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Abstract A bipolar fuzzy set is a generalization of a fuzzy set. In this paper, we apply the
concept of bipolar fuzzy sets to multigraphs and planar graphs. We introduce the notions
of bipolar fuzzy multigraphs, bipolar fuzzy planar graphs, bipolar fuzzy dual graphs, and
investigate some of their interesting properties. We also study isomorphism between bipolar
fuzzy planar graphs.
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Introduction

Graph theory is now a very important research area due to its wide applications. There are
many practical applications with a graph structure in which crossing between edges is a
nuisance including design problems for circuits, subways and utility lines. Crossing of two
connections normally means that the communication lines must be run at different heights.
This is not a big issue for electrical wires, but it creates extra expenses for some types of
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lines. Circuits, in particular, are easier to manufacture if their connections can be constructed
in fewer layers. These applications are designed by the concept of planar graphs. Circuits
where crossing of lines is necessary, can not be represented by planar graphs. Numerous
computational challenges can be solved bymeans of cuts of planar graph. In the city planning,
subway tunnels, pipelines, metro lines are essential in twenty-first century. Due to crossing,
there is a chance for an accident. Also, the cost of crossing of routes in underground is high.
But, underground routes reduce the traffic jam. In a city planning, routes without crossing
is perfect for safety. But due to lack of space, crossing of such lines is allowed. It is easy to
observe that the crossing between one congested and one non-congested route is better than
the crossing between two congested routes. The term “congested” has no definite meaning.
We generally use “congested”, “very congested”, “highly congested” routes, etc. These terms
are called linguistic terms and they have somemembership values. A congested route may be
referred as strong route and low congested route may be called as weak route. Thus crossing
between strong route andweak route ismore safe than the crossing between two strong routes.
That is, crossing between strong route and weak route may be allowed in city planning with
certain amount of safety. The terms strong route and weak route lead strong edge and weak
edge of a fuzzy graph, respectively. And the permission of crossing between strong and weak
edges leads to the concept of fuzzy planar graph [1,17,20].

In 1994, Zhang [28] initiated the concept of bipolar fuzzy sets as a generalization of
fuzzy sets [26]. Bipolar fuzzy sets are an extension of fuzzy sets [26] whose membership
degree range is [−1, 1]. In a bipolar fuzzy set, the membership degree 0 of an element means
that the element is irrelevant to the corresponding property, the membership degree (0, 1]
of an element indicates that the element somewhat satisfies the property, and the member-
ship degree [−1, 0) of an element indicates that the element somewhat satisfies the implicit
counter-property. Although bipolar fuzzy sets and intuitionistic fuzzy sets look similar to
each other, they are essentially different sets. In many domains, it is important to be able to
deal with bipolar information. It is noted that positive information represents what is granted
to be possible, while negative information represents what is considered to be impossible.
This domain has recently motivated new research in several directions. In particular, fuzzy
and possibilistic formalisms for bipolar information have been proposed [11], because when
we deal with spatial information in image processing or in spatial reasoning applications, this
bipolarity also occurs. For instance, when we assess the position of an object in a space, we
may have positive information expressed as a set of possible places and negative information
expressed as a set of impossible places.

Fuzzy graph theory is finding an increasing number of applications in modeling real
time systems where the level of information inherent in the system varies with different
levels of precision. Fuzzy models are becoming useful because of their aim in reducing the
differences between the traditional numericalmodels used in engineering and sciences and the
symbolic models used in expert systems. Kaufmann’s initial definition of a fuzzy graph [13]
was based on Zadeh’s fuzzy relations [27]. Rosenfeld [19] introduced the fuzzy analogue of
several basic graph-theoretic concepts including bridges, cut-nodes, connectedness, trees and
cycles. Bhattacharya [9] gave some remarks on fuzzy graphs, and Sunitha and Vijayakumar
[23] characterized fuzzy trees. Akram et al. [2–6] has introduced many concepts, including
bipolar fuzzy graphs, regular bipolar fuzzy graphs, bipolar fuzzy hypergraphs and metric
aspects of bipolar fuzzy graphs. Abdul-Jabbar et al. [1] introduced the concept of a fuzzy
dual graph and discussed some of its interesting properties. Recently, Samanta et al. [17,20]
introduced and investigated the concept of fuzzy planar graphs and studied several properties.
For some applications readers may look in [24,29]. In this article, we apply the concept of
bipolar fuzzy sets tomultigraphs and planar graphs.We introduce the notions of bipolar fuzzy
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multigraphs, bipolar fuzzy planar graphs, bipolar fuzzy dual graphs, and investigate some of
their interesting properties. We also study isomorphism between bipolar fuzzy planar graphs.

