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Abstract This paper develops a production-inventory model of a single product with imper-
fect production process in which inflation and time value of money are considered under
shortages. Demand rate has been considered to be a function of quadratic decreasing and
exponential decreasing of selling price. The selling price of a unit is determined by a mark-
up over the production cost. Unit production cost is considered incorporating several features
like energy and labour cost, raw material cost, replenishment rate and other factors of the
manufacturing system. The defective items which is a certain fraction of the total production
or a random number are either reworked or refunded if those reach to the customer. Two
scenarios have been considered in which defective items are refunded from the customer
with penalty in scenario (a) and the defective items are repaired and sold to the customer as
good items in scenario (b). Based on these two scenarios, three models have been developed
in which defective items are certain fraction of the produced quantity in Model-I, a random
number in Model-II, and are dependent in reliability parameter and time in Model-III. Con-
sidering all these phenomena optimum production of the product has been evaluated to have
maximum profit. Finally, numerical examples are given to illustrate the results along with
graphical analysis. Sensitivity analysis has also been carried out for different values of the
parameter.
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Introduction

In the manufacturing system, a production process is not always completely perfect and as
a result of which some defective items may be produced from the very beginning of the
production. In that case defective items are certain fraction of the total production. Again on
the other hand, all the produced itemsmay be non-defective at the beginning of the production
process but as long as the production continues, the production process deteriorates with time.
In that case, defective items are random number. These defective items are either repaired
or refunded if they reach to the customer. Lee and Park [1], Urban [2], Lin [3], Rosenblatt
and Lee [4], Lee and Rosenblatt [5] developed an EPL model of this type of production
process. Sana et al. [6,7] developed an EMQ model in an imperfect production system in
which defective items are sold at a reduced price. Then several research works have been
done on imperfect production process and defective items [8–11].

Recently,Mondal et al. [12] developed an inventorymodel for defective itemswith variable
production cost. But in this paper shortages and time-value of money were not taken into
account. So, in this paper we have developed an EPL model of defective items considering
shortages, inflation and time-value of money (Table 1).

In this model demand has been considered as quadratic and exponential decreasing func-
tion of selling price. The selling price of a product is one of the important factors in the present
competitive market situation. It has been seen in case of defective goods whose demand is
mainly price dependent that higher selling price negates the demand whereas lower selling
price has a reverse effect.Whitin [13] first considered the effect of price dependent demand in
an inventorymodel. Thenmany researchers haveworked in this area [14–17]. Recently,Maiti
et al. [18] developed a production-inventory with stochastic lead-time where price dependent
demand was considered. Different types of demand like stock dependent and time varying
demand have also been considered in several research work [19–23].

Table 1 Brief literature review

Reference
no.

Defective
items

Price dependent
demand

Inflation and time
value of money

Shortage Deterioration

[3]
√

[4]
√

[12]
√ √

[25]
√

[27]
√

[28]
√ √

[31]
√ √

[35]
√ √ √

[37]
√ √ √

[38]
√ √

[39]
√ √

[41]
√ √

[18]
√ √

This model
√ √ √ √
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Again many EOQ models do not take into account the effects of inflation and time-value
of money. So the time-value of money which plays an important role, can not be ignored
in the present economic situation. Buzacott [24] was the first who had included the idea of
inflation in inventory literature. Misra [25], Van Hees and Monhemius [26], Bierman and
Thomas [27], Sarkar and Pan [28] also have worked in this direction. Other notable paper in
this direction are Hariga [29], Cheung [30], Chung, Liu and Tsai [31].

