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Abstract In the presentwork,we consider an impulsive fractional differential equationwith a
deviated argument in an arbitrary separable Hilbert space H . We obtain an associated integral
equation and then consider a sequence of approximate integral equations. The existence and
uniqueness of solutions to every approximate integral equation is obtained by using analytic
semigroup and Banach fixed point theorem. Next we demonstrate the convergence of the
solutions of the approximate integral equations to the solution of the associated integral
equation. We study the Faedo–Galerkin approximation of the solution and establish some
convergence results. Finally, we consider an example to show the effectiveness of obtained
theory.
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Introduction

In recent few decades, researcher has developed great interest in fractional calculus due to its
wide applicability in science and engineering. Tools of fractional calculus have been available
and applicable to deal with many physical and real world problems such as anomalous
diffusion process, traffic flow, nonlinear oscillation of earthquake, real system characterized
by power laws, critical phenomena, scale free process, describe viscoelastic materials and
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many others. The details on the theory and its applications can be found in [1–4] and papers
[5–9] and references cited therein.

On the other hand, many real world processes and phenomena which are subjected during
their development to short-term external influences can be modeled as impulsive differential
equation with fractional order which have been used efficiently in modelling many practical
problems. Their duration is negligible compared with the total duration of the entire process
and phenomena. Such process is investigated in various fields such as biology, physics, control
theory, population dynamics, economics, chemical technology, medicine and so on. For the
study for impulsive differential equation, we refer to monograph [10,11], and papers [12–23]
and references given therein.

The purpose of this work is to establish the approximation of the solution to following
differential equation with deviated argument in a separable Hilbert space (H, ‖ · ‖, (·, ·))

cDq
0+x(t) = −Ax(t) + f (t, x(t), x(a(x(t), t))) ,

0 ≤ t ≤ T0 < ∞, t �= ti , (1)

�x(ti ) = Ii (x(ti )), i = 1, 2, · · · , p, p ∈ N (2)

x(0) = u0, (3)

where 0 < q < 1, cDq
0+ is the fractional derivative in Caputo sense with single base point

0, 0 = t0 < t1 < · · · < tp < tp+1 = T0 are pre-fixed numbers, �x |t=ti = x(t+i ) − x(t−i )

and x(t+i ) = limh→0+ x(ti + h) and x(t−i ) = limh→0− x(ti + h) denote the right and left
limits of x(t) at t = ti , respectively. In (1), A : D(A) ⊂ H → H is a closed, positive
definite and self adjoint linear operator with dense domain D(A). We assume that −A is
the infinitesimal generator of an analytic semigroup of bounded linear operators on H . The
functions f : [0, T0] × H2 → H , a : H × [0, T0] → R, Ii : H → H are appropriate
functions to be mentioned later. For more details of differential equation with deviating
argument, we refer to papers [24–26] and references given therein.

In the present work, we investigate the Faedo–Galerkin approximations of the solutions
for (1)–(3). The Faedo–Galerkin approximations of the solutions in a separable Hilbert space
to the following system

x ′(t) + Ax(t) = M(x(t)), x(0) = u0 (4)

has been studied first by Miletta [27] under the assumption that −A is the infinitesimal
generator of an analytic semigroup and the nonlinear function M is Lipschitz continuous on
a ball in D(Aα), 0 < α < 1. Bahuguna and Srivastava [28] has discussed the more general
cases. For a nice introduction on existence of an approximate solution and associated study
of different problems are broadly talked about in the references [28–34].

The organization of the article is as follows: In Sect. 2, We provide some basic definitions,
lemmas and theorems as preliminaries as these are useful for proving our results. In Sect. 3,we
prove the existence and uniqueness of the approximate solutions by using analytic semigroup
and Banach fixed point theorem. In Sect. 4, we show the convergence of the solution to each
of the approximate integral equations with the limiting function which satisfies the associated
integral equation and the convergence of the approximate Feado-Galerkin solutions will be
shown in Sect. 5. In Sect. 6, we provide an example to illustrate the obtained theory.
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Preliminaries and Assumptions

In this segment, some basic definitions, preliminaries, Theorems and Lemmas and assump-
tions which will be used to prove existence result, is stated.
Throughout the work, we assume that (H, ‖ · ‖,< ·, · >) is a separable Hilbert space.
The symbol C([0, T0]; H) stands for the Banach space of all the continuous functions from
[0, T0] into H equipped with the norm ‖ z(t)‖C = supt∈[0,T0] ‖ z(t)‖H and L p((0, T0); H)

stands for Banach space of all Bochner-measurable functions from (0, T0) to H with the
norm

‖ z‖L p =
(∫

(0,T0)
‖ z(s)‖p

Hds

)1/p

.

Since−A is the infinitesimal generator of an analytic semigroup of bounded linear operators
{T (t); t ≥ 0}. Therefore, there exist constants C ≥ 1 and δ ≥ 0 such that ‖ T (t)‖ ≤ Ceδt ,
t ≥ 0. In addition, we note that

‖ d j

dt j
T (t)‖ ≤ Mj , t > t0, t0 > 0, (5)

where Mj are some positive constants. Henceforth, without loss of generality, we might
accept that T (t) is uniformly bounded by M i.e., ‖ T (t)‖ ≤ M and 0 ∈ ρ(−A) i.e., −A is
invertible. This permits us to define the positive fractional power Aα as closed linear operator
with domain D(Aα) ⊆ H for α ∈ (0, 1]. Moreover, D(Aα) is dense in H with the norm

‖ y‖α = ‖ Aα y‖. (6)

Hence, we signify the space D(Aα) by Hα endowed with the α-norm (‖ ·‖α). Also, we have
that Hκ ↪→ Hα for 0 < α < κ and therefore, the embedding is continuous. Then, we define
H−α = (Hα)∗, for each α > 0. The space H−α stands for the dual space of Hα , is a Banach
space with the norm ‖ z‖−α = ‖ A−αz‖. For study on the fractional powers of closed linear
operators, we refer to book by Pazy [35].

Lemma 2.1 Let −A be the infinitesimal generator of an analytic semigroup {T (t) : t ≥ 0}
such that ‖ T (t)‖ ≤ M, for t ≥ 0 and 0 ∈ ρ(−A). Then,

(i) For 0 ≤ α ≤ 1, Hα is a Hilbert space.
(ii) The operator AαT (t) is bounded for every t > 0 and

‖ AT (t)‖ ≤ Mt−1, (7)

‖ AαT (t)‖ ≤ Mαt
−α. (8)

Now, we state some basic definitions and properties of fractional calculus.

