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Abstract In this paper an exponentially fitted finite difference method is presented for solv-
ing singularly perturbed two-point boundary value problems with the boundary layer at left
(or right) end of the domain. A fitting factor is introduced and the model equation is dis-
cretized by a finite difference scheme on an uniform mesh. Thomas algorithm is used to
solve the tri-diagonal system. The stability of the algorithm is investigated. It is shown that
proposed technique provides first order accuracy independent of the perturbation parameter.
Several linear and nonlinear problems are solved by the proposed method and numerical
results are presented to illustrate the theoretical parameter-uniform error bounds established.

Keywords Singular perturbation problems ·Exponential fitting factor ·Thomas algorithm ·
Uniform convergence
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Introduction

Singularly perturbed boundary value problems often arise in applied sciences and engineer-
ing, typical examples include high Reynold’s number flow in fluid dynamics, modelling the
problems in mathematical biology and semi-conductor devices where the edge effects are
important. These problems depend on a small positive parameter ε known as the singular
perturbation parameter. These problems have been received a significant amount of attention
in past and recent years. A well known fact is that the solution of such problems display sharp
boundary or interior layers when ε is very small, i.e., the solution varies rapidly in some parts
and varies slowly in some other parts. Typically there are thin transition layers where the
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solutions can jump abruptly, while away from the layers the solution behaves regularly and
vary slowly. So the treatment of singularly perturbed problems presents severe difficulties
that have to be addressed to ensure accurate numerical solutions. Thus more efficient but
simpler computational techniques are required to solve singular perturbation problems. For
a good analytical discussion on singular perturbation, one may refer the books: Doolan et
al. [3], Kevorkian and Cole [9], O’Malley [12]. Also, for some numerical methods and their
convergence analysis, one may refer to recent books: Farrell et al. [4], Miller et. al. [10], Roos
et al. [19] and the references therein. In the articles [2,5–7,13,15–17,20], many researcher
have followed different numerical approach combining fitted mesh methods and fitted oper-
ator methods for solving singular perturbation problems where as [8] gives an erudite outline
on the numerical methods for singular perturbation problems. In [11,14] efficient numeri-
cal methods are used for singularly perturbed differential equations with an delay (or shift)
term. Recently, Reddy et. al [18] have developed an exponential finite difference method for
solving model equation of the form (1). But Most of these available numerical techniques
are constructed on fitted operator techniques or by the use of reasonable apriori information
about the solutions which is a limitation of this kind of approach.

In this paper,we introduce a simple exponentially fittedfinite differencemethod for solving
singularly perturbed two-point boundary value problems with the boundary layer at one end
(left or right) point. A fitting factor is introduced and the model equation is discretized by
a finite difference scheme on an uniform mesh. Thomas algorithm is used to solve the tri-
diagonal system. The stability of the algorithm is investigated. Several linear and nonlinear
problems are solved to demonstrate the applicability of the method. It is observed that the
present method approximates the exact solution very well.

The rest of the paper is organized as follows: “Continuous problem” section recalls per-
tinent properties of the solution y(x) of (1). In “Discrete problem” section, we describe the
finite difference scheme, followed by a brief discussion on Thomas algorithm and its stabil-
ity analysis. We discuss the convergence analysis of the numerical solution obtained by the
exponential scheme in “Convergence analysis” section. Finally, “Numerical result” section
gives some numerical examples that confirm the theoretical error estimates. Also, we apply
the proposed scheme on some nonlinear problems and problem with right end boundary
layer.

Throughout this paperC denotes a generic positive constant independent of the grid points
x j and the parameters ε and N (the number of mesh intervals) which can take different values
at different places, even in the same argument. A subscripted C (i.e., C1) is a constant that
is independent of ε and of the nodal points x j , but whose value is fixed. Whenever we write
φ = O(ψ), we mean that |φ| ≤ C |ψ |. To simplify the notation, we set g j = g(x j ) for any
function g, while gNj denotes an approximation of g at x j . Also, we assume that ε ≤ CN−1

as is generally the case of discretization of convection-diffusion problems. It is worthwhile
to mention that this assumption is not a restriction in practical situation.