Again, in the present economic situation, shortage of the items takes an important role.
Chandra and Bahner [32] established an inventory model for deteriorating items with short-
ages and linear time-dependent demand inwhich time-value ofmoneywas considered. Again
several research work in the direction of probabilistic deterioration have been done by many
researcher [33,34]. Bose, Goswami and Chaudhuri [35], Dohi, Kaio and Osaki [36], Chen
[37], Wee and Law [38] also developed the inventory model in which shortages were taken
into consideration. Datta and Pal [39], Bose et al. [40] developed inventory model consider-
ing effect of inflation and shortages. Roy and Chaudhuri [41] analysed a finite time-horizon
deterministic EOQ model with stock dependent demand and effect of inflation and allowing
shortages in all cycles. Sarkar et al. [42] developed an inventory model with finite replen-
ishment rate where price discount offer was considered. Some recent works in this area are
given by [43–50] (Table 2).

Table 2 Some recent works in
the area of defective items and
imperfect production

Reference no. Authors and published
year

Defective items

[43] Barzoki and Jahanbazi
and Bijari (2011)

Yes (imperfect
product)

[44] Pal and Sana and
Chaudhuri (2012)

Yes (reworkable
items)

[45] Sarkar and Gupta and
Chaudhuri and Goyal
(2014)

Yes (defective units)

[46] Pal and Sana and
Chaudhuri (2013)

Yes (imperfect
production system)

[47] Pal and Sana Chaudhuri
(2014)

Yes (imperfect
Production)

[48] Das Roy and Sana and
Chaudhuri (2011)

Yes (imperfect items)

[49] Sarkar and Sana and
Chaudhuri (2011)

Yes (imperfect
production process)

123



198 Int. J. Appl. Comput. Math (2017) 3:195–212

Notations and Assumptions

This paper is developed with the following Notations and Assumptions.

Notations:

p: Selling price per unit item.
D(p): Demand rate which is a function of selling price.
P: Production rate (a decision variable).
f (P): Unit production cost.
A: Advertisement cost per unit item.
cr : Raw material cost.
L: Labour charges.
S: Maximum stock level.
S1: Maximum shortage.
ch : Inventory carrying cost per unit quantity per unit time.
c0: Set up cost which is known and constant.
q(t): Stock level at time t.
Q: Number of produced units(a decision variable).
M(Q, P): Average profit per unit time for a cycle.
P1: Total number of defective items.
μ: Scaling parameter for defective items.
1
m : Mean of exponential distribution.
t1: Time upto which the production is made i.e. after t = t1 the production is

discontinued.
t2: Time at which stock level falls to zero due to demand.
t3: Time at which shortages reach to the level S1.
T : Time at which stock level is again zero i.e. one cycle time.
γ : r-i, r is the interest rate per unit currency and i is the inflation rate per unit

currency.
ψ : Product reliability parameter.

Assumptions:

(a) The demand rate D(p) is deterministic function of selling price p. It is either quadratic
decreasing or exponential decreasing function of selling price p. D(p) = a− bp− cp2,
where a, b, c > 0 and D(p) = d × p−k , d, k > 0.

(b) The unit production cost f (P) = cr + A + L
Pα + K Pβ , where K is a positive constant

and α, β are chosen to provide the feasible solution of the model.
(c) The defective items are fraction of the produced items in first and third model and a

random number for the second model.
(d) Selling price p is determined by a mark-up over the unit production cost f (P). i.e.

p = λ f (P), λ > 1 where λ is the mark-up.
(e) Lead time is assumed to be zero.
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Development of the Model and Analysis

The defective items are either reworked or refunded if those are sold to the customer. Under
these circumstances, we investigate the following two scenarios:

Scenario (a): Q units are to be produced. All produced items including the defective items
are sold to the customers at the rate of D units as good units and later P1 defective items are
refunded from the customer with penalty at a cost of cv per unit.

Scenario (b): Q units are produced and P1 defective items are spotted just after the pro-
duction. Those are repaired against the cost of cθ per unit and sold as good items to the
customer.