We have used standard definitions and terminologies in this paper. For other nota-
tions,terminologies and applications not mentioned in the paper, the readers are referred
to [7,8,10,12,14–16,18,21,22].

Preliminaries

In this section, we review some elementary concepts whose understanding is necessary fully
benefit from this paper.

Let X be a nonempty set. A fuzzy set [26] A drawn from X is defined as A =
{〈x : μA(x)〉: x ∈ X}, whereμ: X → [0, 1] is the membership function of the fuzzy set A. A
fuzzy binary relation [27] on X is a fuzzy subset μ on X × X . By a fuzzy relation, we mean
a fuzzy binary relation given by μ: X × X → [0, 1]. A fuzzy graph [13] G = (V, σ, μ) is
a non-empty set V together with a pair of functions σ : V → [0, 1] and μ: V × V → [0, 1]
such that for all x, y ∈ V, μ(x, y) ≤ min(σ (x), σ (y)), where σ(x) and μ(x, y) represent
the membership values of the vertex x and of the edge (x, y) in G, respectively. A loop at a
vertex x in a fuzzy graph is represented byμ(x, x) �= 0. An edge is non-trivial ifμ(x, y) �= 0.
Let G be a fuzzy graph and for a certain geometric representation, the graph has only one
crossing between two fuzzy edges ((w, x), μ(w, x)) and ((y, z), μ(y, z)). If μ(w, x) = 1
and μ(y, z) = 0, then we say that the fuzzy graph has no crossing. Similarly, if μ(w, x) has
value near to 1 and μ(y, z) has value near to 0, the crossing will not be important for the
planarity. If μ(y, z) has value near to 1 and μ(w, x) has value near to 1, then the crossing
becomes very important for the planarity.

Let X be a nonempty set. A fuzzy multiset [25] A drawn from X is characterized by a
function, ‘count membership’ of A denoted by CMA such that CMA: X → Q, where Q is
the set of all crisp multisets drawn from the unit interval [0, 1]. Then for any x ∈ X , the value
CMA(x) is a crisp multiset drawn from [0, 1]. For each x ∈ X , the membership sequence
is defined as the decreasingly ordered sequence of elements in CMA(x). It is denoted by
(μ1

A(x), μ2
A(x), μ3

A(x), . . . , μp
A(x)) where μ1

A(x) ≥ μ2
A(x) ≥ μ3

A(x) ≥ . . . ≥ μ
p
A(x).

Let V be a non-empty set and σ : V → [0, 1] be a mapping and let μ =
{(x, y), μ(x, y) j , j = 1, 2, . . . , pxy |(x, y) ∈ V ×V } be a fuzzymulti-set of V ×V such that
μ(x, y) j ≤ min{σ(x), σ (y)} for all j = 1, 2, . . . , pxy , where pxy = max{ j |μ(x, y) j �= 0}.
Then G = (V, σ, μ) is denoted as fuzzy multigraph [17] where σ(x) andμ(x, y) j represent
the membership value of the vertex x and the membership value of the edge (x, y) in G,
respectively.

Definition 1 [28] Let X be a nonempty set. A bipolar fuzzy set B in X is an object having
the form

B =
{(

x, μP
B (x), μN

B (x)
)

| x ∈ X
}

where μP
B : X → [0, 1] and μN

B : X → [−1, 0] are mappings.

We use the positivemembership degreeμP
B (x) to denote the satisfaction degree of an element

x to the property corresponding to a bipolar fuzzy set B, and the negative membership degree
μN
B (x) to denote the satisfaction degree of an element x to some implicit counter-property

corresponding to a bipolar fuzzy set B. IfμP
B (x) �= 0 andμN

B (x) = 0, it is the situation that x
is regarded as having only positive satisfaction for B. If μP

B (x) = 0 and μN
B (x) �= 0, it is the
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situation that x does not satisfy the property of B but somewhat satisfies the counter property
of B. It is possible for an element x to be such that μP

B (x) �= 0 and μN
B (x) �= 0 when the

membership function of the property overlaps that of its counter property over some portion
of X .

For the sake of simplicity, we shall use the symbol B = (μP
B , μN

B ) for the bipolar fuzzy
set

B =
{(

x, μP
B (x), μN

B (x)
)

| x ∈ X
}

.