Continuous Problem

In this article, we consider the following singularly perturbed boundary value problem
(SPBVP):

{
Ly(x) ≡ εy′′(x) + a(x)y′(x) + b(x)y(x) = f (x), x ∈ Ω = (0, 1),
B0 ≡ y(0) = α, B1 ≡ y(1) = β,

(1)
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where 0 < ε � 1 is a small singular perturbation parameter, the functions a(x), b(x), f (x)
are sufficiently smooth and α, β are given constants. Further, we assume that a(x) ≥ 2M > 0
and b(x) ≤ 0. Under these assumptions, the above problem (1) has a unique solution which
exhibits a boundary layer at x = 0.

From the theory of singular perturbations [12] and using Taylor’s series expansion for
a(x) about x = 0 and restriction to their first terms, we get

y(x) = y0(x) + (α − y0(0)) exp

(
− a(0)

ε
x

)
+ O(ε) (2)

where y0(x) is the solution of the reduced problem of (1), given by

a(x)y′
0(x) + b(x)y0(x) = f (x) with y0(1) = β. (3)

First, the interval [0, 1] is divided into N equal number of subintervals, each of length h. Let
0 = x0 < x1 < x2 < . . . < xN = 1 be the points such that xi = ih for i = 0, 1, . . . , N .
From (2) as h → 0, we have

lim
h→0

y(ih) = y0(0) + (α − y0(0)) exp

(
− a(0)

ε
ih

)
. (4)

Let ρ = h
ε
. Now the equation becomes

lim
h→0

y(ih) = y0(0) + (α − y0(0)) exp

(
− a(0)

ε
ρ

)
. (5)

Now introducing an exponentially fitting factor σ(ρ) in (1), we get

εσ (ρ)y′′(x) + a(x)y′(x) + b(x)y(x) = f (x), (6)

with boundary conditions B0 ≡ y(0) = α, and B1 ≡ y(1) = β. The fitting factor σ(ρ) is to
be determined in such a way that the solution of (6) converges uniformly to the solution (1).

Lemma 1 (Maximum principle) Let v be a smooth function satisfying v(0) ≥ 0, v(1) ≥ 0
and Lv(x) ≤ 0, ∀x ∈ Ω, then v(x) ≥ 0, ∀x ∈ Ω .

Proof We can prove the above lemma by method of contradiction. Let x∗ ∈ Ω be such that
v(x∗) = min v(x), x ∈ Ω and assume that v(x∗) < 0. Clearly x∗ /∈ {0, 1} and v′(x∗) = 0
and v′′(x∗) ≥ 0. Now consider

Lv(x∗) ≡ εv′′(x∗) + a(x∗)v′(x∗) + b(x∗)v(x∗) > 0

which is a contradiction to our assumption. Hence v(x) ≥ 0,∀x ∈ Ω . ��

An immediate consequence of the maximum principle is the following stability estimate.

Lemma 2 If u is the solution of the boundary value problem (1), then

‖u‖ ≤ M−1‖ f ‖ + max{|α|, |β|}. (7)

Proof Consider the following barrier function

ψ±(x) =
[(

1 − x

M

)
‖ f ‖ + max

{|α|, |β|}
]

± u(x).
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It is easy to check that ψ±(x) ≥ 0 at x = 0, 1. Now from (1)

Lψ±(x) = ε
(
ψ±(x)

)′′ + a(x)
(
ψ±(x)

)′ + b(x)ψ±(x)

= −a(x)

M
‖ f ‖ + b(x)

[(
1 − x

M

)
‖ f ‖ + max{|α|, |β|}

]
± Lu(x)

≤ [ − ‖ f ‖ ± f (x)
] + b(x)

[(
1 − x

M

)
‖ f ‖ + max{|α|, |β|}

]
≤ 0.

