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Abstract In this paper we experimentally compare the performance of the L2 lattice basis
reduction algorithm, whose importance recently became evident, with our own Gram-based
lattice basis reduction algorithm, which is a variant of the Schnorr–Euchner algorithm. We
conclude with observations about the algorithms under investigation for lattice basis dimen-
sions up to the theoretical limit. We also reexamine the notion of “buffered transformations”
and its impact on performance of lattice basis reduction algorithms. We experimentally com-
pare four different algorithms directly in the SageMathematics Software: our own algorithm,
the L2 algorithm and “buffered” versions of them resulting in a total of four algorithms.

Keywords LLL · L2 · Buffered transformations · Lattice basis reduction

Introduction

The importance of lattice theory has been profound during the last decades [5]. Researchers
have started reexamining the LLL algorithm [14] and introduced variants of it like the
Schnorr–Euchner algorithm [21], algorithms that are based entirely on theGrammatrix of the
basis vectors [23], floating point versions of reduction algorithms (see Chapter 1 of [18]), and
also an algorithm running quadraticallywith respect to logM , where an integer d-dimensional
lattice basis with vectors of norm less than M is originally given [16,17]. Finally, a recent
algorithm with quasi-linear time complexity with respect to β, where β = log max‖bi‖ is
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presented in [19] and bi the basis vectors of the lattice. However, this algorithm is currently
only theoretically justified and has not yet been implemented in practice.

The goal of lattice basis reduction is to find a basis of the same lattice, whose vectors are
short and nearly orthogonal to each other. The first algorithm to achieve this was the Lenstra,
Lenstra, Lovász [14], also known as the LLL algorithm, in 1982. Schnorr and Euchner [21]
introduced the first lattice basis reduction algorithm that could efficiently be used in practice
in 1991. Since then, many variants of the LLL algorithm have been proposed [2,5,16–18,23].
A survey of different aspects of the LLL algorithm is given in [18].

Furthermore, during the mid-1990s, several cryptosystems were introduced whose under-
lying hard problem was the shortest vector problem (SVP) and/or the closest vector problem
(CVP) [10] in a lattice L of large dimension d . The most important of these, in alphabet-
ical order, were the Ajtai–Dwork cryptosystem [1], the GGH cryptosystem of Goldreich,
Goldwasser and Halevi [9] and the NTRU cryptosystem proposed by Hoffstein, Pipher and
Silverman [11]. However, it has not been until recently that lattice basis reduction algorithms
have started to gain attention. Themain reason for this is that it has been shown that cryptosys-
tems based on classical problems are prone to various attacks, and most importantly if the
quantum computer were to be built in the near future, we will have to move to post-quantum
cryptography [4] which includes lattice-based cryptography as one of its main techniques,
in order to ensure the privacy of data.

In our work we examine floating point arithmetic lattice basis reduction algorithms in
contrast to exact arithmetic lattice basis reduction algorithms. In order to be able to compare
the different basic lattice basis reduction algorithms, we have chosen to implement four of
them, namely our variant of the Schnorr–Euchner algorithm, the recent L2 [16,17] algorithm
and their “buffered” versions. We implemented them as Sage [6,22] scripts, based on the
Python [20] programming language so that no algorithm would gain an advantage due to its
implementation in a more efficient language. Moreover, in this way we make the algorithms
available in their simplest form to the Sage community. We are not interested in choosing
an optimal programming environment in terms of efficiency, since our aim is not to produce
the fastest possible implementation but to compare the different algorithms chosen in the
same environment. Moreover, we have chosen the Sage environment because it is an open–
source computer algebra system (CAS) to which we wanted to contribute. Additionally, it is
appropriate for expensivemathematical computations and is supported by a large community.

In this paper, apart from the comparison of the different lattice basis reduction algorithms,
we propose a new algorithm. Our effort to design this new algorithm was initiated by [2].

