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Abstract

A rigorous derivation of the incompressible Euler equations with the no-penetration
boundary condition from the Boltzmann equation with the diffuse reflection boundary
condition has been a challenging open problem. We settle this open question in the
affirmative when the initial data of fluid are well-prepared in a real analytic space, in
3D half space. As a key of this advance, we capture the Navier-Stokes equations of

. . Knudsen number
viscosity ~ ————
Mach number

satisfying the no-slip boundary condition, as an intermediary approximation of the
Euler equations through a new Hilbert-type expansion of the Boltzmann equation
with the diffuse reflection boundary condition. Aiming to justify the approximation we
establish a novel quantitative L”-L°° estimate of the Boltzmann perturbation around a
local Maxwellian of such viscous approximation, along with the commutator estimates
and the integrability gain of the hydrodynamic part in various spaces; we also establish
direct estimates of the Navier-Stokes equations in higher regularity with the aid of the
initial-boundary and boundary layer weights using a recent Green’s function approach.
The incompressible Euler limit follows as a byproduct of our framework.
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1 Introduction

An important and active research direction in mathematical physics/PDE is on the
so-called Hilbert’s sixth problem [29] seeking a unified theory of the gas dynamics
including different levels of descriptions from a mathematical standpoint by connect-
ing the behavior of solutions to equations from kinetic theory to solutions of other
systems that arise in formal limits, such as the N-body problem, the Euler equations,
the Navier-Stokes equations, etc. In particular, the hydrodynamic limit of the Boltz-
mann equation has received a great deal of attention and enthusiasm in the mathematics
and physics communities since the pioneering work [30] by Hilbert, which was the
first example of his sixth problem. Remarkably, all the basic fluid equations of com-
pressible, incompressible, inviscid, or viscous fluid dynamics can be derived from the
Boltzmann equation of rarefied gas dynamics upon the choice of appropriate scalings
in a small mean free path limit. Though formal derivations are rather well-understood,
as far as mathematical justifications go, despite great progress over the decades (for
example see [1-3,13,19,23,50] and the references therein), full understanding of the
hydrodynamic limit incorporating important physical applications such as boundary
effects or physical phenomena is still far from being complete. The goal of this paper
is to make a rigorous connection between the Boltzmann equation and the incom-
pressible Euler equations in the presence of the boundary by bypassing the inviscid
limit of the incompressible Navier-Stokes equations.
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The dimensionless Boltzmann equation with the Strouhal number St and the Knud-
sen number Kn takes the form of

1
StoF+v-ViF=—Q(F, F). (1.1)
Kn

Here the distribution function of the gas is denoted by F (¢, x, v) > 0 with the time
variable € Ry := {t > 0}, the space variable x = (x, x2,x3) € Q C R3, and the
velocity variable v = (vy, v2, v3) € R3. The Boltzmann collision operator Q(-, -) of
the hard sphere takes the form of

1
Q(F,G) =§/ f |(v = vs) - ul{FW)G (W) + G)F ()
R’ Jg2
— F()G(v) — G(v) F (vy) }duduy,

(1.2)

where v’ := v— ((v—vy)-w)uand v}, := v+ ((v—vy)-u)u. This operator satisfies the
so-called collision invariance property: for any F'(v) and G (v) decaying sufficiently
fast as [v| — O,

lv|?

V6

which represents the local conservation laws of mass, momentum and energy. The
celebrated Boltzmann’s H-theorem reveals the entropy dissipation:

/ Q(F, G)(v)(l, v, )dv = (0,0,0), (1.3)
R3

/ Q(F, F)(v)In F(v)dv <0, (1.4)
R3

for any F(v) > 0 decaying sufficiently fast as |[v| — oo. An intrinsic equilibrium,
satisfying Q(-,-) = 0, is given by a local Maxwellian associated with the density
R > 0, the macroscopic velocity U € R and the temperature 7 > 0

Mgy () =

|v—U|2}
—_ 1, (1.5)

— exp {
QnT)3 27

which is known as the only configuration attaining the equality in (1.4).

In addition to the Strouhal number and Knudsen number we introduce the Mach
number Ma. By passing St, Kn, and Ma to zero, one can formally derive PDEs of
hydrodynamic variables for the fluctuations around the reference state (1, 0, 1), which
are determined as

(,o(t, xX), u(t, x), 0, x))

fim — [ (Fa.x.v)— M (v)}(l v |v|2_3)dv (1.6)
= — ,X,0) — v, . .
Mal0 Ma Jg3 Lot J6
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The famous Reynolds number appears as a ratio between the Knudsen number and
Mach number through the von Karman relation:

1
— = & (1.7)
Re Ma
For instance, the incompressible Navier-Stokes equations with R = 1, namely the
viscosity of order one, can be derived by setting St = Ma = Xn = ¢ as ¢ |, 0. In this
paper we are particularly interested in a scale of large Reynolds number as follows:

St=¢e=Ma and Kn =«e withk =«(¢) { Oase | 0, (1.8)

through which we will derive the incompressible Euler equations with the no-
penetration boundary condition in the limit

g +up - Vyug +Vipg =0, Vy-up =0 in Q, (1.9)
ug-n=0 on 09, (1.10)

with 0,0 +ug - V.0 = 0and V,0(t, x) + V,p(t, x) = 0. Here n = n(x) denotes an
outward normal at x on the boundary 9€2.
For the sake of simplicity we set an initial datum 6yp(x) = 0 = po(x) so that

0, x)=0=p(t,x) forallr > 0. (1.11)

In many important physical applications such as a turbulence theory, it would be
relevant to take into account the physical boundary in the hydrodynamic limit. A
boundary condition of the Boltzmann equation is determined by the interaction law of
the gas with the boundary surface. One of the physical conditions is the so-called diffuse
reflection boundary condition, which takes into account an instantaneous thermal equi-
libration of reflecting gas particle (see [9,12]): for (x, v) € {92 x R3:n(x)-v <0},

F(t,x,v) =cyMi,1(v) F(t,x,0)(n(x) - v)do, (1.12)

n(x)-0>0

where we have taken an isothermal boundary with a rescaled temperature 1 for the sake
of simplicity. Here, the normalization constant ¢, := 1/ ( -[n(x)»n>0 M 0.1(0)(n(x) -
U)du) leads to the null flux condition ng F(,x,v)(n(x) -v)dv = Oonx € 9Q.
In particular, it is well-known that the diffuse boundary condition (1.12) is a kinetic
boundary condition featuring a mismatch with the no-penetration boundary condition
(1.10) of the the Euler flow under (1.8), without any small parameter with respect
to 1/Re or Ma. One can readily see this by expanding F' around a local Maxwellian
M ¢up,1(v) associated with a flow of the no-penetration boundary condition (1.10)
directly. Unfortunately, this local Maxwellian does not honor the diffuse reflection
boundary condition when a flow satisfies the no-penetration boundary condition
(1.10). In fact a size of the boundary mismatch could be an order of the tangential
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component of the Euler flow u g at the boundary. Therefore a uniform bound to verify
the limit (1.6) in a scale of large Reynolds number (1.8) is not expected even at the
formal level. This poses a major obstacle in the Euler limit from the Boltzmann equa-
tion with the diffuse reflection boundary. It is worth noting that such a mismatch does
not appear at least at the formal level when the specular reflection boundary condition
is imposed: F (¢, x,v) = F(t, x, Ryv) on x € 0Q2 where Ryv = v — 2n(x)(n(x) - v);
while the mismatch can possess a small factor for the so-called Maxwell boundary
condition, a convex combination of the specular reflection and the diffuse reflection
boundary conditions, by choosing the coefficient for diffuse reflection known as the
accommodation constant to vanish as Re — 00.

Remarkably, an analogous, better-known boundary mismatch phenomenon exists
in the realm of mathematical fluid dynamics, specifically in the inviscid limit problem
of the Navier-Stokes equations that addresses the validity of the Euler solutions as the
leading order approximation of the Navier-Stokes solutions in the vanishing viscos-
ity limit. The inviscid limit for the no-slip boundary condition features a boundary
mismatch between two different boundary conditions for the Navier-Stokes and Euler
flows. In fact, whether the solution to the Navier-Stokes equations with a k no-viscosity
(a physical constant ng can be computed explicitly from the Boltzmann theory as in
(1.37)) satisfying the no-slip boundary condition

oru+u-Viu —knoAu+ Vyp =0 in Q, (1.13)
Vy-u=0 inQ, (1.14)
u=0 onadS, (1.15)

converges to the solution of the Euler equations satisfying the no-penetration bound-
ary condition (1.9)-(1.10) in « = 1/®e | 0 is an outstanding problem, which is
arguably the most relevant and challenging because of the mismatch of two boundary
conditions between (1.15) and (1.10) resulting in the formation of boundary layers
such as Prandtl layer and unbounded vorticity near the boundary. While the veri-
fication of the inviscid limit is still largely open, it holds under certain symmetry
assumption on the domain and data or under the flat boundary and strong regular-
ity such as analyticity at least near the boundary [45]. A classical way to tackle the
inviscid limit problem is to study the Prandtl expansion [44,48,49]: u(¢, x1, X2, X3) =
ug(t, x1,x2,x3) +up(t, x1, x2, %) + O(/x). Recently, different frameworks that
avoid the boundary layer expansion have become available [38,47,54].

The incompressible Euler limit from the Boltzmann equation turns out to be inti-
mately tied to the inviscid limit of the incompressible Navier-Stokes equations, which
accounts for the similarity of two boundary mismatches. A beautiful connection stems
from the Navier-Stokes solutions of (1.13)-(1.15) in large Reynolds numbers: at least
formally, not only they are approximated by the Euler equations (1.9)-(1.10) but also
they approximate the Boltzmann equation (1.1) under (1.8) with (1.12), in fact bet-
ter than the Euler equations (1.9)-(1.10) at each Mach number ¢ > 0, because the
Navier-Stokes equations contain a high order correction term xnoAu that captures
the dissipative nature of the Boltzmann collision operator (as we will see in Sec-
tion 1.1). And importantly, a local Maxwellian M ¢, 1 (v) associated with u satisfying
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the no-slip boundary condition (1.15), satisfies the diffuse reflection boundary con-
dition (1.12) without singular terms. In other words, the Navier-Stokes solutions are
compatible with the diffuse reflection boundary condition. Therefore, under the scale
(1.8) the Navier-Stokes solution of (1.13)-(1.15) stands in between the Boltzmann
solution of (1.1), (1.12) and the Euler solution (1.9)-(1.10).

In this paper, inspired by these observations, we propose to study the Euler limit
from the Boltzmann equation through the Navier-Stokes solutions that hold both fea-
tures of the Euler and the Boltzmann under (1.8) at each Mach number & > 0. To this
end, we expand the Boltzmann solution F around a local Maxwellian associated with
a Navier-Stokes flow u to (1.13)-(1.15):

() = My e 1(v), (1.16)

as

F=p+e*fr/im+e?fryit, (1.17)

and analyze (1.17) via a new Hilbert expansion presented in Section 1.1. Although
the notations F* and f° may be more precise for the equation depending on &, we
will abuse the notations by dropping the superscript ¢ for the sake of simplicity. The
next order correction f, can be entirely determined by the Navier-Stokes flow and it
turns out that its contribution is always smaller than fz’s one in our choice of ¢ and
k. A choice of the range of the Mach number with respect to the Reynolds number:
& K k = 1/Rein ¢ | 0 plays an important role in our analysis and the formal
expansion. We will discuss the relation and its role in Section 1.2. With such a choice
of the scale, uniform-in-¢ estimates of the Boltzmann remainder fr are achieved
by a novel quantitative LP-L°° estimate in a setting of the local Maxwellian of the
Navier-Stokes approximation (1.16), along with the commutator estimates and the
integrability gain of the hydrodynamic part in various spaces.

In order to establish the Euler limit by using the Navier-Stokes solutions of (1.13)-
(1.15) as a reference state as ¢ | 0 in a scale of large Reynolds number (1.8), it is
imperative to show the uniform-in-«x convergence of the Navier-Stokes solutions to the
Euler solutions of (1.9)-(1.10), where the inviscid limit comes into play. In this paper,
we take the spatial domain to be the upper-half space with periodic boundary conditions
in the horizontal components and analytic data for the Navier-Stokes solutions of
(1.13)-(1.15) and obtain uniform-in-« estimates built upon a recent development on
the inviscid limit problem in the half-space based on the Green’s function approach
using the boundary vorticity formulation [38,44,47,54].

Our main result concerns a rigorous justification of the passage from the solutions to
the dimensionless Boltzmann equation (1.1) of the scale (1.8) with the diffuse reflection
boundary condition (1.12) to the solution of the incompressible Euler equation (1.9)
with the no-penetration boundary condition (1.10), without introducing any boundary
expansion of the Boltzmann equation:

Theorem 1 (Informal statement) We consider a half space in 3D

Q:=T?x Ry > (x1, x2, x3), where T is a periodic interval of (—m, 7).(1.18)
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For some choice of € and k (g), there exists a large set of initial data u;,, f2.in and
[R.in such that a unique solution F (t, x, v) of the form (1.17) to (1.1) and (1.12) with
(1.8) exists on [0, T] for some T > 0 and satisfies

F(t,x,v) — My eu1

sup —>0as €0,
0<i<T ey/Mieut L2(QxR3)
and
F(t,x,v) — M, eug,l
sup SEUE, — 0 as ¢ 0,
ose=r | &L+ WD2/Miox |2, ps)

while u and u g denote solutions ofthe Navier-Stokes (1.13)-(1.15) and Euler equations
(1.9)-(1.10), respectively.

The precise statement of Theorem 1 is given in Theorem 4 and Corollary 5 in
Section 2.3.

Remark 1 To the best of our knowledge our result of this paper appears to be the
first rigorous incompressible Euler limit result from the Boltzmann solutions with the
sole diffuse reflection (therefore the accommodation constant ~1) in the boundary
condition! Moreover, our framework captures the inviscid limit of mathematical fluid
dynamics from the Boltzmann theory.

Remark2 Another natural choice of the scale in the study of the Euler limit might
be ¢9 = k with an integer ¢ > 1. Then the second correction %L f> is shifted to
the next hierarchy (see (1.27)) and as a consequence the Euler equations become
the leading approximation with loss of ko Au. Without the boundary, a higher order
expansion F = ug +[efi+e>fo+e f3+-- 4 & frly/IE for g = M guy,1 has
been established in [10,56]. In the presence of the boundary, on the other hand, such
an expansion features a boundary mismatch. The usual approach is then drawn on a
boundary layer expansion, correcting an interior Hilbert-like expansion at the boundary
to satisfy the boundary conditions (for example, see [27,55]). Our approach is based
on an interior expansion up to the second correction f> that avoids the boundary layer
expansion under our choice of scale ¢ < k (see (2.11)).

Before discussing the essence of the methodology and novelty of our result, we shall
briefly overview some relevant literatures on the hydrodynamic limit of the Boltzmann
equation. One of the first mathematical studies of the limits at the formal level may
go back to a work [30] of Hilbert, in which he introduced so-called the Hilbert expan-
sion. Based on the truncated Hilbert expansion rigorous justifications of fluid limits
have been shown as long as the solutions of corresponding fluids are bounded in some
suitable spaces, for example, in the compressible fluid limits in [7,53], incompressible
fluid limits in [5,10,23], diffusive limits from the Vlasov-Maxwell-Boltzmann sys-
tem in [32], and relativistic fluid limits in [52]. All the derivations mentioned above
did not take into account the boundary, while one of the main obstacles to study the

@ Springer



22 Page8of103 J.Jang, C. Kim

Boltzmann solutions with the boundary is its boundary singularity (see [20,21,35]). In
[22], an LP-L®*° framework has been developed to construct a unique global solution
of the Boltzmann equation with physical boundary conditions. Such a framework has
been developed successfully in various problems of the Boltzmann theory (for exam-
ple [8,14,24-27,36,37,55]). In particular, in [12,13], the authors have constructed a
solution of the Boltzmann equation satisfying the diffuse reflection boundary con-
dition and proved the validity of the hydrodynamic limit toward the incompressible
Navier-Stokes-Fourier system in both steady and unsteady settings, based on a novel
L%-bound of the hydrodynamic part.