At t = 0, the stock level is zero and then the variable production starts to produce items at
a rate P units per unit time. The production stops at t = t1. As the production rate is greater
than demand rate, some units are accumulated during the interval 0 ≤ t ≤ t1. At t = t1, the
inventory level reaches to the maximum stock level S. After t = t1, the stock level decreases
due to demand only and at t = t2 it falls to zero. Then shortages start and are accumulated
to the level S1 at t = t3. After t = t3 the production starts again. Fresh production and
supply to the consumers occur simultaneously during the interval t3 ≤ t ≤ t4. The whole
backlog is cleared by the time t = t4 and the stock level is again zero at t = t4. The graphical
representation of the model is given by Fig. 1.
Hence under the above assumptions, the differential equation satisfied by q(t) at time t can
be represented as:

dq(t)

dt
= P − D, 0 ≤ t ≤ t1 (1)

dq(t)

dt
= −D, t1 ≤ t ≤ t2 (2)

dq(t)

dt
= −D, t2 ≤ t ≤ t3 (3)

dq(t)

dt
= P − D, t3 ≤ t ≤ T (4)

I
n
v
e
n
t
o
r
y

S

t2 t3 Tt1

Time

0 S1

Fig. 1 Graphical representation of Model
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with initial and boundary condition

q(0) = q(t2) = q(T ) = 0, q(t1) = S, q(t3) = −S1. (5)

From (1) and (2), we have

S = Q − D
Q

P

[
since t1 = Q

P

]
(6)

and

t2 = Q

D
(7)

From (3) and (4), we have

S1 = Q − D
Q

P
[since t3 = T − t1] (8)

and

T = 2
Q

D
(9)

The present-value of total revenue is

CREV =
∫ T

0
pDe−γ t dt

= 1

γ
pD(1 − e−γ T ) (10)

The present-value of production cost is

CPRO =
∫ T

0
f (P)De−γ t dt

= f (P)D

γ
(1 − e−γ T ) (11)

The present-value of holding cost is

CHOL = 1

2

∫ t2

0
ch Se

−γ t dt

= ch S

2γ
(1 − e−γ t2) (12)

The present-value of set-up cost is

CSET =
∫ T

0

c0D

Q
e−γ t dt

= c0D

γ Q
(1 − e−γ T ) (13)

The present-value of shortage cost is

CSHO = 1

2

∫ T−t2

0
cs(−S1)e

−γ t dt

= −cs S1
2γ

(1 − e−γ (T−t2)) (14)
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The present-value of refund cost is

CREF =
∫ T

0
cvμPδ−1De−γ t dt

= cvμPδ−1D

γ
(1 − e−γ T ) (15)

The present-value of rework cost is

CREW =
∫ T

0
cθμPδ−1De−γ t dt

= cθμPδ−1D

γ
(1 − e−γ T ) (16)

Model-I : Defective items are a certain fraction of the produced quantity:
Scenario (a): The total profit incorporating inflation and time-value of money is given by

M (Q, P) = 1

γ

(
pD − f (P) D − c0

D

Q
− μcvP

δ−1D

) (
1 − e−γ T

)
− 1

2γ
chQ

(
1 − D

P

) (
1 − e−γ t2

) + 1

2γ
cs Q

(
1 − D

P

) (
1 − e−γ (T−t2)

)
(17)

Scenario (b): The total profit incorporating inflation and time-value of money is given by

M (Q, P) = 1

γ

(
pD − f (P) D − c0

D

Q
− μcθ P

δ−1D

) (
1 − e−γ T

)
− 1

2γ
chQ

(
1 − D

P

) (
1 − e−γ t2

) + 1

2γ
cs Q

(
1 − D

P

) (
1 − e−γ (T−t2)

)
(18)

Model-II : Number of defective items is random:
Let the time τ at which in-control state changes to a out-control state is a random variable and
follows exponential distribution with mean 1

m . So the number of defective items is a random
variable and is given by

X (t1) = 0 i f τ ≥ t1

= α1P(t1 − τ) i f τ < t1 (19)