The rest of the paper is organized as follows: In ”Preliminaries” section we describe some
mathematical preliminaries. ”ANovel Algorithm Initiated by the Bu ered LLLGram” section
analyzes our proposed algorithm. ”Experimental Results” section describes the experimental
results on the comparison of the four lattice basis reduction algorithms that we implemented.
Finally, in ”Conclusions and Future Work” section we draw some conclusions and propose
future work.

Preliminaries

A lattice L ⊂ R
n is an additive discrete subgroup of Rn such that L = { ∑d

i=1 xi bi |xi ∈
Z, 1 ≤ i ≤ d

}
with linearly independent vectors b1, . . . , bd ∈ R

n(d ≤ n). B =
(b1, . . . , bd) ∈ R

n×d is the lattice basis of L with dimension d . The basis for a lattice
is not unique. Different lattice bases B and B ′ for the same lattice L are related to each other
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bymeans of a unimodular transformationU , i.e., B ′ = BU withU ∈ Z
d×d and |det(U )| = 1.

Unimodular transformations include the exchange of two base vectors, usually referred to
as a swap, adding an integer multiple of a basis vector to another, usually referred to as
a reduction or translation, and multiplying a basis vector by −1. The goal of lattice basis
reduction is to start from an original lattice basis and reach a lattice basis whose vectors are
relatively short and nearly orthogonal to each other via unimodular transformations.

The Gram Matrix G of a lattice L with basis B = (b1, . . . , bd) ∈ R
n×d is defined as

BT B.
Unlike the lattice basis, the determinant of a lattice is an invariant

(
det(L) = √

det(BT B)
)
,

independent of the particular basis and has a natural geometric representation [5]. Its geo-
metrical meaning is that it represents the n-dimensional volume of the parallelepiped whose
edges are the basis vectors.

All lattice basis reduction algorithms are essentially based on the Gram–Schmidt orthogo-
nalization (GSO) algorithm [5] or an equivalent technique likeCholesky factorization [16,17].
Let b1, . . . , bn be a basis ofR

n . TheGram–Schmidt orthogonalization of b1, . . . , bn produces
the following basis b∗

1, . . . , b
∗
n :

b∗
1 = b1

b∗
i = bi −

i−1∑

j=1

μi, j b
∗
j , (2 ≤ i ≤ n)

μi, j = bi · b∗
j

b∗
j · b∗

j
, (1 ≤ j < i ≤ n)

The μi, j ’s are called orthogonal projection coefficients [5].
The Gram–Schmidt basis vectors b∗

1, . . . , b
∗
n are an orthogonal basis but usually not in

the lattice generated by b1, . . . , bn . In order to obtain a basis of the lattice we use variants of
the Gram–Schmidt process resulting in vectors that are nearly orthogonal to each other.

In order to measure the quality of a lattice basis we use the notion of orthogonality
defect. The orthogonality defect of a lattice basis B = (b1, . . . , bd) ∈ R

n×d defined as

dft(B) =
∏d

i=1 ‖bi‖
det(L)

allows one to compare the quality of different lattice bases. It holds that

dft(B) ≥ 1 in general and dft(B) = 1 for an orthogonal basis. The goal of lattice basis
reduction is to algorithmically determine a basis with minimal defect. A basis is said to be
LLL–reduced with parameters δ and η [14] if it satisfies the following conditions:

|μi, j | ≤ η for 1 ≤ j < i ≤ d,

referred to as the “size condition”, and

|b∗
i + μi,i−1b

∗
i−1|2 ≥ δ|b∗

i−1|2 for 2 ≤ i ≤ d,

referred to as the “exchange condition”.
The reduction parameter δ is a real number such that 1