Definition 2 [28] Let X be a nonempty set. Then we call a mapping A = (μP
A , μN

A ): X ×
X → [0, 1] × [−1, 0] a bipolar fuzzy relation on X such that μP

A(x, y) ∈ [0, 1] and
μN

A (x, y) ∈ [−1, 0].
Definition 3 [2] A bipolar fuzzy graph G = (V, A, B) is a non-empty set V together with
a pair of functions A = (μP

A , μN
A ): V → [0, 1] × [−1, 0] and B = (μP

B , μN
B ): V × V →

[0, 1] × [−1, 0] such that for all x, y ∈ V ,

μP
B (x, y) ≤ min

(
μP

A(x), μP
A(y)

)
and μN

B (x, y) ≥ max
(
μN

A (x), μN
A (y)

)
.

Notice that μP
B (x, y) > 0, μN

B (x, y) < 0 for (x, y) ∈ V × V, μP
B (x, y) = μN

B (x, y) = 0 for
(x, y) /∈ V × V , and B is symmetric relation.

We now give definition of bipolar fuzzy multisets.

Definition 4 Let X be a nonempty set. A Bipolar Fuzzy Multiset (BFMS) A drawn
from X is characterized by two functions: ‘count positive membership’ of A(CMA) and
‘count negative membership’ of A(CNA) given by CMA: X → Q1 and CNA: X →
Q2 where Q1 and Q2 are the sets of all crisp multisets drawn from the intervals
[0, 1] and [−1, 0] , respectively, the positive membership sequence is defined as a
((μ1)PA(x), (μ2)PA(x), (μ3)PA(x), . . . , (μm)PA(x)) and the negative membership sequence
will be denoted by ((μ1)NA (x), (μ2)NA (x), (μ3)NA (x), . . . , (μm)NA (x)). A BFMS A is denoted
by

{〈
x :

(
(μ1)PA(x), (μ2)PA(x), . . . , (μm)PA(x)

)
,

(
(μ1)NA (x), (μ2)NA (x), . . . , (μm)NA (x)

) 〉
: x ∈ X

}
.

Bipolar Fuzzy Planar Graphs

We first introduce the notion of a bipolar fuzzy multigraph using the concept of a bipolar
fuzzy multiset.

Definition 5 Let A = (μP
A , μN

A ) be a bipolar fuzzy set on V and let

B =
{(

xy, μP
B (xy)i , μ

N
B (xy)i

)
, i = 1, 2, . . . ,m|xy ∈ V × V

}

be a bipolar fuzzy multiset of V × V such that

μP
B (xy)i ≤ min

{
μP

A(x), μP
A(y)

}
,

μN
B (xy)i ≥ max

{
μN

A (x), μN
A (y)

}

for all i = 1, 2, . . . ,m. Then G is called a bipolar fuzzy multigraph.
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a b c d
µP
A 0.5 0.4 0.5 0.4

µN
A -0.3 -0.4 -0.3 -0.4

ab ab ab bc bd
µP
B 0.2 0.1 0.2 0.3 0.1

µN
B -0.2 0 -0.2 -0.3 -0.2

(0.2,-0.2)

(0.3,-0.3)

(0.2,-0.2)

(0.1,-0.2)

a(0.5,−0.3)
b(0.4,−0.4)

c(0.5,−0.3)

d(0.4,−0.4)

(0.1,0)

Fig. 1 Bipolar fuzzy multigraph

Note that there may be more than one edge between the vertices x and y. μP
B (xy)i , μN

B (xy)i
represent the positive membership value and negative membership value of the edge xy
in G, respectively. m denotes the number of edges between the vertices. In bipolar fuzzy
multigraph G, B is said to be bipolar fuzzy multiedge set. μP

A(xy)i = 0 = μN
A (xy)i for all

xy ∈ V × V − E, 0 ≤ μP
A(xy)i ≤ 1,−1 ≤ μN

A (xy)i ≤ 0.

Example 1 Consider a multigraph G∗ = (V, E) such that V = {a, b, c, d}, E =
{ab, ab, ab, bc, bd}. Let A = (μP

A , μN
A ) be a bipolar fuzzy set of V and let B = (μP

B , μN
B )

be a bipolar fuzzy multiedge set of V × V defined by
By routine computations, it is easy to see from Fig. 1 that it is a bipolar fuzzy multigraph.

Definition 6 Let B = {(xy, μP
B (xy)i , μN

B (xy)i ), i = 1, 2, . . . ,m|xy ∈ V ×V } be a bipolar
fuzzy multiedge set in bipolar fuzzy multigraph G. The degree of a vertex x ∈ V is denoted
by deg(x) and is defined by deg(x) = (∑m

i=1 μP
B (xy)i ,

∑m
i=1 μN

B (xy)i
)
for all y ∈ V .