Rigorous passage from the renormalized solutions of [11] ([46] with the physical
boundary) of the Boltzmann equation toward (weak) solutions of fluid equations has
been also extensively explored (see [17,33,50] for the references in this direction). In
particular, the program of the incompressible Navier-Stokes limit to the Leray-Hopf
weak solutions has been developed successfully in [2,3,19,40,41] without the physical
boundary and with the boundary in [33,42]. As for the incompressible Euler limit in
terms of the entropy production, based on the relative entropy method, a dissipative
solution of the incompressible Euler equations in [39] has been studied in [40,41,51]
without the boundary. Notably the results have been extended to the domain with the
boundary for the specular reflection boundary condition in [50], and for the Maxwell
boundary condition in [4], assuming to set that the accommodation constant (a factor
of diffuse reflection) vanishes as ¢ |, 0.

For the rest of this section, we present the strategy and key ideas developed in the
proof of our result starting with a new (formal) Hilbert expansion followed by the
control of the Boltzmann remainder fx and higher regularity of Navier-Stokes flows,
for the rigorous justification of the formal expansion.

1.1 Hilbert Expansion in a Scale of Large Reynolds Number

Through a new formal Hilbert-type expansion of Boltzmann equation with the diffuse
reflection boundary condition we aim to capture the Navier-Stokes equations of van-
ishing viscosity proportional to Kn/Ma and satisfying the no-slip boundary condition.

It is worth pointing out that although more convenient choice of an expansion
of F is seemingly the one around the global Maxwellian (o := Mj 0,1 such as F =
no+e(-v) o —1—82];2\/%4—83];13\/“_, unfortunately this choice will produce, in the
Hilbert expansion (1.26)-(1.30), an unbounded term K% \/;;To O(u - vuo, fr/I0) even
compared to the strongest control in hand, namely a dissipation term (see (1.31))!
To achieve a sharper estimate, which provides weaker restriction on « and &, and
hence weaker restriction on the initial data, we work on an expansion around the local
Maxwellian .

It is conceptually convenient in our analysis to introduce an auxiliary parameter
8 =38(e) | 0as e | 0, which indicates a size of the fluctuation (F — u)/s:

F=np+e fr/i+esfrJit. (1.19)
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In (1.17) we have chosen § = /¢ and in Section 2.3 we will have the same choice
such as (2.11), however in Section 2.1, Section 3 and Section 4, § will be regarded as a
free parameter and will be chosen at the last step of closing our argument (as (2.11)!).

Interior Expansion. We investigate an expansion (1.19) of the Boltzmann equation
(1.1) at the local Maxwellian w in (1.16). Let

2
Lf =— ) ) r ) =
f ﬁQ(M Vi), T(f. 8

The operators L and I" can be read as

1

, . 1.20
N OV/TN IRNITY ) (1.20)

Lf(w) =vf) = Kf(w) =v@)f() - A;{} K(v, vy) f (vs)dvy, (1.21)
L(f, e v) =T (f, )@ v) =T_(f, &), v)

_ / A;{ 0= 0 ()80 ) + 500,00, ) s
- f/w o [V = vs) - uly/ i (u) (f (2, ), vs) + g(2, v) f (2, vs))dudo,,
(1.22)

where the precise form of k is delayed to be presented in (3.19). We will demonstrate
basic properties of operators L and I' in Section 3.1. From (1.3) the null space of L,
denoted by N, is a subspace of L2(R%) spanned by orthonormal bases {¢; \//_*}Lo
with

oo =1, @ :=v;i—eu; fori =1,2,3, ¢4:=(Jv— z;"u|2 - 3)/\/6. (1.23)

We define a hydrodynamic projection P as an L%-projection on A such as

Pg:=) (Pig)pj /. Pjg:=(g.¢;/u), and
Pg :=(Pog, Pi1g, P2g, P3g, P4g),

(1.24)

where (-, -) stands for an L%-inner product. It is well-known that the operators enjoy
PL = LP = PI' = 0. Importantly the linear operator L enjoys a coercivity away
from the kernel \V: for v(v) > 0 defined in (1.21)

(Lf . f) = o0ll VDT = P) £} g, for some og > 0. (1.25)

Now we plug the expansion (1.19) into the rescaled equation (1.1) with the scale
(1.8). It turns out that by relating f> with the flow and locating it carefully in the
hierarchy we can exhibit the dissipative nature of the Boltzmann collision operator at
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the leading order of the fluid approximation. In particular we locate (v — eu) - V(I —
P) /> in %—order hierarchy to capture «-order viscosity in the fluid equation (1.13):

9 “ly. v,
ISt 0 Vet o LfR+(’+8 VYOV (126
Ji
1 e*‘(u—eu)-vxu 1
= N + L1} (1.27)
Lee™'on e 'u-Ven
—3{ v v +(v—£u)~fo2} (1.28)
9 “ly. v,
o ru v O N W) (1.29)
2 )
+ ZT(fa. fr) + —T(far f2) + —T(fx. f)- (1.30)
K Sk &K

We can readily see an L>-energy structure of fz with a strong dissipation
// Lk frdvdx 2 |7 20— Pkl (1.31)
2 L2(QxR3)’ :
QxR3 €

which inherits its lower bound from the coercivity (1.25).

Let us first consider an %—hierarchy (1.27). For any non-vanishing term of (1.27)
would cause unpleasant unboundedness, we make the term vanish entirely by solving
an equation (1.27)= 0. By the Fredholm alternative, an inverse map

1 NE 5 A, where A stands an L%—orthogonal complement of \V, (1.32)

is well-defined and hence the solvability condition is given by

-1
(v—eu) -Vip n
= Ot Qe e N~ (1.33)
vz Z i

This condition indeed implies the incompressible condition (1.14).
Once (1.14) holds, we have 33 detm@e@m/H = Yo ey ettm (PePm —
2
%8@,,,)\/;7. Now we solve (1.27)= 0 by setting

3
I-P)fr = —« Z Aoty with
¢,m=1

A = 1 (v = P, ). (134
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Then we move to an %-hierarchy (1.28). The hydrodynamic part of (1.28), unless it
vanishes, would induce an unbounded term again. We expand 6 x (1.28), using (1.16)
and (1.34), as

—(v—cu) O ~+u-Veu)/uw+ (v —cu) ViPf
3
(v — eu) - vx< 3 Agma@um). (1.35)

,m=1

The leading order term of the last term in (1.35) contributes the following to the
hydrodynamic part of (1.35) as

3
kD (piok/in Aom)okdein

C,m, k=1
3 lv — eul?
= Y (e = 580 VI Ad ket (136)
C,m, k=1
3
=K (LAik, Agm) Ok 0¢ttm,
£,m, k=1

where we have used the fact Ay, € N and @\/ﬁ € N at the first step and the
definition of A at the last step. It is well-known (e.g. Lemma 4.4 in [3]) that for some
constant g > 0

2
(LAjk, Aem) = 10(8exSmi + 8¢iSmr) — §n05em5ik. (1.37)

Therefore we deduce that (1.36) vanishes for i = 0, 4, and the «ng-viscosity term in
(1.13) can be captured:

2
(136) = k0 3, {(Bukdmi + Btidmi) — 3 8emBia}Detem
ok (1.38)

2
=«nofAu; — o;V-u — §3iv -u} = knoAu; fori =1,2,3.

Here we have used the incompressible condition (1.14) at the last step. On the other
hand, a leading order term of the hydrodynamic part of (v — eu) - VP f> contributes
to the pressure term of (1.13) by choosing a special form of P f> as in (3.1). Therefore
the whole leading order terms of the hydrodynamic part in (1.28) do vanish by solving
the Navier-Stokes equations (1.13) and (1.14)! For the sake of brevity we refer to
Section 3 for the full expansion of (1.26)-(1.30).

Boundary Conditions. Now we consider a boundary condition of fr. Noticeably
the local Maxwellian u becomes M| o 1 on the boundary from the no-slip boundary
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condition (1.15), and hence p satisfies the diffuse reflection boundary condition (1.12).
For the detailed study of the boundary condition of fg we introduce the incoming and
outgoing boundaries

yi = {(x,v) € IQ x R? :n(x)-v 20}

Since p satisfies the diffuse reflection boundary condition (1.12) with a constant wall
temperature = 1, by plugging (1.19) into the boundary condition, we arrive at

(&2 fo + e fR)ly. = cuy/1(v) (&2 f2 + 8e fR)V/1L(0) (n(x) - v)do.

n(x)-0>0

Letting P,, be an L*(v:n(x)-v> 0})-projection of , /¢, it, we derive that

fR(tvx’ v)|)/_ = P)/+fR(ta~xa U) - g(l - P}/+)f2(t5'x’ U)

= /cupn(v) /( Tr(, x,0)\/c (o) (n(x) - v)do (1.39)

n(x)-0>0

— g(l — P, ot x.v).

Note that fn(x)-v>0 cup()(n(x) - vydv = L.

On the other hand, we emphasize that, with the no-penetrate boundary condition of
(1.10), the associated local Maxwellian M ¢, .1 does not satisfy the diffuse reflection
boundary condition in general. Therefore the Boltzmann remainder fz would have a
singularity of an order of 1/4/¢ in (1.17).

1.2 Uniform Controls of the Boltzmann Remainder f

For arigorous justification of the Hilbert expansion (1.19), the major task is to establish
uniform-in-¢ estimates of the Boltzmann remainder fg in L?. The equation of the
Boltzmann remainder fg in (1.26)-(1.30) with the boundary condition (1.39) features
a discrepancy between the behavior of the hydrodynamic part P fg and pure kinetic
part (I — P) f: schematically an L>-energy estimate reads

d -1 -
E”fR(t)”iz + e T PA=P) frIG2 ~ IVaull o lIP fR1I7 2

1)
+// —T(Pfr. Pfr)A—P)fr.
QxR3 EK

A key difficulty arises from a growth of the hydrodynamic part at least as ellV<*/lL>
which might behave as an exponential of the reciprocal of some power of the viscosity
k due to the unbounded vorticity formed near the boundary, while such strong sin-
gularity of the hydrodynamic part enters the nonlinear estimate in turn. In fact such
trilinear estimate can be effectively handled only by a point-wise bound of the solu-
tions. Unfortunately as the physical boundary conditions create singularities in general
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([35]), the high Sobolev estimates would not be possible. In this paper we develop a
quantitative LP-L estimate solely in the setting of the local Maxwellian associated
with the Navier-Stokes flow, in the presence of the diffuse reflection boundary.

Thanks to a strong control of the dissipation from the spectral gap of (1.25), the
nonlinear term can be bounded as

_1 1 -1
Sk Pfrll g IPfrl 2 le™ N 2/ A =P frll2 - (1.40)

Notably an integrability gain of the hydrodynamic part P fx should play a role; how-
ever a classical velocity average lemma Pfr € H; e Li fails to fulfill the need
in 3D. We achieve such a higher integrability by developing a recent L-bound of
hydrodynamic part of [13] in the setting of the local Maxwellian on the scale of large
Reynolds number. We utilize the micro-macro decomposition and the equation to con-
trol k1/2v - VP f mainly by 8K+/2L(I —P) fr and e« /%9, fr. We invert the operator
v - VP, employing a recent test function method of [12] in the local Maxwellian
setting, to establish a crucial L°-bound of the hydrodynamic part, which is controlled
by the dissipation plus the a priori L?-bound of 9; fg:

e 2 PRl S lle™ ™ 2A=P) frO)l 2, + e 2110, frD) 2 + 108,
(1.41)

In other words we can achieve the L°-estimate of (1.41) as “one spatial derivative
gain” through the dissipation provided a temporal derivative being controlled, while
the temporal derivative preserves the boundary conditions. It is a critical point in which
a temporal derivative gets involved in our analysis of Boltzmann and fluids as well!
New difficulties arise as commutator estimates of ﬁ{B,LfR — Lo, fr} induce

singularities even at the linear level, as well as 9, (9; + e ly. V) /I fr/ /i and the
source terms in the equation of 9; fg possess higher temporal derivatives of the fluid
with an initial layer. In fact after a careful analysis we realize such singular terms
amount to

1 t
o fo I PfR($)II72ds.

while 3 depends on the singularity of derivatives of the Navier-Stokes flow in large
Reynolds numbers.

We establish a unified L°°-estimate in the local Maxwellian setting, devising a
special weight function t, (x, v) in order to control an extra growth in |v| from
@& +e vV VI fr/ /It and its temporal derivative. We control fr in LY°L$° by
the hydrodynamic part P f in L°® and the dissipation, studying the particle-trajectory
bouncing against the diffuse reflection boundary and geometric change of variables
related to the bouncing trajectories. The temporal derivative 9, fg needs some special
attention since the source term of the equation of 9; fg possesses V Btzu, which turns
out to have an initial-boundary layer. For that we measure 9; fg using a different time-
space norm, namely a weighted L%L;", and control it by the hydrodynamic part of
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0r fr in L,2L)3( (with more singular factor-in-¢ than the counterpart for fg) and the
dissipation. Although our estimate of d; fx is singular than fr due to our choice of
different spaces, we are able to balance such extra singularity by the strong dissipation
and careful trilinear estimates.

We establish L%Li —controls for Pfg and P9, fg via the trajectory rather than
the classical average lemma. In fact a direct application of such average lemma has
some subtle issue since the source terms of fg and 9; fg equations are known to be
bounded within a finite time interval only, while the L?L3-control enters the nonlinear
estimates. In fact it is not clear whether our iteration of estimates would guarantee a
nonempty finite time interval of validity. Instead we utilize the Duhamel formula
along the trajectories and an extension of solutions in specially designed domains,
and employ the T T*-method developed in [14,28,31]. As a result we achieve L,zL P
estimates for fg and d; fg uniformly for all p < 3, which gives us a sufficient bound
in L2L?3 by interpolating with our L*°-estimates.

Finally upon combining all the estimates above together we are able to bound an
energy by the Gronwall’s inequality. The resulting bound is not uniform but growing
exponentially as e!/¥ ‘IJ’ in which the power depends on the higher regularity of the
fluid. Luckily we are able to find a range of ¢ with respect to x in a scale of large
Reynolds number to absorb the Gronwall growth, and achieve a uniform bound of the
Boltzmann remainder, which ensures the rigorous justification of the Hilbert expansion
in Section 1.1. The main theorem of the uniform controls of the Boltzmann remainder
fr is given in Theorem 2.

1.3 Higher Regularity of Navier-Stokes Equations in the Inviscid Limit

The inviscid limit of the Navier-Stokes equations (1.13)-(1.15) is at the heart of our
approach. Furthermore, in order to control fr, as explained in the above, we need to
derive quantitative higher regularity estimates of the Navier-Stokes solutions which
are not directly available in the usual inviscid limit results. Before discussing new
features of our analysis, we briefly discuss some prior works on the inviscid limit
most relevant to our result. Due to the formation of boundary layers in the limit
caused by the mismatch of boundary conditions (1.15) and (1.10), a classical way
to tackle the inviscid limit problem is via the Prandtl expansion, of which rigorous
justification was shown in [48,49] for well-prepared data with analytic regularity and in
[44] for the initial datum with Sobolev regularity when the initial vorticity is bounded
away from the boundary. In particular, the author of [44] introduced the boundary
vorticity formulation of (1.13)-(1.15) (see (2.16)-(2.18)) which prompted subsequent
interesting works in the field. Among others, in a recent work [47], the authors proved
the inviscid limit in 2D based on the Green’s function approach based on Maekawa’s
vorticity formulation without having to construct Prandtl boundary layer corrections
but by utilizing the boundary layer weights in the norm. In [38,54], the inviscid limit
was shown for initial data that is analytic only near the boundary and has finite Sobolev
regularity in the complement in 2D and 3D respectively.