4 < δ < 1 with standard value
δ = 3

4 and the parameter η satisfies 0.5 ≤ η <
√

δ.
Two fundamental problems related to the security of lattice based cryptosystems are the

shortest vector problem (SVP) and the closest vector problem (CVP) [10].
The Shortest Vector Problem (SVP) Find a shortest nonzero vector in a lattice L , i.e., find

a nonzero vector v ∈ L that minimizes the Euclidean norm ‖v‖.
The Closest Vector Problem (CVP) Given a vector w ∈ R

n that is not in L , find a vector
v ∈ L that is closest tow, i.e. find a vector v ∈ L that minimizes the Euclidean norm ‖w−v‖.
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If a lattice L ⊂ R
n has a basis b1, . . . , bd consisting of vectors that are pairwise orthogonal,

i.e. such that

bi · b j = 0 for all i 
= j,

then it is easy to solve both SVP and CVP ([10] p. 379). Thus the reduction algorithms lead
to bases that are appropriate to approximate the hard problems on which the lattice based
cryptosystems rely on.

A Novel Algorithm Initiated by the Buffered LLL Gram

The original LLL algorithm [14] is almost never used in practice. Instead one applies floating-
point variants of LLL, where the long-integer arithmetic required by Gram–Schmidt orthog-
onalization is replaced by floating-point arithmetic [17]. The reason for this is because the
running time of floating-point arithmetic versions [2,16,17,21] is improved compared to
long-integer arithmetic.

Additionally, in recent lattice-basis-reduction algorithms, Gram–Schmidt orthogonaliza-
tion is replaced by Cholesky factorization [16,17]. This is due to an improvement to the
stability of the algorithm. An effort to achieve this has been proposed by Backes and Wetzel
in 2007 [2]. Moreover, they have proposed the use of buffered transformations where the
transformations are not applied directly to the lattice basis but are stored in a transforma-
tion matrix instead. This matrix is flushed, when its maximum entry exceeds a specific limit
related to the bit size of the machine-type integers used (typically 32 or 64 bits).

In this paper we propose a novel algorithm borrowing ideas both from [16,17], using a
Gram-matrix variant to avoid recomputing costly inner products as in [2,16,17,23]. We also
reexamine the buffered transformations idea proposed by Backes and Wetzel [2].

Our Proposed Algorithm

Our proposed algorithm is Algorithm 1. In the pseudocode below, the symbol � means the
floating point approximation using the specified precision to the operations performed in the
following parentheses.

Algorithm 1: LLL_Gram(B, l, δ, η)

Input: Lattice Basis B = (b1, . . . , bd ) ∈ Z
n×d with floating point precision l [12] and reduction parameters

(δ, η) as defined in “Preliminaries” section.
Output: (δ, η)–LLL–Reduced lattice basis B.

(1) G ← COMPUTE_GRAM(B)

(2) G
′ ← APPROX_BASIS_GRAM(G, l)

(3) r1,1 ← G
′
1,1, μ1,1 ← 1, Fr ← false, Fc ← false.

(4) i ← 2
(5) while (i ≤ d) do
(6) μi,i ← 1
(7) for j from 1 to i − 1 do

(8) ri, j ← G
′
j,i

(9) for k from 1 to j − 1 do
(10) ri, j ← �(ri, j − �(μ j,k · ri,k ))
(11) μi, j ← �(

ri, j
r j, j

)

(12) for j from i − 1 down to 1 do

123



Int. J. Appl. Comput. Math (2015) 1:327–342 331

(13) if (|μi, j | > η) then
(14) Fr ← true
(15) bi ← bi − 
μi, j � · b j
(16) REDUCE_GRAM(G, i, j, 
μi, j �)
(17) if (|
μi, j �| > 2

l
2 ) then

(18) Fc ← true
(19) for t from 1 to j do
(20) μi,t ← �(μi,t − �(
μi, j � · μ j,t ))

(21) if (Fr = true) then

(22) APPROX_VECTOR_GRAM(G
′
,G, l, i)