Example 2 In Example 1, degree of the vertices a, b, c, d are deg(a) = (0.5,−0.4),
deg(b) = (0.9,−0.9), deg(c) = (0.3,−0.3), deg(d) = (0.1,−0.2).

Definition 7 Let B = {(xy, μP
B (xy)i , μN

B (xy)i ), i = 1, 2, . . . ,m|xy ∈ V × V } be
a bipolar fuzzy multiedge set in bipolar fuzzy multigraph G. A multiedge xy of G is
strong if 1

2 min{μP
A(x), μP

A(y)} ≤ μP
B (xy)i ,

1
2 max{μN

A (x), μN
A (y)} ≤ μN

B (xy)i for all
i = 1, 2, . . . ,m.

Definition 8 Let B = {(xy, μP
B (xy)i , μN

B (xy)i ), i = 1, 2, . . . ,m|xy ∈ V ×V } be a bipolar
fuzzymultiedge set in bipolar fuzzymultigraphG. An bipolar fuzzymultigraphG is complete
if min{μP

A(x), μP
A(y)} = μP

B (xy)i ,max{μN
A (x), μN

A (y)} = μN
B (xy)i for all i = 1, 2, . . . ,m

and for all x, y ∈ V .

Example 3 Consider a bipolar fuzzy multigraph G as shown in Fig. 2.
By routine computations, it is easy to see from Fig. 2 that it is a bipolar fuzzy complete

multigraph.

Definition 9 Strength of the bipolar fuzzy edge ab can be measured by the value

Iab = (Mab, Nab) =
(

μP
B (ab)i

min
(
μP

A(a), μP
A(b)

) ,
μN
B (ab)i

max
(
μN

A (a), μN
A (b)

)
)

.
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a(0.4,−0.2)

b(0.5,−0.3)

c(0.4,−0.3)(0.4,−0.2)

(0.4,−0.2)

(0.4,−0.2)

(0.4,−0.3)

Fig. 2 Bipolar fuzzy complete multigraph

Definition 10 Let G be a bipolar fuzzy multigraph. An edge ab is said to be a bipolar fuzzy
strong if Mab ≥ 0.5 or Nab ≤ 0.5, otherwise weak.

Definition 11 Let G be a bipolar fuzzy multigraph and let B contains two edges
(ab, μP

B (ab)i , μN
B (ab)i ) and (cd, μP

B (cd) j , μ
N
B (cd) j ) which are intersected at a point P ,

where i and j are fixed integers. We define the intersecting value at the point P by

IP = (MP , NP ) =
(
Mab + Mcd

2
,
Nab + Ncd

2

)
.

If the number of point of intersections in a bipolar fuzzy multigraph increases, planarity
decreases. Thus for bipolar fuzzy multigraph, IP is inversely proportional to the planarity.
We now introduce the concept of a bipolar fuzzy planar graph.

Definition 12 Let G be a bipolar fuzzy multigraph and let P1, P2, . . . , Pz be the points of
intersections between the edges for a certain geometrical representation, G is said to be a
bipolar fuzzy planar graph with bipolar fuzzy planarity value f = ( f P , f N ), where

f = ( f P , f N ) =
(

1

1 + {MP1 + MP2 + . . . + MPz }
,

−1

1 + {NP1 + NP2 + . . . + NPz }
)

.

Clearly, f = ( f P , f N ) is bounded and 0 < f P ≤ 1, f N is −1 ≤ f N < 0. If there is no
point of intersection for a certain geometrical representation of a bipolar fuzzy planar graph,
then its bipolar fuzzy planarity value is (1,−1). In this case, the underlying crisp graph of
this bipolar fuzzy graph is the crisp planar graph. If f P decreases and f N increases, then the
number of points of intersection between the edges increases and decreases, respectively, and
the nature of planarity decreases and decreases, respectively. We conclude that every bipolar
fuzzy graph is a bipolar fuzzy planar graph with certain bipolar fuzzy planarity value.

Example 4 Consider a multigraph G∗ = (V, E) such that V = {a, b, c, d, e},
E = {ab, ac, ad, ad, bc, bd, cd, ce, ae, de, be}.