Definition 2.1 The Riemann–Liouville fractional integral operator J is defined as

Jq0+F(t) = 1

�(q)

∫ t

0
(t − s)q−1F(s)ds, (9)

where F ∈ L1((0, T0); H) and q > 0 is the order of the fractional integration.

Definition 2.2 The Riemann-Liouville fractional derivative is given as

RL Dq
0+F(t) = Dm

t Jm−q
0+ F(t), m − 1 < q < m, m ∈ N, (10)

where Dm
t = dm

dtm , F ∈ L1((0, T0); H), Jm−q
0+ ∈ Wm,1((0, T0); H).
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Definition 2.3 The Caputo fractional derivative is given as

cDq
0+F(t) = 1

�(m − q)

∫ t

0
(t − s)m−q−1Fm(s)ds, m − 1 < q < m, (11)

where F ∈ Cm−1((0, T0); H) ∩ L1((0, T0); H).

We denote by Cα
t = PC([0, t]; Hα), t ∈ (0, T0] the space of all Hα-valued functions on

[0, t] such that x(t) is continuous on t �= ti , left continuous at t = ti and the right limit x(t+i )

exists for i = 1, · · · , p. It is clear that Cα
t is a Banach space endowed with the norm

‖ y‖t,α = sup
s∈[0,t]

‖ y(s)‖α, y ∈ Cα
t .

For 0 ≤ α < 1, we define

Cα−1
t = {x ∈ Cα

t : ‖ x(τ ) − x(s)‖ ≤ L|τ − s|, for all τ, s ∈ [0, t]}, (12)

where L > 0 is a appropriate constant to be defined later.
Now, we introduce the following assumptions on A, f , a and Ii (i = 1, · · · , p):

(A1) A is a closed, densely defined, positive definite and self-adjoint linear operator from
D(A) ⊂ H into H . We assume that operator A has the pure point spectrum

0 < λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λm ≤ · · · , (13)

with λm → ∞ as m → ∞ and a corresponding complete orthonormal system of
eigenfunctions {φ j }, i.e.,

Aφ j = λ jφ j , and < φl , φ j >= δl j , (14)

where

δl j =
{
1, j = l,

0, otherwise.

(A2) Let W1 ⊂ Dom( f ) be an open subset of R+ × Hα × Hα−1, where α ∈ [0, 1). For
(τ, x, y) ∈ W1, there is a neighborhood U1 ⊂ W1 of (τ, x, y) and positive constants
L f = L f (τ, x, y,U1) such that

‖ f (t, x1, y1) − f (s, x2, y2)‖ ≤ L f [|t − s|μ1 + ‖ x1 − x2‖α + ‖ y1 − y2‖α−1],
(15)

for all (t, x1, y1), (s, x2, y2) ∈ U1 and 0 < μ1 ≤ 1.
(A3) For each (x, τ ) ∈ W2, where W2 ⊂ Dom(a) is an open subset of Hα × R+, there is

a neighborhood U2 ⊂ W2 of (x, τ ) and positive constant La = La(x, τ,U2) such that
a(·, ·) : Hα × R+ → R+, a(·, 0) = 0,

|a(x1, t1) − (x2, t2)| ≤ La
[‖ x1 − x2‖α + |t1 − t2|μ2

]
, (16)

for all (x1, t1), (x2, t2) ∈ U2, 0 < μ2 ≤ 1.
(A4) All the function Ii : Hα → Hα, (i = 1, · · · , p) are continuous function such that

(i) ‖ Ii (u)‖α ≤ Li , for all α ∈ (0, 1).

(i i) ‖ Ii (u1) − Ii (u2)‖α ≤ Ni‖ u1 − u2‖α , for all u1, u2 ∈ Hα .
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where Li and Ni , i = 1, . . ., p are positive constants.
From [12], we adopt the following thought of solution.

Definition 2.4 Apiecewise continuous function x : [0, T0] → H is said to be amild solution
for the system (1)–(3) if x ∈ Cα

T0
∩Cα−1

T0
and satisfy the following impulsive integral equation

x(t) = Sq(t)u0 +
∫ t

0
(t − s)q−1Tq(t − s) f (s, x(s), x(a(x(s), s)))ds

+
∑

0<ti<t

Sq(t − ti )Ii (x(ti )), for all t ∈ [0, T0]. (17)

The operator Sq(t) and Tq(t) are defined as follows:

Sq(t) =
∫ ∞

0
ζq(ξ)T (tqξ)dξ, (18)

Tq(t) = q
∫ ∞

0
ξζq(ξ)T (tqξ)dξ, (19)

where ζq(ξ) = 1
q ξ1−1/q × ψq(ξ

− 1
q ) is a a probability density function defined on (0,∞)

i.e., ζq(ξ) ≥ 0,
∫ ∞
0 ζq(ξ)dξ = 1 and

ψq(ξ) = 1

π

∞∑
n=1

(−1)n−1ξ−nq−1�(nq + 1)

n! sin(nπq), ξ ∈ (0,∞).

Formore details of probability function and generalized functions, we refer to papers [36–39].

Lemma 2.2 The operator Sq(t), t ≥ 0 and Tq(t), t ≥ 0 are bounded linear operators and
satisfy

(i) ‖ Sq(t)y‖ ≤ M‖ y‖, ‖ Tq(t)y‖ ≤ qM
�(1+q)

‖y‖ and ‖ AαTq(t)y‖ ≤ qMα�(2−α)t−qα

�(1+q(1−α))‖ y‖, for any y ∈ H.
(ii) The families {Sq(t) : t ≥ 0} and {Tq(t) : t ≥ 0} are strongly continuous.
(iii) If T (t) is compact, then Sq(t) and Tq(t) are compact operators for any t > 0.

