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Abstract In this paper, cubic polynomial spline based functions are used for the approximate
solutions of fractional boundary value problems (FBVPs). Left and right sided Caputo’s frac-
tional approaches are used for the fractional derivative. Convergence analysis of this method
is also presented. Numerical examples are given to illustrate the accuracy and efficiency of
this method and comparison show that this scheme is more accurate than the existing method
(Rehman and Khan in Appl Math Model 36:894–907, 2012).

Keywords Cubic spline function · Boundary value problem · Caputo’s fractional operators ·
Error bound

Introduction

The topic of fractional calculus has gain considerable attention in the last few years. Frac-
tional derivatives and fractional integrals provide more accurate systems’s models in various
applications. Analysis and numerical approximate solutions of fractional differential equa-
tions with various types of initial and boundary conditions gain interest due to its numerous
applications [1–5]. In this paper, Caputo’s fractional derivative is used. This operator is
widely applied in modelling of the material’s mechanical properties [6], modelling of the
viscoelastic behaviour, signal processing [7], diffusion problems [8], bioengineering and
mathematical finance models [9] etc. The existence and uniqueness of the solution of two-
point boundary value problem of fractional order can be seen in [10–13]. Akram and Tariq
established the exponential spline method to compute approximate solution for FBVP [14].
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Many authors used the spline technique to establish the accurate and efficient numer-
ical schemes for solution of boundary value problems (BVPs). For example, Siddiqi and
Akram constructed many numerical schemes with help of different spline functions such as
polynomial splines and non-polynomial splines for the solution of eighth and tenth order
BVPs [15,16].

In this paper, consider the following FBVP:

Dα y(x) + y(x) = f (x), x ∈ [a, b], 1 ≤ α < 2, (1)

subject to
y(a) = A, y(b) = B, (2)

where A and B are real constants. Also f (x) is continuous function on the interval [a, b]
and Dα denotes fractional derivative in Caputo’s sense. The left and right sided Riemann-
Liouville fractional integral operator of order α is:

I α
a+y(x) = 1

�(α)

∫ x

a
(x − s)α−1y(s)ds, α > 0

and

I α
b−y(x) = − 1

�(α)

∫ x

b
(x − s)α−1y(s)ds, α > 0,

respectively. The right and left sided Caputo’s fractional derivative of order α is defined as

Dα−b y(x) =
{

I m−α
−b Dm y(x), m − 1 < α < m, m ∈ N,

Dm y(x)
Dxm , α = m

and

Dα
a+y(x) =

{
I m−α
a+ Dm y(x), m − 1 < α < m, m ∈ N,

Dm y(x)
Dxm , α = m,

respectively, where Dm is ordinary differential operator.
If α > 0, m − 1 ≤ α < m, δ > −1, m ∈ N, λ,μ ∈ R and y(x) is continuous function,

then the following results hold:

DαC = 0, C is constant

Dα(λy(x) + μq(x)) = λDα y(x) + μDαq(x)

I αxδ = �(δ + 1)

�(δ + 1 + α)
xδ+α

For more properties of fractional derivatives, we refer to [17–19].
The main aim of this work is that to establish a numerical scheme using polynomial

spline functions. The paper is organized as follows: In section “Polynomial Spline”, cubic
polynomial spline functions based methods are developed for the solutions of FBVPs with
right Caputo’s operator and left Caputo’s operator. The matrix form of the proposed scheme
is discussed in section “Matrix Form of the Method”. In section “Convergence Analysis”,
the convergence analysis of method is presented. In section “Numerical Experiments”, two
examples are given to illustrate the efficiency of the method. Also the numerical results of
suggested scheme is comparedwith scheme developed in [20] and find that presentedmethod
gives better results.
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Polynomial Spline

Derivation of the Methods
Let xi = a + il (i = 0, 1, . . . , n, l = b−a

n , n > 0) be grid points of the uniform partition
of [a, b] into the subintervals [xi−1, xi ]. Let y(x) be the exact solution of Eq. (1) and Si be
an approximation to yi = y(xi ) obtained by the cubic spline function �i passing through
the points (xi , Si ) and (xi+1, Si+1).