So the expected number of total defective item is given by

P1 = E[X (t1)]
= α1P

{(
t1 + 1

m
e−mt1

)
− 1

m

}
, t1 = Q

P
(20)

Scenario (a): The expected average profit M(Q, P) is given by

M (Q, P) = 1

γ

[
pD − f (P) D − c0

D

Q
− cv

{
α1P

(
Q

P
+ 1

m
e−mQ

P − 1

m

)
D

}
/Q

]

(
1 − e−γ T

)
− 1

2γ
chQ

(
1 − D

P

) (
1 − e−γ t2

) + 1

2γ
cs Q

(
1 − D

P

)
(
1 − e−γ (T−t2)

)
(21)
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Scenario (b): The expected average profit M(Q, P) is given by

M (Q, P) = 1

γ

[
pD − f (P) D − c0

D

Q
− cθ

{
α1P

(
Q

P
+ 1

m
e−mQ

P − 1

m

)
D

}
/Q

]

(
1 − e−γ T

)
− 1

2γ
chQ

(
1 − D

P

) (
1 − e−γ t2

) + 1

2γ
cs Q

(
1 − D

P

)
(
1 − e−γ (T−t2)

)
(22)

Model-III : Defective items are dependent on reliability parameter ψ and time t:

The amount of defective items produced at time t is ηeψ t P where ηeψ t < 1. Since the
fraction ηeψ t increases with time t and ψ simultaneously, so in this system the production of
defective items increase with increase of time. It has been seen, after a certain time almost
all manufacturing system undergoes unsatisfactory performance. So, in long production run
process, the system shifts in-control state to a out-control state during malfunctioning. As a
result percent of defective items increase with time t. Again, lower value of ψ decrease the
percent of defective items. For that reason, the defective items at time t has been considered
as ηeψ t P .

Therefore, the present-value of refund cost is

CREF =
∫ T

0
cvηe

ψ t De−γ t dt

= cvηD

γ − ψ
(1 − e(ψ−γ )T ) (23)

Therefore, the present-value of rework cost is

CREF =
∫ T

0
cθ ηe

ψ t De−γ t dt

= cθ ηD

γ − ψ
(1 − e(ψ−γ )T ) (24)

Scenario (a): The total profit M(Q, P) is given by

M (Q, P) = 1

γ

[
pD − f (P) D − c0

D

Q

] (
1 − e−γ T

)
− 1

2γ
chQ

(
1 − D

P

) (
1 − e−γ t2

)

+ 1

2γ
cs Q

(
1 − D

P

) (
1 − e−γ (T−t2)

)
− cvηD

γ − ψ

(
1 − e(ψ−γ )T

)
(25)

Scenario (b): The total profit M(Q, P) is given by

M (Q, P) = 1

γ

[
pD − f (P) D − c0

D

Q

] (
1 − e−γ T

)
− 1

2γ
chQ

(
1 − D

P

) (
1 − e−γ t2

)

+ 1

2γ
cs Q

(
1 − D

P

) (
1 − e−γ (T−t2)

)
− cθ ηD

γ − ψ

(
1 − e(ψ−γ )T

)
(26)
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Numerical Examples

To illustrate the proposedmodel-1, model-2 andmodel-3we consider the following examples
given below.

Example-1 of model-1: Let us take D(p) = a − bp − cp2 and the parameter values in the
inventory system are c0 = $100, ch = $3, cs = $2, cr = $50, a = 100, b = 0.3 α = 0.7,
β = 1.5, cv = 200, λ = 1.2, A = $50,μ = 0.08, γ = 0.02, L = $1500, K = 0.01, δ =
0.8, c = 0.001, in appropriate units. The optimal solution is P∗ = 159.811, Q∗ = 80.2984,
and maximum expected average profit is M = 1637.74 (Fig. 2).