Approximate Solutions and Convergence

The existence of approximate solutions for the problem (1) is established in this section.
Let Hn be the finite dimensional subspace of H which is spanned by {φ0, φ1, · · · , φn} and
Pn : H → Hn be the corresponding projection operator for n = 0, 1, 2, · · · ,. We define

fn : R+ × H2 → H, and Ii,n : H → H, (20)

by
fn (t, x(t), x(a(x(t), t))) = f

(
t, Pnx(t), Pnx(a(x(t), t))

)
, (21)

and
Ii,n(x) = Ii (P

nx), ∀ x ∈ H, n = 0, 1, 2, . . . , (22)

for i = 1, 2, . . . , p, respectively. We choose T , 0 < T ≤ T0 sufficiently small such that

T <
{2R

3

[
(1 − α)�(1 + q(1 − α))

MαN f �(2 − α)

] } 1
q(1−α)

, (23)
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‖ [Sq(t) − I ]u0‖α + M
p∑

i=1

Li <
R

3
, (24)

Mα�(2 − α)T q(1−α)

(1 − α)�(1 + q(1 − α))

[
L f (1 + LLa)

] + M
p∑

i=1

Ni < 1. (25)

Now, we consider

B = {
y ∈ Cα

T ∩ Cα−1
T : y(0) = u0, ‖ y − u0‖T,α ≤ R

}
. (26)

By the assumptions (A2) − (A3), we have that f is continuous on [0, T ]. Therefore, there
exist a constant N f > 0 such that

N f = L f
[
Tμ1 + R(1 + LLa) + LLaT

μ2
] + N , where N = ‖ f (0, u0, u0)‖, (27)

with
‖ f (τ, x(τ ), x(a(x(τ ), τ )))‖ ≤ N f , x ∈ H, τ ∈ [0, T ]. (28)

Now, we define the operator Qn on B as follows

Qnx(t) = Sq(t)u0 +
∫ t

0
(t − s)q−1Tq(t − s) fn(s, x(s), x(a(x(s), s)))ds

+
p∑

i=1

Sq(t − ti )Ii,n(x(ti )), (29)

for t ∈ [0, T ] and x ∈ B.

Theorem 3.1 Suppose (A1)−(A4) holds and u0 ∈ D(Aα), for 0 ≤ α < 1. Then, there exists
a unique fixed point xn ∈ Cα

T ∩Cα−1
T of the map Q i.e., Qnxn = xn for each n = 0, 1, 2, · · · ,

and xn satisfies the following approximate integral equation

xn(t) = Sq(t)u0 +
∫ t

0
(t − s)q−1Tq(t − s) fn(s, xn(s), xn(a(xn(s), s)))ds

+
p∑

i=1

Sq(t − ti )Ii,n(xn(ti )), (30)

for t ∈ [0, T ].
Proof Todemonstrate the theorem,wefirst need to show that Qnx ∈ Cα

T ∩Cα−1
T . It is clear that

Qn : Cα
T → Cα

T . Now, it remains to show that Qnx ∈ Cα−1
T . For x ∈ Cα−1

T , 0 < τ < t < T ,
then we have

‖ Qnx(t) − Qnx(τ )‖α−1

≤ ‖ [
Sq(t) − Sq(τ )

]
u0‖α−1 +

∫ τ

0
‖ (t − s)q−1Tq(t − s) − (τ − s)q−1Tq(τ − s)‖α−1

×‖ fn(s, x(s), x(a(x(s), s)))‖ds
+

∫ t

τ

‖(t − s)q−1Tq(t − s)‖α−1‖ fn(s, x(s), x(a(x(s), s)))‖ds,

+
p∑

i=1

‖ [
Sq(t − ti ) − Sq(τ − ti )

]
Ii,n(x(ti ))‖α−1.
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From the first term of above inequality, we have

[
Sq(t) − Sq(τ )

]
Aα−1u0 =

∫ ∞

0
ζq(ξ)

[
T (tqξ) − T (τ qξ)

]
Aα−1u0dξ, (31)

Also, we have that for each z ∈ H

[
T (tqξ) − T (τ qξ)

]
z =

∫ t

τ

d

ds
T (sqξ)zds =

∫ t

τ

qξsq−1AT (sqξ)zds. (32)

Therefore, we estimate the first term as∫ ∞

0
ζq(ξ)‖T (tqξ) − T (τ qξ)‖‖ Aα−1u0‖dξ

≤
∫ ∞

0
ζq(ξ)[

∫ t

τ

‖ d

ds
T (sqξ)‖]‖ u0‖α−1dξ,

≤
∫ ∞

0
ζq(ξ)[M1(t − τ)]‖ u0‖α−1dξ,

≤ K1(t − τ)

∫ ∞

0
ζq(ξ)dξ,

= K1(t − τ), (33)

where K1 = M1‖ u0‖α−1. The second integrals is estimated as∫ τ

0
‖ (t − s)q−1Tq(t − s) − (τ − s)q−1Tq(τ − s)‖α−1‖ fn(s, x(s), x(a(x(s), s)))‖ds

≤
∫ τ

0

∫ ∞

0
ζq(ξ)‖

[
d

dς
T ((ς − s)qξ)|ς=t − d

dς
T ((ς − s)qξ)|ς=τ

]
Aα−2‖

×‖ fn(s, x(s), x(a(x(s), s)))‖dξds,

≤
∫ τ

0

∫ ∞

0
ζq(ξ)

[∫ t

τ

‖ Aα−2 d2

dς2 T ((ς − s)qξ)‖dς

]
N f dξds,

≤
∫ τ

0

∫ ∞

0
ζq(ξ)

[‖ Aα−2‖M2(t − τ)
]
N f dξds,

≤ K2(t − τ), (34)

where K2 = ‖ Aα−2‖M2N f T . The third integrals is estimated as
∫ t

τ

‖(t − s)q−1Tq(t − s)‖α−1‖ fn(s, x(s), x(a(x(s), s)))‖ds

≤
∫ t

τ

∫ ∞

0
ζq(ξ)‖ [q(t − s)q−1ξ AT ((t − s)qξ)]Aα−2‖

×‖ fn(s, x(s), x(a(x(s), s)))‖dξds,

≤
∫ t

τ

∫ ∞

0
ζq(ξ)‖ d

dς
T ((ς − s)qθ)|ς=t A

α−2‖N f dξds,

≤ K3(t − τ), (35)

where K3 = M1‖ Aα−2‖N f . Similarly, we estimate

p∑
i=1

‖ [
Sq(t − ti ) − Sq(τ − ti )

]
Aα−1 Ii,n(x(ti ))‖ ≤ K4(t − τ), (36)
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where K4 = M1‖ A−1‖ ∑p
i=1 Li .