Thus by applying themaximumprinciple (Lemma 1), we can conclude thatψ±(x) ≥ 0,∀x ∈
Ω , which is the required result. ��
Lemma 3 The solution u(x) and its derivatives of the BVP (1) satisfy the following bounds:

|u(k)(x)| ≤ C

(
1 + ε−k exp(−Mx/ε)

)
, k = 0, 1, 2, 3, x ∈ Ω. (8)

Proof This lemma can be proved by following the method of proof as in [10]. ��

Discrete Problem

Consider the difference approximation of (1) on a uniform grid Ω
N = {x j }Nj=0 and denote

h = x j+1 − x j . For a mesh function Z j , we define the following difference operators:

D+Z j = Z j+1 − Z j

h
, D−Z j = Z j − Z j−1

h
, D0Z j = Z j+1 − Z j−1

2h
, D+D−Z j

= Z j+1 − 2Z j + Z j−1

h2
.

The upwind finite difference scheme for (6) takes the form{−εσ (ρ)y(xi ) + a(xi )D0y(xi ) + b(xi )y(xi ) = f (xi ) , 1 ≤ i ≤ N − 1,
y0 = y(x0) = α, yN = y(xN ) = β .

(9)

Using the above difference operators, we have

LN y(xi ) =

⎧⎪⎨
⎪⎩

−εσ (ρ)
y(xi+1) − 2y(xi ) + y(xi−1)

h2
+ a(xi )

y(xi+1) − y(xi−1)

2h+b(xi )y(xi ) = f (xi ), 1 ≤ i ≤ N − 1,
y0 = y(x0) = α, yN = y(xN ) = β .

(10)

Multiplying (10) by h and taking the limit h → 0, we get

lim
h→0

σ(ρ)

ρ

(
y(xi+1) − 2y(xi ) + y(xi−1)

)
+ a(xi )

2

(
y(xi+1) − y(xi−1)

)
= 0, (11)

where f (xi ) − b(xi )y(xi ) is bounded. substituting (4) in (11) and then simplifying, we get

σ(ρ) = σa(0)

2
coth

[
σa(0)

2

]
(12)

Hence, (9) takes the form{
σ(ρ)y′′(xi ) + p(xi )D0y(xi ) + q(xi )y(xi ) = r(xi ) , 1 ≤ i ≤ N − 1,
y0 = y(x0) = α, yN = y(xN ) = β .

(13)

where p(x) = a(x)/ε, q(x) = b(x)/ε, r(x) = f (x)/ε.
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Let δ be a small deviating argument such that 0 < δ � 1. By using Talylor’s expansion
about the point x = xi up to the second order approximation, we have

y(xi − δ) = y(xi ) − δy′(xi ) + δ2

2
y′′(xi ).

Therefore, we have

y′′(xi ) = δ2

2
[y(xi − δ) − y(xi ) − δD+y(xi )].

So from (13), we have

2σ(ρ)[y(xi − δ)− y(xi )− δD+y(xi )]+ δ2 p(xi )D
0y(xi )+ δ2q(xi )y(xi ) = δ2r(xi ) . (14)

But from Taylor series expansion about the point x = xi , we have

y(xi − δ) ≈ y(xi ) − δy′(xi ) = y(xi ) − δD−y(xi ).

Substituting the above in (14), we get a three term recurrence relation as follows:

Ei yi−1 + Fi yi + Gi yi+1 = Hi , 1 ≤ i ≤ N − 1, (15)

where

Ei = 2σ(ρ)

h
− δp(xi )

2h
, Fi = −4σ(ρ)

h
− δq(xi ),

Gi = 2σ(ρ)

h
+ δp(xi )

2h
, Hi = δr(xi ).