Our analysis of the Navier-Stokes solutions in the limit is based on the Green’s
function approach for the Stokes problem using the vorticity formulation (2.16)-(2.18)
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in the same spirit of [47]. However, the existing methods [38,47,54] do not immediately
fulfill the goal of our hydrodynamic limit because the analysis of our remainder fr
requires higher regularity of Navier-Stokes solutions, more specifically L? and L>®
bounds for higher order derivatives up to two temporal derivatives of Vyu and p and
two spatial derivatives of d,u, while the existing methods do not decipher any bounds
for temporal derivatives and the boundedness of the conormal derivatives in their
analytic norms does not rule out % singularity of the normal derivative of the vorticity

in the boundary layer, which may cause the loss of L? integrability. To get around
these issues, we pursue new estimates of temporal derivatives of the vorticity w by
demanding the compatibility conditions for the initial data. With such conditions, the
initial layer is absent for w and 9, ®; we can derive an analogous integral representation
formula for d;w so that we may run the same fixed point argument for d;w as in [47]
without the initial layer. For the second temporal derivative, we handle the initial-
boundary layer for the horizontal part with the initial-boundary weight function. These
new features allow us to attain the derivative estimates of the vorticity in the normal
direction without % singularity near the boundary at the expense of losing a power
of 4/k, which is crucial for the control of fr. The velocity and pressure estimates are
then recovered by utilizing elliptic regularity results and the Biot-Savart law in the
analytic setting. The main results of Navier-Stokes solutions to (1.13)-(1.15) are given
in Theorem 3.

2 Main Results

For the sake of the readers we present the precise statement of main theorems and
their notations in this section. We first present the uniform controls of the Boltzmann
remainder fg of Theorem 2, and the higher regularity of the Navier-Stokes equations
in the inviscid limit of Theorem 3. As a consequence of those two theorems we
will show a rigorous justification of kinetic approximation of Navier-Stokes in high
Reynolds numbers of Theorem 4. Then using the vorticity estimates in Theorem 3
and the famous Kato’s condition in the inviscid limit, we prove a hydrodynamic limit
toward the incompressible Euler equations in Corollary 5.

2.1 Uniform Controls of the Boltzmann Remainder fg (Theorem 2)

We recall the expansion of Boltzmann solution F = p+ &2 fo/i+8¢e fry/irin (1.19)
around the local Maxwellian p(v) := M| ¢,.1(v) for any given flow (u, p) solving the
incompressible Navier-Stokes equation with the no-slip boundary condition (1.13)-
(1.15).

Inspired by the energy structure of the PDE and the coercivity of the linear operator
L in (1.25), we define an energy and a dissipation as

E@) = I RO 72 gmsy + 13 FROIT 2 gps)s

1

t
D) = /0 ™56 Vo = P) f(9) 2 g cm ds
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t
_1
+ f ™26 o = P)3, fR ()22 g,
0

t
+f0 (172 fR0E, +16770, fr(5)13; )ds. @.1)

As explained in Section 1.2, the temporal derivative gets involved mainly in order
to access the L°-bound of the hydrodynamic part P fz, while we will control the
following auxiliary norm to be used in order to handle the nonlinearity: for p < 3 and
t>0

Fpt) = sup {12 PR 2eqy + 1K' PRI (0 0o

0<s<t

+ P2 PO, fR I (0.5 10 () T+ 18" 6008 FRO T 0 sy B2

1
+ ||(8")3/p’<2+mm@’,BfR(s)”i%(o,s);mo(szxﬂ@%)]'

Here we have introduced weight functions, in order to control an extra quadratic growth

in [v] from (3, + &~ v - Vo) /I fr/ /I

w,p(x,v) =10 = eXp{;le|2 —33(x3)(x -v)} for 0 < B K —2Q and0 < o < 7
T
2.3)

where 353 : Ry — Ry is defined as, for § > 0

1 1 1
38(x3) =B for x3 € [0, 3~ 1], and 3g(x3) = T for x3 € [[—5 -1, oo)

2.4)

We have denoted 1, g(x, v) = w’ for o’ < 0. Also we have denoted the boundary
norms and integral as

1/p 1/p
gl = (/ |g|p+/ Igl”) gl = (/ IgI”> :
Y+ Y- Y+ (25)
/ f:=/ / fx,v)[n(x) - v|dvdsS,.
Y+ 0Q Jn(x)-v=20

Next we discuss the initial data of the Boltzmann equation. We note that an initial
datum of f; is already determined by given flow (u, p). For given initial data fr ¢ :=
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[r.in, inspired by the PDE, we define

1 1 2
0 fRO :=— Ju Vi fRin — mLinfR,in + ;Fin(va SfR.in)

JE

£
+ —Tin(fR,ins JR,in) (2.6)
sk

@+ V) i
Min

Sfrin + A =P)R1(u, p)li=0 + Ra2(u, p)li=o,

where (I — P)QR| and fR; are defined in (3.2) with § = /¢ and p;,, Lin, Tin are
induced by the initial Naiver-Stokes velocity u;,. For the remainder fx in (1.17), we
will use the norms of the initial data:

5(0) = g(fR,O) = ”fR,O”%}(QXRS) + ”atfR,O“iQ(QXR})’ (27)
1 1
Fp(0) = {2 | frolez + P 218, froliz

1 143 2
+e 2k [0 froll Loy + (66) P kT 00D, fro0ll Lo coxryy |- (28)

Theorem 2 (Uniform controls of the Boltzmann remainder fg) Suppose for T > 0
and*P > 1/2

1
¢ 4

§ Va3 ull oo o, r1xy F Y E 19 ull oo 0, 71x)

£=0,1 (=0,1,2

1 - 1
+/<1/2 1Pl L o,11x2) S P (2.9)
We further assume that, for 0 < S’ < R,

14 4
Do I3full o rire@nzzay T D, IVE ullpmqo ryze@nrae)

(=172 0<t<1
1<|B1=2
2
+ Y IVEFull 2o ry e @nr2)
IBI=1 (2.10)

2
192 pll 2o, rire@nizan + D IV Pl Lo, ri @)

|81=0,1
1
< I
< exp (Km, )

For given such T > 0, let us choose ¢, § and « as, for some € > 1,

T
5= /s and a=exp(T). 2.11)
K
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Assume that an initial datum for the remainder fg ;, satisfies, for some p < 3 and
lp -3l kK1,

VEWO) + /Fp(0) S 1. (2.12)
Then we construct a unique solution fr(t, x, v) of the form of

F=Micut1+& fo/Mieus + 86 fry/Micut in [0,T] x Q@ x R,

which solves the Boltzmann equation (1.1) and the diffuse reflection boundary con-
dition (1.12) with the scale of (1.8) and (2.11), and satisfies the initial condition

Fli=o = My cu;1 + &2 o/ M1 cutli=0 + 88 fR.iny/ M1 eu1 =0, in a time interval

t € [0, T). Moreover, we have

1_3
5277179 sup (VED) + VDO + ./ Fp(1)} < (2.13)
0<t<T
Remark 3 The condition (2.11) in the theorem is indeed the largest /¢ can be allowed.
Any smaller /¢ than exp ( ) (which means /¢ decaying faster than exp < 7 )

as k | 0) will produce the same result. In terms of (1.8) the relation (2.11) implies
that the Knudsen number %Xx has to vanish only slightly faster than the Mach number
Ma:

St =& = Ma and

I _IN—¢OaseJ,O (2.14)
ne

The proof of Theorem 2 will be given in Section 4.

2.2 Higher Regularity of Navier-Stokes Equations in the Inviscid Limit (Theorem 3)

For the Navier-Stokes solutions to (1.13)-(1.15), we introduce real analytic norms
and function spaces, adopted from [47] and [54] for the 3D counter part with slight
modifications.

In this subsection and Section 5, we will use the following notations: x = (x5, x3) =
(x1,%2,%3) € T2xRy = Q,V, =V = (Vj, 33) = (3y,, dxy, dx3); foravector valued
function g € R3, ¢ = (g1, g3) = (g1. 82. 83).

We denote the vorticity by

wo=Vxu, u=Vx(—AN o, (2.15)
while the second identity is the famous Biot-Savart law. Here (=A)~! denotes the
inverse of —A with the zero Dirichlet boundary condition on 9£2.

Our analysis of the Navier-Stokes solutions is based on the vorticity formulation in

3D ([43.44]):

0w — knNoAw = —u-Vo+w-Vu in Q, (2.16)
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o li=0 = wjp in Q, (2.17)
k00 (s + v/ —An)wp = [0 (—A) " (—u - Von + @ Vup)], @3 =0 on 9L,
(2.18)

where /—Aj, = |V} is defined as

V=2ng i, x3) = ) [Elge (x3)e™™ e (2.19)

£e7?

Here, g (x3) = (2n)2 [ g2 e g (xp, x3)dx, € C withé = (&1, &) € Z* denotes
the Fourier transform in the horizontal variables, which satisfies g(xi, x2, x3) =

D ce? 8¢ (x3)e’*15 . The Fourier transform can be regarded as a function g¢ (z) where
z is sitting in a pencil-like complex domain: for any A > 0,

M, = [z €C:Rez >0, |Imz| < Amin{Rez, 1}}. (2.20)

We define analytic function spaces without the boundary layer, £7**, for holomor-
phic functions with a finite norm, for p > 1,

1/p
lglipr =D e lIgellp where flgellp := sup (/dH Igs(z)l”ldz|> :

gez? O=o=

2.21)

Next we introduce an L*°-based analytic boundary layer function space, for A > 0
and « > 0, that consists of holomorphic functions in H, with a finite norm

||g||oo,A,K - Z eME‘”gS”LfK, (222)
£e7?
where ||g¢ [l czo) = 1€ ge (2)ll cgo 1= Sup_epy, €7 g (2) and
aRez aRez
lgsllcee, = H—g @ = sup -————[gs(2)].
T T T+ 0c@ % e T o 1+ 0@

Here, a boundary layer weight function is defined as

1
Z with ¢(z ———  forsome v > 1. 2.23
e (2) = J_ J_) @) = T Rear (2.23)
We define B¢ for holomorphic functions g = (g1, g2, g3) with a finite norm
[[e1loore = Y lgilloo.sx + lIg3lloc.0- (2.24)
i=1,2
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We note that B> C £1'*, but B0 S g4 if @ > 0.
Due to its singular nature of the Navier-Stokes flow in the inviscid limit, we intro-
duce the conormal derivatives

Z

= (Dp, D3) = (Vj, £(x3)03) where ¢(z) = 1
+z

(2.25)

With the multi-indices 8 = (1, B3) := (B1, B2, B3) € N3, the higher derivatives are
denoted by D# = 07 94> D§* and DY = (i&))P1 (i&2)" D’

Now we define, for Ao > 0, yo > O,a >0,k >0,and r € (0, 2)/0)

lgllooc = sup { > D gl + Y (Ao—x—yot)“[[Dﬂg]]oo,A,K},

A<io—yot

0=|p|<1 1B1=2
(2.26)

liglly = sup { > IDPA+1Vahglhia

A<ho=nt Lo<pi<i
+0o—A—y0* Y IDP(+ |vh|>g||u}. (2.27)
1B1=2
With an initial-boundary layer weight function as in [47]

Gt (2) = (2.28)

ff

we define an initial-boundary layer function space B***/ for holomorphic functions
g = (g1. &2, g3) with a finite norm

[[g1loorer = Y lgilloopxr + lIg3lloc..0, (229)
i=1,2

where an L°°-based analytic norm with the initial-boundary layer is defined as

eaRe z

1+ ¢ (2) + Pt (2)

lglooswr =Y Elligelle,, Ngellcs, = H
£e7?
(2.30)

We finally define, for ¢ € (0 0y,

P20

lglooce = sup { > IDP glloo e + Z(Ao—A—yot)a[[Dﬂgnoo,x,m}.

A<ro=yol Lo<ii<i 181=2
(2.31)
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In this subsection and Section 5, «, @ are given positive small constants, Ag is a given
positive constant, and yy is a sufficiently large constant to be determined in Theorem 3.

Next we discuss the initial data of the velocity u;, and the corresponding vorticity
win = Vy X uUjy. Inspired by the PDEs, let

Wy = Wip, 0wy = kNoAwy — ug - Vwg + wo - Vuo,

uo =V x (=A) lwy, dup =V x (—A) "' 9w, (2.32)

afwo = kNoAdwo — ug - Vorwg — drug - Vg + wo - Vorug + drwo - Viug.
Theorem 3 Let Ao > 0 and w;, € B X with (2.32) satisfy

> IDPo wolliag+ D, IDPOf@ollcrgn < 00 for £=0,1,2.(2.33)
0<IBI=2 0<I81=2

Further assume that w;, = wqo and (2.32) satisfies the compatibility conditions on 02

K10 (Bx; + v/ =An)won = [85, (=)~ (=g - Ve + @ - Vieo )], 2.3
w03 =0, dwp3=0. '
Then there exists a constant yo > 0 and a time T > 0 depending only on Ly and
the size of the initial data such that the solution w(t) to the vorticity formulation
of the Navier-Stokes equations (2.16)—(2.18) exists in cl(qo, 11; B with Blza) in
C(0, T; B! for 0 < A < Ag satisfying

an |3 00|
=0

1
afa)(t)m +Z‘ afw(t)m +‘ < 00. (2.35)
1€[0,T] 3 00,k

o0,Kt

Furthermore, for each (t, x) € [0, T] x €,

(1) (Bounds on the vorticity and its derivatives) w(t, x) enjoys the following bounds:

IViatont, )| < e 3 (1 4+ ¢ (x3)), |Vidlws(t, x)| < e 3 fori, £ =0, 1,

(2.36)
07 (1, X)) S e (14 G (x3) + her (13)) . 07 w31, x)| S e,
(2.37)
030 on (8, )| S k7' e™ 00, |00 w3(t, X)| S e (14 e (x3)) for £ =0, 1.
(2.38)

(2) (Bounds on the velocity and its derivatives) The corresponding velocity field
u(t, x) satisfies the following:

10fu(t, x)| <1 fore=0,1,2, (2.39)
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3 1VEafut, )1 S (1+ deas) + (1B — Die e ™95 for ¢ = 0,1,

1=|Bl=2
(2.40)
3 IVPRu(, 01 S (14 dex3) + e az))e” ™D, (2.41)
|B1=1
Moreover, we have the decay estimate for afu.'
¢ —L min(1,%)x3 _
[0,u] Sk 2e 2% forl=1,2. (2.42)

(3) (Bounds on the pressure and its derivatives) The pressure defined in (5.73) satisfies
the following:

108 p(t. ) <1 for € =0,1,2, (2.43)

3 IVEa p(t ) S e MDS forg =0, 1, (2.44)
0=<|BI=1

102p] S (€77 + s (x3))e ™ D (2.45)

Remark 4 For simplicity of the presentation, we have taken the analytic data with
the same analyticity radius in x1, xp and x3 with the exponential decay for large x3.
As shown in [38,54], more general initial data requiring the analyticity only near the
boundary can be taken.