Example-2 of model-1: Let us take D(p) = d × p−k and the parameter values in the
inventory system are c0 =$100, ch = $3, cs = $2, cr = $50, d = 20000,k = 1.6 α =
0.7, β = 1.5, cv = 200, λ = 1.2, A = $50, μ = 0.08, γ = 0.02, L = $1500, K =
0.01, δ = 0.8, in appropriate units. The optimal solution is P∗ = 478.359, Q∗ = 88.9129,
and maximum expected average profit is M = 2678.58 (Fig. 3).

Example-1 of model-2: Let us take D(p) = a − bp − cp2 and the parameter values in the
inventory system are c0 = $100, ch = $3, cs = $2, cr = $50, a = 200,b = 0.7 α =
0.7, m = 0.08, α1 = 0.001, β = 1.5, cv = 200, λ = 1.2, A = $50, γ = 0.01, L =
$1500, K = 0.01, δ = 0.8, c = 0.001, in appropriate units. The optimal solution is P∗ =
154.575, Q∗ = 1081.71, and maximum expected average profit is M = 30469.9 (Fig. 4).
Example-2 of model-2: Let us take D(p) = d × p−k and the parameter values in the
inventory system are c0 = $100, ch = $3, cs = $2, cr = $50, d = 20000, k = 1.6, α = 0.7,
m = 0.08, α1 = 0.001, β = 1.5, cv = 200, λ = 1.2, A = $50, γ = 0.01, L = $1500,
K = 0.01, in appropriate units. The optimal solution is P∗ = 64.704, Q∗ = 156.406, and
maximum expected average profit is M = 4879.64 (Fig. 5).

Example-1 of model-3: Let us take D(p) = a − bp − cp2 and the parameter values in the
inventory system are c0 = $100, ch = $3, cs = $2, cr = $50, a = 200,b = 0.7, α = 0.7,

Fig. 2 Maximum total profit M(Q, P) versus Q and P of Example-1(Model-1)
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Fig. 3 Maximum total profit M(Q, P) versus Q and P of Example-2(Model-1)

Fig. 4 Maximum expected average profit M(Q, P) versus Q and P of Example-1(Model-2)

β = 1.5, cv = 200, λ = 1.2, A = $50, η = 0.09, ψ = 0.05, γ = 0.01, L = $1500, K =
0.01, c = 0.001, in appropriate units. The optimal solution is P∗ = 159.276, Q∗ = 57.6545,
and maximum expected average profit is M = 1608.07 (Fig. 6).
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Fig. 5 Maximum expected average profit M(Q, P) versus Q and P of Example-2 (Model-2)

Fig. 6 Maximum total profit M(Q, P) versus Q and P of Example-1(Model-3)

Discussion

In scenario (a) and scenario (b) of model-1, the systemwith free from defective items (μ = 0)
givesmore profit than the systemwith defective items (μ �= 0). Again in defective production
system, the amount of profit decreases as δ changes from 0.8 to 1.0 (Table 3)

In case of model-2 with random defective items, for all scenarios, profit is less when mean
of the exponential distribution is less i.e. profit with m = 0.08 is more than the profit with
m = 0.4. But the change in profit with mean is very slow (Table 4).

In case of model-3 for all scenarios the profit decreases as the reliability parameter η

changes from 0.05 to 0.08. Therefore lower value of η gives more profit (Table 5).
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Table 3 The optimal solution of model-1 for different values of μ and δ in Example-1 and Example-2

Example Scenario μ δ Q (max lot size) P (max prod. rate) M (average profit)

1. (a) 0.08 0.8 80.2984 159.811 1637.74

0.08 1.0 60.5379 159.24 718.814

0.00 – 89.4166 159.269 2216.73

1. (b) 0.08 0.8 85.0098 159.509 1923.11

0.08 1.0 76.5067 159.258 1427.55

0.00 – 89.4166 159.269 2216.73

2. (b) 0.08 0.8 88.9129 478.359 2678.58

0.08 1.0 – – –

0.00 – 132.727 131.429 3382.07

2. (b) 0.08 0.8 117.911 276.082 2958.3

0.08 1.0 72.3388 21.3201 2464.81

0.00 – 132.727 131.429 3382.07

Table 4 The optimal solution of model-2 for different values of m in Example-1 and Example-2