Thus, from the inequality (33)–(36), we obtain that

‖ Qnx(t) − Qnx(τ )‖α−1 ≤ L(t − τ), (37)

for a positive suitable constant L. Therefore, we conclude that (Qnx) ∈ Cα−1
T . Hence, the

Qn : Cα−1
T → Cα−1

T is a well defined map.
Next, we prove that Qn : B → B. For 0 ≤ t ≤ T and x ∈ B, we get that ‖ (Qnx)(t)− u0‖α

≤ ‖ [
Sq(t) − I

]
u0‖α +

∫ t

0
‖ (t − s)q−1Tq(t − s) fn(s, x(s), x(a(x(s), s)))‖αds

+
p∑

i=1

‖ Sq(t − ti )Ii,n(x(ti ))‖α,

≤ ‖ [
Sq(t) − I

]
u0‖α + qMαN f �(2 − α)

�(1 + q(1 − α))

∫ t

0
(t − s)q(1−α)−1ds + M

p∑
i=1

Li ,

≤ ‖ [
Sq(t) − I

]
u0‖α + MαN f �(2 − α)T q(1−α)

(1 − α)�(1 + q(1 − α))
+ M

p∑
i=1

Li , (38)

Therefore, it gives that Qn(B) ⊂ B. At long last, we will assert that Qn is a contraction map.
For x, y ∈ B and 0 ≤ t ≤ T , we get that

‖ (Qnx)(t) − (Qn y)(t)‖α ≤
∫ t

0
‖ (t − s)q−1AαTq(t − s)‖

×‖ fn(s, x(s), x(a(x(s), s))) − fn(s, y(s), y(a(y(s), s)))‖ds

+
p∑

i=1

‖ Sq(t − ti )‖‖ Ii,n(x(ti )) − Ii,n(y(ti ))‖α. (39)

We have the following inequalities:

‖ fn(s, x(s), x(a(x(s), s)))− fn(s, y(s), y(a(y(s), s)))‖ ≤ L f [2+LLa]‖ x− y‖T,α. (40)

Similarly, we have
‖ Ii,n(x(ti )) − Ii,n(y(ti ))‖ ≤ Ni‖ x − y‖T,α. (41)

Using (40), (41) in (39)and obtain that

‖ (Qnx)(t) − (Qn y)(t)‖ ≤ qMα�(2 − α)

�(1 + q(1 − α))
L f [2 + LLa] ‖ x − y‖T,α

×
∫ t

0
(t − s)q(1−α)−1ds + M

p∑
i=1

Ni‖ x − y‖T,α,

≤
[

Mα�(2 − α)T q(1−α)

(1 − α)�(1 + q(1 − α))
L f (2 + LLa) + M

p∑
i=1

Ni

]

×‖ x − y‖T,α. (42)

From the inequality (25), we get

‖ (Qnx)(t) − (Qn y)(t)‖ < ‖ x − y‖T,α. (43)
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Therefore, it implies that themap Qn is a contractionmap and has a unique fixed point xn ∈ B
i.e., Qnxn = xn and xn satisfies the approximate integral equation

xn(t) = Sq(t)u0 +
∫ t

0
(t − s)q−1Tq(t − s) fn(s, xn(s), xn(a(xn(s), s)))ds

+
p∑

i=1

Sq(t − ti )Ii,n(xn(ti )),

for t ∈ [0, T ]. ��
Lemma 3.2 Assume that hypotheses (A1) − (A4) hold. If u0 ∈ D(Aα), where 0 < α < 1,
then xn(t) ∈ D(Aυ) for all t ∈ (0, T ] with 0 ≤ υ < 1. Furthermore, if u0 ∈ D(A) then
xn(t) ∈ D(Aυ) for all t ∈ [0, T ] with 0 ≤ υ < 1.

Proof From Theorem (3.1), we have that there exists a unique xn ∈ B ⊂ Cα−1
T such that

xn satisfy the Eq. (30). Theorem 2.6.13 in Pazy [35] implies that T (t) : H → D(Aυ) for
t > 0 and 0 ≤ υ < 1 and for 0 ≤ υ ≤ η < 1, D(Aη) ⊆ D(Aυ). It is not difficult to see
that Hölder continuity of xn might be made using the similar arguments from Eqs. (33)–(36).
Additionally from Theorem 1.2.4 in Pazy [35], we have that T (t)y ∈ D(A) if y ∈ D(A).
The result follows from these facts and the fact that D(A) ⊆ D(Aυ) for 0 ≤ υ ≤ 1. This
finishes the proof of Lemma. ��
Corollary 3.1 Suppose that the hypotheses (A1)− (A4) hold. If u0 ∈ D(Aα) with 0 < α <

1, then for any t0 ∈ (0, T ], there exists a constant Ut0 such that

‖Aυxn(t)‖ ≤ Ut0 , n = 1, 2, 3, · · · ,

for all t0 ≤ t ≤ T independent of n, where 0 < α < υ < β. Furthermore, if u0 ∈ D(A),
there exist a positive constant U0 such that ‖Aυxn(t)‖ ≤ U0, t ∈ [0, T ], n = 1, 2, · · · ,.

Proof Let u0 ∈ D(Aα). Applying Aυ on the both the sides of (30) and t0 ≤ t ≤ T , we get

‖ Aυxn(t)‖
≤ ‖ AυSq(t)u0‖ +

∫ t

0
(t − s)q−1‖AυTq(t − s)‖‖ fn(s, xn(s), xn(a(xn(s), s)))‖ds

+
p∑

i=1

‖ Sq(t − ti )A
υ Ii (x(ti ))‖,

≤ Mυ t0
−qυ‖ u0‖ + qMυN f �(2 − υ)

�(1 + q(1 − υ))

∫ t

0
(t − s)q(1−υ)−1ds + M

p∑
i=1

Li ,

≤ Mυ t0
−qυ‖ u0‖ + MυN f �(2 − υ)T q(1−υ)

(1 − υ)�(1 + q(1 − υ))
+ M

p∑
i=1

Li , (44)

≤ Ut0 . (45)

Again, for 0 ≤ t ≤ T and u0 ∈ D(Aα), we have

‖ Aυxn(t)‖ ≤ M‖ u0‖υ + MυN f �(2 − υ)T q(1−υ)

(1 − υ)�(1 + q(1 − υ))
+ M

p∑
i=1

Li . (46)

Since, we might displace the first term in (44) by M‖ u0‖υ .
Moreover, if u0 ∈ D(A), then u0 ∈ D(Aυ) for 0 ≤ υ < 1. Therefore, we can effortlessly
get the required result. This finishes the proof of Lemma. ��
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Convergence of Solutions

The convergence of the solution xn ∈ Hα of the approximate integral Eq. (30) to a unique
solution x(·) of the Eq. (17) on [0, T ] is discussed in this section.