Remark 5 The horizontal vorticity wy, and the vertical vorticity w3 obey different
boundary conditions (2.18) which enforce different behaviors near the boundary. This
is well-reflected in our L°° based norms in (2.24) and (2.29). As noted in [54], such
incompatible behaviors of wy and w3 in 3D are dealt with the L' based norm (2.27)
which contains one more tangential derivative (1 4 |Vj|), which is different from 2D
analysis [38,47].

Remark 6 We demand the compatibility conditions in (2.34) in order to avoid singular
initial-boundary layers for the temporal derivatives of the vorticity. If the first two
conditions in (2.34) were not satisfied, the initial-boundary layers would occur for
the first temporal derivative of the vorticity. For the second temporal derivative, we
handle the initial-boundary layer for the horizontal part with the initial-boundary layer
weight, while for the vertical part we further demand 9;wo 3|x;=0 = 0 in order to rule
out a singular initial-boundary layer caused by the Dirichlet boundary condition. This
amounts to requiring the second order vanishing condition at the boundary for wp 3,
which is satisfied by a large class of wp. We remark that the first condition of (2.34)
is also satisfied by a large class of wyp. In fact, if not, by the result of [47], we can
obtain a short time solution @(t) to (2.16)—(2.18) and may reset the initial data by
wo = o(t = ty) for sufficiently small 75 > 0.

The proof of Theorem 3 will be given in Section 5.
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2.3 Main Theorem

Now we present the full statement of the main theorems of this paper:

Theorem 4 (Kinetic approximation of Navier-Stokes in large Reynolds numbers) We
consider a half space 2 in 3D as in (1.18). Suppose an initial datum of the Navier-
Stokes flow u;, is divergence-free Vy - uin = 0 in Q and the corresponding initial
vorticity wi, = Vy X uj, belongs to the real analytic space B"0° of (2.24) for
some Loy > 0 such that (2.33) holds. Further we assume that w;, satisfies the com-
patibility conditions (2.34) on 0S2. Then there exists a unique real analytic solution
(u(t, x), Vi p(t, x)) to (1.13)—(1.15) in [0, T'] x 2, while T > 0 only depends on L
and the size of the initial data as in (2.33).

Choosing a pressure p(t, x) such that p(t,x) — 0 as x3 1 00, we set the local
Maxwellian and the second order correction f> as

{ |v—8u|2}
expy —— ¢,
)3 2

fr=PhHh+A—-P)fr = ppo/i+ (1.34).

W= My ey =

For given such T > 0, let us choose ¢ and « in the relation of (2.11).

Assume that an initial datum for the remainder fr in satisfies (2.12) for some p < 3
and |p — 3| < 1.

Then we construct a unique solution fr(t, x, v) of the form of

F =M1+ or/Mieus + &7 fry/Micu in [0,T] x 2 x R,

which solves the Boltzmann equation (1.1) and the diffuse reflection boundary con-
dition (1.12) with the scale of (1.8) and (2.11), and satisfies the initial condition

Fli—o = M1 cuj 1 + &2 o/ M1 cutli=0 + &% fR.iny/ M1 su.1 l=o0-

Moreover we derive that, for each € and k of (2.11),

F(t,x,v) — My ey x),1(v)

e/ M1 eu(r,x),1(V)

Proof The existence of the Navier-Stokes solutions follows from Theorem 3. For the
remaining assertions, we note that all the estimates (2.39)—(2.42) of Theorem 3 ensure
the conditions of Theorem 2 with 3 = 1. Therefore the conclusion follows directly
as a consequence of Theorem 2 and Theorem 3. O

—eT
L2(QxR3)

sup
0<t<T

The incompressible Euler limit follows as a byproduct of the main theorem:

Corollary 5 (Hydrodynamic limit toward the incompressible Euler equation) Let
ur(t,x) be a (unique) solution of the incompressible Euler equations (1.9)-(1.10)
with the initial condition ug|;—y = uj, in Q. Then

F(t,x,v) — M1 cup,x),1(v)

e(1+1vD?y/Mi0,1(v)

—> 0 as ¢ ] 0.
L2(2xR3)

0<t<T
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Proof Note that

F(t,x,0) — M cupt.0,1(0) = [F(t,x,0) = M1 eu(t,x),1(0)]
[ M euir,0,1(0) = M1 gup,0.1(0)].

The first term can be bounded as in (2.46). We bound the second term by an expansion:

lw—eug)taug—w)?
2

|u(t,x)—uE(t,x)|/ |(v—ceug)+alug —u)le a.
0

Note that ||eul|p~ < 1 and |leug| > < 1 from Theorem 3. Then we conclude that
the second term converges to 0 as « | O from Theorem 3 and the famous Kato’s
condition for vanishing viscosity limit in [34]. O

3 Hilbert Expansion Around a Local Maxwellian and Source Terms

In this section we complete the Hilbert expansion along with the outline of the intro-
duction. As a result we prove

Proposition 6 Suppose that F of (1.19), with a free parameter 8, solve (1.1) and (1.12)
with (1.8) and that (u, p) solves (1.13)-(1.15). We choose a hydrodynamic part f> as

Pf2 = ppo/iL, (3.1

with the pressure p of the Navier-Stokes flow in (1.13), and (I — P) f> has been given
in (1.34). Then fg in (1.19) satisfies that
1 1 2 8
[0+ —v- Vit L] fk = ZD (2 ) + —T(fie S0
e &%k K ek

@ e VoI
JI

1 1
[at +-v-V,+ TL]atfR
& &%k

fr+d=P)R; + Ry, (3.2)

1 1 268
= _TLI(I — P)fR + TL(P;fR) + _F(fRa atfR)
E°K E°K EK

2 2 2 8
+-T(f2. 0 fr) + =T f2. fr) + =T1(f2. fr) + —=T:(fr. fR)
K K K ek

O +e v Vo/m @ +e - Vo
- NG 0 frR — 3r( NG )fR
+T = P)R3 + Ry, (3.3)
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where the commutators Ly, Py and Ty are given in (3.34), while

1
el =l | (L — PYR, (£, x, v)| < SKIVzul (3.4)
—opyl? & £
VIR (1, x, )| S SUPL+ KV Viu] + S (0, pl + k| Vul)

ek )
+ 5 (Vadul + |ul[Vul)

2
&
+?(|P|+K|qul)(lazu|+IMIIVxMI), (3.5

e H P | = Py 2, )] S 51V, (3.6)

2
@V el My (1, x, v)|

&
S 3|a pl+ = |v 87ul + = 51V atp||u|+—|u||vzatu|

&
+3ld+ Iul)(lpl +;<|qu|) + el dul} Vi dpul

+ —(1 + exc|ul)|0ul|Viul + —{IPI + k| Vyul}|07 ul

8
+3lul+elpl+e 21l |9l + (1 + elul)|d; pl} Vel

2K
2
+ T(l + eluD|0rul|Vyul

& &
+ §{|31“| + [Vapl +€ld; pl + ;(Ipl2 + iful[Vep| + ex|0iul|p)}rul. (3.7)

At the boundary fr and 0; fr satisfy

fR(Z,X,"U)|y7 = }/+fR(tvx7v)_g(l_Py+)(I_P)f2(tv-xvv)v (38)
0 frly. = Py 01 fr — E(1 — P )od—=P)fr+r, (fr) — ry+((1 P) f2),
Ty, (8) == Ory/cpp(v) - gv/cupm(o)n(x) - odo
n(x)-v>0
+vcumn(v) - 0 80/ (v)n(x) - vdo. 3.9)
n(x)-v>

In addition,

PP (e, x, )| S p(t, )] + k| Veudt, X)), (3.10)
o2
Vel o (r, x, V)| S 18 p| + k(I Vidru| 4 |du|Viul) + eldullpl,  (3.11)
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»+e vV
(u—eu)*z‘(’ £ *)ﬁ’g Vot + £|0pu| + e|u]|Voul, (3.12)
Vi
(3.12),
9 “ly.v
N (R AN T
Ji
< | Vadou| + e{182ul + ]| Vidou| + |8u||Veul} 4 &2|8,u|(|8,u] + ]| Viul) .
(3.13),
(3.13)

Remark 7 We note that due to the choice of (3.1) we remove a contribution of p? in
%F( f2. f2). And also we remark that R4 is quasi-linear for 8t2 p and V, 8,214.

3.1 Derivatives of A;j and Commutators in the Local Maxwellian Setting

First we check properties of L and I" defined in (1.20). Recall the notation of the global
Maxwellian (o := Mj 0,1. It is convenient to define

-2 1
L =— , , To(f, = ) .
0f(v) mQ(uo Vo)), To(f, g () mQ(«/%f VIog) (v)
(3.14)
For a given eu, we define f(-) := f(- 4+ eu). Then we have
Lf(+eu) = Lof(v), T(f, &)@+ eu) =To(f, D). (3.15)

As in (1.23) a null space of Lg, denoted by A, is a subspace of L*(R?) spanned by
orthonormal bases {¢; / MO}?:O with

Go=1, ¢i:==v fori=1,2,3, ¢s:= (lv]>—3)/V6. (3.16)

We denote a projection P on Np as in (1.24). From standard properties of Lo and
(3.15), we can easily deduce the corresponding properties of L, namely the null space
in (1.23), the spectral gap estimate in (1.25), and the existence of a unique inverse
L' : N — A in (3.17) which is defined via Lal : Ni — N3 with the identity

L' NH) =Ly Hw - ew). (3.17)

The inverse enjoys the following bound which turns out useful to prove Lemma 3.

Lemma1l For0 <o < zllandg e NF
2 _ 2 _ 2
Ivo@)e?™ Ly g )l < €9 g)llzee + vo (@)~ 'e?™ g() 2. (3.18)
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The proof is based on the well-known decomposition of Ly = vy — Ko and the
compactness of K: We first recall a standard decomposition

Log(v) = vo(v)g(v) — Kog(v)

;://2 ) [(v — vy) - ulpo(vie)dudv, g (v)
s (3.19)

1
- //Mz 1 = v2) - ul{ o (0) VRO (g (s)

— 110(0)y/ 10 (W) g (W) — 1o (W) o (v)g (V') }duy,
where (v) <

< vo(v) < (v). For (1.21) we have v(v) = vo(v — eu) and k(v, vy) =
ko(v —eu, vy, —eu). Itis well-known (see (3.50) and (3.52) in [16]) that one can write
Kog(v) = fR3 ko (v, v4) g (vs)dv, such that for some constants C1, Co» > 0

2 21242
MG Cy -l aloiel

8 w2 (3.20)

Ko(v, vy) = Cilv — vyle™
[V — vl

It is convenient to introduce a new notation, for ¢ > 0,

] _ﬂlu_v*lz_ﬁ (|U|2_‘U*‘2)2

vl (3.21)

kl?(vv v*) = |'U v |
- Ux

Clearly [ko(v, vi)| < kg (v, vy) for 0 < 9 < 1/8.
Standard compactness estimates read as follows:

Lemma2 For0 <o <20 andC € R3, there exists Co.9 > 0 such that

2
c@IP+Cv 1

ky (v, v < e
‘ 9 *)e@|v*\2+cv* ~ v — vy

2
[v—vx|
—-C,

T for0 <o <20, (3.22)

Moreover

eg|v|2+C<v 1
S v <g -
eelv:P+Coy P Ty

/ (I + v — v Dk (v, v4)
R? (3.23)

1 eg|v|2+C-v
ks (v, V) ————dvy Sy, 1,
/Rz [V — vyl ) e0lv2+Cv,  F e

while the same bounds replacing |v| with |vy| hold for integrations over v.

The proof of (3.22) relies on a fact that the exponent has a majorant —v |v — vel? —
2 242
o Wl =lv)

TN < =29 (Jv| + |v«|)||v] — |v|| which is a negative definite. Note that an
]

o2
exponent of ej!@ equals o(|v| + |v«])||v] — |v«|| which can be absorbed as long as

0 < o < 29. This yields (3.22). We refer to a proof of Lemma 5 in [20] for details to
show (3.23).
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Proof of Lemma 1 We consider an operator g(v) vo_lLog(v) = Log(v) ona

VO(U)
restricted space of {g € L2(R3) : eQ|”|2g(v) € L2(R?)}. First we claim that

v Lot {g € LARY) : @ g(v) € LARY)}
S (g e LARY) : @ g(v) € L2RY)). (3.24)

olvl?

emv ?

From (3.19) we have valLog(v) = g() — vy le—elvl? Jr3 ko(v, v*)
g(vy)dvy, and, using (3.23), for o < 29 < 1/4,

2 _
e vy Log (v)]

<12’ g(v)]

|eQ‘U*| g(v*)|2dv*

+ ) sup f o w02 / ko (v, v*>
2 eelv

< e g (v)] +\/ / ky (v, Vi)
R3 eelv

Therefore we prove (3.24) from

E
B lealvsl g (v,) [2d .

2 _
e vg ! Log ()l 2

< lleet! g(v)||Lz+/sup f ko (v, v*) dv f leelvs g(v,)|> (3:25)

< e g @)l 2.

Now we view {g € L2(R?) : eQ“"zg(v) € L%(R%)} as the Hilbert space with
an inner product (eg|”|2-, eQ|”|2~). Then the compactness of vo_lKo in this space is

eolv v

e0lvx

From Lemma 3.5.1 of [16], it suffices to prove that (i) fR3 ko (v, v*) ‘2 dv is bounded

equivalent to the compactness of g +— ng ko(v, vi) == 2 g(v*)dv* in a usual L2

e2lv \
Qlt

sup,, Jz3 Ko(v, vy) j‘u'lz{ T 1jy;>n}du — 0 as n — oo. Both conditions (i)

and (ii) come from the first bound of (3.23) directly. We prove (iii) from (3.22) and the
first bound of (3.23). Now applying the Fredholm alternative to v, "Lo=id— vy 'Ko

in the Hilbert space, we obtain an inverse map (v, 'Lo)~! which is a bounded operator
of the Hilbert space. Note that L ! (&) = (vy ILO)_1 (v lg). Hence we derive that

in vy, (i1) Ko (v, vy) € L2({lv — vy| > Z and |v| < n}) for all n € N, and (iii)

le?P L5 gl = 1e?™ (g ' Loy g 9l S e o gl e (3.:26)
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From the decomposition of L¢, we have Lalg(v) =vo(v) L g() +vo(v)~! I{La1
g(v) for g € Niy. Then we have

2 _
2" Ly g (v)]

IA

|vo(u)*1e@‘”'2g(v)|+‘vo(v)*l/ Ko (v, v*) eé"v*' Lyt g(va)du,

—1] el e 12 a2 1 2
vo() ™ 1e?Fg(v)] + Rs)kow,v*)m e | [l P L g ) Pl

v [v—vs|?
Whlle|k0(v, V) Ej:ﬂ S 1v Ize_zce 2 € L;’OL}}* from (3.22). Hence we prove

(3.18). O

IA

Equipped with Lemma 1 we provide bounds of A;; in (1.34) and its derivatives:

Lemma3 For0 <o < }f

1A )] S el |y,
A )] S el Vaule @0 18,45 ()] S eldule eV (3.27)
2
IVid Aij ()] < e{|Vidiul + & Vil dul}e ="

Proof It is convenient to introduce a notation, with L in (3.14),

| v)?
Ao @) = Ly ((wiv; = 580V ) ). (3.28)

Then from (3.18) and (3.17) we can immediately prove the first bound in (3.27).

Recall the notations in (3.14) and (3.15). By taking a derivative to Lg (3.28), it
follows that, from the decomposition of LoAg,;; (v) = vo(v)Ag,ij (v) — ng ko(v, v —
v4)Ag,ij (v — vy )dvy and (3.20),

lv]? v]?
Lody, Ag,ij = 0y, (vivj — T)\/uo + (viv; — T)kavuo
~ {001 40,50) = [ 20 lloto 0 = 014040 = v |.

