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Abstract In this paper, space–time distribution of nanoparticles, as predicted by the fluid
model, is simulated using Galerkin based space–time coupled finite element methodology.
The method is utilized to simulate the silane discharge process and the ensuing behavior of
the affected particles as a function of time in a plasma enhanced chemical vapor deposition
(PECVD) reactor. PECVD is a practical technique of producing thin silicon films. Simula-
tion of this process, as modeled by a set of nonlinear partial differential equations, requires
extensive resolution in time. An attempt at establishing a stable and convergent computa-
tional process was successful only when space–time coupled finite element methodology
was utilized to simulate this problem. Details of the methodology along with results of a
particular test case are presented.

Keywords Space–time coupled finite element · PECVD reactor · Radio frequency
discharge · Silicon amorphous thin film

Introduction

Plasma enhanced chemical vapor deposition (PECVD) is a technique of producing nano-sized
particles at low pressures and low temperatures. In this method, the plasma is generated using
radio frequency (RF) power source [1,2]. Electrons’movement leading to ionization reactions
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is the fundamental process in the reactor volume. Ionization and attachment reactions produce
positive and negative charged particles. Hence, as the process evolves through time, new
species with varying number density take part in the reactions, thereby producing radicals
and neutrals after a shortwhile.Various particlesmove towards the substrate and are deposited
on it to form amorphous thin films. The resulting thin film is then incorporated into industrial
devices; in particular, electronic devices, solar cells and thin film transistors for controlling
liquid crystal display (LCD) panels [3,4].

In this work, silane is considered as the background gas, and it is assumed that gas density
is uniform and remains constant during the process. Using the one-dimensional fluid model
coupled with Poisson’s equation to account for electric field potential, the time and space
variations in particle density for different species can be modeled [1,2,5]. Here, space–time
coupled finite element (STCFE) method is utilized to investigate particles’ behavior during
the discharge process.

STCFE framework was adopted to solve this problem because of the high rates that exist
in density variations, a consequence of the high frequency of power source. Coupling of
time and space in finite element interpolation allows one to establish a stable and convergent
evolutionary process for this problem.

Themodel considered here assumes silane gas in the backgroundwithout anymaterial flux
into the system. As expected, periodic concentration for certain species hold their pattern in
time, thereby, indicating the absence of numerical diffusion in the computational process, i.e.
no reduction in peaks or change in period of concentration at any spatial point. Furthermore,
the computed results demonstrate the production and consumption of each participating
species as a function of time, as well as deposition and accumulation of certain species.

Model Description

Main objective of this study is to simulate the effects of ionization and production of different
particles during the discharge process in a PECVD reactor. The reactor model includes two
parallel electrodes covered with substrate that are placed 2.7 cm apart. The first electrode is
grounded while the other electrode is connected to a Radio frequency (RF) power source,
producing a periodic electric field at 136MHz. Inside the reactor, a glowdischarge is produced
between the two electrodes. Ionization as well as all other reactions takes place during this
glow discharge. As the process proceeds in time, different particles are produced in the reactor
volume [6]. Radicals such as SiH2 and SiH3 are deposited on the substrate, which play an
important role in thin film’s growth. However, Si2H5 and heavier radicals are rarely produced
during the discharge, and hence are neglected from this model [7,8]. Here, only the most
dominant reactions in the reactor volume are considered.

A one-dimensional fluidmodel stating the conservation of particle number density for each
species, along with Poisson’s equation modeling reactor’s potential, can accurately describe
the PECVD process [1,2].

The conservation law, which holds for all species involved, i.e. electrons, neutrals, charged
particles, and radicals, can be stated as the following [1,2]:

∂n j

∂t
+ ∂� j

∂z
= S j , (1)

where n j is the particle number density for species j, Γ j is particle’s flux, and S j is a
prescribed source or sink for particle j in the reactor volume. Reactions that take place
during the discharge process lead to production or loss for each species. Hence, for every
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Table 1 Reaction rates where p0 is the atmospheric pressure and Tgas is 520 K

Chemical reaction Reaction rate (cm−3 S−1)

H + SiH4 −→ SiH3 + H2 2.8 × 10−11 exp(−1250/Tgas)

H + Si2H6 −→ Si2H5 + H2 1.6 × 10−10 exp(−1250/Tgas)

H + SinH2n+2 −→ SinH2n+1 + H2 2.4 × 10−10 exp(−1250/Tgas)