Theorem 4.1 Suppose that (A1) − (A4) are satisfied. If u0 ∈ D(Aα), then

lim
m→∞ sup

{n≥m,t0≤t≤T }
‖ xn(t) − xm(t)‖α = 0, (47)

for every t0 ∈ (0, T ].
Proof For 0 < α < υ, n ≥ m and t ∈ (0, T ], we have

‖ fn(t, xn(t), xn(a(xn(t), t))) − fm(t, xm(t), xm(a(xm(t), t)))‖
≤ ‖ fn(t, xn(t), xn(a(xn(t), t))) − fn(t, xm(t), xm(a(xm(t), t)))‖

+‖ fn(t, xm(t), xm(a(xm(t), t))) − fm(t, xm(t), xm(a(xm(t), t)))‖,
≤ L f [2 + LLa] ‖ xn(t) − xm(t)‖α + L f

[‖ (Pn − Pm)xm(t)‖α

+‖A−1‖‖ (Pn − Pm)xm(a(xm(t), t))‖α

]
.

Let n > m. Thus, Hm ⊂ Hn . Let H�
m be the orthogonal complement of Hm for each

m = 0, 1, . . . ,. Thus, we have H�
n ⊂ H�

m . Also, we have H = Hm ⊕ H�
m = Hn ⊕ H�

n . Let
y ∈ H be an arbitrary element. Then, y = ym+zm with ym ∈ Hm and zm ∈ Hm�. Therefore,
we have that ym ∈ Hm = Pm y. It is easy to see that zm ∈ H�

m → zm = ∑n
i=m+1 aiφi + z′m ,

where z′m ∈ H�
n . Let us take y′

m = ∑n
i=m+1 aiφi .

Therefore, y = ym + y′
m + z′m and Pn y = ym + y′

m . Thus,

Pn y − Pm y = y′
m =

n∑
i=m+1

aiφi .

If, y = ∑∞
i=1 aiφi . Then, we get ‖y‖2 = ∑∞

i=1 |ai |2.
Since, Aα−υφi = λα−υ

i φ. Hence, we get

‖Aα−υ(Pn − Pm)y‖2 = < Aα−υ(Pn − Pm)y, Aα−υ(Pn − Pm)y >,

= <

n∑
i=m+1

ai A
α−υφi ,

n∑
j=m+1

a j A
α−υφ j >,

= <

n∑
i=m+1

aiλ
α−υ
i φi ,

n∑
j=m+1

a jλ
α−υ
j φ j >,

=
n∑

i, j=m+1

aia jλ
α−υ
i λα−υ

j < φi , φ j >,

≤ λ
2(α−υ)
m+1

(
n∑

i=m+1

|ai |2
)

,

≤ 1

λ
2(υ−α)
m

‖y‖2. (48)

Thus, we have the following estimation

‖ (Pn − Pm)xm(t)‖α ≤ ‖ Aα−υ(Pn − Pm)Aυxm(t)‖ ≤ 1

λυ−α
m

‖ Aυxm(t)‖.
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Thus, we obtain

‖ fn(t, xn(t), xn(a(xn(t), t))) − fm(t, xm(t), xm(a(xm(t), t)))‖
≤ L f [2 + LLa]‖ xn(t) − xm(t)‖α + L f

[
1

λυ−α
m

‖ Aυxm(t)‖

+‖ A−1‖
λυ−α
m

‖ Aυxm(a(xm(t), t))‖
]

. (49)

Similarly, we estimate

‖ Ii,n(xn(ti )) − Ii,m(xm(ti ))‖ ≤ Ni

[
‖ xn(ti ) − xm(ti )‖α + 1

λυ−α
m

‖ Aυxm(ti )‖
]

. (50)

We choose t ′0 such that 0 < t ′0 < t < T , we have

‖ xn(t) − xm(t)‖α

≤
(∫ t ′0

0
+

∫ t

t ′0

)
(t − s)q−1‖ AαTq(t − s)‖

×‖ fn(t, xn(t), xn(a(xn(t), t))) − fm (t, xm(t), xm(a(xm(t), t))) ‖ds

+
p∑

i=0

‖ Sq(t − ti )‖‖ Ii,n(xn(ti )) − Ii,m(xm(ti ))‖α, (51)

we estimate the first integral as

∫ t ′0

0
(t − s)q−1‖ AαTq(t − s)‖‖ fn(t, xn(t), xn(a(xn(t), t)))

− fm(t, xm(t), xm(a(xm(t), t)))‖ds
≤

∫ t ′0

0
(t − s)q−1‖ AαTq(t − s)‖2N f ds,

≤ 2N f Mα�(2 − α)

(1 − α)�(1 + q(1 − α))
[tq(1−α) − (t − t ′0)q(1−α)],

≤ 2N f Mα�(2 − α)

(1 − α)�(1 + q(1 − α))
(t − b1t

′
0)

q(1−α)−1t ′0, 0 < b1 < 1,

≤ 2N f Mα�(2 − α)

(1 − α)�(1 + q(1 − α))
(t0 − t ′0)q(1−α)−1t ′0. (52)

The second integral is estimated as
∫ t

t ′0
(t − s)q−1‖ AαTq(t − s)‖‖ fn(t, xn(t), xn(a(xn(t), t)))

− fm(t, xm(t), xm(a(xm(t), t)))‖ds
≤ qMα�(2 − α)

�(1 + q(1 − α))

∫ t

0
(t − s)q−1 {

L f [2 + LLa] ‖ xn(s) − xm(s)‖α

+L f

[
1

λυ−α
m

‖ Aυxm(s)‖ + ‖ A−1‖
λυ−α
m

‖ Aυxm(a(xm(s), s))‖
]}

ds,

≤ qMαL f �(2 − α)

�(1 + q(1 − α))

[(
1 + ‖ A−1‖) Ut ′0T

q(1−α)

q(1 − α)λυ−α
m

+ (2 + LLa)

∫ t

t ′0
(t − s)q(1−α)−1
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×‖ xn(s) − xm(s)‖αds] . (53)

Thus, we have

‖ xn(t) − xm(t)‖α

≤ D1t
′
0 + D2

λυ−α
m

+ D3‖ xn(t) − xm(t)‖α + D4

∫ t

0
(t − s)q(1−α)−1

×‖ xn(s) − xm(s)‖αds, (54)

where

D1 = 2N f Mα�(2 − α)

(1 − α)�(1 + q(1 − α))
(T − t ′0)q(1−α)−1, (55)

D2 = qMαL f �(2 − α)

�(1 + q(1 − α))
× (1 + ‖ A−1‖)Ut ′0T

q(1−α)

q(1 − α)
+ M

p∑
i=1

Ni , (56)

D3 = M
p∑

i=1

Ni , (57)

D4 = qMαL f �(2 − α)

�(1 + q(1 − α))
(2 + LLa), (58)

Since 1 − M
∑p

i=1 Ni > 0, we have

‖ xn(t) − xm(t)‖α

≤ 1

1 − D3

[
D1t

′
0 + D2

λυ−α
m

+ D4

∫ t

0
(t − s)q(1−α)−1‖ xn(s) − xm(s)‖αds

]
.