(3.29)

From (3.20) and V, (Jv|2 = [v — v«]?)? = 4v.([v| + |v — v ) (Jv — |v — v4]), it follows
IVulko(v, 0 = )] S [va] exp{—LbHE) 4 Lexpq Il L WoPlocu 7y
From the first bound of (3.23), it follows | ng B [ko (v, v — V) 1A0,ij (v — vy)dvy| S
e~ for any 0 < o < 1/4. Recall a projection P on ANjy. Then |(I —

P)rhs. of 3.29)] < e @’ Now applying (3.18) to 9y, Agij = Ly -
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f’) r.h.s. of (3.29)) we derive
IVpAo,ij ()| < e’ forany 0 < o < 1/4. (3.30)

From (1.34) and (3.17), and the fact ¢; = v; fori = 1,2,3, and ¢4 = % (the
notation f is defined in (3.15)), we have

2
Ay = L5 (wp; - ";—'aij)m)(u —eu) = Agj;(v —en). (331

Therefore we prove the second and third bounds in (3.27) using the fact that
Vx,,A,‘j(v) = —EVx’tquA()’ij(v — su).
Now we prove

IV2Ag,ij(w)] < e7oPF, (3.32)
By taking one more derivative to (3.29), we derive that

Loavk 81}@ AO,ij

|v]? |v|?
= 8vkav5(vivj - T)VMO + avg(vivj - T)akuo

|v]?
+ (v; vj — T)awakuo

— By By ¥0(0) Ao, (8) — T Vo (), Ao (V)
+ /R B Ko(v, v — u)lAo (v — v.)
T 9 [ko (v, v — 0190, [Ao.; (v — v)]dvs.

. L . 2 .
The terms in the first two lines in r.h.s are easily bounded above as e 2Vl recalling

the fact |[Vyvg(v)| + |V5vo(v)| < 1. We only focus on the terms in the last line. From
180 Vol = v = 0,2 = [dve (5 + S22 ) ol = o = wah)] + 4foutlol +

[v] [V—vy]
_ v (v=v)e < 2 h 9. V. [k _ <
v = vD(pp = o=o )| S [vxl” + lval[v], we have |3y, Vy[ko(v, v — vl S
—ul? 2 2 222 .
vy | exp{— 2 v*lgﬂv*‘ b+ llj*'l‘;' exp{—% - %W}. Using the second

estimate of (3.23) with the first bound of (3.27), we have ] ng Oy Oy [Ko (v, v —
v)1Ao,ij (v — ve)dvg| < ¢~ From (3.30) and the first bound of (3.27), it fol-

lows that | [is By [ko (v, v — v,)13y, [A0,i (v — v:)1dvs | S e @ Now we invert the
operator Lg and use (3.18) to conclude (3.32).

Finally from 9, Vi A;; (v) = —€0,V,uVyAg ij(v—eu) —i—eszuB,quAo,ij (v—eu),
(3.30), and (3.32), we conclude the last estimate of (3.27). O

For the estimates of d; fg we derive the commutator estimate of d; L — Ld; and the
corresponding one for I' as follows.
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Lemma 4 Suppose ¢|u| < 1 in the definition of win (1.16). For L and T in (1.20) and
(1.21),

O(Lf)=Ldf+LA-P)f - LA-P)P [),

W (f,9)={T@f ) +T(f, )} +Ti(f, 2, (3.33)
where
Lig(t,v) :== —edu - Vyvo(v — eu)g(t, v)
et /]R3(vvk0 + Vi, ko) (v — eu, vy — eu)g(t, vi)duy,
I-P)Pg:=—¢ i:(Pjg)(I —P)(du - V(9 /D)), (334

j=0
Fo(f. )t ) = gffR 0= 0wl o = e o £t )00, 0)
+ g1, V) f (1, ) — f (1, v)g(r, v) — g (1, v) f (1, vy) Jdudu.

We have

S eldpul v 2A=P) fll 2 v gl 2,

/ L@~ P)f()g(v)dv
R3

/R}Lmtf)(v)gwmv < eloull P11V - Pgll 2,
/Hé T @)y (-3
< eloul (e g e v 2 A = P £l
+ 12 £ e [0 (A — Pgll 2 + |Pf||Pg|)||v1/2h||Lg.
Pointwise estimates are given as follows: for 0 < o < 1/4 and C € R?
L~ P)f(t.v) — L(P, f)(t,)]
< eldpul[e?MHCY £ (1, v) | e (v) el
T (f. )1, 0] S eldul @Y £, v) e e+ g, v)nLgerl‘U’é%,
PO S 165 F @1 gl —
(3.36)

and
IT(f, @) S 1 floe (v)lg )] + fR ko (v, v)lg(@)1dv,. ). (3.37)
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Proof The decomposition (3.33) with (3.34) comes from a direct computation to (1.21)
and 9;(Lfr) = 0;(LA —P)fr) = LA —P)o; fr + LI —P) fr + L(=P; fr). On
the other hand, from (3.20) it is easy to check that, for any 0 < o < 1/4,

Vovo(v)| = ‘// WOV M dude,| < 1,
R3xs? (U —vy) -y

IV0Ko(v, v + [V, Ko, )l S (10 = vl ™ 4 000021 = 0l Yg 20, 0.

These estimates above combining with (3.23) and PL = 0 yield the first two estimates
of (3.35).

We derive I'; as in the third identity of (3.34) from a direct computation to (1.22)
and 9,/ (V) = —€d;u - Vo o (s — ) = %satu - (vs — eu)/1o(vs — €u). Then
it is standard (see Lemma 2.13 in [13] for example) to have the last estimate in (3.35).

The first bound of (3.36) is a direct consequence of applying (3.22) and (3.23) to
the first identity of (3.34). For the second bound of (3.36) we bound it as

2 C. 2 C.
eldul @Y £ (1, v) || Lo |V g (2, v) || Lo

[ 1w w0 wemeC dua,
R>xS
v(v)

~ eg|v|2+C-v

eQ|v|2+C-v

eldullle? T £ (1, v) 10 €2 HC Vg (2, v) 1 e
For the last bound of (3.36) we recall a standard estimate (e.g. [16]) that

1 2. . 2. . 2. c.
|——e?PHEr (f, ) )] S 1€2THEY F )l 18TV g (v) ]| oo

vo(v)

From the second equality of (3.15) we deduce the last bound of (3.36). A bound (3.37)
is standard. O

3.2 Proof of Proposition 6

We verify two statements of Section 1.1 Hilbert Expansion. Firstly, we will show that
the solvability condition (1.33) implies the incompressible condition (1.14). From
(1.16), (1.23), and direct computations we verify the first identity of (1.33). Then
from the oddness of the integrand with respect to the variable ¢; we derive that

<¢iﬂ, 871(“7%> =0fori =1,2,3.Fori =0, 4, we compute that

<¢i«/ﬁ’ U _g) : qu>

2
(@i, Qe /1) gy = :51'0 + 5,‘4\/;} (Vy -u) fori =0, 4.

3

=1
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This shows that (1.33) implies (1.14).

Secondly, we will verify the following statement of Section 1.1: the leading order
terms of the hydrodynamic partin (1.28) vanish by solving the Navier-Stokes equations
(1.13)-(1.15). Consider (1.28). We set P f, = {p¢po + 22:1 ugpe + §¢4}ﬁ whose
coefficients will be determined as in (3.1). Then the leading order term of (1.28)= %
(1.35) can be decomposed as

—%P((v —eu) - (Qu+u-Viu)J/u

3
+ (0 = eu) - (Vepgos/iL = ) Vaiiepe /i + Viba /1r)

=1
(3.398).

3
- Z k(v —eu) - Aimvxa(fum)a (3.38)

£,m=1

3
1 i
S A=P) (=) (Va0 I+ Y Vaiieqe /i + Vilpr )
=1
1 3
- P)( 3 ke —eu) - Agmvxagum>, (3.39)
l,m=1

while the lower order term consists of

1 > _
— 5 —eu) - Vs (ﬁwo«/ﬁ + Y g1+ 9¢4«/ﬁ)

=1

3
1 5 5 -
+ 0 —eu) - (VepgoVii+ Y Vaiiege/i+ Vibga /i) (340)
=1

3
K
+5 2 W ew) - VeAudeun.

l,m=1

First we focus on a leading order contribution of (3.38), in (3.38). A direct com-
putation yields

(i /12, (3.38)4)
CiVy-u, i=0,4
- ~ _ ~ 2= .
05\0i T 01 ) + 000 T eion B = 01 (5 +38), i =1,23.
(3.41)
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Among many other choices we make a special choice (p, u, 0) = ( P, 0,0) which is
equivalent to (3.1). From (1.38), (3.41), and (3.1), it follows that for (u, p) solving
(1.13)

1
(3.38) = E(U —eu)J/ {8,14 +u-Viu —knolAu + pr}

= é(v —eu) /- (1.13) = 0, (3.42)

which verifies the second statement of Section 1.1.

Now we turn to proving the estimates. While the leading order terms vanish in
(1.28), the rest of terms of (1.28) are bounded as follows. Upon the choice of (3.1),
the first term of (3.39) vanishes and the first line of (3.40) are bounded by

S5 —ew) - V- (v = ewP fo| £ 5IVaul pl(v — eu) . (3.43)

From (3.27) we deduce that the second term of (3.39) and the second line of (3.40)
are bounded respectively by

—le—wl2

%lVquv —cule , %quﬂv - ezu|e_Q|”_8“|2 forany 0 < o < 1/4.

(3.44)

In conclusion we end up with the following result: Assume (u, p) solves (1.13)-(1.15),
and both (1.34) and (3.1) hold. Then

U*Sllz
1(128) = (3.39)] £ S{Vaullp] + | Vaul}o = ew)?e™ 5, (3.45)
1
I —P)(3.39)| = |(3.39)| < 5K|V§M|€_Q|v_8u|2. (3.46)

The term 09;(1.28) can be bounded similarly. The entire leading order term of
0¢(1.28) can be decomposed as

1
- EP((U —eu) - 8 (Bptt + u - Vi) S+ (v — eu) - (anlpwoﬂ)

3
= 2 K= ) Aen Vadedyn ). (3.47)
{,m=1
1
— SA=P) (= ew) - (Vidi poo /D)

3

+La P)(Z ( )+ Agm V90 ) (3.48)
s ) 1K v EU) - Ay Vx0pO0tUy ). .
M=
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Following the argument to get (1.38) and (3.41), we derive that
(3.47) = —é(v —eu)/p - 9;(1.13) = 0. (3.49)
On the other hand,
1(3.48)] < %K|v§atu|e—@'“—”'2. (3.50)

Now the lower order term 9, (1.28) — (3.47) — (3.48) consists of

ga,u . {(8,u +u - Viu) S+ ViPfr — KVX( 23: Aemazum)}

L,m=1

3
+ %(v —eu) - Vx( Z BlAgmawm> (3.51)

,m=1

1 1
-5 —ew) - Vidy (Ppo/1x) + S (V<0 ppo/12).

Since the lower order term of 9;(1.28) always contains |9;(v — eu)| < €|d;u|, they
can be bounded by, from (3.27) and (3.1),
&
IB.5D| < glatul{latul + |ul|Vyu| + Vi pl

+ el Voullpl + e Vol + k| V2ul e e (3.52)
€ —le—e?ul2
+ E{Ianzul(l + «|Vyul) + |9 pl|Vyulle .

Now we consider (1.29). From (1.34), (3.1), and (3.27), we derive that

|0 +u - VP
< {1801+ 1Vl + elpltial + ul Ve o — e’ F5 . 353)
10,3 + - V)P fol
< {197 1+ 100l 91+ Wl V04 p1 + 10 pI (18] + ]| Vi)
+ el pl{[07ul + 0yull Vau| + |ull Vdyul}

_ |U—Eu\2

+ £ld,ul{ths. of (3.53)}}<u —eu)2e (3.54)
and, for0 < o < 1/4,

|0+ VA= P) fo]
S UVl + 1wl V2ul) + e8] + ul V) Vou Je e, (3.55)
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193 +u - Vo)A = P) fo
S {09207l + (oraal| VEul + 1wl IV 20,1} + 2(13pul + lull Vol V0
e 107l + 19, Veul + |ul [V dyul}| Vil
+e|d;u|{rh.s. of (3.55)}}6_9|”_£"|2. (3.56)

Next we consider the last term in (1.29). From (1.16) and (1.14)

—1 .
(at +¢ ;—Vx)\/ﬁ _ %[(U —EM) .qu ) (U—gu)
m

+ e(Ou +u - Veu) - (v —eu)],

((a,+s v Vo) /I
O

1
NG ) [8(3214 + uVyoiu — osu - Vyeu) - (v — eu)

— 828,14 - (0 +u - Vyu)
+ (v —eu) - Vidiu - (v — eu)],

and hence we derive (3.12) and (3.13).
Applying (3.27) to (1.34), it follows that, for 0 < ¢ < 1,

L= P) fo| < k| Vyeule@v=eul,
18,(L = P) fo] < {18, Vieue] + &]dul| ViuJe e e (3.57)

From (3.1)

|U*€u\2

7|U*€u\2 _
Pl Siple” 5, [6PAIS o ple™ 5 +8|3zbt||p|(v—8u>e s

(3.58)

These estimates give (3.10) and (3.11).
The last term of (1.29) is bounded as

£ <3r+8*‘v'Vx>~/ﬁf‘
\/ﬁ 2
§{|p| 1| Veul Vel + (10| + [u]|Veul)}e @V, (3.59)

@+ V)
a,( — fz)\

&
S 5 UVxul + e((9u] + lul[Vrul}

{19, p| + 18 Veu| + £]dpu| (| p| + x| Vieue])Je 0V =euP
&
+5 (1Pl + I VauD{IVadoul + £(107u] + ul|Vadoul + 8| Vi)

8

@ Springer



Incompressible Euler Limit from Boltzmann Equation... Page370f 103 22

+e210,ul(10u] + |u]|Vyu])je el e, (3.60)

Lastly from (3.36), (3.1), and (1.34)

Simfz, AW = —[T(fo. f2)W) = TP f. P )|
K Sk

§<Ip| + | Veu)| Vel (e el —eul®, (3.61)

N

&
SUpl + x| Vau)|9; Viul

%mr(fz, POIS 5

A

+(|0:pl + K|Vx3t14|)|qu|}v(v)g_9|v—8u|2
2
&€
+§ [0:u|(|p| + K|qu|)|qu|v(v)e—glv—su\2’ (3.62)

where we have used I'(P f>, P fo) = I'(p /1, p /i) = 0to eliminate the contribution
of p?in (3.61).

Finally we wrap up the estimates of the source term of (3.2) to show (3.4) and (3.5).
The term (I —P)%R consists of (3.39), which is bounded as (3.46) and hence we prove
(3.4). The rest of terms form fR,, which can be proved to be bounded as (3.5), from
(3.45), (3.53), (3.55), (3.59), and (3.61).

Now we consider the source term of (3.3). The term (I — P)R3 consists of (3.48),
which is bounded as (3.50). From (3.49), (3.52), (3.54)-(3.56), (3.12), (3.13), (3.60),
(3.62), and (3.36), we prove (3.7).

4 A Priori Estimates for fg
For each ¢ > 0 an existence of a unique solution in a time interval [0, co) can be

found in [13]. Thereby we only focus on a priori estimates of fx in different spaces.
For the sake of simplicity at times we will use simplified notations

||g(ta X, v)”Lf’lLfZLg-?

s ”g”Lﬁx,v = ”g”L,poLg' 4.1

— H lg@, x, vl 73 gs) | L,fz(Q)‘

L (0,1

Recall the boundary integral and the norms in (2.5). Also recall tv = ,(x, v) in
(2.3)and w' =ty g(x, v) for 0 < @' < 0.