Now (15) gives a system of N − 1 equations with N − 1 unknowns from y1 to yN−1 where
y(xi ) = yi . To solve the tri-diagonal system, we use Thomas algorithm. A brief discussion
on Thomas algorithm is as follows:
Thomas algorithmAbrief discussion onThomas algorithm for solving the tri-diagonal system
(15) is given below:
Consider the tri-diagonal system (15) with the boundary conditions. In Thomas algorithm,
we set a recurrence relation

yi = Wi yi+1 + Ti , for i = N − 2, N − 1, . . . , 1, (16)

where Wi = W (xi ) and Ti = T (xi ) are to be determined. For i = 0, we get y0 = W0y1 +
T0, but from boundary conditions, we already know that y0 = α. So by comparing the
coefficients, we get W0 = 0 and T0 = α. Again from (16), we have

yi−1 = Wi−1 yi + Ti−1 , for i = N − 2, N − 1, . . . , 1. (17)

Substituting (17) in (15), we get

Ei [Wi−1 yi + Ti−1] + Fi yi + Gi yi+1 = Hi , (18)

and on simplifying, we obtain

yi = −Gi

Fi + EiWi−1
yi+1 + Hi − Ei Ti−1

Fi + EiWi−1
. (19)

Comparing (15) and (19), we get

Wi = −Gi

Fi + EiWi−1
, Ti = Hi − Ei Ti−1

Fi + EiWi−1
.
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with the initial conditions W0 = 0 and T0 = α. Now, we can calculate Wi , Ti and hence
using the value yn = β, we can get the values of yi for i = N − 2, N − 1, . . . , 1.

Stability Analysis

By stability, we mean that the error committed at one stage is not propagated into larger to
the later stage. Suppose a small error ei−1 has been made in calculating Wi−1 given above.
Now Wi−1 = Wi−1 + ei−1 and we want to calculate Wi−1. So

ei = Gi

Fi − Ei (Wi−1 + ei−1)
− Gi

Fi − EiWi−1
,

= Gi Ei ei−1

(Fi − Ei (Wi−1 + ei−1))(Fi − EiWi−1)
= W 2

i Ei

Gi
ei−1.

From the assumption made earlier that a(x) > 0, b(x) ≤ 0, so |Ei | ≤ |Gi |. Now by the

condition |Wi | < 1, i = 1, 2, . . . , N − 1, it follows that |ei | = |Wi |2 |Ei |
|Gi | |ei−1| < |ei−1|,

and hence, the stability is guaranteed.

Lemma 4 (Discrete comparison principle) Assume that the mesh function V (xi ) satisfies
V (x0) ≥ 0 and V (xN ) ≥ 0. If LNV (xi ) ≤ 0 for 1 ≤ i ≤ N − 1, then V (xi ) ≥ 0 for
0 ≤ i ≤ N .

Proof Let us choose k such that V (xk) = min V (xi ), 1 ≤ i ≤ N − 1. If V (xk) ≥ 0, then
there is nothing to prove. It is obvious that V (xk+1)−V (xk) ≥ 0 and V (xk)−V (xk−1) ≤ 0.
Now from (10), we have

LNV (xk)=εσ (ρ)
V (xk+1)−2V (xk)+V (xk−1)

h2
+a(xk)

V (xk+1)−V (xk−1)
2h

+b(xk)V (xk) ≥ 0,

which contradicts LNV (xi ) ≤ 0. Hence, our assumption is wrong. ��

Convergence Analysis

The following theorem shows the ε-uniform convergence of the proposed scheme.

Theorem 1 Let y and Y be respectively the exact solution of (1) and the discrete solution
of (13) respectively. Then, for sufficiently large N, we have the following ε–uniform error
estimate:

sup
0<ε≤1

‖y − Y‖ ≤ CN−1(ln N )2, x ∈ Ω (20)

Proof First, let us decompose the solution y(x) of (1) into regular and singular parts as:
y(x) = r(x) + s(x). Now for 0 ≤ k ≤ 3, the regular component r(x) satisfies

|rk(x)| ≤ C[1 + ε2−ke(x, a)], ∀x ∈ [0, 1]. (21)

and the singular component s(x) satisfies

|sk(x)| ≤ Cε−ke(x, a), ∀x ∈ [0, 1]. (22)

where e(x, a) = e1(x, a) + e2(x, a) = exp(−a0x
ε

) + exp(−a0(1−x)
ε

). (for details see [10]).
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Similarly, decompose the discrete solution Y of the problem (13) into regular (Rε) and
singular (Sε) components. Thus Y (x) = Rε(x) + Sε(x) where Rε and Sε are respectively
the solution of the following problems:

LN Rε = f (x), Rε(0) = r(0), Rε(1) = r(1),

LN Sε = 0, Sε(0) = s(0), Sε(1) = s(1).