The numerical solution of given FBVP is discussed with left differential operator (first
case) and secondly with right differential operator (second case).

Numerical Scheme of FBVP with Left Fractional Operator

In this case, FBVP becomes

Dα
a+y(x) + y(x) = f (x), 1 ≤ α < 2. (3)

Consider that cubic spline segment has the following form:

�̂i (x) = âi (x − xi−1)
3 + b̂i (x − xi−1)

2 + ĉi (x − xi−1) + d̂i , i = 1, 2, . . . , n,

where âi , b̂i , ĉi and d̂i are undetermined coefficients. These coefficients are expressed in
terms of Si and Mi as

�̂i (xi−1) = Si−1, �̂i (xi ) = Si , �̂i
′′
(xi−1) = Mi−1, �̂i

′′
(xi ) = Mi ,

and are calculated, as

âi = 1

6l
(Mi − Mi−1), b̂i = Mi−1

2
, ĉi = Si

l
− Si−1

l
− l

6
(Mi − Mi−1) − Mi−1

2
l,

d̂i = Si−1.

Applying the derivative continuities of order up to the maximum of 2 and using values of the
constants, the following consistency relations are obtained as,

Si+1 − 2Si + Si−1 = l2

6
(Mi+1 + 4Mi + Mi−1), i = 1, 2, . . . , n − 1. (4)

The approximations of M0 and Mn in terms of functional values are defined as

M0 ∼= 2S0 − 5S1 + 4S2 − S3
l2

and

Mn ∼= 2Sn − 5Sn−1 + 4Sn−2 − Sn−3

l2
.

For i = 1 and i = n − 1, the consistency relations can be taken as

1

6
S3 + 1

3
S2 + −7

6
S1 + 2

3
S0 = l2

6
(M2 − 4M1), (5)

1

6
Sn−3 + 1

3
Sn−2 + −7

6
Sn−1 + 2

3
Sn = l2

6
(Mn−2 − 4Mn−1) (6)

respectively. Also Mi are taken from Eq. (3), as

Dα
xi−1

�̂i (x) |x=xi +Si = fi , i = 0, 1, . . . , n, (7)

where fi = f (xi ).
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Numerical Scheme of FBVP with Right Fractional Operator

Consider the cubic polynomial spline as,

�i (x) = ai (xi+1 − x)3 + bi (xi+1 − x)2 + ci (xi+1 − x) + di , i = 0, 1, . . . , n − 1, (8)

whereai , bi , ci and di are constants.Now the cubic spline is defined by the following relations:

• S(x) = �i , x ∈ [xi , xi+1], i = 0, 1, . . . , n − 1
• S(x) ∈ C2[a, b]

In order to obtain the consistency relations in terms of Si and Mi , let

�i (xi ) = Si , �i (xi+1) = Si+1,

� ′′
i (xi ) = Mi , � ′′

i (xi+1) = Mi+1.

The coefficients introduced in Eq. (8) have the following form:

ai = 1

6l
(Mi − Mi+1), bi = Mi+1

2
, ci = Si

l
− Si+1

l
− l

6
(Mi − Mi+1) − Mi+1

2
l,

di = Si+1.