By Lemma 5.6.7 in [35], we have that there exists a constant K such that

‖ xn(t) − xm(t)‖α ≤ 1

1 − D3
[D1t

′
0 + D2

λυ−α
m

]K, (59)

taking supremum over [t0, T ] and letting m → ∞, we obtain

lim
m→∞ sup

{n≥m,t0≤t≤T }
‖ xn(t) − xm(t)‖α ≤ D1

(1 − D3)
t ′0K. (60)

As t ′0 is arbitrary, therefore the right hand side may be made as small as desired by taking t ′0
sufficiently small. This completes the proof of the Theorem. ��
Proposition 4.2 If u0 ∈ D(A), then there exist a Cauchy sequence xn ∈ B on [0, T ] i.e.,

‖ xn − xm‖T,α → 0, (61)

as m, n → ∞.

Proof Taking t0 = 0 in the proof of Theorem 4.1, we replace the term (t0 − t ′0)q(1−α)−1t ′0 by
(1 − b1)q(1−α)−1t ′0

1−α in Eq. 52 and the constant Ut ′0 by the constant U0 from the Lemma
3.1 and Corollary 3.1. ��
Theorem 4.3 Suppose that (A1)–(A4) are satisfied and u0 ∈ D(Aα). Then, there exists a
unique xn ∈ B, satisfying
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xn(t) = Sq(t)u0 +
∫ t

0
(t − s)q−1Tq(t − s) fn(s, xn(s), xn(a(xn(s), s)))ds

+
p∑

i=1

Sq(t − ti )Ii,n(xn(ti )), t ∈ [0, T ],

and x ∈ B, satisfying

x(t) = Sq(t)u0 +
∫ t

0
(t − s)q−1Tq(t − s) f (s, x(s), x(a(x(s), s)))ds

+
p∑

i=1

Sq(t − ti )Ii (x(ti )), t ∈ [0, T ],

such that xn converges to x in B i.e., xn → x as n → ∞.

Proof Let u0 ∈ D(Aα). For 0 < t ≤ T , Aαxn(t) → Aαx(t) as n → ∞ and x(0) = xn(0) =
u0 for all n. Also, for t ∈ [0, T ], we have Aαxn(t) → Aαx(t) as n → ∞ in H . Since xn ∈ B,
therefore it follows that x ∈ B and

lim
n→∞ sup

t0≤t≤T
‖ xn(t) − x(t)‖α = 0, for any t0 ∈ (0, T ]. (62)

Also, we have

‖ fn(t, xn(t), xn(a(xn(t), t))) − f (t, x(t), x(a(x(t), t)))‖
≤ L f [2 + LLa] ‖ xn(t) − x(t)‖α + L f

[‖ (Pn − I )x(t)‖α

+‖ A−1‖ ‖ (Pn − I )x(a(x(t), t))‖α

] → 0, (63)

as n → ∞. For 0 < t0 < t , we rewrite 30 as

xn(t) = Sq(t)u0 + (

∫ t0

0
+

∫ t

t0
)(t − s)q−1Tq(t − s) fn(s, xn(s), xn(a(xn(s), s)))ds

+
p∑

i=1

Sq(t − ti )Ii,n(xn(ti )).

We may estimate the first integral as

‖
∫ t0

0
(t − s)q−1Tq(t − s) fn(s, xn(s), xn(a(xn(s), s)))ds‖ ≤ qMN f

�(1 + q)
T q−1t0, (64)

Thus, we deduce that

‖ xn(t) − Sq(t)u0 −
p∑

i=1

Sq(t − ti )Ii,n(xn(ti )) −
∫ t

t0
(t − s)q−1Tq(t − s)

× fn(s, xn(s), xn(a(xn(s), s)))ds‖ ≤
[

qMN f

�(1 + q)
T q−1

]
t0. (65)

Letting n → ∞ in the above inequality, we obtain
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‖ x(t) − Sq(t)u0 −
p∑

i=1

Sq(t − ti )Ii (x(ti )) −
∫ t

t0
(t − s)q−1Tq(t − s)

× f (s, x(s), x(a(x(s), s)))ds‖
≤

[
qMN f

�(1 + q)
T q−1

]
t0. (66)

Since t0 is arbitrary, we deduce that x satisfies the integral Eq. (17).
Now, we shall show the uniqueness of the solution to Eq. (17). Let x1 and x2 be the two
solutions of the (17). We have

‖ x1(t) − x2(t)‖α ≤
∫ t

0
(t − s)q−1‖ AαTq(t − s)‖‖ f (s, x1(s), x1(a(x1(s, )s)))

− f (s, x2(s), x2(a(x2(s, )s)))‖ds

+
p∑

i=1

‖ Sq(t − ti )‖‖ Ii (x1(ti )) − Ii (x2(ti ))‖,

≤ qMα�(2 − α)

�(1 + q(1 − α))
L f (2 + LLa)‖ x1 − x2‖T,α

∫ t

0
(t − s)q(1−α)−1ds + M

p∑
i=1

Ni‖ x1 − x2‖T,α,

≤
[

Mα�(2 − α)T q(1−α)

(1 − α)�(1 + q(1 − α))
L f (2 + LLa) + M

p∑
i=1

Ni

]

×‖ x1 − x2‖T,α, (67)

By Lemma 5.6.7 in Pazy [35], we obtain that

‖ x1(t) − x2(t)‖ = 0. (68)

Also, we have that

‖ x1(t) − x2(t)‖ ≤ 1

λα
0
‖ x1(t) − x2(t)‖α, (69)

From (68) and (69), we deduce that u1 = u2 on [0, T ]. Hence, the theorem is proved. ��

Faedo–Galerkin Approximations

In this section, we consider the Faedo–Galerkin Approximation of a solution and show the
convergence results for such an approximation.