4.1 L2-Energy Estimate
Our starting point is a basic L>-energy estimate for the Boltzmann remainder fz and

its temporal derivative d; fr in which the dissipation (1.31) plays an important role in
the nonlinear estimate.
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Proposition 7 Under the same assumptions in Proposition 6, we have

t 1 t 1
||fR(r>||i§v+d2/0 lc2e lﬁ(I—P)fR”z%v‘f‘/o 672 frlg;

t
S RO +A+1G1D)]L) /0 1P fR(s)I72ds

5 (4.2)
+ I 2P LR g e PRIz 5
+ﬁ|v ul? + e BIVeul?, +xe2GHIE + 1352
52 VxMl2120) 2, L, L
where
00 15
dy = — = el frllig, — Eolwfrllig )° = 21610
&2 2 12
—B10) 70 — ex [ (3.12)4 ] 10 - 4.3)
K t.x »

Here L = LF ([0, t]) in particular. Note that a weighted L>°-bound of f is involved
in this energy estimate, where the weight o = 1o, 3(x, v) is defined in (2.3).
We also have

1
||atfR(z)||2L_% o+ doillk "2 /v — P)atfRHitzt )

2 2
Loz — el il

S 10 fRONZ,  + KT S IPLRIT 0 6 PSRz 5 + 1 PO fRIT: )
e Nl + 190l 2z, + ell0ul 20

+ e A 10l 12 1(3-10) ] 0

1
+ &7 29 frl

t
+1G 12l + 1313l | x fo | Pay fr ()17 ds
e Nl + 190l s, + el02ul 2 e + (1 B10)] 225
t
ek IGAD )? + 1 G13slz, | X/o | Pfr(s)I7ds
+ o1+ el GAO L) 0wl + e I Vel + e lFull 2

tx,v

“4.4)

+ ek B3 )? + @8l el )2 x e A =P frI2,

—2
+e W {1270 + IVedul ]z, o} + ek IGO0 2 ) + 1B

2 3,2
K 2 K 2
o 10 Vet + e 0pul | Vel 2 ) + =5Vt 20 1000,
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where 9; fr(0, x, v) := fr:(0, x, v) is defined in (2.6). Here

00 _
dy,p = = T2 eloul )G 10) s, = exllB12) s
— (e 21 (3.13)sll s )?

— x| Vdyull e — ek ll0ful 200 + elldpull s (1+ ellduel L2)  (4.5)

t,x
- 1 2
—¢& 4 (ek ||mg’,33sz||LtzL§?v) —&e8(1 +elldullLe )l frllLx

— (eI frll e )2,

1x,v

where 0 < o' < o.

Remark 8 We utilize several different time-space norms to control the fluid source
terms, which possess the initial-boundary and boundary layers as in Theorem 3.

The following trace theorem is useful to control the boundary terms.

Lemma5 (Trace theorem)

1 t
—// |h|dyds
& Jo yer
t t 1
,SNf/ |h<0>|+f // |h|+/// Ok + Lv- Vi, (4.6)
QxR3 0 QxR3 0 QxR3 &

where y_{rv ={(x,v) €yt :|nx)-v|>1/Nand 1/N < |v| < N}.
The proof is standard (for example see Lemma 3.2 in [13] or Lemma 7 in [6]).

Proof of Proposition 7 First we prove (4.2). An energy estimate to (3.2) and (3.8) reads

as
1 , 1 ) -
SWROIZ =3I, +— /0 / /Q  faLfy @.7)
L 2o L[ e Sa-P)A-P) AP 48
+28/0/y+lfR| —ngofy_| s Sk S0 POA-P AP @8)
(S t
=—f /f C(frs fR)@ = P) f 49)
ke Jo QxR3
2 t
+—/// C(f. fo)d = P) fr (4.10)
K Jo QxR3
t
+/ // I-P)Rd-P)fr 4.11)
0 QxR3
t
+/ // Ro fr 4.12)
0 QxR3
! —@+e Vo,
. 4.13
+/0 ffM} N xl @.13)
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Among others two terms (4.9) and (4.13) are most problematic.
We start with (4.7). From the spectral gap estimate in (1.25), we have

1 1 L
47 2 SIfrOIg; = SIRONG;  +oolk 2™ VoA =P frll7, (4.14)

Now we consider (4.9), in which we need integrability gain of P fr in Lﬁ of the
next sections. From decomposition fg = Pfp + I —P)frand ' =Ty —T'_
(1.22), we derive

) ! 1
[(4.9)] SEZ/O /fg R3Iv_fFi(Ile,(I—P)fR)IIﬁ(I—P)fRI
i=+ x

8 t
—Zf // V73T (IP frl. IPfRDIIVIA — P) f]
€370 JJaxRr3

1
sssumfRnLoo le=2e VA =P frllf;

(4.15)

3/2 s k2P Rl o g e P frll 2 I 2™ /oA — P fil 2
From (3.57) and (3.58),

@101
1 1
5 1GA0Lx (IPfrllyz, + el 26~ A= P frl 2, )

B 4.16
x i3 o~ P) 2 10
2
3 -1 _
NGO Nes + —IGA0IF }Ik ™26~ VOA =P frl}s  + PRI} -
From (3.4) and (3.5) we derive that

41D S Pel Gl e e A=P) frll 2,
(41D SIG7  +IPSRIT, (4.17)
+x el Gz, I e A=P) frlz -
Next using (3.12) it follows that

[(4.13)]

1/2 —1.3/2
e e 21 PP Y 17

~ tx,v

1
e 2" WVA =P fll 2
t
+1G12)l, /0 | PfR($)II7ds

-1 _
+ e 21GA2 s k26T VYA =P frllfs
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{(516”mfR||L°° )2+ ex!/?)1(3.12), IILOO}IIK_78_1«/_(I—P)fRII

1,x,v

1 1
+11G12) 1 /0 IPfR)I22ds + (e T8 [ Vial 2 )2, (4.18)

Finally we control the boundary term (4.8) using a trace theorem (4.6). First we
have, from (3.8),

1
(4.8) = 8/ (Ufrl? = 1Py, £} - 252// (1= P, )A—P) fo?

/ / 1/2 )/+fR ( P)/+)(I_P)f2

(4.19)

1 -1 2
gcle PRl

& & !
_(W+2C8_2)/o/y (1 = P, )A—P)fo]* for C > 1,
+

where we have used the fact |Py+fR|L§ =[Py, fR|L% from P, fr(t, x, v) being a
n _
function of (z, x, |v]) due to u|3q = 0.
Now we estimate Py, fg.Since P, in(3.8)isaprojectionof ¢, /i on y4,itfollows
fy+ |Py, fI> < ZfViv |P,, f|? for large enough N > 0, where y2¥ := {(x,v) € y4 :

[n(x)-v| > 1/N and 1/N < |v| < N}. Setting h = | f|? in (4.6) and using (3.2),
(3.4), and (3.5) we derive

1 ¢ 5
! / | flPdyds
0 Jyy

&
t
scN// |fR<0>|2+/ // \frl?
QxR3 0 QxR3

! 1 1 b
+/0 //sszS [_ELfR‘i‘;F(st fR)-i-;F(fR,fR) (4.20)

_@teTvVoUR
Vi
< Cn{IfROIZ; +IPFRIZ: +le™ %™ 2@~ P) frll}

+ (4.15) + (4.16) + (4.17) + (4.18)}.

frR+T=P)R; + mz]fR‘

Furthermore from (3.8) and (4.20)

2
2 2 € 2
Fallys Sk + 510 = POA=PIfL,,
2.2
= |fR|Lt2L2 82 |V u'Lsz(f‘)Q) (42])
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Finally we collect the terms as

-1

ths of (414) + @19 + 1ole™* Py frl}ay, + aalallays

1
<rhsof (4.15) + (4.16) + (4.17) + (4.18) + ic x r.h.s of (4.20)
-1

" f6_C « rh.s of (4.21).

We choose large N and then large C so that g—g <« 0p. Using Young’s inequality for
products, and then moving contributions of ||/<_%£_1 A —=P) fr ||i2 to Lh.s., we
t,x,v

derive (4.2).
Next we prove (4.4). An energy estimate to (3.3) and (3.9) lead to (4.4)

1 1 1 !
EnatfR(r)n%— 5||atfR<0)||%+@ /O / /Q . 3 fRLd fr (4.22)
L o frl* L P, 0
+28/0 /y+|sz| —5[) /y_| o1
- §<1 — P, ) (A —P) fr+ 1y, (fr) — grm(l —P) ) (4.23)

I L
Z_T/ // Lt(I—P)fRatfR-i-T/ // L, fr)A — P, fr
&7k Jo QxR3 E°K Jo QxR3

(4.24)

28 !

+—/ // C(fre 30 f2) (L — P, fi
K& Jo QxR3
2 t

42 f f f C(fa 3 f2) (L= P)3, fr 4.25)
K Jo QxR3
2 t

+2 / / / Gy fa, fr) A — P)d, fr (4.26)
K Jo QxR3
2 (! ) 4

+—/ [/ Ly fa. fR>atfR+—/ // Cfre fR) SR (427)
K Jo QxR3 &K Jo QxR3
t

+ / / f (I — PYRs(I — P)d, fx (4.28)
0 QxR3

t
+/ // Ra40; fR (4.29)
0 QxR3

! —(@ +e v Vo) /i )
+ 0
/0 //QX]R3 \/ﬁ 100l

' —@ +e v V)UR
+/0 //ssz3 8t( JI )fRatfR~ (4.30)
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We consider the first term of (4.30). We decompose 9, fr = Po; fr + A —P)0, fr.
The contribution of P9, fg can be bounded above as, from (3.12),

t
||(3-12)|IL,°3/0 IIPasz(S)IIiJszS- (4.31)

For the contribution of (I-P)d; fr we utilize an extradecomposition 1), <1415 -1
Then it is bounded as

1G.12) e //f 1y <ot [0V @) (X — )3, i
P2,
+ / / / et 10 ()2, f (0o 0) (0~ P)i fr]

' (v) (4.32)
S 1G1)loo]e™ IVIA - P fl:
ST 0D frll 2 VYA =P Rl 2
For the second term of (4.30) using (3.13) we bound it by
1GA3)u s VYA = P) frll 2 WY@ = P)d, frll 2
+ 6_4%2 ”ant“”L,ngo v fr ||L;’?,C_v I/ v — P)a’fR”L?‘X.U (4.33)

t t
+ (I Vdpull e + ||(3.13)*||Lg-;}{/() ||PfR<s>||izds+/ 1PO: fr()I3ds .
X 0 X
Using (3.35) we bound (4.24) and (4.27) as

1 L
@24 S k2 dulls e 2e ™ VoA =P frll2
1 N R
x{NPofrllz, + w2 ellc™2e VoA =P)3; frll 2 )
_1 -
2 ([ Qullzgs lle ™2 V@ =P, frll 2 PSRl . (4.34)

[4.27)] < K_%Snat“”Lfi 13100z {IVYA=P) frll 2 |
+IPfRIL2 Mk frll2
+8K_1||3zMIIL,°";{||P3sz||L,2,X +IVvA=P)d, frl2 )
X{IPfrll eI PIRIL212

1 _ 1
Hle2e T A= P) frl 2, kel frllug, ) (4.35)

1,x,v

The rest of terms can be controlled similarly as in the proof of (4.2):

1 1 -1
(422) = 110 fr Oz, = F10 frOIZ, | +o0llk ™2™ VoA =P)3, frll7
(4.36)
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(4.25)] < 8ellw frllLe , +&°lIG. 10)||L°°}Illffflx/_(l—l’)azfzell

t,x,v

1) 1
+ 7z e PRl POy frll 25 k2 lﬁa—P)a,fRnL;,x_v
(4.37)

& 1
+ PRI PO frl g, e oA =Poaifrllyp . (438)

1426 S & 2elVvan ol (IPfll2,
+ IVYA=P) fll, M 2e™ A =P frll 2, - (439)
|(428)] S 2el3.0) 2 k™ 2e™ A=P)o, fll 2 (4.40)

@291 S UGz {I1Pd frll 2+ Pelle™ 2e™ A~ P)dy frll 2} 4.41)

Lastly we estimate (4.23) and the first term of (4.30). As in (4.19) we derive that
(4.23) is bounded from below by

I 1 2 L 2
§|8 2(1 - PV+)atfR|L2((0’T);L§/+) - %IE 2P}/+alfR|L2((0’T);L%+)

€ 2 2

- C{(S_2|(l - Py+)8t(l - P)f2|L2((0,T);L}2/7) + 8”8tu||00|fR|L2((0!T);L%+)
&3
2
13l 1= P) ol .7y |
1 o . (4.42)
§|€ 2(1_ y+)alfR|L2((0T) L2) 8C|8 2Py+alfR|L2((0’T);L%+)
2

— { E 110, Vol + #10,u) | Vol + el dullool fR 17

52 oVt UV 272 50) tillool JRIL2((0,7):22, )

3
+ Ilazulloo—lc [Vul for C > 1,

L2L2(8§2)}

where we have used |ry, (g)|Lz(y_) S elliulloolglr2(y ) from (3.9). Now we bound
P, 9, fr using (4.6). Following the argument arriving at (4.20) and setting & = |9, f 2
we derive

1 [t 5
- 10; fr|"dyds
€Jo Jy,

SN 3 FRO) 2, + 1190 fll 2

t 1
+/ /f (— ——Ld, fr +rh.s of (3.3)>8tfR) (4.43)
0 QxR3 &%k
SN 18 fROT, +1PB frl7z + e k™ 2/v@ = P)a; frllfz
+ @30 4+ (435 4+ (4.37) + - + (4.41).
We conclude (4.4) by collecting the terms. O
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4.2 L%-Integrability Gain for Pfz

Proposition 8 Under the same assumptions in Proposition 6, we have forallt € [0, T']
ds||Pfr() L5
S €GN +ex NGO I RO 2, + €l fr©)] 2,
e
+o)we) 2w fr g, + 51G10 g + el GAlz, +elBG5)lzz,

X,V

+elldrullree ||PfR||L12‘X}

1 1)
+ (o + CIwesfrOleg, ) (10— P)frllz, + 10 =P frlz,

1/2 1/2 1/2
0082, {1FR15 2, + 100081 2, )
(4.44)
where
) 12 12 1/6
ds = 1= | S IPFROICIPROIT +elu®lzg] . (4.45)

Proof For the sake of simplicity we use notations (4.1) throughout this subsection.
We view (3.2) as a weak formulation for a test function

// va~Vx1/f—/ fw—// £0; fRY
QxR3 y QxR3
N’ ———
4.46), 4.46), (4.46)3

1 2¢ 8
= // v {_LfR — —I(f2, fr) = =T'(fr. fR)
axrd | ek K K

NGRS ON
Ji

The proof of the lemma is based on a recent test function method in the weak formu-
lation ([12,13]). We define

(4.46)

fR — S(I — P)‘}il — 89‘{2} .

lv* -3

NG

2_
where a := (fr, /100), b == {fr, v /o), and ¢ := ([, %,/uo). We choose a

family of test functions as

Prro= {a~|—b-v+c }mand Pfr = (a,b,c), (4.47)

Va = (0* = B)V/10 - Vita. (4.48)
v, o= (0F — Bp)viodjey. i, j=1,2,3, (4.49)
vy = [wlPvivj iodeh. i # j. (4.50)
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1= (v* = B v/ 1o - Vage, 4.51)

where we choose 8, = 10, 8, = 1, B, = 5 such that

P -3 2
0= / (v = Bo) (1) o(v)dv = / (07 — By)po(vr)dvy

R “ U6 R

= /R 3(|v|2 — Be)vi o (v)du. (4.52)
Here,
5 . 09,
—Ay@, =a’ with =0, (4.53)
on 1aQ

—Acp) =b) with ¢)]s0 =0, (4.54)
—Aype = with ¢|sq = 0. (4.55)

A unique solvability to the above Poisson equations when (a, b, ¢) € L%(Q) and an
estimate

IVE0@b.0ll 65 + I Ve@@bo 2@ + 19@b.ollLs)
S WP frP sy S 1P frl o) (4.56)

is a direct consequence of Lax-Milgram and suitable extension (extend a’ of (4.53)
evenly in x3 € R, and b° and ¢ of (4.54) and (4.55) oddly in x3 € R, then solve the
Poisson equation, and then restrict the whole space solutions to the half space x3 > 0)
and a standard elliptic estimate (L% (Q) — ng (Q) N WL2(Q) N LYQ)).

