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Abstract This paper studies a conservative nonlinear oscillator with odd nonlinearities,
u′′ + f (u) = 0, the square of its frequency is f′(ui), where ui is a location point. A criterion
on how to choose a location point is given. Dufffing equation is used as an example to show
the accuracy of the prediction.
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Introduction

Nonlinear vibration arises everywhere in engineering, it is of utter importance to have a
fast insight into its frequency or period property, and a simple mathematical method is very
much appreciated for practical applications. Though there are many analytical methods for
nonlinear vibrations, amongwhich the amplitude-frequency formulation [1] and themax-min
approach [2] are widely adopted for this purpose due to shorter calculation with relatively
higher accuracy. Other analytical methods for nonlinear oscillators are summarized in Refs.
[3,4]. In this paper we will suggest a remarkably simple way with a relatively acceptable
accuracy to conservative nonlinear oscillators with odd nonlinearities.

Amplitude-Frequency Relationship

To illustrate the basic solution process of the newmethod, we first consider a linear oscillator
in the form

u′′ + ku = 0 (1)
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where k is a constant.
The square of its frequency can be easily obtained, which reads

ω2 = dg(u)

du
= g′(u) = k (2)

where g(u) is the restoring force, g(u) = ku.
Now we consider a nonlinear oscillator in the form

u′′ + f (u) = 0 (3)

where f (u) is a nonlinear restoring force, it requires f (u)/u > 0 and f (0) = 0. We extend
Eq. (2) to nonlinear cases, that is

ω2 = d f (u)

du
(4)

Equation (4) is valid only for the linear case, d f (u)/du is a function of ufor nonlinear
oscillators. Locating at u = i

N A(i = 1, 2, 3, . . . , N −1), where A is the amplitude, we have

ω2
i = d f

du
(u = i A/N ), i = 1, 2, 3, . . . , N − 1 (5)

The square of its frequency is approximately written as

ω2 =
∑N−1

i=1 ω2
i

N − 1
(6)

When N=2, we have
ω2 = f ′(u)

∣
∣
u=A/2 (7)

Equation (7) can be used for a fast qualitative analysis of a nonlinear oscillator.
Consider the Duffing equation, which is

u′′ + u + εu3 = 0, u(0) = A, u′(0) = 0 (8)

Hereby f (u) = u+εu3. By Eq. (7), the square of its frequency can be immediately obtained,
which is

ω2 = f ′(u)
∣
∣
u=A/2 = 1 + 3ε

(
A

2

)2

= 1 + 3

4
εA2 (9)

When ε is small, i.e., ε << 1, Eq. (9) is equivalent to that obtained by the perturbation
method; when ε tends to infinite, the exact frequency reads [3,4]

ωex = 0.9318
√

εA2 (10)

The accuracy of the obtained frequency by Eq. (9) reaches 7% even when ε → ∞.
If we set N = 3 and N = 4, respectively, in Eq. (6), we have

ω2 = 1 + 3ε
( A
3

)2
+1 + 3ε

( 2A
3

)2

2
= 1 + 8

9
εA2, N = 3 (11)

and

ω2 = 1 + 3ε
( A
4

)2
+1 + 3ε

( 2A
4

)2
+1 + 3ε

( 3A
4

)2

3
= 1 + 7

8
εA2, N = 4 (12)

The accuracy of the frequency improves to 1.18 and 0.38%, respectively, when ε → ∞.
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Discussion and conclusions

Equation (6) is such constructed only for simple calculation, there are many alternative
determinations of the square of frequency, for example

ω2 =
∑N

i=1ω
2
i

N
(13)

where ωi is defined by Eq. (5), or in a more general form

ω2 =
∑N

i=1 f
′(ui )

N
(14)

where ui (i = 1 ∼ N ) are location points, 0 < ui < A. For Duffing equation, we set N = 2
and locate two points:u1 = 0.5A and u2 = 0.6A, from Eq. (14) we have

ω2 = f ′(0.5A) + f ′(0.6A)

2
= 1 + 0.915εA2 (15)

The accuracy of the frequency is 2.65%.
The most simple calculation is

ω2 = f ′(ui ), 0 < ui < A (16)

The accuracy, however, depends greatly upon the location point. Hereby we give a criterion
for choosing a suitable location point, see Table 1.

Table 1 Criterion for choosing a location point

Conditions Location point for Eq. (16)

u f ′′(u) > 0 A/2 < ui<A

u f ′′(u) < 0 0 < ui<A/2

For Duffing equation, we have u f ′′(u) = 6εu2 > 0, we choose ui = 0.51A:

ω2 = d f

du
(u = 0.51A) = 1 + 0.7803εA2 (17)

The accuracy of the obtained frequency improves from 7% for u = 0.5A to 5.2% for
u = 0.51A.

Consider another example in the form

u′′ + u1/3 = 0, u(0) = A, u′(0) = 0 (18)

Hereby f (u) = u1/3, which satisfies the condition: u f ′′(u) < 0, therefore the location point
should be 0 < ui < A/2. We choose two location points u = 0.5A and u = 0.2A for
comparison.

By Eq. (16), we have

ω2 = 1

3
(0.5A)−2/3 = 0.5291A−2/3 (19)

ω2 = 1

3
(0.2A)−2/3 = 0.9746A−2/3 (20)
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The exact frequency for Eq. (18) is

ωex = 1.070451A−1/3 (21)

It is obvious that the accuracy improves from 32.05% for u = 0.5A to 7.77% for u = 0.2A,
showing that the criterion given in Table 1 is practicable.

We conclude that this paper might give the most simple and direct way to outline the
general solution property of a nonlinear oscillator, while the accuracy is always remarkable
contrast to those obtained by the perturbation method. The error by the perturbation method
tends to infinity when ε → ∞ for Duffing equation [4], while all predictions in this paper
are relatively acceptable even when ε → ∞. The utmost simplicity of the solution process
makes themethodmuch attractive for practical applications. The examples given in this paper
can be used as a paradigm for many other applications.
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