Applying derivative continuities of order up to the maximum of 2 and using values of the
constants, same relations Eqs. (4)–(6) are obtained. Also,

Dα
xi+1

�i (x) |x=xi +Si = fi , i = 0, 1, . . . , n, (9)

Matrix Form of the Method

Let Y = [y1, y2, . . . , yn−1]T , S = [S1, S2, . . . , Sn−1]T , M = [M1, M2, . . . , Mn−1]T , E =
(ei ) and T = (̃ti ) for i = 1, 2, . . . , n − 1 are (n − 1) dimensional column vectors.
The Eqs. (4)–(6) in matrix form can be written as,

Z S = l2B M (10)

where Z = (zi j ), B = (bi j ) are (n − 1) × (n − 1) matrices and

zi j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−7
6 , i = j = 1, n − 1,
1
3 , i = 1, j = 2,
1
6 , i = 1, j = 3,
1
3 , i = n − 1, j = n − 2,
1
6 , i = n − 1, j = n − 3,

−2, i = j = 2, 3, . . . , n − 2,

1, |i − j | = 1, i, j = 2, 3, . . . , n − 2

0, otherwise,

and

bi j =

⎧⎪⎨
⎪⎩

4
6 , i = j = 1, 2, . . . , n − 1,

1
6 , |i − j | = 1,

0, otherwise.
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The system (9) in matrix form have the following form,

W M + K S = F, (11)

where W = (wi j ), K = (ki j ) are (n − 1) × (n − 1) matrices,

wi j =
⎧⎨
⎩

w2, j − i = 1,
w1, i = j = 1, 2, . . . , n − 1,
0, otherwise,

ki j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, i = j = 1, 2, . . . , n − 2,
−w2

l2
, i = n − 1, j = n − 3,

4w2
l2

, i = n − 1, j = n − 2,
−5w2

l2
+ 1, i = n − 1, j = n − 1,

0, otherwise

and

w1 = l2−α

�(4 − α)
,

w2 = �(4 − α)l2−α − l2−α�(3 − α)

�(3 − α)�(4 − α)
.

Moreover, F = ( fi ) is (n − 1) dimensional column vector such that

F =
{

fi , i = 1, 2, . . . n − 2,
fn−1 − 2w2

l2
Sn, i = n − 1.

The Eq. (11) can be written as

M = W −1F − W −1K S,

From Eqs. (10) and (11), it can be written, as

(Z + l2BW −1K )S = l2BW −1F. (12)

In order to get a bound on ‖E‖∞, consider

(Z + l2BW −1K )Y = l2BW −1F + T . (13)

From Eqs. (12) and (13),
(Z + l2BW −1K )E = T . (14)

From Eq. (14), E can be expressed as

E = (I + l2Z−1BW −1K )−1Z−1T . (15)

Order of Trucation Error

Lemma 1 Let y ∈ C6[a, b] then the local trucation errors t̃i , i = 0, 1, . . . , n−1 associated
with the Eqs. (4)–(6) are

t̃i =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

5
72 l4y(4)

1 + O(l5), i = 1,

−1
12 l4y(4)

i + O(l6), i = 2, 3, . . . , n − 2,

5
72 l4y(4)

n−1 + O(l5), i = n − 1.
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Moreover,
||T ||∞ = c1l4 J4, J4 = maxx∈[0,1]|y(4)(x)|,

where c1 is a constant and also independent of l.

Convergence Analysis

Lemma 2 [21] If Z is a matrix of order n and ‖Z‖ < 1, then (I + Z)−1 exists and

‖(I + Z)−1‖ <
1

1 − ‖Z‖ .

Lemma 3 The infinite norm of W −1 satisfies the inequality

‖W −1‖∞ ≤ �(4 − α)

2�(4 − α) − l2−α
, (16)

provided that l2−α

2�(4−α)
< 1.

Proof The matrix W can be written, as

W = I + l2−αW̃ ,

where matrix W̃ = (w̃i j ) is (n − 1) × (n − 1) and

w̃i j =

⎧⎪⎨
⎪⎩

1
�(3−α)

− 1
�(4−α)

, j − i = 1,
1

�(4−α)
− lα−2, i = j = 1, 2, . . . , n − 1,

0, otherwise.

The matrix W −1 can be written, as

W −1 = (I + l2−αW̃ )−1,

Using the Lemma 2, if
‖l2−αW̃‖∞ < 1,

then

‖W −1‖∞ ≤ 1

1 − ‖l2−αW̃‖∞
, (17)

where

‖l2−αW̃‖∞ = l2−α − �(4 − α)

�(4 − α)
(18)

From Eq. (17),

‖W −1‖∞ ≤ �(4 − α)

2�(4 − α) − l2−α
.