From My ¢y, 1(v) = M1,0,1(v) + O(e)|ullv — eu|Mj ¢4,1(v) we can easily check
that

IPfr(t, x,v) — P fr(t,x, v)| < elu(t, x)|lv — eul/ul fr(t, x,v)|. (4.57)
Therefore we have
IPfR@lzs SIPLR@ILe, < IPFROLs

+ellu@lloolllPfROIl L + 1A =P) fR®D e} (4.58)
SA+ellullo) 1P fR@ N s + ellu(@) ool (X - P)fR®llLe -

Note that [[(1 — P)fr(llzg, =< I = P)frl7s 10 = P) OIS <

o()(ke) v fr (1)L, + (k&) M| — P) fr(1)]|z2 . Hence to prove the lemma
and (4.44) it suffices to prove the same bound for || f’fR ||L§ = l[(a, b, c) ||L§.
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Following the direct computations in the proof of Lemma 2.12 in [13] we derive
that

=5llallg +o(MIPfrOIg + OMIA-P) frOI iy = va.
4y, = | 2o bi3;3j ), + o(DIPfROI§ + OMIA=P) frOI§ if Y = ¥,7,
Jobi919;6, + [o bid;9;¢) + O)IA~P) fr1)]§ if =y, ] andi # j,
Slle@I§ + o(WIP fR NS + O —P) fr(®)§ if g = Y.
(4.59)
For ||b; ||2, using the second and third estimate of (4.59) we deduce that
Ibil3sigy = [ bisagir = [ biaeiax— 3 [ nfejan
Q Q IR
J(#ED)
1 .
_ 2 . - 6 (4.60)
=5 D40l _(;) 46)11,.s +o(DIPfr ()G
J J(F

+OM[A—=P) fR(®D)E.

Now we consider the boundary term (4.46),. From (4.48)-(4.51) and (4.52)

Joq 0n®a [p3 (01 = B -m)PpodvdSe =0 if yr = v,
[ vense=1o ity =y ] or vl
y Joq e [ra(vI* = Bo)(v - n)*podvdS, =0 if ¥ = .
4.61)

Here we have used the Neumann boundary condition of (4.53) for v,, and the last
identity in (4.52) for ... For y,{ or ¢, we used the fact that the integrands are odd
in v. From (3.8), we decompose f|, = P, f +1,,(1 =P, ) f =1, 5(1—=P,,) f>.
From (4.61) together with (3.57) and (3.58) we have

(4.46)2] = )M+/ Py (L= P fe =1, 5 (= P fa)]
14

&
S Veelpanaa {10 = Py frlay, + 51310100}
(4.62)

where we have used | [, (1 — P,) 1 S IVx@l 490l (1 = Pyy) fla,y, at the last
line. Here ¢ € {¢,, @b, ¢.}. For the first term of (4.62) we interpolate

_1 12 1 1/2
(1= Py) frlag, S1e72(0— P frly s e3lwgafrllsl.  (4.63)

For the second term of (4.62), we use (4.56) and a trace theorem (Wl*g(ﬂl‘z X
1 6
R.)NL2(T2 x R,) — W'75°3(T2)), and the Sobolev embedding (Ws+$ (T2) —
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L*3(T?)) to conclude that

Vegl g, SIVaol L

<
Vi SVl e S IVl

(T?) g (TZXR+)0L2(Q) fR”Lﬁ(szJR )

(4.64)

Next we consider (4.46)3. For i of (4.48)-(4.51) and ¢ of (4.53)-(4.55), using
(4.56), it follows that

|(4.46)3] < elldr frllz2 W N2 S elld frlliz IVeell2 S el frlle I frls
X,v X,V X,V X X,V L,\'

< OMLeld; frllz2,1° + o(DIIP frllFs
(4.65)

Lastly we consider the right hand side of (4.46). From (1.21), (3.23), (3.37), and
(4.56), it follows

[ vacenl=|[[ v ra-pis
QXRS QxR3 €K

< f / IVt (DIR@) [y @I = P) fr(x, v)
EK JQ JR3
¥ / km,v*>|<I—P>fR<x,v*>|dv*]dvdx (4.66)

< _||Vx(/7(abc)||L2||(I—P)fR||L2 < —IIPfII Lol =P)frllLz,

< oIP frll§e + [~k A =P frll 2 1"

Note that, from (3.37), [T(£f2, fR)l < Ellwgsfarlleomes®) ™ [v() fr(v) +
Jg ko (v, vy) fr(v5)dvy . Then from (3.57) and (3.58)

& &
| f f VT, )| S IVabtwno 2= 1 G10) ol fll 2
QXR3 K )CK X, v

< oI P frlSg + [ex T 1GA0ooll o2, ]
(4.67)

For the contribution of I'( fr, fr) we decompose fr = P fgr+ (I—P) fg. From (3.37)
(or (3.36))

IT(fr, fR)(W)]
SIT®fr, PR+ IT(A—=P)fr, d=P)fr)()]

S V)IPSRI + 1008 frlloe { V@)X = P) fR) )] (4.68)

+ [ o wld =Pl |
R3
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Then from (4.48)-(4.51), (3.23), and the Holder’s inequality (1 = 1/2+ 1/3 + 1/6)

[ virte ol
QxR3 K

1)
< ZIVspapoliz {1 Prliy I PFrllsg + Iogsfallss, 1= P) fellsz |

s 5 3/2 12
< B fRIge I PArIS NP FRIL

+ﬁuﬁf I3 6 lIv00.6 f& o le ™ k™12 (1 — P) fll
12 Rl 6o BJRILS, RIL2 >

(4.69)

where we have used an interpolation || Pfg|l;3 < ||PfRIIIL/()ZIIPfRIIIL/Z2 and (4.56) at

the last step. A contribution of the rest of terms in the r.h.s of (4.46) can be easily

bounded as, from (3.4) and (3.5),
0 -V
Eh v VIOV - Py, — ety

[V P

S IPSRISe el Gl frll 2, + 2l G4 + Bz, ).

(4.70)

In conclusion, collecting the terms from (4.59) with (4.60), (4.62) with (4.63) and
(4.64), (4.65), (4.606), (4.67), (4.69), (4.70), and utilizing (4.58), and two facts from
(A.1):

sup (L= P) ()2, S IA=P)frll2  + 1A= frllz |

0<s<t

+ elldull Lz I P2 .

4.71)
sup [(1 — Py) fR()|12¢) S sup |fR()]12(y,)
0<s<t 0<s<t
S |fR|Lt2L2(y+) + |atfR|Lt2L2(y+)’
we prove (4.44). O

4.3 Average in Velocity

We prove a version of velocity lemma when a suitable bound for source terms is only
known in a finite time interval. In this section we often specify domains in which
an L?-norm is taken while the simplified notation (4.1) will be used only when the
domain is [0, T] x € x R3.
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Proposition 9 Assume the same assumptions in Proposition 6. Then we have, for 2 <
p<3

d3||PfRHL,2L§

S A+ellGAD 2 fRll o2,
o - (4.72)
+ {; + —lwes frlly, + e Sl JIVIA =P il

1,x,v

+HISRO 2 + el GOz, +elBGDllz -

with
. s 3(p=2) 6=2p
Py— — o0 — — - v £
dz =1 0(8)”””Lm P ”(3'10)””%;52 p ”PfR”LtooLg IImg,BfRIIL?_oX'v,
t X
4.73)

and for o' < o

d.o[ PO SR a1

1
S =3l (1 + 21310 ) | PA 2
K t,x t,x 1,x

Se 3(p=2) 6—2p
ge P P
+ 1Bl os 1P fRll oy 0 RN oo IPSRIL2LE

&
+ 0l Gl frllzgs, , + 1G-10) 1) WY@ =P) frll 2

1,x,v

2

(4.74)
+ ()7 g 00 frll 200, + 19: frllzorz , + EN G320l frll o2,
1 1) e
+ {— + —llwopfrllLe , + —1(3.10)[ L
KE K s K .

+ el G2 VI =P frl 2

&
+ 100 fRO) 3 + IGADIL2, Ives szl +elG6)z, +elGDl2, .

t,x,v

with

&
d3pi=1-0@)|ulre — SNGI0E 2 —elGADI 2

L™ L™
5 3(p—2) 6-2p
_ P P
. ”PfR”LlooLg ||mg,BfR||Ltoi’v, (4.75)

where both bounds are uniform-in-p for2 < p < 3.

We prove the proposition by several steps.
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Step 1: Extension. We define a subset
= (0,2m) x (0,27) x (0, 00) C R3. (4.76)

We regard €2 as an open subset but not a periodic domain as €. Without loss of gener-
ality we may assume that fz(0, x, v) is defined in R* x R3 and || fr (0 .p m3 xR3) S
Il fr(0) ”LP(QxR3) forall 1 < p < oo. Then we extend a solution for whole time r € R
as

f[(tv-xv U) = ltzofR(t,X, U) + 1t§OX1(t)fR(va» U), (477)

where a smooth non-negative function x satisfies x1(¢) = 1fort € [-1,0], x1(#) =0
fort < —2,and0 < 4y, <4.

A closure of € is given as cl(Q) = [0, 27] x [0, 277] X [0, 00). Let us define
7g(x,v) € R for (x, v) € (R3\Q) x R3. We consider B(x v):={seR:x+sve
R3\cl()}. Clearly if B(x,v) # @ then {s > 0} C B(x,v) or {s < 0} C B(x, v)
exclusively. If {s > 0} C B(x,v), let I+ be the largest interval such that {s > 0} C
Iy C B(x,v). And if {s < 0} C B(x,v), let I_ be the largest interval such that
{s >0} C I_ C B(x,v).

We define

0 if x €9,

inf B(x,v) if x € R3\c/(2) and B(x,v) # P and {s > 0} C I, C B(x, v),
sup B(x,v) if x e R3\c/(Q) and B(x,v) # @ and {s <0} C I_ C B(x,v),
—c0 if B(x,v)=f@andx ¢ 3.

fp(x,v) =

(4.78)
Using (4.78) we define

fE(t7 X, U) = l(x,v)e(R3\S:Z)><R3 fl (t + 8;B(x7 U)a XB(X, U), U)
with ¥g(x,v) := x + fg(x, v)v. (4.79)
It is easy to see that €9; fg + v - V, fg = 0 in the sense of distributions.
Next we define two cutoff functions. For any N > 0 we define smooth non-negative

functions as

x2(x)=1forx € [—m,37x] X [-m, 3] X [—7, 00), (4.80)
x2(x) =0forx ¢ [-2m,4n] x [-27m,47] x [-27,00), |Vix2| < 10,
x3(w) =1for|v| <N —1, and |v;| > 2/N foralli =1, 2,3, 481)
x3(v) =0for|v] > Nor|v;| <1/Nforanyi =1,2,3, |V,x3| <10.

We denote
U :=[2m 4] x [2nm,4n] x [-27, 00),
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V:wewwmgmm(]wewwmzum (4.82)
i=1,2,3

We define an extension of cut-offed solutions

Fr(t,x,0) := x2(0) x3(W) {15 ) f1 (1, x, v) + fE(t, x,v)}
for (¢, x,v) € (—o0, T] x R* x R. (4.83)

We note that in the sense of distributions fz solves

gd fr+v-Vifr=g in(—o0, T] x R3 x R3,
— v-Vixe -
8= R+ 1Liz01a(x) x2(x) x3()[€d; + v - Vi]fr (4.84)

+ 1,<0{e0; x1 (1) frR(O, x, v) + x1(H)v - Vi fR(O, x, )}

Here we have used the fact that fr in (4.84) is continuous along the characteristics
across 02 and {r = 0}. We derive that, using (4.84),

t

- 1
SR, x,v) = g/ g(s, x —

Sv, v)ds for (¢, x,v) € (—o0, T] X R? x R3.

—0o0
(4.85)
Recall ¢; € {@o, - - - ¢4} in (4.47). From (4.83) we note that
H/M Fr(t, x, v)@i (V)y/ po(v)dv ) L
L7((0,T); Ly (2)) (4.86)

= H/R3 x2(x) x3(v) fr(t, x, v)@; (V)y/ po(v)dv

L2((0,T); LY ()

From (1.24), we decompose

@86 = | X 20 1) [ 13m0
J

We consider the right hand side of above terms. From (4.57), f QiQjo =
dij, and (4.81), the first term can be bounded below by (1 — 0®)|ulloco —

0(%))||X2Pf]g }L%((O,T);Lf(ﬁ))' For the second term we use (4.57), Ltz(O, T) C
L7(0,T), and L'({lv] < N}) c LP({lv| < N}) to bound it above by Crnlld—

L2((0,7); L (€2))

/R RO P) fr(t, x, v)@i (v)y/ 1o(v)dv

L}((0,7); LY ()
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P) fr ||LI’((O,T)X§ZXR3) + (0(8) lluell oo+ 0(%)) || Pfr H L2(0.7): LY ()" Hence we derive

(4.86)

1

- CT,N”(I - P)fR”Lp(((),T)XQXH@) (4.87)
1
p=2 2
_ p _ P
Cr 008 SO, 0 7z 1T PURNL 0 7 s

Step 2: Average lemma. Recall ¢; € {¢o, - - - ¢4} in (4.47). We choose ¢(v) such that

x3GW)Vio) < gv), $) € CPOR?)

B (4.88)
and ¢(v) =0 for |[v| > N or |v;| <1/N foranyi =1, 2, 3.

Lemma 6 We define

1 —
S, x) = é/ ,/R3 lg(s, x — ! - sv, v)|g(v)dvds for (1, x) € (—oo, T] x R>.
(4.89)

Then, for p <3 and 1 < N,

||S(g)”L%((O,T);Lf('ﬂ‘ZXR)) SN ||1(z,x,v)e©Té_’||L2((O,T)x(11‘2xR)x{|U|§N})a (4.90)

where the bound (4.90) only depends on N but can be independent on p < 3.
We remark that from (4.85) and (4.89) ng fR (t, x, v)@;(v)dv < S(g)(t, x).

Proof of Lemma 6 We prove (4.90) by a T T*(SS* for our case) method. First we derive
a dual of S in the following equalities:

T
/ f S(g)(t, x)h(t, x)dxdt
—o00 JIR3

T 1 [t t—s -
=/ / _/ 13(s, x — “— 20, »)|G)A(t, x)dvdsdxds
—o0 JR3 € J—00 JR3 &

T 1 [T t—s
= / / f 12(s, x, v)] [—/ h(t, x + v)@(v)dt} dvdxds (4.91)
—0Q R?’ Rg & Ky I
T 1T s —t
= / /f |§(t5 X, U)l |:_ / h(S, X+ U)(Z)(v)ds] dvdxdt
—oo J JRIxIR3 e Js e

T
=/ /f 8, x, v)|S*(h)(t, x, v)dvdxdt,
—oo J JR3IxR3
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where we have defined

T
S*(h)(t, x,v) == é/ h(t, x + v)cp(v)dr (4.92)
t

Here, in the second equality of (4.91) we have used the Fubini theorem for changing
order of s and ¢ integrations, and then used a change of variables x +— x — ’_Tsv. In
the third equality of (4.91) we have used a change of variable (¢, s) — (s, t) and the
fact Supp(g) C (—oo, T] x U x V.