We know that for any 0 < T < T0, we have a unique x ∈ Cα
T satisfying the following

integral equation

x(t) = Sq(t)u0 +
∫ t

0
(t − s)q−1Tq(t − s) f (s, x(s), x(a(x(s), s)))ds

+
p∑

i=1

Sq(t − ti )Ii (x(ti )), (70)

for 0 < t < T0.
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Also, we have a unique solution xn ∈ Cα
T of the approximate integral equation

xn(t) = Sq(t)u0 +
∫ t

0
(t − s)q−1Tq(t − s) fn(s, xn(s), xn(a(xn(s), s)))ds

+
p∑

i=1

Sq(t − ti )Ii,n(xn(ti )),

(71)

Applying the projection on above equation, then Faedo–Galerkin approximation is given by
vn(t) = Pnxn(t) satisfying

Pnxn(t) = vn(t)

= Sq(t)Pnu0 +
∫ t

0
(t − s)q−1Tq(t − s)Pn fn(s, xn(s), xn(a(xn(s), s)))ds

+
p∑

i=1

Sq(t − ti )P
n Ii,n(xn(ti )),

= Sq(t)Pnu0 +
∫ t

0
(t − s)q−1Tq(t − s)Pn f (s, vn(s), vn(a(vn(s), s)))ds

+
p∑

i=1

Sq(t − ti )P
n Ii (vn(ti )). (72)

Let solution x(·) of (70) and vn(·) of (72), have the representation

x(t) =
∞∑
i=0

αi (t)]φi , αi (t) = (x(t), φi ), i = 0, 1, 2 . . . , (73)

vn(t) =
n∑

i=0

αn
i (t)φi , αn

i (t) = (vn(t), φi ), i = 0, 1, 2 . . . , (74)

Using (74) in (72) and taking inner product with φi , we obtain a system of fractional order
integro-differential equation of the form

dq

dtq
αn
i (t) + λiα

n
i (t) = Fn

i (t, αn
0 (t), α

n
1 (t)..., α

n
n (t)), (75)

�αn
i (tk) = I ni (αn

i (tk)), k = 1, . . . , p, (76)

αn
i (0) = ϕi , (77)

where

Fn
i =

(
f

(
t,

n∑
i=0

αn
i φi ,

n∑
i=0

τ ni φi

)
, φi

)
, (78)

τ ni = αn
i

(
a

(
αn
0 , α

n
1 , . . . , α

n
n (t)

))
, (79)

I ni =
(
Ik

( p∑
k=1

n∑
i=1

αn
i (tk)φi

)
, φi

)
, (80)

ϕi = (u0, φi ), for i = 1, 2, . . . , n. (81)

For the convergence of αn
i to αi , we have the following convergence theorem.
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Theorem 5.1 Let us assume that (A1) − −(A4) are satisfied and u0 ∈ D(Aα). Then there
exist a unique function vn ∈ B given as

vn(t) = Sq(t)Pnu0 +
∫ t

0
(t − s)q−1Tq(t − s) fn(s, vn(s), vn(a(vn(s), s)))ds

+
p∑

i=1

Sq(t − ti )P
n Ii (vn(ti )), (82)

and x ∈ B satisfying

x(t) = Sq(t)u0 +
∫ t

0
(t − s)q−1Tq(t − s) f (s, x(s), x(a(x(s), s)))ds

+
p∑

i=1

Sq(t − ti )Ii (x(ti )), (83)

for t ∈ [0, T0], such that vn → x as n → ∞ in B and x satisfies the Eq. (17) on [0, T0].
The system (75)–(77) determines the αn

i ’s. It can easily be investigated that

Aα[x(t) − v(t)] = Aα

[ ∞∑
i=0

(αi (t) − αn
i (t))φi

]
=

∞∑
i=0

λα
i (αi (t) − αn

i )φi , (84)

Thus, we conclude that

‖ Aα[x(t) − v(t)]‖2 ≥
n∑

i=0

λ2αi (αi (t) − αn
i (t))2. (85)

Theorem 5.2 Let us assume that (A1) − −(A4) are satisfied. Then, we have the following
results

(a) If u0 ∈ D(Aα), then

lim
n→∞ sup

t∈[t0,T0]

[
n∑

i=0

λ2αi (αi (t) − αn
i (t))2

]
= 0, (86)

for any 0 < t0 ≤ T0.
(b) If u0 ∈ D(A), then

lim
n→∞ sup

t∈[0,T0]

[
n∑

i=0

λ2αi (αi (t) − αn
i (t))2

]
= 0, (87)

for any 0 ≤ t ≤ T0.

The statement of this hypothesis takes after from the facts specified above and the following
results.

Corollary 5.1 Assume that (A1) − −(A4) are satisfied. Then

(a) If u0 ∈ D(Aα), then

sup
t∈[t0,T0]

‖ vn(t) − vm(t)‖α → 0, as m, n → ∞, (88)

for any 0 < t0 ≤ T0 < Tmax.

123



Int. J. Appl. Comput. Math (2016) 2:269–289 285

(b) If u0 ∈ D(A), then

sup
t∈[0,T0]

‖ vn(t) − vm(t)‖α → 0, as m, n → ∞. (89)

Proof For n ≥ m and 0 ≤ α < υ, we get

‖ vn(t) − vm(t)‖α = ‖ Pnxn(t) − Pmxn(t)‖α,

≤ ‖ Pn[xn(t) − xm(t)]‖α + ‖ (Pn − Pm)xm(t)‖α,

≤ ‖ xn(t) − xm(t)‖α + 1

λυ−α
m

‖ Aυxm(t)‖. (90)

If u0 ∈ D(Aα) then the result in (a) follows from Theorem 4.1, If u0 ∈ D(A), (b) follows
from Proposition 4.2. ��

Application

In this section, we present an example to show the feasibility of our abstract result.
Let us consider following fractional differential equation with impulsive conditions in the
separable Hilbert space H

∂qw

∂tq
= ∂2w

∂u2
+ P̃(u, w(u, t)) + H̃(t, u, w(u, t)), (u, t) ∈ (0, 1)

×
(
0,

1

2

)
∪

(
1

2
, 1

)
, (91)

δw|t= 1
2

= 2w( 12 )
−

2 + w( 12 )
− , (92)

w(0, t) = w(1, t) = 0, (93)

w(x, 0) = w0(u), u ∈ (0, 1), (94)

where 0 < q < 1, H̃ : R+ × [0, 1] × R → R is a nonlinear function which is measurable
in u, locally Hölder continuous in first argument t , locally Lipschitz continuous in w and
uniformly in u. The function P̃ is given as

P̃(u, w(u, t)) =
∫ u

0
(G)(u, y)w(y, h(t)|w(y, t)|)dy, (95)

here, h : R
+ → R

+ is assumed to be locally Hölder continuous in t with h(0) = 0 and
G ∈ C1([0, 1] × [0, 1],R).
Now, we take H = L2((0, 1),R) and operator A as Aw = d2w/dx2 with domain D(A) =
H2(0, 1)∩H1

0 (0, 1). Let α = 1/2, then H1/2 = D(A1/2) = H1
0 (0, 1) is a Banach space with

norm ‖w‖1/2 := ‖A1/2w‖, for w ∈ D(A1/2) and H−1/2 = (H1
0 (0, 1))∗ = H−1(0, 1) ≡

H1(0, 1) is dual space of the space H1/2.
Now, for each u ∈ (0, 1), we may consider the function f : R