(23) for j from 1 to i − 1 do /* Recompute Cholesky Factorization */

(24) ri, j ← G
′
j,i

(25) for k from 1 to j − 1 do
(26) ri, j ← �(ri, j − �(μ j,k · ri,k ))
(27) Fr ← f alse

(28) S(i)
1 ← G

′
i,i /* Compute the S(i)

j ’s of the Cholesky factorization */
(29) for j from 2 to i do

(30) S(i)
j ← �(S(i)

j−1 − �(μi, j−1 · ri, j−1))

(31) ri,i ← S(i)
i

(32) if Fc = true then
(33) i ← max{i − 1, 2}
(34) Fc ← f alse
(35) else
(36) k ← i

(37) while((i > 1) AND (δ · ri−1,i−1 > S(i)
i−1) do

(38) bi ↔ bi−1
(39) SWAP_GRAM(G, i)

(40) SWAP_GRAM(G
′
, i)

(41) i ← i − 1
(42) if (i 
= k) then
(43) if (i = 1) then

(44) r1,1 ← G
′
1,1

(45) i ← 1
(46) else
(47) for t from 1 to i − 1 do
(48) μi,t ← μk,t
(49) ri,t ← rk,t
(50) ri,i ← S(k)

i
(51) i ← i + 1

The μi, j ’s in this algorithm correspond directly to the μi, j ’s used in the Gram–Schmidt
orthogonalization (GSO). The ri, j ’s and the relation to the μi, j ’s are given by the following
equations [16,17]:

ri, j =< bi , b j > −
j−1∑

k=1

μ j,k · ri,k

and
μi, j = ri, j

r j, j

The S(i)
j ’s are given by the following equations [16,17]:

S(i)
j = ‖bi‖2 −

j−1∑

k=1

μi,k · ri,k
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and

S(i)
i = ‖b∗

i ‖2 = ri,i

where b∗
i corresponds to the i-th vector of the GSO.

We note that both the exact computation and the update of the μi, j ’s, ri, j ’s and S(i)
j ’s

is important to ensure correctness of the algorithm. In our initial approach to achieve this,
ri, j ’s and S(i)

j ’s have to be recomputed every time a reduction is performed, since the basis
has been modified. However, we can implement an additional optimization in order to avoid
recomputing these quantities needlessly. The optimization is performed as follows: We ini-
tially compute theμi, j ’s and ri, j ’s for j ≤ i (see lines 3–11 of Algorithm 1).We then proceed
to size-reduce vector bi while keeping only the μi, j ’s up-to-date (see lines 19–20). Once bi
has been size-reduced, we recompute the ri, j ’s (see lines 23–25) and S(i)

j ’s for j ≤ i . That
way, these quantities will be computed O(1) times instead of O(i) times, as would be the
worst case of our initial approach. The computation of the S(i)

j ’s is stalled since they are not
really needed until the loop condition of line (37).

The algorithm COMPUTE_GRAM(B) in Algorithm 1 simply computes the inner-
products of the basis vectors for each pair resulting to the computation of the Gram matrix.
Taking advantage of the symmetric property of theGrammatrix it suffices to compute and use
only its upper triangular part.Also, theAPPROX_BASIS_GRAM(G), creates an approximate
version of the Grammatrix by converting its entries to floating point approximations. Finally,
the APPROX_VECTOR_GRAM(G

′
,G, k) algorithm updates the approximate Grammatrix

G
′
after a vector has been size-reduced [2].
Next, we present the algorithm REDUCE_GRAM which is applied when the scalar mul-

tiplication of an integer with a basis vector is subtracted from another basis vector.

Algorithm 2: REDUCE_GRAM(G, i, j, 
μi, j �)

Input: Gram matrix G ∈ Z
d×d , the index i of the basis vector affected by the reduction, the index j of the

basis vector whose scalar product with 
μi, j � is being subtracted from bi .
Output: The updated Gram matrix after the reduction.