Example Scenario m Q (max lot size) P (max prod. rate) M (average profit)

1. (a) 0.08 1081.71 154.575 30469.9

0.40 1079.35 154.606 30346.3

1. (b) 0.08 1082.86 154.531 30503.6

0.40 1081.68 154.547 30441.7

2. (a) 0.08 156.406 64.704 4879.64

0.40 156.655 65.6804 4868.59

2. (b) 0.08 156.283 64.3799 4881.52

0.40 156.397 64.8412 4875.98

Table 5 The optimal solution of model-3 for different values of η and ψ in Example-1

Example Scenario η ψ Q (max lot size) P (max prod. rate) M (average profit)

1. (a) 0.09 0.05 57.6545 159.276 1608.07

0.09 0.08 37.9048 159.297 1048.49

0.09 0.05 94.8979 159.264 3554.85

1. (b) 0.09 0.08 63.3979 159.29 2520.52

Sensitivity Analysis

The sensitivity of the maximum total profit is examined due to changes in production rate
and price mark-up. To illustrate the result, it has been shown only for Model-1 (Example-1),
scenario-(a).

Figure 7 shows that total profit increaseswith the production rate P and it attainsmaximum
value $1637.74 at P = 159.811 when Q = 80.3.
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Fig. 7 Maximum total profit M versus production rate P

Fig. 8 Unit production cost f versus production rate P

Fig. 9 Maximum total profit M versus price mark-up

From Fig. 8 it is observed that unit production cost is minimum i.e. Rs. $163.212 at
production rate P = 159.337. It is interesting to note that at P = 159.811 unit production
cost is not minimum.

Figure 9 represents maximum total profit versus price mark-up λ. Normally, profit
increases with the increase of price mark-up. From Fig. 9, it is observed that the profit
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Table 6 Effects of c0, ch , cs , γ
and L on profit in Example-1
(Model-I)

Parameter %change in
the parameter

Average profit %change in
the average
profit

c0 +50 1577.57 −3.67

+20 1613.63 −1.47

−20 1661.88 1.47

−50 1698.2 3.69

ch +50 908.444 −44.53

+20 1248.83 −23.75

−20 2382.25 45.46

−50 – –

cs +50 – –

+20 2063.72 26.01

−20 1357.26 −17.13

−50 1073.71 −34.44

γ +50 1282.32 −21.70

+20 1473.53 −10.03

−20 1845.56 12.69

−50 2290.43 39.85

L +50 – –

+20 – –

−20 5593.63 241.55

−50 10529.3 542.92

is maximum when the price mark-up is 1.17 and the profit decreases as price mark-up is
more than 1.17 because demand decreases with increase of selling price. Again sensitivity
to the different changes of parameters are observed in Table 6.

Conclusions

In this paper, we have extended Mondal et al. [7] EPL model for defective items considering
shortages, inflation and time-value of money. Again, in this model different types of demand
like quadratic decreasing and exponential decreasing function of selling price have been
considered.

This model could be extended in fuzzy and fuzzy-stochastic environment taking demand,
defective items and other inventory parameters to be imprecise.

Acknowledgements The authors wish to thank the anonymous referees for their helpful comments and
suggestions which greatly improved the content of the article.

123



Int. J. Appl. Comput. Math (2017) 3:195–212 209

Appendix

Theorem: The profit function M(Q, P) possess a maximum solution.