�	
Lemma 4 The matrix (Z + l2BW −1K ) in Eq. (14) is nonsingular, provided that:

λ2

2λ1h−αc2�(4 − α)
< 1,
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Table 1 Maximum absolute
errors for α = 199

100 with left
fractional operator

l Maximum absolute error

1/4 2.17E−002

1/8 3.10E−003

1/16 7.68E−004

where λ1 = 1
8 ((b − a)2 + l2), λ2 = 2�(4 − α) − l2−α and c2 = h−α(�(4−α)−�(3−α))

�(3−α)�(4−α)
. Then

‖E‖∞ = O(l2). (19)

Proof From Lemma 2,

‖E‖∞ = max1≤i≤n−1|ei | ≤ ‖Z−1‖∞‖T ‖∞
1 − l2‖Z−1‖∞‖B‖∞‖W −1‖∞‖K‖∞

, (20)

provided that l2‖Z−1‖∞‖B‖∞‖W −1‖∞‖K‖∞ < 1.

As, ‖Z−1‖∞ = l−2

8 ((b − a)2 + l2). Also, ‖B‖∞ = 1 and ‖K‖∞ = 2l−α(�(4−α)−�(3−α))
�(3−α)�(4−α)

.

Substitute the values of ‖Z−1‖∞, ‖B‖∞, ‖W −1‖∞ and ‖K‖∞ in Eq. (20),

‖E‖∞ ≤ c1 J4l2λ1λ2
λ2 − 2λ1c2�(4 − α)

∼= O(l2). (21)

�	
Theorem 1 Let y(x) be the exact solution of the fractional differential equation Eq. (1) with
boundary condition Eq. (2) and yi , i = 0, 1, 2, . . . , n − 1, satisfy the discrete BVP Eq. (13).
Moreover, if ei = yi − Si , then

‖E‖∞ = O(l2).

Numerical Experiments

Two numerical examples are given to check the accuracy, efficiency and validity of the
hyperbolic spline method. All calculations are implemented with MATLAB 7.

Example 4.1 Consider the following boundary value problem:

D
199
100 y(x) + y(x) = f (x), x ∈ [0, 1],

with

y(0) = 0, y(1) = 0,

The exact solution of this problem is x5 − x4. The results are shown in Table 1 and Fig. 1.

Example 4.2 Consider the boundary value problem for inhomogeneous linear fractional dif-
ferential equation

Dα y(x) + 3

57
y(x) = f (x), x ∈ [0, 1], 1 < α ≤ 2,
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Fig. 1 Exact and approximate solutions of Example 1

Table 2 Absolute errors for
α = 2

x M.U. Rehman Presented methods

0.1 3.50621E−08 6.26E−018

0.2 6.58227E−08 8.46E−018

0.3 8.79828E−08 2.60E−018

0.4 9.72476E−08 1.21E−017

0.5 8.93295E−08 3.12E−017

0.6 5.99495E−08 6.94E−018

0.7 4.84022E−08 1.38E−017

0.8 8.02523E−08 0

0.9 1.99566E−08 1.38E−017
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Fig. 2 Exact and approximate solutions of Example 2
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with

y(0) = 0, y(1) = 1

�(α + 2)
,

The exact solution of this problem is xα+1

�(α+2) . The results are shown in Table 2 and Fig. 2.
Also, the results of same problem are compared with the numerical scheme in [20], and
found that results of suggested method are more accurate than [20].

Conclusion

Collocation method is established for the approximate solution of fractional differential
equation along with boundary conditions, using cubic spline. The suggested method also
utilize the properties of fractional derivatives in order to solve this problem. This numerical
scheme is computationally captivate.Descriptive examples showapplications of this problem.
It is proved that the method is of O(l2).
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