SiH4 + SiH2 −→ Si2H6 2 × 10−10[1 − (1 + 0.0032 p0)
−1]

SinH2n+2 + SiH2 −→ Sin+1H2n+4 4.2 × 10−10[1 − (1 + 0.0033 p0)
−1]

SiH−
3 + SiH+

2 −→ SiH3 + SiH2 1.2 × 10−7

SiH−
3 + Si2H

+
4 −→ SiH3 + 2SiH2 1 × 10−7

reaction, the source term in (1) can be written as:

A + B → C + D

Srec, c, D = −Srec, A, B = nAnBKrec, (2)

where Krec is the rate of reaction between species A and B. Table 1 lists the reaction rates
used here [1].

Particle flux term in conservation equation can be replaced by the drift-diffusion approx-
imation, i. e.

� j = μ j n j E − Dj
∂n j

∂z
, (3)

where μ j is the mobility coefficient for species j , which is zero for a neutral or a radical.
Dj is the diffusion coefficient of species j , which accounts for particle flux due to particle
collisions [1,5,6].

For the particular case considered here, species that play significant roles in ionization
and recombination processes as well as the production of electrons and radicals are listed in
Table 2.

The PECVD reactor consists of two parallel electrodes covered with substrate at different
electric potential. Here, potential for the bottom electrode is zero and the top electrode is
connected to a radio frequency power source. The applied potential, as a function of time, t ,
can be stated mathematically as:

V(z=L) = Vr f sin(2π tυr f ), (4)

where Vr f is the amplitude and υr f is the angular frequency of the power source, which are
set as Vr f = 150 volts and υr f = 136 MHz (period of 7.35 × 10−9) [1,5].

Finite Element Modeling

Finite element method offers a general computational framework for solving systems of
differential equations effectively, regardless of nonlinearities or complexities of the system
under consideration. In treatment of initial boundary value problems (IBVP), the common
approach is to state the approximation for field variable n j (χ, t) as:

n j (χ, t) =
∑

i

Ni j (χ)φi j (t), (5)
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Table 2 Species used in the
model

Species j Name Type

e− Electron Elementary

H Atomic hydrogen Radical

H2 Hydrogen molecule Neutral

Si2H5 Silane Radical

Si2H6 Disilane Neutral

SiH2 Silylidene Radical

SiH3 Silyl Neutral

SiH+
2 Silylidene cation Positive ion

Si2H
+
4 Disilanylidene cation Positive ion

SiH−
3 Silyl anion Negative ion

where Ni j (χ) are the interpolation bases defined in terms of spatial coordinates. The inter-
polation coefficients ϕi j , also referred to as the degrees of freedom, are functions of time.

Based on the approximation given in (5) an IBVP is transformed to a finite set of initial
value problems (IVP) in terms of ϕi j for which the coefficients are established using Ni j (χ)

functions. The resulting set of IVP is usually solved using finite difference methods with
proper numerical stabilizers.

In this approach, interpolant n j is decoupled in space and time. The decoupled formulation
works well for many common problems; i.e. a convergent and stable evolutionary process
can be established for many IBVP.

As a first attempt, space–time decoupled formulation was employed to solve the problem
at hand. However, the approach was not successful and a convergent solution could not be
obtained regardless of the time-step size.

However, the space–time coupled formulation that was tried next, led to a convergent and
stable computational process. Details of the coupled formulation are given next.

Space–Time Coupled Formulation

This formulation treats time as an additional independent variable when forming finite ele-
ment interpolants for each species j , i.e.

n j (z, t) =
∑

i

Ni j (z, t)φi j = N j .
 j (6)

Here, the one dimensional IBVP is solved over the two dimensional computational domain
of (z, t) instead of two, one dimensional domains of z and t . Obviously, this formulation sig-
nificantly increases the associated computational cost. However, for the problem at hand, the
coupling that exists in finite element interpolation was found to be necessary for establishing
a stable and convergent evolutionary process.

The weighted residual formulation utilized here is Galerkin based. After performing inte-
gration by parts on Eq. (1) with respect to z while considering Eq. (6) the resulting Galerkin
weak form becomes,
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∫ t f

t0

∫ L

0

(
w j

∂n j

∂t
+ Dj

∂w j

∂z

∂n j

∂z
+ μ j n j

∂w j

∂z

∂Vj

∂z

)
dzdt

=
∫ t f

t0

∫ L

0
w j S j dzdt For all j given in Table 2 (7)

where, L is distance between the two electrodes, and [t0, t f ] is the range of integration over
time.

