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Abstract In this paper, the inverse generalized synchronization problem for different dimen-
sional chaotic dynamical systems in continuous-time is proposed and investigated. New
results are derived using new control method and stability theory. Numerical simulations are
used to verify the effectiveness of the proposed schemes.

Keywords Generalized synchronization · Chaos · Dynamical system · Inverse generalized
synchronization

Introduction

Since the synchronization of chaotic systems is discovered [1,2], the synchronization problem
in chaotic systems has been intensively and extensively studied in recent decades [3–7]. Up
to now, various methods have been developed to design controllers in the continuous-time
dynamical systems such as PC method [5], OGY method [4], active control approach [8,9],
adaptive control method [9–11], backstepping design control method [12] and sliding mode
control method [13,14], etc.

Complete synchronization [11,15], phase synchronization [17], lag synchronization [18],
anticipated synchronization [19] of chaotic systems have been described theoretically and
observed experimentally. Complete synchronization which is defined as the coincidence of
states of interacting systems; phase synchronization which means entrainment of phases of
chaotic oscillators, whereas their amplitudes remain uncorrelated; lag synchronization which
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appears as a coincidence of time-shifted states of two systems; and anticipated synchroniza-
tion also appears as a coincidence of shifted-in-time states of two coupled systems, but in
this case, in contrast to lag synchronization, the driven system anticipates the driver. Another
interesting dynamic behavior is the so-called generalized synchronization (GS), where two
chaotic systems are said to be synchronized if a functional relationship exists between the
states of the two systems [21]. Noting that most presented methods to achieve GS are related
to continuous-time systems [15,20–22] and most of them are proposed to investigate the
existence of arbitrary boundary function which contains the slave system.

The main aim of the present paper is to describe the inverse problem of generalized
synchronization for coupled chaotic systems. We, based on new design method, present a
constructive scheme to study inverse generalized synchronization (IGS) between n-D andm-
D continuous chaotic dynamical systems. In order to verify the effectiveness of the proposed
method, we apply it to chaotic and hyperchaotic continuous-time systems.

The rest of this paper is arranged as follows: in “InverseGeneralized Synchronization” sec-
tion, the problemof IGS in continuous-time dynamical systems is investigated. In “Numerical
Examples” section, numerical simulations are used to validate theoretical synchronization
results. Finally, conclusion remarks are given in “Conclusion” section.

Inverse Generalized Synchronization

Consider the chaotic system described by

Ẋ (t) = AX (t) + f (X (t)), (1)

where X (t) = (xi (t))1≤i≤n ∈ IRn is the state vector, A = (
ai j

)
is the n × n matrix of

parameter system and f = ( fi (X (t)))1≤i≤n ∈ IRn is the nonlinear part of system (1), as
the master system. Then consider the controlled system described by

Ẏ (t) = G(Y (t)) +U, (2)

where Y (t) = (yi (t))1≤i≤m ∈ IRm is the state vector, G = (Gi (Y (t)))1≤i≤m ∈ IRm

is a continuous vector function and U = (ui )1≤i≤m ∈ IRm is the vector controller to be
determined, where the system Ẏ (t) = G(Y (t)) is assumed to be chaotic, as the slave system.

First of all, we call the definition of generalized synchronization then we present the
definition of inverse generalized synchronization for coupled chaotic systems given in Eqs.
(1) and (2).

Definition 1 The master system (1) and the slave system (2) are said to be generalized
synchronized with respect to the vector map φ if there exists a controller U = (ui )1≤i≤m ∈
IRm and a given map φ : IRn −→ IRm such that the synchronization error

e (t) = Y (t) − φ (X (t)) , (3)

satisfies that lim t−→+∞ ‖e (t)‖ = 0.

Remark 1 Generalized synchronization of chaotic dynamical systems with different dimen-
sions, based on Lyapunov stability theory, have been studied and carried out, for example, in
Refs. [20,21].

Definition 2 Themaster system (1) and the slave system (2) are said to be inverse generalized
synchronized with respect to the vector map φ if there exists a controller U = (ui )1≤i≤m ∈
IRm and a given map φ : IRm −→ IRn such that the synchronization error
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e (t) = X (t) − φ (Y (t)) , (4)

satisfies that lim t−→+∞ ‖e (t)‖ = 0.

In order to study the IGS of continuous dynamical systems given in Eqs. (1) and (2),
we discuss the asymptotical stable of zero solution of synchronization error system e (t) =
X (t)−φ (Y (t)). We design the controllerU such that the solutions of the error system ei (t)
go to 0, i = 1, 2, . . . , n, as t goes to +∞. The error system can be derived as

ė (t) = (A − K ) e(t) + R − Dφ (Y (t))U, (5)

where Dφ (Y (t)) ∈ IRn×m is the Jacobian matrix of the map φ(Y (t)),

Dφ(Y (t)) =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

∂φ1
∂y1

∂φ1
∂y2

· · · ∂φ1
∂ym

∂φ2
∂y1

∂φ2
∂y2

· · · ∂φ2
∂ym

...
...

