L , λN = 100, λM = 10, θdiv = 0.3, θmov = 10000, θdth = 0.01, θind = 9,
θDctl = 0.3, I0 = 0.02

Simulation and Results with Immunotherapy Intervention

In this section, we simulate the immunotherapy with IL-2 administered into the body after
the tumor is large enough to be detected and has already develop his blood vessel. The
immunotherapy is used for the low CTL induction case (“Low CTL Induction” section),
where the body alone cannot eliminate the tumor cells. We have examined several strategies
of the IL-2 administration and we have determined that the tumor mass decreases with
remarkable way with 4 injections 4 times per week during 18–27weeks with low IL-2 doses,
which are equivalent to the low diffusion of IL-2 by the capillary vessels. To determine the
low diffusion of IL-2 we have used low values of the initial conditions, however, we haven’t
noticed any changes in our CA. In contrast, we remarked that for the initial condition values:
D0 = 103, D1 = 103, D2 = 103, D3 = 103, the CTL cells begin to proliferate and as
long as we increase the initial condition values, the CTL cells proliferation increases too
fast. When it corresponds to the day of injection, we solve the differential equation (10) with
the finite difference method in order to determine the low IL-2 concentration. The immune
cells localized in high IL-2 concentration areas have the best chance to benefit from the
treatment. When it is the day of rest and there is no injection to take, IL-2 concentration is
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Fig. 8 The immunotherapy effect on a compact tumor. a Tumor and immune cells number before and after
immunotherapy intervention. b Number of times that every probability (division, migration, death) is carried
out in CA configurations. Parameter values are: 60×60 square lattice, α = 1/L , λN = 100, λM = 10,
θdiv = 0.3, θmov = 10000, θdth = 0.01, θind = 9, θDctl = 0.3, θPL = 0.5, I0 = 0.02

assumed to be equal to zero. We aim also to show that, cell motility has not only an effect on
tumor morphology, but also on the immunotherapy efficiency against cancer. Each temporal
iteration corresponds to the division cycle of tumor, a period of approximately 0.5–10days.
In our simulation it is assumed to be 1day.
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Fig. 9 The immunotherapy effect on compact tumors reaching different sizes. Tumor and immune cells
populations before and after immunotherapy intervention. Number of times that every probability (division,
migration, death) is carried out in CA configurations. Parameter values are: 60×60 square lattice, α = 1/L ,
λN = 100, λM = 10, θdiv = 0.3, θmov = 10000, θdth = 0.01, θind = 9, θDctl = 0.3, θPL = 0.5, I0 = 0.02

Compact Morphology

Before the immunotherapy intervention, the tumor cells grow and invade the tissue and seek
to metastasize which leads to an increasing growth curve. In contrast, the immune cells are
in low number due to the low induction of CTL as it is noticed in Fig. 8a. This is may be
explained by the high number of times that the probability of division was carried out and
also the low probability of tumor death due to the immune cells as it is shown in Fig. 8b.
Once the tumor reaches 700 cancerous cells, the immunotherapy intervention starts and the
tumor cell number decreases with unstable oscillations and stays low, while the immune
cell number shows repetitive oscillations during the cure period due to the stimulatory effect
of IL-2 injections, which make the probability of tumor death becomes very high during
the therapy phase. The tumor cells are under control of the immune system, the oscillation
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Fig. 10 The immunotherapy effect on a disconnected tumor. a Tumor and immune cells number before and
after immunotherapy intervention. b Number of times that every probability (division, migration, death) is
carried out in CA configurations. Parameter values are: 60×60 square lattice, α = 2/L , λN = 25, λM = 10,
θdiv = 0.3, θmov = 0.1, θdth = 0.01, θind = 9, θDctl = 0.3, θPL = 0.5, I0 = 0.02

corresponds to the day of IL-2 injection, which is administered with 4 injections 4 times
per week during 18weeks. The simulation starts with a single mutated cell which divides in
the area with a suitable nutrient concentration level. Due to the low induction of CTL and
the absence of cell migration, tumor cells keep growing close to each other which leads to
compact tumor morphology. Once the tumor size reaches 7mm, immunotherapy starts and
the CTL proliferation are activated as well as the NK cell cytotoxicity, for this reason the
tumor mass decreases under his half initial size. The cancer cells try to escape from immune
cells, they come closer to the capillary vessel at the end of the simulation. The immunotherapy
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Fig. 11 The immunotherapy effect on disconnected tumors reaching different sizes. Tumor and immune cells
populations before and after immunotherapy intervention. Number of times that every probability is carried out
in CA configurations. Parameter values are: 60×60 square lattice, α = 2/L , λN = 25, λM = 10, θdiv = 0.3,
θmov = 0.1, θdth = 0.01, θind = 9, θDctl = 0.3, θPL = 0.5, I0 = 0.02

for a compact tumor (low cell migration) was effective in reducing the tumor mass. Several
snapshots of simulated tumor–immune and therapy interactions are represented in Fig. 12
and show the declining number of tumor cells. The same results are obtained when the
immunotherapy starts for tumors reaching 300, 500 or 900mm as it is viewed in Fig. 9.