Let A = (μP
A , μN

A ) be a bipolar fuzzy of V and let B = (μP
B , μN

B ) be a bipolar fuzzy
multiedge set of V × V defined by

The bipolar fuzzy multigraph as shown in Fig. 3 has two point of intersections P1 and
P2.P1 is a point between the edges (ad, 0.2,−0.1) and (bc, 0.2,−0.1) and P2 is between
(ad, 0.3,−0.1) and (bc, 0.2,−0.1). For the edge (ad, 0.2,−0.1), Iad = (0.4, 1), For the
edge (ad, 0.3,−0.1), Iad = (0.6, 0.5) and for the edge (bc, 0.2,−0.1), Ibc = (0.67, 1). For
the first point of intersection P1, intersecting value IP1 is (0.53, 0.75) and that for the second
point of intersection P2, IP2 = (0.63, 0.75). Therefore, the bipolar fuzzy planarity value for
the bipolar fuzzy multigraph shown in Fig. 3 is (0.46,−0.4).
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a(0.5,−0.2) b(0.4,−0.1)

d(0.6,−0.2)c(0.3,−0.1)

e(0.6,−0.1)

(0.2,−0.1)

(0.2,−0.1)

(0
.2
,−

0.
1)

(0
.2
,−

0
.1)

(0
.2,
−0
.1)

(0.2,−0.1)

(0.2,−
0.1)

0(
.2
,−

0.
1)

(0
.2,
−0
.1)

(0.
2,
−0
.1)

P
1

P 2 (0.3,−0.1)

a b c d e
µP
A 0.5 0.4 0.3 0.6 0.6

µN
A -0.2 -0.1 -0.1 -0.2 -0.1

ab ac ad ad bc bd cd ae ce de be
µP
B 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2

µN
B -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1

Fig. 3 Bipolar fuzzy planar graph

Bipolar fuzzy planarity value for the bipolar fuzzy complete multigraph is calculated from
the following theorem.

Theorem 1 Let G be a bipolar fuzzy complete multigraph. The bipolar fuzzy planarity value,
f = ( f P , f N ) of G is given by f P = 1

1+n p
and f N = −1

1+n p
, where n p is the number of

point of intersections between the edges in G.

Definition 13 An bipolar fuzzy planar graph G is called strong bipolar fuzzy planar graph
if the bipolar fuzzy planarity value f = ( f P , f N ) of the graph is f P ≥ 0.5, f N ≤ −0.5.

Theorem 2 Let G be a strong bipolar fuzzy planar graph. The number of point of intersec-
tions between strong edges in G is at most one.

Proof Let G be a strong bipolar fuzzy planar graph. Assume that G has at least two
point of intersections P1 and P2 between two strong edges in G. For any strong edge
(ab, μP

B (ab)i , μN
B (ab)i ),

μP
B (ab)i ≥ 1

2
min

{
μP

A(a), μP
A(b)

}
, μN

B (ab)i ≤ 1

2
max

{
μN

A (a), μN
A (b)

}
.

This shows that Mab ≥ 0.5 or Nab ≤ 0.5. Thus for two intersecting strong edges
(ab, μP

B (ab)i , μN
B (ab)i ) and (cd, μP

B (cd) j , μ
N
B (cd) j ),

Mab + Mcd

2
≥ 0.5,

Nab + Ncd

2
≤ 0.5,
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that is,MP1 ≥ 0.5, NP1 ≤ 0.5. Similarly,MP2 ≥ 0.5, NP2 ≤ 0.5. This implies that 1+MP1+
MP2 ≥ 2, 1 + NP1 + NP2 ≤ 2. Therefore, f P = 1

1+MP1+MP2
≤ 0.5, f N = −1

1+NP1+NP2
≥

−0.5. It contradicts the fact that the bipolar fuzzy graph is a strong bipolar fuzzy planar graph.
Thus number of point of intersections between strong edges can not be two. Obviously, if the
number of point of intersections of strong bipolar fuzzy edges increases, the bipolar fuzzy
planarity value decreases. Similarly, if the number of point of intersection of strong edges is
one, then the bipolar fuzzy planarity value f P < 0.5, f N > −0.5. Any bipolar fuzzy planar
graph without any crossing between edges is a strong bipolar fuzzy planar graph. Thus, we
conclude that the maximum number of point of intersections between the strong edges in G
is one. 
�

Theorem 3 Let G be a bipolar fuzzy planar graph with bipolar fuzzy planarity value
f = ( f P , f N ). If f P ≥ 0.67, f N ≤ −0.67,G do not contain any point of intersection
between two strong edges.