. . .
...

∂φn
∂y1

∂φn
∂y2

· · · ∂φn
∂ym

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

, (6)

R = K X (t) + (A − K ) φ (Y (t)) + f (X (t)) − Dφ (Y (t)) g(Y (t)), (7)

and K = (
ki j

)
n×n is unknown control matrix to be determined.

Case I: n < m

In this case, to achieve synchronization between the master system (1) and the slave system
(2), we choose the controller U as

U = (u1, ..., un, 0, ..., 0)
T ∈ IRm, (8)

then the error systems (5) can be written as

ė(t) = (A − K ) e(t) + R − J1U1, (9)

where

J1 =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

∂φ1
∂y1

∂φ1
∂y2

· · · ∂φ1
∂yn

∂φ2
∂y1

∂φ2
∂y2

· · · ∂φ2
∂yn

...
...

. . .
...

∂φn
∂y1

∂φn
∂y2

· · · ∂φn
∂yn

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

, (10)

and U1 = (ui )1≤i≤n .

Theorem 1 For an invertible matrix J1, the master system (1) and the slave system (2) are
globally inverse generalized synchronized with respect to φ if the following conditions are
satisfied

(i) U1 = J−1
1 R.

(ii) (K − A)T + (K − A) is a positive definite matrix.

Proof 1 By substituting the control law (i) into Eq.(9), the error system can be written as

ė(t) = (A − K ) e(t). (11)

123



4 Int. J. Appl. Comput. Math (2016) 2:1–11

Construct the candidate Lyapunov function in the form

V (e(t)) = eT (t)e(t), (12)

we obtain

V̇ (e(t)) = ėT (t)e(t) + eT (t)ė(t)

= eT (t) (A − K )T e(t) + eT (t) (A − K ) e(t)

= eT (t)
[
(A − K )T + (A − K )

]
e(t).

Using (ii), we get V̇ (e(t)) < 0. Thus, from the Lyapunov stability theory, it is immediate
that all solutions of error system (11) go to zero as t → ∞. Therefore, systems (1) and (2)
are globally inverse generalized synchronized. ��
Case II: m < n

Now, the error system between the master system (1) and the slave system (2), given in Eq.
(5), can be written in scalar form as

ėi (t) =
n∑

j=1

(
ai j − ki j

)
e j (t) + Ri − ũi , 1 ≤ i ≤ n, (13)

where

Ri =
n∑

j=1

ki j x j (t)+
n∑

j=1

(
ai j − ki j

)
φ j (Y (t))+ fi (X (t)) −

m∑

j=1

∂φi

∂y j
g j (Y (t)), 1≤ i≤n,

(14)

ũi =
m∑

j=1

∂φi

∂y j
u j , 1 ≤ i ≤ n. (15)

In this case, to achieve synchronization between systems (1) and (2), we assume that ∂φi
∂y j

,
1 ≤ j ≤ m, are not all equal zero. Therefore, the error system described in Eq. (13) can be
written in compact form as

ė(t) = (A − K ) e(t) + R −U2, (16)

where U2 = (ũi )1≤i≤n .

Theorem 2 The master system (1) and the slave system (2) are globally inverse generalized
synchronized with respect to φ if the following conditions are satisfied

(i) U2 = R.

(ii) All eigenvalues of A − K have negative real parts.

Proof 2 By substituting the control law (i) into Eq. (16), the error system can be described
as

ė(t) = (A − K ) e(t). (17)

Thus, by asymptotic stability of linear continuous-time systems, if all eigenvalues of A− K
have negative real parts, it is immediate that all solutions of error system (17) go to zero as
t → ∞. Therefore, systems (1) and (2) are globally inverse generalized synchronized. ��
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Fig. 1 Chaotic attractor of
Lorenz system when
(α, γ, β) = (10, 28, 8/3)

Numerical Examples

In order to show the effectiveness of the presented approachof synchronization, twonumerical
examples are used to discuss the issue of realizing IGS between n-D and m-D continuous
chaotic dynamical systems.

Example 1: (n < m)

Here we consider Lorenz system as the master system and the controlled hyperchaotic Liu
system as the slave system. Lorenz system can be described as

⎧
⎨

⎩

ẋ1 = α(x2 − x1)
ẋ2 = γ x1 − x2 − x1x3
ẋ3 = −βx3 + x1x2

, (18)

which has a chaotic attractor, for example, when (α, γ, β) = (10, 28, 8/3) [25]. The Lorenz
chaotic attractor is shown in Fig. 1. The controlled hyperchaotic Liu system can be described
as ⎧

⎪⎪⎨

⎪⎪⎩

ẏ1 = a (y2 − y1) + u1
ẏ2 = by1 + y1y3 − y4 + u2
ẏ3 = −cy3 − y1y2 + y4 + u3
ẏ4 = dy1 + y2 + u4

, (19)

where U = (u1, u2, u3, u4)T is the vector controller. The hyperchaotic Liu system has a
chaotic attractor, for example, when (a, b, c, d) = (10, 35, 1.4, 5) [24]. The projections of
hyperchaotic Liu chaotic attractor are shown in Fig. 2.