Disconnected Morphology

Due to the disconnected morphology of the tumor and the dispersed nature of cancerous
cells, the tumor grows and reaches 700 cells in a short period as it is shown in Fig. 10a, which
leads to 27weeks of immunotherapy administration. IL-2 is given 4 times per week during
27weeks. After every IL-2 injection, the immune cells number (NK+CTL) augments as it is
viewed in Fig. 10a which increases the probability of tumor cell death as it is represented in
Fig. 10b. Even if the cure period in this case is longer than the compact tumor case, the tumor
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Fig. 12 Simulated tumor–immune interaction and immunotherapy effect on a60×60 square lattice. Parameter
values for compactmorphology are: α = 1/L , λN = 100, λM = 10, θdiv = 0.3, θmov = 10000, θdth = 0.01,
θind = 9, θDctl = 0.3, θPL = 0.5, I0 = 0.02. Parameter values for disconnected morphology are: α = 2/L ,
λN = 25, λM = 10, θdiv = 0.3, θmov = 0.1, θdth = 0.01, θind = 9, θDctl = 0.3, θPL = 0.5, I0 = 0.02

mass decreases with unstable oscillations but still in high number. This can be explained by
the high probability of tumor cell migration during time. It is noticed that the number of
times that the probability of tumor cell division is carried out is low as it is shown in Fig. 10b,
whereas the cancerous cells keep moving and keep looking for the adequate area for cell
division, which raises the chance of having metastases.

Since the high probability that the cell migration action is carried out, tumor cells keep
moving around the tissue and divide everywhere even if near to the capillary vessels in the low
response of immune cells, which leads to a disconnected morphology. Immunotherapy starts
once the tumor size reaches 7mm, it is noticed that the CTL cells number for disconnected
tumor morphology is higher than the compact morphology case. This may be explained by
the dispersed nature of tumor cells which increases the chance of contact between tumor and
NK/ or CTL cells, and consequently the recruitment of CTL cells as well as their proliferation
due to IL-2 effect augment. Some tumor cells become inactive when they are surrounded by
immune cells and cannot migrate nor divide.
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The immunotherapy for disconnected tumor was not effective in tumor eradication nor
in tumor mass reduction, the cancerous cells still present in large number. Several snapshots
of simulated tumor–immune–therapy interactions and their progression are represented in
Fig. 12. The same results are obtained when the immunotherapy starts for tumors reaching
300, 500 or 900mm as it is viewed in Fig. 11.

We have shown that the nutrient consumption not only affects tumor morphology, but also
the effectiveness of immunotherapy. As long as there is competition for nutrients between
tumor and normal/ or immune cells, the tumor tends to have disconnected morphology with
high tumor cell migration, which augments the chance to escape the primary tumor via
the blood vessel (metastasis) and set up secondary tumors. In this case, immunotherapy
intervention was ineffective. In contrast, when there is low competition for nutrients, tumor
cells are very close to each other due to the low cell migration, which leads to a compact
morphology. The immunotherapy in this case was remarkably efficient in reducing tumor
cell number.

Conclusion

We have employed a hybrid cellular automata model to describe the immunotherapy effect
on tumor–immune interaction. The model includes the tumor growth process in the presence
of the innate and specific immune response.

Without immunotherapy intervention, various results depending on the CTL recruitment
parameter were found similar to [32] results. On one hand and for high CTL induction, which
corresponds to the low value of the CTL recruitment parameter, the immune system was able
to reduce the tumor mass due to the high number of CTL. On the other hand, for low CTL
induction, which corresponds to the high value of the CTL recruitment parameter, tumor
cells grow and invade the local tissue. Tumor morphology generated depends on tumor cell
migration process, when the cell motility is low, tumor morphology tends to be compact,
whereas, the tumor morphology is disconnected and the cancerous cells are dispersed on the
tissue for high cell migration.

What was not mentioned in [32] work is the characterization of tumor morphology, which
leads us to discuss some factors of characterization such as the fractality of the boundary
and the number of cells on the tumor periphery as well as their biological implication, and to
compare the simulated results with the results and observations of other researchers, which
showed a good agreement. In addition, In [32] work, the tumor growth stage (avascular,
vascular, or metastatic) was not taken into account, and even if tumor size reaches in some
cases thousands of cancerous cells, tumor still feeds through the capillary vessels. In our
work we have considered that the tumor size once reaches few millimeters, he moves from
avascular phase to the development of his own blood vessel phase (angiogenesis), and a third
capillary vessel will provide him with nutrients.

Introducing the immunotherapy to the model as a PDE for IL-2 diffusion, leads to dif-
ferent findings depending on tumor morphology and cell motility. For compact tumor, the
probability of tumor cell migration was low and the cells on the tumor periphery were in
few numbers, which keep the tumor cell away from the capillary vessels. Once injected, the
IL 2 stimulates the CTL proliferation as well as the NK cell cytotoxicity, which decreases
the number of tumor cells. The immunotherapy in this case was efficient to kill cancer and
reduce tumor cells number. For disconnected tumor, the simulations exhibit that the proba-
bility of tumor cell migration was high and the cancerous cells tend to keep moving around

123



Int. J. Appl. Comput. Math (2017) 3:1077–1101 1099

the tissue and near to the capillary vessels. The stimulated immune cells intervene in high
number, however the continuous movement of tumor makes their mission hard. In this case,
immunotherapy was not potent to kill tumor. The cell migration process in the simulated
tumor growth has shown a direct influence on the immunotherapy effectiveness.

In summary, we have included the immunotherapy intervention in a hybrid CA-PDE
model of tumor growth and immune interaction. In addition, we have studied many char-
acteristics of the simulated growth patterns such as the fractal dimension and number of
cells on tumor periphery, which were consistent with the results of other researchers. Tumor
morphology, which is related to the cell migration may play a major role in the efficiency of
immunotherapy.
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