The weighting function w j = w j (z, t) based on Galerkin formulation becomes,

w j = δ
 j (n j ) = NT
j (8)

Galerkin form of the diffusion model describing the imposed electric field, after integration
by parts becomes,

∫ t f

t0

∫ L

0

∂w

∂z

∂V

∂z
dzdt

=
∑

j

∫ t f

t0

∫ L

0
wq jn j dzdt with sum over all j given in Table 2 (9)

where, q j is the electric charge for species j .
Evolutionary nature of the IBVP allows for incrementation the time-span t0 ≤ t ≤ t f

. Hence, instead of considering the entire time domain at once, it is computationally more
efficient to break the domain into time slabs of duration �ti such that

∑
�ti = t f − t0. One

must use care in selecting time slabs durations �ti , since the size of �ti and meshing of the
corresponding time slab affect evolution’s stability as well as convergence to the nonlinear
solution.

For the problem at hand, data relevant to time slabs are listed in Table 3. The best level of
interpolation and global continuity for time were found to be Pt = 1 and Ct = 0.

Numerical Study

The problem given here consists of eleven coupled nonlinear partial differential equations
for which the Galerkin form is given by integrals in (7) and (9). These equations govern the
time dependent nonlinear response of eleven field variables, also referred to as the dependent
variables, which are number densities for the ten constituting materials given in Table 2, in
addition to one dependent variable representing electric potential.

Casting the equivalent Galerkin weak form over the two-dimensional field of space z and
time t can solve this system of equations. Spatial discretization and time stepping details are
listed in Tables 3 and 4 respectively.

Discretization in space is done using 52 elements such that as one moves away from either
boundary, element size increases by 30 %. Non-uniformity of the mesh allows us to capture
boundary effects accurately. Time slabs are divided into two equal-sized elements except for
the first slab which has three elements with lengths that increase by 20 % as one moves away
from time t = 0; allowing for the effects of initial conditions to be captured more accurately.

In thiswork, it is assumed that at beginning of the process all particles’ density is 1010 m−3;
and there are no flux boundaries i.e. no material enters or leaves the reactor at any time. Non-
dimensionalization parameters used in scaling the equations are listed in Table 5.
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Table 3 Time stepping and
discretization

i �ti (ns) NtE Grade

1 0.66 × 10−10 3 1.2

2–500 0.66 × 10−10 2 1

Table 4 Space discretization
�zi(cm) nE Grade

0–1.35 26 1.3

1.35–2.7 26 1/1.3

Table 5 Non-dimensionalization
variables

Variable with
dimension

Non-dimensionalization
coefficient

Dimensionless
variable

nj(m−3) Nj = 1010 uj

(potential)
(V)

F = 1 w

t (s) tc = 0.66 × 10−5 τ

z (m) zc = 0.12 λ

Discussion

The electric field induced through reactor’s boundaries produces plasmatic environment
inside the reactor. Here, ions and electrons react quickly to changes in the electromagnetic
field, with electrons being the most affected particles to the electric discharge. As seen in
Fig. 1 electron density rises quickly to an order of 1013 on the boundaries. Electrons maintain
the highest density throughout, as compared to other species that are present in the reactor.
An important point that indicates the accuracy of this simulation is the fact that period of
spatial accumulation is the same as the period of imposed electric field for all particles except
for electrons. Electrons have a longer period of accumulation, about 10 % longer, which can
be attributed to their loss of momentum due to collisions and their relatively small mass. Ions,
which are the main contributors to production of radicals, accumulate on the boundary at the
same frequency as the imposed field. Their peak density is about 1012, which is an order of
magnitude smaller than electron density. Figures 2, 3 and 4 show the periodic accumulation
of positive ions on the electrode. Figure 5 shows periodic generation and consumption of
Hydrogen atoms on the electrode, with a steady growth rate. The model, also predicts steady
accumulation of neutral particles, Fig. 6, which is the main purpose of a PECVD reactor.

As noted earlier, comparison of the pile-up and discharge rates for electrons and ions
reveals that the process is faster for ions than for the electrons.