Thus y(x) − Y (x) = [r(x) − Rε(x)] + [s(x) − Sε(x)] and the error can be estimated as

‖y(x) − Y (x)‖ ≤ ‖r(x) − Rε(x)‖ + ‖s(x) − Sε(x)‖.
Now we need to calculate the errors in the regular and singular components separately.

Let us first calculate the error in the regular component. Consider the local truncation
error defined as follows:

LN (Rε(x) − r(x)) = (L − LN )r(x) = f (x) − LN (r(x))

= ε(D2 − �2)r(x) + a(x)(D − D0)r(x) (23)

Using Taylor’s series expansion and neglecting higher order terms from fourth order, we get
the following expansions for y(xi + h) and y(xi − h):

y(xi + h) = y(xi ) + hy′(xi ) + h2

2
y′′(xi ) + h3

6
y′′′(ξ (i)

1 ),

and

y(xi − h) = y(xi ) − hy′(xi ) + h2

2
y′′(xi ) − h3

6
y′′′(ξ (i)

2 ),

where (ξ
(i)
1 ), (ξ

(i)
1 ) ∈ (xi−1, xi+1). Simplifying the above two expressions, we can easily

show that

(�2y)(xi ) = y′′(xi ) − h

6

[
y′′′(ξ (i)

1 ) − y′′′(ξ (i)
2 )

]
.

So, ‖(�2 − d2

dx2
)y(xi )‖ ≤ C‖y′′′‖, where ‖y′′′‖ = sup

xi∈(x0,xN )

|y′′′(xi )|. Similarly by Taylor’s

series expansion up to the second order terms we get

‖(D0 − d

dx
)y(xi )‖ ≤ C‖y′′‖.

Now using the bounds of rk(x), sk(x) and the assumption ε ≤ CN−1, the equation (23)
reduces to

‖LN (Rε − r)(xi )‖ ≤ CN−1. (24)

Hence, using the discrete maximum principle (Lemma 4), we get

‖(Rε − r)‖ ≤ CN−1. (25)

Now we need to find out the error in the singular component. The local truncation error in
the singular component is bounded in the standard way as done for the regular part and is
given by

‖LN (Sε − s)(xi )‖ ≤ Cε−2N−1.
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Table 1 Maximum point-wise errors EN
ε and the rate of convergence r Nε for Example 1

ε Number of intervals N

16 32 64 128 256 512

1e − 2 7.5846e−3 3.8548e−3 1.9127e−3 9.2632e−4 4.5732e−4 2.1879e−4

0.9764 1.0110 1.0461 1.0183 1.0637

1e − 4 1.1136e−2 5.6347e−3 2.8189e−3 1.3953e−3 6.8264e−4 3.2347e−4

0.9829 0.9994 1.0144 1.0366 1.0743

1e − 8 1.1173e−2 5.6771e−2 2.8563e−2 1.4326e−3 7.1795e−4 3.6449e−4

0.9783 0.9896 0.9959 0.9979 0.9939

EN 1.1173e−2 5.6771e−2 2.8563e−2 1.4326e−3 7.1795e−4

r N 0.9783 0.9896 0.9959 0.9979 0.9939

Choose a constant K such that K ε ln N ≥ 1
4 , i.e., ε

−1 ≤ 4K ln N So from above inequality,
we have

‖LN (Sε − s)(xi )‖ ≤ CN−1(ln N )2.

Now again using the discrete comparison principle , we reach at

‖(Sε − s)‖ ≤ CN−1(ln N )2. (26)

Finally, combining (25) and (26), we get our desired result. ��

Numerical Results

To demonstrate the applicability of the method, we have applied the proposed scheme on
several linear and nonlinear singular perturbation problems with left boundary layers. These
examples are widely discussed in the literature. The exact solutions or sometimes uniformly
valid approximate solutions are used for comparison purpose.