(1) for t from 1 to j − 1 do:
(2) Gt,i ← Gt,i − 
μi, j � · Gt, j
(3) for t from j to i − 1 do:
(4) Gt,i ← Gt,i − 
μi, j �G j,t
(5) for t from i + 1 to d do:
(6) Gi,t ← Gi,t − 
μi, j �G j,t
(7) Gi,i ← Gi,i − 2 · 
μi, j �G j,i − 
μi, j �2 · G j, j

The Swap Gram Algorithm

The final algorithm we examine is the one used for the Gram matrix, when a swap is per-
formed:

Algorithm 3: SWAP_GRAM(G, i)

Input: Gram matrix G ∈ Z
d×d , index i of the basis column vector swapped with its previous vector.

Output: Updated Gram matrix after swapping bi and bi−1

(1) for t from 1 to i − 2 do:
(2) Gt,i−1 ↔ Gt,i
(3) for t from i + 1 to d do:
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(4) Gi−1,t ↔ Gi,t
(5) Gi−1,i−1 ↔ Gi,i

This algorithm is an adapted version of the algorithm in page 35 of [23]. We adapted
S. Wetzel’s algorithm in order to work with the upper triangular part of the Gram matrix.

For a short proof of why this algorithm correctly updates the Gram matrix see Appendix.

A Revised Buffered Transform Algorithm

In [2], Backes and Wetzel, introduced an algorithm that gradually performs the transforma-
tions needed to LLL-reduce a lattice basis by using an auxiliary matrix T as a buffer. The
mathematical background behind this, is elementary (unimodular) matrices. In addition, a
T _max vector is used for keeping track of the maximum entries of T and that is used to
determine whether the buffer needs to be flushed or not. In our work we propose a revisited
version of this algorithm, in Algorithm 4, shown below.

Furthermore, a number ofmodifications toAlgorithm1 are required in order to incorporate
this technique. In line (15), the transformation: bi ← bi − 
μi, j� · b j is buffered instead of
being applied directly to B. In addition every time the vectors of B are interchanged, this
transformation is also buffered. This is done by replacing bi ↔ bi−1 in line (38)with the swap
operations: t i−1 ↔ t i and T _maxi−1 ↔ T _maxi . Finally, the buffer needs to be flushed
right before the termination of Algorithm 1, as it may still contain unapplied transformations.

The initializations required for Algorithm 1 to operate properly are as follows:

T ← Id

T _max ← (1, . . . , 1)T

pos_min ← d

Algorithm 4: BUFFER_TRANSFORMATION(B, T, T _max, i, j, 
μi, j �)

Input: Lattice Basis B = (b1, · · · , bd ) ∈ Z
n×d , Transformation Buffer T ∈ Z

d×d , vector T _max ∈ Z
d ,

indices: i, j and 
μi, j �
Output: Lattice Basis B

(1) if (T _maxi + |
μi, j �| · T _max j ) ≥ 2k−1 then /* flush the buffer, where k
represents the machine int limit */

(2) C ← B
(3) for x from pos_min to d do:
(4) for z from 1 to n do:
(5) Cz,x ← 0
(6) for y from pos_min to d do:
(7) if (Ty,x 
= 0) then:
(8) if (Ty,x = 1) then:
(9) for z from 1 to n do:
(10) Cz,x ← Cz,x + Bz,y
(11) else
(12) if (Ty,x = −1) then:
(13) for z from 1 to n do:
(14) Cz,x ← Cz,x − Bz,y
(15) else
(16) for z from 1 to n do:
(17) Cz,x ← Cz,x + Bz,y · Ty,x
(18) B ← C
(19) T ← Id×d
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(20) for x from 1 to d do:
(21) T _maxi ← 1
(22) pos_min ← j
(23) if (|
μi, j �| ≥ 2k−1) then:
(24) bi ← bi − 
μi, j � · b j
(25) return
(26) t i ← t i − 
μi, j � · t j
(27) T _maxi ← T _maxi + |
μi, j �| · T _max j
(28) if ( j < pos_min) then:
(29) pos_min ← j /* Update pos_min */

Experimental Results

Lattice Bases Generation

For our experiments we focus on unimodular lattice bases. The reason for this choice is that
they require an unusually high number of size-reductions compared to other types of lattice
bases [3,7]. In contrast to the experiments performed by [2] we allow the determinant of a
lattice basis to have the value −1 apart from the unique value 1 to examine a broader class
of unimodular lattices.