Definition 14 Let G be a bipolar fuzzy planar graph and B = {(xy, μP
B (xy)i , μN

B (xy)i ),
i = 1, 2, . . . ,m| xy ∈ V × V }. A bipolar fuzzy face of G is a region, bounded by the set of
bipolar fuzzy edges E ′ ⊂ E , of a geometric representation of G. The positive membership
and negative values of the bipolar fuzzy face are:

min

{
μP
B (xy)i

min{μP
A(x), μP

A(y)} , i = 1, 2, . . . ,m| xy ∈ E ′
}

,

max

{
μN
B (xy)i

max{μN
A (x), μN

A (y)} , i = 1, 2, . . . ,m| xy ∈ E ′
}

.

Definition 15 A bipolar fuzzy face is called strong bipolar fuzzy face if its positive member-
ship value is greater than 0.5 or negative membership value is greater than −0.5, and weak
face otherwise. Every bipolar fuzzy planar graph has an infinite region which is called outer
bipolar fuzzy face. Other faces are called inner bipolar fuzzy faces.

Example 5 Consider a bipolar fuzzy planar graph as shown in Fig. 4. The bipolar fuzzy
planar graph has the following faces:

• bipolar fuzzy face F1 is bounded by the edges (v1v2, 0.5,−0.1), (v2v3, 0.6,−0.1),
(v1v3, 0.5,−0.1).

• outer bipolar fuzzy face F2 surrounded by edges (v1v3, 0.5,−0.1), (v1v4, 0.5,−0.1),
(v2v4, 0.6,−0.1), (v2v3, 0.6,−0.1),

• bipolar fuzzy face F3 is bounded by the edges (v1v2, 0.5,−0.1), (v2v4, 0.6,−0.1),
(v1v4, 0.5,−0.1).

Clearly, the positive membership value and negative membership value of a bipolar fuzzy
face F1 are 0.833 and −0.333, respectively. The positive membership value and negative
membership value of a bipolar fuzzy face F3 are also 0.833 and -0.333, respectively. Thus
F1 and F3 are strong bipolar fuzzy faces.

We now introduce dual of bipolar fuzzy planar graph. In bipolar fuzzy dual graph, vertices
are corresponding to the strong bipolar fuzzy faces of the bipolar fuzzy planar graph and
each bipolar fuzzy edge between two vertices is corresponding to each edge in the boundary
between two faces of bipolar fuzzy planar graph. The formal definition is given below.
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Fig. 4 Faces in bipolar fuzzy
planar graph

v1(0.6,−0.3) v2(0.7,−0.3)

v3(0.8,−0.1) v4(0.7,−0.1)

)1.0-,5.0( (0.
6,-
0.1
)

(0.5,-0.1)

)1
.0

-,
6.

0(
(0.5,-0.1)

F1

F2

F3

Definition 16 Let G be a bipolar fuzzy planar graph and let

B =
{(

xy, μP
B (xy)i , μ

N
B (xy)i

)
, i = 1, 2, . . . ,m|xy ∈ V × V

}
.

Let F1, F2, . . . , Fk be the strong bipolar fuzzy faces of G. The bipolar fuzzy dual graph of
G is a bipolar fuzzy planar graph G ′ = (V ′, A′, B ′), where V ′ = {xi , i = 1, 2, . . . , k},
and the vertex xi of G ′ is considered for the face Fi of G. The positive membership and
negative membership values of vertices are given by the mapping A′ = (μP

A′ , μN
A′): V ′ →

[0, 1] × [−1, 0] such that μP
A′(xi ) = max{μP

B′(uv)i , i = 1, 2, . . . , p|uv is an edge of the
boundary of the strong bipolar fuzzy face Fi}, μN

A′(xi ) = min{μN
B′(uv)i , i = 1, 2, . . . , p|uv

is an edge of the boundary of the strong bipolar fuzzy face Fi}.

There may exist more than one common edges between two faces Fi and Fj ofG. Thus there
may be more than one edges between two vertices xi and x j in bipolar fuzzy dual graph G ′.
Let (μP )lB(xi x j ) denote the positivemembership value of the lth edge between xi and x j , and
(μN )1B(xi x j ) denote the negative positive membership value of the lth edge between xi and
x j . The positivemembership andnegativemembership values of the bipolar fuzzy edges of the
bipolar fuzzy dual graph are given byμP

B′(xi x j )l = (μP )lB(uv) j , μ
N
B′(xi x j )l = (μN )lB(uv) j

where (uv)l is an edge in the boundary between two strong bipolar fuzzy faces Fi and Fj and
l = 1, 2, . . . , s, where s is the number of common edges in the boundary between Fi and Fj

or the number of edges between xi and x j . If there be any strong pendant edge in the bipolar
fuzzy planar graph, then there will be a self loop in G ′ corresponding to this pendant edge.
The edge positive membership and negative membership value of the self loop is equal to
the positive membership and negative membership value of the pendant edge. Bipolar fuzzy
dual graph of bipolar fuzzy planar graph does not contain point of intersection of edges for a
certain representation, so it is bipolar fuzzy planar graph with planarity value (1,−1). Thus
the bipolar fuzzy face of bipolar fuzzy dual graph can be similarly described as in bipolar
fuzzy planar graphs.