Example 1 Consider the homogeneous problem{
εy′′(x) + y′(x) − y(x) = 0, x ∈ (0, 1),
y(0) = 1, y(1) = 1.

The exact solution is givenby y(x) = (exp(m2) − 1) exp(m1x) − (1 − exp(m1)) exp(m2x)

exp(m2) − exp(m1)
,

where m1,2 = −1 ± √
1 + 4ε

2ε
. This BVP has a boundary layer in the left end at x = 0.

Example 2 Consider the non-homogeneous singular perturbation problem{
εy′′(x) + y′(x) = 1 + 2x, x ∈ (0, 1),
y(0) = 0, y(1) = 0.

Its exact solution is y(x) = x(1+x−2ε)+ (2ε − 1)(1 − exp(−x/ε))

1 − exp(−1/ε)
,which has a boundary

layer at the left side of the domain near x = 0 (Table 1).
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Table 2 Maximum point-wise errors EN
ε and the rate of convergence r Nε for Example 2

ε Number of intervals N

16 32 64 128 256 512

1e − 2 4.3216e−2 2.3764e−2 1.2108e−3 6.0325e−4 2.9892e−4 1.4375e−4

0.8628 0.9728 1.0053 1.0130 1.0566

1e − 4 5.8414e−2 3.0087e−2 1.5169e−3 7.5535e−3 3.6920e−3 1.7547e−3

0.9574 0.9862 1.0074 1.0326 1.0773

1e − 8 5.8591e−2 3.0274e−2 1.5389e−2 7.7512e−3 3.8923e−3 1.94967e−3

0.9527 0.9768 0.9886 0.9942 0.9974

EN 5.8591e−2 3.0274e−2 1.5389e−2 7.7512e−3 3.8923e−3

r N 0.9527 0.9768 0.9886 0.9942 0.9974

For any value of N and ε, we calculate the exact maximum point-wise errors EN
ε and the

corresponding rates of convergence by

EN
ε = max

0≤ j≤N
|y(x j ) − Y N

j | and r Nε = log2

(
EN

ε

E2N
ε

)
,

where u is the exact solution and UN
j is the numerical solution obtained by using N mesh

intervals in the domain Ω
N
(Table 2).

Now we would like to see uniform error and rate of convergence as (Table 2)

EN = max
0≤ε≤1

EN
ε and r N = log2

(
EN

E2N

)
.

Non-Linear Example

In this section to demonstrate the applicability of the proposedmethod, we have applied it to a
nonlinear singular perturbation problemwith left boundary layer. First the nonlinear problem
is converted to a sequence of linear problem by method of quasi-linearization process [3].

Example 3 Consider the non-linear singular perturbation problem

{
εy′′(x) + 2y′(x) + exp(y(x)) = 0, x ∈ (0, 1),
y(0) = 0, y(1) = 0.

The linear problem concerned to this example is

εy′′(x) + 2y′(x) + 2

1 + x
(y(x)) = 2

1 + x

[
ln

(
2

1 + x

)
− 1

]
.

The uniform valid approximation (Ref. [1]) is y(x) = ln( 2
1+x ) − (ln 2) exp(−2x/ε), which

has a boundary layer of thickness O(ε) near x = 0 (Table 3).
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Table 3 Maximum point-wise errors EN
ε and the rate of convergence r Nε for Example 3

ε Number of intervals N

16 32 64 128 256 512

1e − 4 1.9628e−2 1.0315e−2 5.2847e−3 2.6759e−3 1.3444e−3 6.7549e−4

0.9285 0.9645 0.9825 0.9937 0.9933

1e − 8 1.9623e−2 1.0311e−2 5.2842e−3 2.6755e−3 1.3440e−3 6.7547e−4

0.9283 0.9644 0.9820 0.9930 0.9935

EN 1.9623e−2 1.0311e−2 5.2842e−3 2.6755e−3 1.3440e−3

r N 0.9283 0.9644 0.9820 0.9930 0.9935

Right End Boundary Layer Problem

Finally, we consider the following singularly perturbed boundary value problem with right
end boundary layer:{

Ly(x) ≡ −εy′′(x) + a(x)y′(x) + b(x)y(x) = f (x), x ∈ Ω = (0, 1),
B0 ≡ y(0) = α, B1 ≡ y(1) = β,

(27)

where 0 < ε � 1 is a small singular perturbation parameter, the functions a(x), b(x), f (x)
are sufficiently smooth and α, β are given constants. Further, we assume that a(x) ≥ 2M > 0
and b(x) ≥ 0. Under these assumptions, the above problem (27) has a unique solution which
exhibits a boundary layer at x = 1.