Proof:

M (Q, P) = 1

γ

(
pD − f (P) D − c0

D

Q
− μcvP

δ−1D

) (
1 − e−γ T

)
− 1

γ
chQ

(
1 − D

P

) (
1 − e−γ t2

) + 1

γ
cs Q

(
1 − D

P

) (
1 − e−γ (T−t2)

)

∂M (Q, P)

∂Q
= c0D

γ Q2

(
1 − e−γ T

)
+

(
pD − f (P) D − c0

D

Q
− μcvP

δ−1D

)
2e−γ T

D

− 1

γ
ch

(
1 − D

P

) (
1 − e−γ t2

) − 1

D
chQ

(
1 − D

P

)
e−γ t2 + 1

γ
cs

(
1 − D

P

)

(
1 − e−γ (T−t2)

)
+ 1

D
csQ

(
1 − D

P

)
e−γ (T−t2) = 0 (27)

We first obtain second order derivative of M(Q, P) and using (36) we have

∂2M (Q, P)

∂Q2 = −2
c0D

γ Q3

(
1 − e−γ T

)
+ 4c0

Q2 e
−γ T − 4γ e−γ T

D2

(
pD − f (P) D − c0

D

Q

−μcvP
δ−1D

)
− 2ch

D

(
1 − D

P

)
e−γ t2 + γ chQ

D2(
1− D

P

)
e−γ t2 + 3cs

D

(
1− D

P

)
e−γ (T−t2)

)
− γ cs Q

D2

(
1 − D

P

)
e−γ (T−t2)

= −2c0
Q2

(
D

γ Q
− D

γ Q
e−γ T − e−γ T

)
− 1

D

(
1 − D

P

)(
2ch + γ chQ

D
e−γ t2−

cs
(
2 + e−γ t2

) − γ cs Q

D
e−γ (T−t2) − 2c0D

Q2
(
1 − D

P

)
)

= −2c0
Q2 X − 1

D

(
1 − D

P

)
Y < 0

provided X = ( D
γ Q − D

γ Q e
−γ T − e−γ T ) > 0 and Y = (2ch + γ ch Q

D e−γ t2 − cs(2+ e−γ t2) −
γ cs Q
D e−γ (T−t2) − 2c0D

Q2(1− D
P )

) > 0

∂M (Q, P)

∂P
= 1

γ

(
− αLD

Pα+1 + KβDPβ−1 − μcv (δ − 1) Pδ−2D

) (
1 − e−γ T

)

−chQD

γ P2

(
1 − e−γ t2

) + 1

γ

cs QD

P2

(
1 − e−γ (T−t2) = 0

)
(28)

∂2M(Q, P)

∂P2 = 1

γ

(
−α(α + 1)LD

Pα+2 − Kβ(β − 1)DPβ−2 − μcv(δ − 1)(δ − 2)

Pδ−3D

)
(1 − e−γ T ) − 2chQD

γ P3 (1 − e−γ t2) − 2cs QD

γ P3 (1 − e−γ (T−t2))
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= − 1

γ
Kβ(β − 1)DPβ−2(1 − e−γ T ) − 1

γ
μcv(δ − 1)(δ − 2)Pδ−3D

(1 − e−γ T ) − 2cs QD

γ P3 (1 − e−γ (T−t2)) − D

γ P3

{
α(α + 1)L

Pα−1 −

2chQ(1 − e−γ t2)

}
< 0

provided B = α(α+1)L
Pα−1 − 2chQ(1 − e−γ t2) > 0

∂2M(Q, P)

∂Q∂P
= − D

γ P2

{
ch(1 − e−γ t2) − cs(1 − e−γ (T−t2))

}
< 0

provided C = ch(1 − e−γ t2) − cs(1 − e−γ (T−t2)) > 0

Hence M(Q, P) has a maximum with respect to Q and P if ∂2M(Q,P)

∂Q2 < 0 and
∂2M(Q,P)

∂Q2
∂2M(Q,P)

∂P2 − ∂2M(Q,P)
∂Q∂P > 0

For our numerical data the above conditions are satisfied and therefore the profit function
has a maximum solution.
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