Example 6 Consider a bipolar fuzzy planar graph G = (V, A, B) as shown in Fig. 5 such
thatV = {a, b, c, d}, A = (a, 0.6,−0.2), (b, 0.7,−0.2), (c, 0.8,−0.2), (d, 0.9,−0.1), and
B = {(ab, 0.5,−0.01), (ac, 0.4,−0.01), (ad, 0.55,−0.01), (bc, 0.45,−0.01), (bc, 0.6,
−0.01), (cd, 0.7,−0.01)}.

The bipolar fuzzy planar graph has the following faces:
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Fig. 5 Bipolar fuzzy dual graph

a

c
d

x1

x2
x3

x4

b

• bipolar fuzzy face F1 is bounded by (ab, 0.5,−0.01), (ac, 0.4,−0.01), (bc, 0.45,
−0.01),

• bipolar fuzzy face F2 is bounded by (ad, 0.55,−0.01), (cd, 0.7,−0.01), (ac, 0.4,
−0.01),

• bipolar fuzzy face F3 is bounded by (bc, 0.45,−0.01), (bc, 0.6,−0.01) and
• outer bipolar fuzzy face F4 is surrounded by (ab, 0.5,−0.01), (bc, 0.6,−0.01),

(cd, 0.7,−0.01), (ad, 0.55,−0.01).

Routine calculations show that all faces are strong bipolar fuzzy faces. For each strong
bipolar fuzzy face, we consider a vertex for the bipolar fuzzy dual graph. So the vertex set
V ′ = {x1, x2, x3, x4}, where the vertex xi is taken corresponding to the strong bipolar fuzzy
face Fi , i = 1, 2, 3, 4. Thus

μP
A′(x1) = max{0.5, 0.4, 0.45} = 0.5, μP

A′(x2) = max{0.55, 0.7, 0.4} = 0.7,

μN
A′(x1) = min{−0.01,−0.01,−0.01} = −0.01,

μN
A′(x2) = min{−0.01,−0.01,−0.01} = −0.01,

μP
A′(x3) = max{0.45, 0.6} = 0.6, μP

A′(x4) = max{0.5, 0.6, 0.7, 0.55} = 0.7,

(muN
A )′(x3) = min{−0.01,−0.01} = −0.01,

(μN
A′(x4) = min{−0.01,−0.01,−0.01,−0.01} = −0.01.

There are two common edges ad and cd between the faces F2 and F4 in G. Hence between
the vertices x2 and x4, there exist two edges in the bipolar fuzzy dual graph ofG. Membership
and negative positive membership values of these edges are given by

μP
B′(x2x4) = μP

B (cd) = 0.7, μP
B′(x2x4) = μP

B (ad) = 0.55,

μN
B′(x2x4) = μN

B (cd) = −0.01, μN
B′(x2x4) = μN

B (ad) = −0.01.

The positive membership and negative positive membership values of other edges of the
bipolar fuzzy dual graph are calculated as

μP
B′(x1x3) = μP

B (bc) = 0.45, μP
B′(x1x2) = μP

B (ac) = 0.4,

μP
B′(x1x4) = μP

B (ab) = 0.5, μP
B′(x3x4) = (μP

B )′(bc) = 0.6,

(μN
B )′(x1x3) = μP

B (bc) = −0.01, μN
B′(x1x2) = μN

B (ac) = −0.01,

μN
B′(x1x4) = μN

B (ab) = −0.01, (μN
B )′(x3x4) = μN

B (bc) = −0.01.
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Thus the edge set of bipolar fuzzy dual graph is

B ′ = {(x1x3, 0.45,−0.01), (x1x2, 0.4,−0.01),

(x1x4, 0.5,−0.01), (x3x4, 0.6,−0.01), (x2x4, 0.7,−0.01), (x2x4, 0.55,−0.01)}.
In Fig. 5, the bipolar fuzzy dual graph G ′ = (V ′, A′, B ′) of G is drawn by dotted line.