+ × H1/2 × H−1/2 → H
defined as

f (t, w, z)(u) = P̃(u, z) + H̃(t, u, w), (96)

with P̃ : [0, 1] × H−1/2 → H which is defined by

P̃(u, z) =
∫ u

0
G(u, y)z(y)dy, (97)
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and H : R+ × [0, 1] × H1/2 → H fulfills following conditions

‖H(t, u, w)‖ ≤ Q(u, t)(1 + ‖w‖1/2), (98)

where Q(·, t) ∈ H and Q continuous in its second arguments.
For w ∈ D(A) and λ ∈ R with −Aw = λw, we obtain

< −Aw,w >=< λw,w >,

and ‖w′‖L2 = λ‖w‖L2 . This gives that λ > 0. Let w(u) = C1 sin(
√

λu) + C2 cos(
√

λu)

be the solution of the equation −Aw = w′′ = λw. We use the boundary condition and get
C2 = 0 and λ = λn = n2π2 for each n ∈ N. Therefore, we get

wn(u) = C1 sin(
√

λnu), text for each n ∈ N, (99)

and < wn, wm >= 0, m �= n, < wn, wn >= 1.
For w ∈ D(A), there exists a sequence of real numbers {βn} such that

w(u) =
∑
n∈N

βnwn(u),
∑
n∈N

(βn)
2 < +∞,

∑
n∈N

(λn)
2(βn)

2 < +∞.

We also have
A1/2w(u) =

∑
n∈N

√
λnβnwn(u), w ∈ D(A1/2) (100)

with
∑

n∈N λn(βn)
2 < +∞. The semigroup S(t) have the following expression as

S(t)w =
∞∑
n=1

exp(n2t) < w,wn > wn, (101)

here, {wn},n = 1, 2, · · · denotes the orthogonal set of eigenfunctions of A defined by the (99).
Now, we will show that (A2)-(A3) are verified. For (A2), we have that P̃ : [0, 1]×H−1/2 →
H defined by

P̃(u, z(u, t)) =
∫ u

0
G(u, y)z(y, t)dy,

and z(u, t) = z(y, h(t)|z(y, t)|). Thus, for each u ∈ [0, 1], we obtain

|P̃(u, z1(u, )) − P̃(u, z2(u, ))| ≤
∫ u

0
|G(u, y)| · |(z1 − z2)(y, ·)|dy,

≤ ‖G‖∞
∫ u

0
|(z1 − z2)(y, ·)|dy. (102)

Since z1, z2 ∈ H1(0, 1). Therefore, applying theMinkowski’s integral inequality and getting

|P̃(u, z1(u, )) − P̃(u, z2(u, ))|2L2(0,1) ≤ ‖G‖2∞
∫ 1

0

∫ y

0
|(z1 − z2)(y, ·)|2dxdy,

≤ ‖G‖2∞
∫ 1

0
y|(z1 − z2)(y, ·)|2dy,

≤ ‖G‖2∞‖z1 − z2‖2L2(0,1). (103)

Since we have

∂

∂u
P̃(u, z(u, ·)) = G(u, u)z(u, ·) +

∫ u

0

∂G
∂u

(u, u)z(y, ·)dy. (104)
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Thus, we estimate

‖ ∂

∂u
P̃(u, z1(u, ·)) − ∂

∂u
P̃(u, z2(u, ·))‖L2(0,1) ≤

(
‖G‖∞ + ‖∂G

∂u
‖∞

)
‖z1 − z2‖L2(0,1).

Therefore,

‖P̃(u, z1(u, ·)) − P̃(u, z2(u, ·))‖H1(0,1) ≤
(
2‖G‖∞ + ‖∂G

∂u
‖∞

)
‖z1 − z2‖L2(0,1),

≤
(
2‖G‖∞ + ‖∂G

∂u
‖∞

)
‖z1 − z2‖H1(0,1),

The assumption on H̃ gives that there exist constants B2 > 0 and μ ∈ (0, 1] such that

‖H̃(t, u, w1) − H̃(s, u, w2)‖H1
0 (0,1) ≤ B2(|t − s|μ + ‖w1 − w2‖H1

0 (0,1)), (105)

for all t, s ∈ [0, 1], u ∈ (0, 1) and w1, w2 ∈ H1
0 (0, 1). Therefore, f : [0, 1] × H1

0 (0, 1) ×
H1(0, 1) → L2(0, 1) defined by f = P̃ + H̃ fulfills the assumption (A2).
Next, we will show that a : H1

0 (0, 1) × R
+ → R

+ which is defined as a(w(u, t), t) =
h(t)|w(u, t)|, fulfill the assumption (A3). For t ∈ [0, 1]

|a(w, t)| = |h(t)|w(u, t)||,
≤ ‖h‖∞ × ‖w‖∞ ≤ ‖h‖∞‖w‖H1

0 (0,1), (106)

In the above inequality, we have used the following embedding H1
0 (0, 1) ⊂ C[0, 1]. By the

Hölder continuity of h, we have that there exist Lh > 0 and θ1 ∈ (0, 1] such that
|h(t) − h(s)| ≤ Lh |t − s|, t, s ∈ [0, 1]. (107)

Furthermore, for w1, w2 ∈ H1
0 (0, 1), we have

|a(w1, t) − a(w2, s)| = |h(t) [|w1(u, t)| − |w2(u, s)|] + (h(t) − h(s))w2(u, s)|,
≤ ‖h‖∞‖w1 − w2‖∞ + Lh |t − s|θ‖w2‖∞,

≤ ‖h‖∞‖w1 − w2‖H1
0 (0,1) + Lh |t − s|θ‖w2‖∞,

≤ max{‖h‖∞, Lh‖w2‖∞}
(
‖w1 − w2‖H1

0 (0,1) + |t − s|θ
)

.

For w1, w2 ∈ D(A1/2), we have

‖Ii (w1) − Ii (w2)‖1/2 ≤ 2‖w1 − w2‖1/2
‖(2 + w1)(2 + w2)‖1/2 ≤ 1

2
‖w1 − w2‖1/2.

Thus, all the results of this section to obtain the main results can be applied.
For the particular case, we can take following example

f (t, w(t), w(a(w(t), t))) = 3

sin(w( 12w(t))) + 4
, t ∈ [0, 1],

Ii (w(ti )) = |w(t−i )|
9 + |w(t−i )|

where La = 1
2 LF = 3/16 and L I = 1/9.
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