Using Taylor series expansion for a(x) near the point x = 1, we get

y(x) = y0(x) + (β − y0(1)) exp

(
− a(1)(1 − x)

ε

)
, (28)

where y0(x) is the solution of the reduced problem of (27), given by

a(x)y′
0(x) + b(x)y0(x) = f (x) with y0(0) = α. (29)

As h → 0, we have

lim
h→0

y(ih) = y0(0) + (β − y0(1)) exp

(
− a(1)(1 − ih)

ε

)
, (30)

which becomes

lim
h→0

y(ih) = y0(0) + (β − y0(1)) exp(a(1)(1/ε − iρ)), (31)

where ρ = h
ε
. Introducing an exponentially fitting factor σ(ρ) in (27), we get

− εσ (ρ)y′′(x) + a(x)y′(x) + b(x)y(x) = f (x), (32)

with boundary conditions B0 ≡ y(0) = α, and B1 ≡ y(1) = β. On simplifying, we get

σ(ρ) = σa(1)

2
coth

[
σa(1)

2

]
. (33)

Now we can use the finite difference scheme and the techniques discussed for the left end
boundary layer problem. Finally, we will reach at a three term recurrence relation as follows:

Êi yi−1 + F̂i yi + Ĝi yi+1 = Ĥi , 1 ≤ i ≤ N − 1, (34)
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Table 4 Maximum point-wise errors EN
ε and the rate of convergence r Nε for Example 4

ε Number of intervals N

16 32 64 128 256 512

1e − 4 1.1143e−2 5.6345e−2 2.8197e−3 1.3958e−3 6.8346e−4 3.2758e−4

0.9836 0.9998 1.016 1.0308 1.0631

1e − 8 1.1141e−2 5.6343e−2 2.8192e−3 1.3955e−3 6.8342e−4 3.2754e−4

0.9835 0.9989 1.014 1.0303 1.0625

EN 1.1141e−2 5.6343e−2 2.8192e−3 1.3955e−3 6.8342e−4

r N 0.9835 0.9989 1.014 1.0303 1.0625

where

Êi = 2σ(ρ)

h
− δp(xi )

2h
, F̂i = −4σ(ρ)

h
− δq(xi ),

Ĝi = 2σ(ρ)

h
+ δp(xi )

2h
, Ĥi = δr(xi ).

Now (34) gives a system of N − 1 equations with N − 1 unknowns from y1 to yN−1 where
y(xi ) = yi . Hence, we can use Thomas algorithm to solve the tri-diagonal system.

Example 4 Consider the following singular perturbation problem:{−εy′′(x) + y′(x) + (1 + ε)y(x) = 0, x ∈ (0, 1),
y(0) = 1 + exp(− 1+ε

ε
), y(1) = 1 + 1/e,

Its exact solution y(x) is of the form y(x) = e(1+ε)( x−1
ε

) + ex , and has a boundary layer at
the right side of the domain near x = 1. The numerical results are shown in Table 4.

Conclusion

An efficient exponentially fitted finite difference scheme for a class of singularly perturbed
BVPs of the form (1) with left (or right) boundary layers is presented in this paper. A
comparatively simple fitting factor is introduced and the solution thus obtained through a tri-
diagonal system. We carried out the error analysis and numerical results obtained for some
examples show that proposed scheme is of almost first-order accurate up to an logarithm
factor. Hence, the key result established here is that the solution thus obtained is uniformly
convergent with respect to the perturbation parameter.
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