Weak edges in planar graphs are not considered for any calculation in bipolar fuzzy dual
graphs. We state the following Theorems without their proofs.

Theorem 4 Let G be a bipolar fuzzy planar graph whose number of vertices, number of
bipolar fuzzy edges and number of strong faces are denoted by n, p,m, respectively. Let G ′
be the bipolar fuzzy dual graph of G. Then:

(i) the number of vertices of G ′ is equal to m,
(ii) number of edges of G ′ is equal to p,
(iii) number of bipolar fuzzy faces of G ′ is equal to n.

Theorem 5 Let G = (V, A, B) be a bipolar fuzzy planar graph without weak edges and the
bipolar fuzzy dual graph of G be G ′ = (V ′, A′, B ′). The positive membership and negative
membership values of bipolar fuzzy edges of G ′ are equal to positivemembership and negative
membership values of the bipolar fuzzy edges of G.

We now study isomorphism between bipolar fuzzy planar graphs.

Definition 17 [2] Let G1 and G2 be bipolar fuzzy graphs. An isomorphism f : G1 → G2 is
a bijective mapping f : V1 → V2 which satisfies the following conditions:

(c) μP
A1

(x1) = μP
A2

( f (x1)), μN
A1

(x1) = μN
A2

( f (x1)),

(d) μP
B1

(x1y1) = μP
B2

( f (x1) f (y1)), μN
B1

(x1y1) = μN
B2

( f (x1) f (y1))

for all x1 ∈ V1, x1y1 ∈ E1.

Definition 18 [2] Let G1 and G2 be bipolar fuzzy graphs. Then, a weak isomorphism
f : G1 → G2 is a bijective mapping f : V1 → V2 which satisfies the following condi-
tions:

(e) f is homomorphism,
(f) μP

A1
(x1) = μP

A2
( f (x1)), μN

A1
(x1) = μN

A2
( f (x1)),

for all x1 ∈ V1.

Definition 19 [2] Let G1 and G2 be the bipolar fuzzy graphs. A co-weak isomorphism
f : G1 → G2 is a bijective mapping f : V1 → V2 which satisfies

(g) f is homomorphism,
(h) μP

B1
(x1y1) = μP

B2
( f (x1) f (y1)), μN

B1
(x1y1) = μN

B2
( f (x1) f (y1))

for all x1y1 ∈ V1.

It is known that isomorphism between bipolar fuzzy graphs is an equivalence relation. If
there is an isomorphism between two bipolar fuzzy graphs such that one is a bipolar fuzzy
planar graph, then the other will be bipolar fuzzy graph.We state the following result without
its proof.
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Theorem 6 Let G be a bipolar fuzzy planar graph and let H be a bipolar fuzzy graph. If
there exists an isomorphism f : G → H, H can be drawn as bipolar fuzzy planar graph with
same planarity value of G.

Two bipolar fuzzy planar graphs with same number of vertices may be isomorphic. But,
the relations between bipolar fuzzy planarity values of two bipolar fuzzy planar graphs may
have the following relations:

Theorem 7 Let G1 and G2 be two isomorphic bipolar fuzzy graphs with bipolar fuzzy
planarity values f1 and f2, respectively. Then f1 = f2.

Theorem 8 Let G1 and G2 be two weak isomorphic bipolar fuzzy graphs with bipolar fuzzy
planarity values f1 and f2, respectively. f1 = f2 if the edge positive membership and
negative membership values of corresponding intersecting edges are same.

Theorem 9 Let G1 and G2 be two co-weak isomorphic bipolar fuzzy graphs with bipolar
fuzzy planarity values f1 and f2, respectively. f1 = f2 if theminimumof positivemembership
values and maximum of negative membership values of the end vertices of corresponding
intersecting edges are same.

Conclusions

Graph theoretical concepts are widely used to study and model various applications in dif-
ferent areas including automata theory, operations research, economics, and transportation.
However, in many cases, some aspects of a graph-theoretic problem may be vague or uncer-
tain. It is natural to deal with the vagueness and uncertainty using the methods of fuzzy sets.
Since bipolar fuzzy set has shown advantages in handling vagueness and uncertainty than
fuzzy set, we have applied the concept of bipolar fuzzy sets to multigraphs and planar graphs
in this paper. The natural extension of this researchwork is application of bipolar fuzzy planar
graphs in the area of applied soft computing including neural networks, decision making and
geographical information systems.
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