Taking (α, γ, β) = (10, 28, 8/3) and (a, b, c, d) = (10, 35, 1.4, 5) then Lorenz system
and hyperchaotic Liu system exhibit chaotic attractor. If we select the map φ : IR4 −→ IR3

as
φ (y1, y2, y3, y4) = (y1 + y2 + y4, y2 + y3 + y4, y3 + y4) , (20)
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Fig. 2 Chaotic attractor projections of hyperchaotic Liu system when (a, b, c, d) = (10, 35, 1.4, 5)

and the control matrix K as

K =
⎛

⎝
0 10 0
28 0 0
0 0 0

⎞

⎠ . (21)

Then, according to our approach presented in the previous section, we obtain

Dφ (Y (t)) =
⎛

⎝
1 1 0 1
0 1 1 1
0 0 1 1

⎞

⎠ , (22)

A =
⎛

⎝
−10 10 0
28 −1 0
0 0 −8/3

⎞

⎠ , (23)

and

f (X (t)) =
⎛

⎝
0

−x1x3
x1x2

⎞

⎠ . (24)
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Fig. 3 Time evolution of synchronization errors of systems (18) and (19)

Using simple calculations, we can show that (K − A)T + (K − A) is a positive definite
matrix. Therefore, in this case, systems (18) and (19) are inverse generalized synchronized.
The error functions evolution is shown in Fig. 3.

Example 2: (m < n)

Now, we consider hyperchaotic Cai system as the master system and the controlled Rössler
system as the slave system. Hyperchaotic Cai system can be described as

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = a(x2 − x1)
ẋ2 = bx1 + cx2 − x1x3
ẋ3 = x22 − dx4
ẋ4 = −ex1

, (25)

which has a chaotic attractor, for example, when (a, b, c, d, e) = (27.5, 3, 19.3, 2.9, 3.3)
[26]. The projections of Cai system chaotic attractor is shown in Fig. 4. The controlled
Rössler system can be described as

⎧
⎨

⎩

ẏ1 = −y2 − y3 + u1
ẏ2 = y1 + αy2 + u2
ẏ3 = γ + y3(y1 − β) + u3

, (26)

whereU = (u1, u2, u3)T is the vector controller. The Rössler system has a chaotic attractor,
for example, when (α, γ, β) = (0.2, 0.2, 5.7) [27]. The Rössler chaotic attractor is shown in
Fig. 5.
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Fig. 4 Chaotic attractor projections of hyperchaoticCai systemwhen (a, b, c, d, e) = (27.5, 3, 19.3, 2.9, 3.3)

Fig. 5 Chaotic attractor of
Rössler system when
(α, γ, β) = (0.2, 0.2, 5.7)

Taking (a, b, c, d, e) = (27.5, 3, 19.3, 2.9, 3.3) and (α, γ, β) = (0.2, 0.2, 5.7) then
hyperchaotic Cai system and Rössler system exhibit chaotic attractor. If we select the map
φ : IR3 −→ IR4 as

φ (y1, y2, y3) = (y1 + y3, y2 + y3, y1 + y2, y1 + y2 + y3) , (27)
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Fig. 6 Time evolution of synchronization errors of systems (25) and (26)

and the control matrix K as

K =

⎛

⎜⎜
⎝

−26.5 27.5 0 0
3 21.3 0 0
0 0 3 −2.9

−3.3 0 0 4

⎞

⎟⎟
⎠ . (28)

Then, according to our approach presented in the previous section, we obtain

Dφ (Y (t)) =

⎛

⎜⎜
⎝

1 0 1
0 1 1
1 1 0
1 1 1

⎞

⎟⎟
⎠ , (29)

A =

⎛

⎜⎜
⎝

−27.5 27.5 0 0
3 19.3 0 0
0 0 0 −2.9

−3.3 0 0 0

⎞

⎟⎟
⎠ , (30)

and

f (X (t)) =

⎛

⎜⎜
⎝

0
−x1x3
x22
0

⎞

⎟⎟
⎠ . (31)
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Simply, we can show that all eigenvalues of A − K have negative real parts. Therefore,
in this case, systems (25) and (26) are inverse generalized synchronized. The error functions
evolution is shown in Fig. 6.

Conclusion

In this paper, the inverse problem of generalized synchronization of chaotic dynamical sys-
tems with different dimensions was investigated. Based on the Lyapunov stability theory and
stability theory of linear contious-time dynamical systems, a new method to realize IGS for
two different dimensional chaotic systems was proposed. The validity of this approach was
verified theoretically and numerically.
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