The techniques we have used are standard ones for generating unimodular lattice bases
[2,8]. Specifically, we generate three types of unimodular matrices, from now on referred to
as “Type A”, “Type B” and “Type C” accordingly based on the following formulas:

“Type A” : B = (L1 ·U1)

“Type B” : B = (L1P1 ·U1P2)

“Type C” : B = (L1P1 ·U1P2) · (L2P3 ·U2P4)

where the L matrices are lower-triangular, theU matrices upper-triangular and the P matrices
permutation matrices.

The explanation of the selection of these three specific types is as follows: The first
category generates unimodularmatriceswith significantly “small” entries, thus examining the
performance of the algorithms for “simple” cases. The other two categories use permutation
matrices and matrix multiplication, to generate unimodular matrices with much larger entries
that require significantly more unimodular operations to achieve an LLL-reduced basis.

Environment of the Experiments and Actual Experiments Performed

In our work we have chosen to compare four algorithms. First of all we have chosen to
compare our proposed algorithm with the L2 [16,17] algorithm by Nguyen and Stehlé. The
first reason for this choice is that the L2 algorithm gives the same approximation quality for
an SVP as LLL. Secondly, L2 has an improved worst case running time analysis (see [18]
Ch. 10). Additionally, we have implemented two variants of the aforementioned algorithms
using the buffered transformations heuristic [2].

We have implemented all the algorithms as Sage scripts, because we wanted to compare
them under the same setting and also contribute to the Sage community. Since at this high
level of coding, timings may not be so relevant, we also examine more qualitative properties.
Thus, following the advice by McGeoch [15] we have compared code counters for dominant
operations, which in our case are the number of reductions and deep insertions performed.
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Fig. 1 Total CPU times for the four different algorithms executed for 1,000 “type A” bases

Our paper belongs to category c of [13], which means that our aim is to better understand
the strengths, weaknesses and operation of interesting algorithmic ideas in practice, rather
than an optimized implementation.

In order to ensure comparability, a pre-condition emphasized in [13], we have performed
all our experiments on the same machine, namely a workstation with Intel Core i5 CPU, of
2.40GHz clock speed and 4GB RAM.

The maximum bit–size of the matrix entries used was 80 bits.
We have compared the CPU times for 1,000 bases for each of the three types defined

previously, and for each dimension in order to have a sufficiently large sample of lattice
bases. We have not used average time but total execution time to compare the different
algorithms. Average times can directly be derived from them.

Results of the Experiments

We have executed the four examined algorithms up to dimension 50, with parameters (δ, η) =
(0.99, 0.51). The reason for focusing on small dimensions is that according to [16] the
correctness proof given by Nguyen and Stehlé [16] holds for dimensions up to 50, for the
specific parameters (δ, η) and quadruple precision (which is the highest precision for most
programming languages). Since we have observed that there exists no major difference in the
running times for consecutive dimensions we have chosen 5 as the dimension step. We did
not examine total time, since the execution time apart from CPU-time for our experiments
has proved to be negligible.