Based on results shown in Fig. 5 density of certain radicals on the boundaries, grow
steadily. Radicals are neutral in charge and play an important role in growth of thin layers
on top of the sub-layers. As can be seen from Fig. 6, radicals grow on the boundary steadily
but at a much lower rate and have much lower concentration of 1010. However, ions and
electrons accumulate faster on the boundaries; and have much higher concentrations of 1012

and 1013 respectively. This is to be expected since ions and electrons are produced through
collisions facilitated by the induced electric field, whereas the radicals, being electrically
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Fig. 1 Electron density changes at the electrode (Z = 2.7 cm)

Fig. 2 SiH+
2 Density changes at the electrode (Z = 2.7 cm)

neutral, are produced through chemical reactions. Neutral particles that do not participate in
chemical reactions are deposited in thin layers on the boundaries; which is the main function
of a PECVD reactor. Hydrogen radicals (H) react easily and are produced through different
reactions. This property can be deduced from Fig. 5, on the boundaries H grows periodically
at a steady rate. The much heavier radical, SiH3, shown in Fig. 6 is non-reactive; it grows
slowly and monotonically on the boundaries. The heavier radical of Si2H5 does not show
any sign of growth due to its non-reactive nature; consequently Si2H5 has less effect on
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Fig. 3 Si2H
+
4 Density changes at the electrode (Z = 2.7 cm)

 
Fig. 4 SiH−

3 Density changes at the electrode (Z = 2.7)

production or deposition of layers on the boundaries and hence can be eliminated from the
process. In another research effort, the effect of Si2H5 and heavier radicals are neglected
completely [1].
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Fig. 5 Hydrogen density changes at the electrode (Z = 2.7 cm) Slope = 62 × 1015 m−3 s−1

Fig. 6 SiH3 density changes at the electrode (Z = 2.7 cm) Slope = 5 × 1013 m−3 s−1
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Fig. 7 Si2H5 density changes at the electrodes

Results Comparison

Even though our model is based entirely on the reactor-model utilized in [1], the results
presented in that work are time-averaged quantities, over long periods, and cannot be com-
pared with our high frequency time-resolved simulation. Nonetheless, in order to assess the
correctness of our findings, published works of similar nature are referenced to validate the
patterns that exist in our computed results.

Nanoparticle simulations carried out byBleecker et al. [3] demonstrate that lighter particles
deposit at higher densities. This pattern is consistent with the fact that lighter radicals are
formed at a higher rate thanheavier radicals; leading to higher density accumulations of lighter
particles. This pattern is also evident from our simulations, Figs. 5, 6 and 7. Deposition of
hydrogen radicals, Fig. 5, occurs at a higher rate than heavier radicals of SiH3 and Si2H5,
which successively have lower deposition rates and hence lower densities.

Another pattern matching is made through comparison with an experimental study [10]
that is concerned with particle genesis and growth in RF silane plasmas. In this work, charged
particles gather abruptly and disappear just as quickly; in a periodicmanner. This pattern,with
a minor difference, also exists in our computations of charged particles’ densities, Figs. 1,
2, 3 and 4. Due to damping effects, wave patterns in [10] show decrease in amplitudes of
consecutive peaks. The waves predicted by our numerical studies are abrupt and short-lived
as well; however, they have no peak drops for the simple fact that the present mathematical
model does not have any damping mechanism.

Furthermore, conservation of amplitude and shape of the computed waves are indicative
of the dispersion-less nature of the computational process employed here. The space–time
coupled finite element approximations are primarily responsible for the lack of numerical
dispersion in the results. Inclusion of time as an additional dimension in the computational
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domain, allows for correct representation of the nonlinearities that exist in this partial differ-
ential system of eleven equations.

Even though we cannot offer a one to one comparison with other similar works, we are
able to assume validity of our results based on correctness of certain patterns that exist in
our findings. Furthermore, correctness and effectiveness of the computational process can be
concluded from dispersion-less nature of the results; and the fact that optimum interpolation
order and mesh size were used here, i.e. any further improvements on mesh or interpolation
order would not cause any significant change in computed results.

Conclusion

This paper has presented the space–time coupled finite element simulation of a PECVD reac-
tor. Simulation of the high temporal gradients, due to the high frequency of RF input source,
became possible when the formulation was based on space–time coupled Galerkin method.
The coupled formulation leads to a stable and convergent evolutionary process. Computed
results demonstrate the generation and periodic accumulation of participating particles. Ions
accumulate on the boundaries at imposed frequency of the field, whereas electrons’ accumu-
lation frequency is lower because of their loss of momentum. The simulation also predicts a
steady growth of neutral particles, SiH3, which is the main purpose of a PECVD reactor.
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