The results of the running times of the four algorithms for the three different lattice basis
types are presented in Figs. 1–3, where the horizontal axis represents the currently examined
dimension while the vertical axis illustrates the execution time in seconds.
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Fig. 2 Total CPU times for the four different algorithms executed for 1,000 “type B” bases

Fig. 3 Total CPU times for the four different algorithms executed for 1,000 “type C” bases

As we can easily see the running times for the three different types of bases, increases
as we move from “Type A” to “Type B” and consecutively to “Type C”. Accordingly, the
number of reductions and to a lower extent the number of deep insertions shows a similar
increase. This can be attributed to the larger entries of the bases for more complex types.
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Fig. 4 Total number of deep insertions for the four different algorithms executed for 1,000 “type A” bases

Fig. 5 Total number of deep insertions for the four different algorithms executed for 1,000 “type B” bases

From these figures we can observe that the buffered heuristic does not benefit
either of these two algorithms. The second observation one can make is that the
“LLL Gram” algorithm outperforms L2 when unimodular lattices are examined for the
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Fig. 6 Total number of deep insertions for the four different algorithms executed for 1,000 “type C” bases

specific dimensions. Additionally, the difference in CPU times widens as dimension
increases.

The number of deep insertions for each type of lattice basis are presented in Figs. 4–6,
while the number of reductions for the three different types of lattice bases are depicted in
Figs. 7–9. Since the number of reductions and/or deep insertions required to obtain an LLL-
reduced basis is not affected by whether they are buffered or not, we omit them from Figs.
4–9. Although the difference in the total number of deep insertions of the two algorithms
is negligible, from Figs. 7–9 it is obvious that the number of reductions required to obtain
an LLL-reduced basis using L2 is overwhelming compared to the ones required by our
algorithm. This becomes much more evident when comparing the number of reductions for
the highest dimensions examined, where the difference exceeds 200%. This can be attributed
to the fact that the L2 algorithm performs the reductions progressively, thus requiring many
more reductions. This can be attributed to the use of “lazy size reduction” [16,17] of Babai’s
Nearest Plane algorithm. The proposed algorithm performs significantly faster, due to the
fact that it requires a much lower number of reductions.

Also, given that the total number of reductions required by the L2 algorithm compared to
our variant of Schnorr–Euchner is significantly bigger, we expected the “buffered” version
of L2 to have a better running time compared to its “raw” counterpart, since the buffer needs
to be flushed more frequently. However, that is not the case, as Figs. 1–3 suggest.

Additionally, every time a deep insertion is performed both L2 and our algorithm need to
backtrack to the point of insertion in order to ensure correctness, which also adds an overhead
of reductions needed to obtain an LLL-reduced basis. As Figs. 4–6 suggest, the difference in
the number of deep insertions required between L2 and our algorithm widens (albeit slowly)
thus burdening L2 with an additional number of reductions.

However, the L2 algorithm is asymptotically better, as the complexity analysis of [16]
proves.
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Fig. 7 Total number of reductions for the four different algorithms executed for 1,000 “type A” bases

Fig. 8 Total number of reductions for the four different algorithms executed for 1,000 “type B” bases

Conclusions and Future Work

Our results show that our algorithm outperforms the L2 algorithm for dimensions not exceed-
ing the highest dimension available in order for the correctness proof by Nguyen and Stehlé
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Fig. 9 Total number of reductions for the four different algorithms executed for 1,000 “type C” bases

to hold for quadruple precision. This does not cancel the effort to propose an algorithm that
performs better asymptotically, since the L2 algorithmcould bemore efficient if a better preci-
sion were available in standard programming languages (i.e. more than quadruple precision).
As future work we would like to examine whether we could use fast matrix multiplication
techniques used in the literature, in order to improve the results of the buffered transfor-
mations idea. Additionally, we would like to implement the quasi-linear time complexity
reduction algorithm [19] and perform appropriate comparisons.
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answers to the questions they addressed to him.

Appendix: Proof of the update Gram matrix algorithm

In Algorithm 3 (SWAP_GRAM) we have provided the pseudocode that updates the Gram
matrixwhen two consecutive basis vectors are swapped. In the followingwe prove the validity
of the algorithm that properly updates the Gram matrix when a deep insertion is performed.
This algorithm is simply a generalization of the SWAP_GRAM process.

Proof of Correctness of Algorithm 3 (SWAP_GRAM)
Let b1, b2, . . . , bk−1, bk, bk+1, . . . , bk′−1, bk′ , bk′+1, . . . , bd be our initial lattice basis

with a corresponding Gram matrix G.
Suppose we wish to perform a deep insertion of basis vector bk′ before basis vector bk ,

where k ≤ k
′
.

Let b∗
1, b

∗
2, . . . b

∗
k−1, b

∗
k , b

∗
k+1, . . . , b

∗
k′−1

, b∗
k′ , b∗

k′+1
, . . . , b∗

d be the lattice basis after the

deep insertion with a corresponding GrammatrixG∗. The following relations obviously hold
for the new basis:
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Fig. 10 The nine submatrices of
the Gram matrix

b∗
i = bi ,∀i /∈ {k, k + 1, . . . , k

′ }, b∗
k = bk′ and b∗

i = bi−1,∀i ∈ {k + 1, k + 2, . . . , k
′ }

The above relations suggest that we should divide the Gram matrix into nine submatrices
(see Fig. 10).

Lets consider arbitrary indices i, j ∈ {1, . . . , d}.
Case 1: If i ∈ {1, 2, . . . , k−1}⋃{k ′ +1, k

′ +2, . . . , d} and j ∈ {1, 2, . . . , k−1} ⋃{k ′ +
1, k

′ + 2, . . . , d} (submatrices 1–3–7–9) then g∗
i, j = b∗

i · b∗
j = bi · b j = gi, j . So it becomes

obvious that the entries of the submatrices 1–3–7–9 do not change.
Case 2: If i ∈ {1, 2, . . . , k − 1}⋃{k ′ + 1, k

′ + 2, . . . , d} and k ≤ j ≤ k
′
(submatrices 2

and 8) then b∗
i = bi .

• if j = k, then b∗
j = b∗

k = bk′ and therefore: g∗
i, j = b∗

i · b∗
j = bi · bk′ = gi,k′ .

• if k < j ≤ k
′
, then b∗

j = b j−1 which implies that g∗
i, j = b∗

i · b∗
j = bi · b j−1 = gi, j−1.

Therefore, all entries in these submatrices horizontically shift by one column to the right
cyclically in respect to their corresponding matrix row.

Case 3: If k ≤ i ≤ k
′
and j ∈ {1, 2, . . . , k − 1}⋃{k ′ + 1, k

′ + 2, . . . , d} (submatrices 4
and 6), then b∗

j = bi .

• If i = k, then b∗
i = b∗

k = bk′ and therefore g∗
i, j = b∗

i · b∗
j = bk′ · b j = gk′

, j .

• If k < i ≤ k
′
, then b∗

i = bi−1, which implies that g∗
i, j = b∗

i · b∗
j = bi−1 · b j = gi−1, j .

Therefore, all entries in these submatrices vertically shift by one row below cyclically in
respect to their corresponding matrix column.

Case 4: If k ≤ i ≤ k
′
and k ≤ j ≤ k

′
(submatrix 5) then:

• If i = j = k, then g∗
i, j = g∗

k,k = b∗
k · b∗

k = bk′ · bk′ = gk′
,k′ .

• If i = k and k < j ≤ k
′
and j = k, then g∗

i, j = b∗
i · b∗

j = b∗
k · b∗

j = bk′ · b j−1 = gk′
, j−1.

• If k < i < k
′
and j = k, then g∗

i, j = b∗
i · b∗

j = bi−1 · bk′ = gi−1,k′ .

• If k < i < k
′
and k < j < k

′
, then g∗

i, j = b∗
i · b∗

j = bi−1 · b j−1 = gi−1, j−1.

Therefore, all entries are vertically shifted by one row and horizontally by one column,
cyclically with respect to the bounds of submatrix 5. ��
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