On the other hand, for 1/p + 1/g = 1, following the argument of (4.91) with

h(t,x) =1, _gh(t, x) we derive that

IS 21,7122

= su / /S(g)(t x)h(t, x)dxdt

||han - Lq(m),

= su / // |g(t, x, v)|S*(h)(t, x, v)dvdxdz.
Al <1 UxV

L2(-1.T); L"(ﬂ))

(4.93)

It is important to check the integral region in space of the last term of (4.93). From
(4.92), we note that if x + =Lv ¢ cl(Q) for all T € [t, T] then the last term would

vanish since supp(h) C (— oo, T]x S} Therefore we can exclude (t x v) from the last
integration in (4.93) if L(¢, x,v) N Q =@ for L(t, x,v) := {x + ZLv: 7 € [t, T]}.
Now we define

Or ={(t,x,v) € (=1, TIx U x V : L(t, x,v) N Q # 0}. (4.94)

Then we can write

(4.93) = su f // Lx.yen, |3t x, v)|S*(h) (¢, x, v)dvdxds
Vel 21 q(m)<1
< Mexvenr 821 115U xVv) (4.95)
sup | s* . x, U)HLZ((fl,T]xeV)'
W 2178 @ =
Therefore to prove (4.90) it suffices to show that
”S*(h)”Lz((—l,T]xeV) S ”h”Ltz((—l,T];L;’(fZ))' (4.96)

Note that since supp(h) C (=1, T] x U and supp(¢) = V for (x,v) € U x V, we
have, with x = (x1, x2, x3), v = (v1, V2, V3)

T —t] 10rNe 1

T—1
lx1 + vi| > [v1] — |x1| > ﬁ—4n>4n if T >t + 10w Nes.
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Hence we can rewrite (4.92) as

S*(h)(t, x,v) =— h(z, x + v)fp(v)dr

! 4.97)
for (x,v) e U x V, 1fsupp(h) c(-1,TIxU.

1 /min{T,t+107TNs}

On the other hand, from (4.91), we have for supp(h) € (—1, T] x Q,

T
IS 21yt = / / / S* () (1, x. v)S*(h) ¢, x, v)dvdxds
—1 UxV
T
=/ // SS*(h)(t, x)h(t, x)dxdt
—1 UxV
< ISS* MW 211y L2wn Pl 21t @y

Therefore to show (4.96) (which will imply (4.90)) we only need to prove that, for
supp(h) C (—1,T] x ,

ISS* Ml 21z wy S W2y (4.98)
Now we prove (4.98). From (4.89) and (4.97), we read

SS*(h)(t, x)

= f f S*(h) (s, x —
R3
mm{T,H—lOJTNs} t—s T —s
- _zf / / , v+ v)dT(¢(v))>dvds
R3 €

min{7,s+107 N¢}
f / / h(t, x +

Now for the same reason to restrict T-integration in (4.97) we rewrite the above expres-
sion as

v v)@(v)dvds

v) ((p(v)) dvdzds.

SS*(h)(t, x)
1 t min{7,s+107 N¢e}
=— / f h(z, x +

&2 max{—1,/—107Ne} Js

v) (gp(v)) dvdzds.

(4.99)

We consider a map with the change of variables

&3

veVis ymx4 Lty eR), v—dy/’ dy. (4.100)

TP
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Now we apply (4.100) to (4.99) and derive that

S8 (h)(2, x)]

min{s+10r Ne}
=3 Meei—1,mh(t, )| ——5¢
-/t 10nNe/s / rel |t |3 (4.101)

<£|y ') dydrds.
|t — 1

First using the Minkowski’s inequality and the Young’s inequality to a convolution
inywithl+1/p=1/g+ 1/(p/2) we have

s+10rNe &3 ly — x|
/ [ /~1re[ 1,71lh(z, y)I 3<p<8 ) dydrds
t—107 Ne Js | t| | — t|

s+10rNe
/; 10w Ne /;

£’ |y — x|
Lrep—1,1lA(z, y)l| t|390( E —II) dy

s+107 Ne
=2 1ze—1.71h(T, 9o
g? ﬁ—lONNsK Ly ()

| oY
£
r— P\ e =]

4.102),

LY(S)

LY () (4.102)

tds.

d
LY (@)

From the properties of ¢ € CZ°, it follows that

4102 &3 |1:—t|3 % g 7< £ 3_%
102 = 17 —r|3< e ) U o y} ”<|r—r|> ’

where y = ﬁ(y x) withdy =

tl‘ dy. Therefore we derive that

[ISS*(h)(t, )l p

6

1 t s+107rNe e 3=
S5 Mee—1.7A(T, )l 19g (—) drds.
&2 ﬁ—lONNs/s‘ i L |t —1|

(4.103)

Using the Minkowski’s inequality and the Young’s inequality, finally we prove (4.98)
as

JIss*®@. el 20,7,
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s+107 Ne
sup /
se[t—10mr Ne,t] Js

377
& P
Ieei-1.71(z, ')“L-‘¥<@><|r — r|> o

1
S 2 ”1[1—1071N8,t](5) .

s

L7
1 t+107Ne & 3_%
< =107 Ne / Meef-1.71h(, ')lle@(—_ ) dr
€ —107Ne T —1] L2
t
6
< l10nNs||||h(r Mgy | =)
N 2 > NL @ N L2((-1,T]) |£] .
L;((0,10rNe))
_1+Q
SN IRl @y

Step 3: Applying Lemma 6. Now we apply Lemma 6 to (4.85) and derive that

H/ fr(t, x, v)@(v)dv
R3

L2((~1.T1LE ()

S Mexwenr&lli21.mxuxv)

S IRE X, 02 0.71%axyv) T RO, X, )20y
+ ¢ vyemr f1(t + et (x,v), T (2, ), Ol 2y rengyxyy (4:104)
+ 1edy + v - Vil frll 2071601 (4.105)

where we have used (4.83), (4.77), (4.79), and the fact that [v - Vy x2(x)| Sy 1 on
veV.

First we consider (4.104). We split the cases of (4. 104) according to (4.78). For
x € 32, which has a zero measure in L2(( 1, T]x (U\SZ) x V), wehavefp(x,v) =0
from the first line of (4.78). If B(x v) =@Pand x ¢ 92 then 7 (x, v) = —oo from the
last line of (4.78) and hence fr(—o0) = 0 since xi(—o0) = 0 in (4.77). Therefore
we derive that

(4.104) < ”1{S<0}C1§(x’v)1(t,x,v)e©Tf]
(t + efp(x,v), Xp(x, v), W21 7@ < vy (4.106)
+ ”1{s>0}cé(x,v)1(t,x,v)e©r S
(+ EfB (x,v), Xp(x, v), v)”Lz((—l,T]X(U\fZ)XV)' (4.107)
We need a special a}ttention to (4.106). Sin~ce (t, x,v) € ©r we know that inf{t >
tix+ %tv ecl(Q)} <T.If{s <0} C B(x, v) then, from the third line of (4.78),
fg(x,v) = sup B(x, v) =sup{s e R:x +sv e R3\cl(fZ)} < (T —t)/e. Therefore
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the argument of f7 in (4.106) is confined as
(t + efp(x, v), Xp(x, v), v) € (—00, T]1 x QL x V. (4.108)

For (4.107), from the second line of (4.78), 7z (x, v) = inf B(x,v) = inf{s € R :
X +sv € R3\cl(§2)} < 0. Therefore t + efg(x,v) <t < T and hence the argument
of f7 in (4.107) is confined as in (4.108). Now we apply the Minkowski’s inequality
in time, change of variables ¢ + ¢fp(x, v) > t, and use (4.108) to derive that

4.106) + (4.107) < H 1, ip(x,v), (4109

( )+ ( ) S fi(t, xp(x, v) U)”L,z((—l,T]) L2 (WX V) ( )
Let us define an outward normal 7i(x) on 2. More precisely
(0,0, —1) if x = 0 and x € 92,

i) ={ (=)=*+1,0,0) ifx; €{0,27)and x € 9<, (4.110)

X2

0, (=)t 0)  ifxy € {0,27) and x € 3S2.

From (4.82) we have therefore (x, v) € (U\fZ) x V then |[n(xp(x,v)) - v| > 1/N.
We consider maps

(x1,x3) = xg(x,v) € (0,2m) x (0,27) x {x3 =0},

a X b b X 9
with ‘det( (xp,1(x,v), xg 2(x v)))) =) %)
a(x1, x3) v-n @111
(x;, x3) > (¥p,i(x,v), %p,3(x, ) € (0,27) x (0, 00), '
with ‘det(a(xB’i(x’v)’xB’3(x’v))>‘ =‘ Y| fori=1,2.
da(xy, x3) v-n
Note thatif v € V of (4.82) then |v;| > 1/N foralli = 1, 2, 3. We define
7 =02 xR, 7V =30 x (R*\V). (4.112)

We apply the change of variables (4.111) to (4.109):

47 00 47 5 1/2
(4.109) = H[ [ it i gy andnan|

T 12
[5 x 6JTN/~ f | frt, y, v - ﬁ()’)|dfdy:|
9% /-1

LE(V)

=

L3(V)

S R 20,1y 55058y F IR L2 vy
4.113)
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We recall the trace theorem:

T T
/ / |hldyds < sup ||h(t)||L.(QXv)+[ 1A 1@y ds
0 Jy\pl/N

rel0.7 (4.114)

T
+ / ||[8at +v- Vx]h”Ll(QXV)ds-
0
We apply (5.33) with & = f2 and derive an estimate
2
”fR ||L2(((),T)><)7\)7N)

T
<
S, sup 1RO 2 gy + /O IR 2 6,48

/// | frl€0; + v - V] fr|dxdvds

NT ||fR||L°°([0,T];L2(Q><R3)) + H [88t +v- Vx]fR ||L2([0,T]><Q><]R3)'

4.115)

Finally we conclude a bound of (4.104) as below via (4.106), (4.107), (4.109), (4.113),
and (4.115)
4.104) S 1fR Oz + IRl 10,73 L2(xR)
+ [ led 4+ v - Vil ] 2 0. 710 ) - (4.116)
@.116),

Next we estimate (4.105) (and (4.116),). Using (4.84) and (3.2) we conclude that
(4.105) + (4.116),

1 e é
S H — —LA-=P)fr+-T(f2, fr) + =T'(fr, fr)
EK K K

e+ VR
VI

Following the arguments of (4.15)-(4.18), and (3.4), (3.5), we derive that

SR+ ed—=P)R| + Ry

L2((O,T]><Q><V).

(4.105) + (4.116),

e 1)
< [z1610) w + Pl »

LI @) K L(O0,T:LY 7 (Q)

IPfRI 20, 7):7 ()
1 1)
+ {; + ;ng,ﬁfze IIL,°°(<0,T)xQxR3>}”(I — PV IRl 0.1 xR

+é ” (3.12) ” L,z((O,T);Lgo(Q)) ” fR () ||L?°((O,T);L2(QXR3))
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+ 8{||(3'4)||L%((0‘T);L)2[(Q)) + ”(3'5)”[‘1‘2((()’7‘);[‘)2((9))}9 (4-117)

where we further bound

3(p—=2) 6—2p

IPSell 2, = 1PFal gy Imenfili o (4.118)

Step 4. Proof of (4.72). First we use (4.87) and then (4.104) and (4.105). We bound
(4.104) via (4.109) and (4.113), which are bounded by (4.115) and (4.117) respectively.
These conclude that, for p < 3,

1
(1-=0@lulleo — O(N))“ Pfr ||L%((0,T);Li’(s'z))

p—2

2
=P frll]

— Cr N lwgs fr(0)] [

P
L%®((0,T)xQxR3

< ”/]R} Fr(t, x, 0)@; (V)y/ 1o (v)dv

(4.119)
L2((0,7); LY ()

IA

‘U’ﬁmmwaww
R3

LA, 7): LY ()
”fR ||L°°([0,T];L2(Q><R3)) =+ ”fR (0) ”L% + rhs Of (41 17) Wlth (41 ]8)

A

Then we move a contribution of || P fg|| L2(0.7); L7 @) 1O the L.h.s and use (4.118). This
concludes (4.72).

Step 5: Sketch of proof for (4.74). We follow the same argument for (4.72). Thereby
we only pin point the difference of the proof of (4.74). Recall 9; fg(0, x,v) =
fr.1(0, x,v) from (2.6). We regard Q as an open subset but not a periodic domain as
Q. Without loss of generality we may assume that fz ;(0, x, v) is defined in R? x R3
and || fr.: (O) | 2r (r3)x®3 < ||fR,,(0)||Lp(Q)XR3 forall 1 < p < oo. Then we extend a
solution for whole time € R as

S1,:0(t, x,0) :i= 1,500 fr(t, x,v) + Li<ox1(®) fr,: (0, x, V). (4.120)
Using 75(x, v) in (4.78) we define
fE,t(t9 X, U) = I(X,U)G(R3\§2)XR3 f],l(t + EfB(X, U)v iB(-x9 U), U). (4121)
We define an extension of cut-offed solutions

TRt x,0) = x2() x3(W){1g () f1.:(t, x, V) + fE(t, x,0)}
for (¢, x,v) € (—oo, T] x R x R3. (4.122)
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We note that in the sense of distributions fR,, solves

sa,fR,, +v- foR,, = g in(—o00,T] x R x R3, where
_ v-Vixo -
g = T“‘fm + L2016 () 2 () 3 (W)[eds + v - V19, f (4.123)

+ Li<0x2(X) x3(W{ed; x1 (1) fr,1 (0, x, v) + x1(B)v - Vi fr (0, x, V)}.

Here we klave used the fact that f R, in (4.123) is continuous along the characteristics
across 02 and {t = 0}. We derive that, using (4.123),

t

- 1 _ t
SR, x,v) = ;/ 8i(s, x —

—00

sv, v)ds for (¢t,x,v) € (—o0, T] x R? x R3.

(4.124)

Now we apply Lemma 6 to (4.124) and derive that, for p < 3,

”S(g_t)”L%((O,T);Lf('ﬂ‘zx]R))
S ¢ x,0)eD7 80120, 1) x (T2 xRy x {[v] <N}
§ ||fR,t(O)||L2(Q><R3) + ||881fR,l‘ +v- foR’t”LZ((O,T)XQXV)

+ ||1(t,x,v)e©T Srot+ etp(x,v), Xp(x, v), v)”Lz((—l,T]x(U\fZ)xV)‘

(4.125)

Following the same argument of (4.116)-(4.117) we deduce that

(4.125) S119: SRl Lo, 7); 12 (2R3 + 10 fR(O) 12
(4.126)

1
+| - LI =P)3; fg +& x rhs. of (3.3) | 220 71x0xv)-

From (4.31)-(4.33), the last term of (4.126) is bounded above by

2

Lo 145 STERT) P
{1l (1+ 86l frllgs,, ) + —1G10) s HIPFellz,

+ IV =P frl 2}

tx,v

1 1) e
= DIkl + IGO0 + el GADl L [IVIA =P frl 2

8 3(p—2) 6—2p P
P P
+{Z1PFRl L g I frll &+ <IGAON 2 (4.127)

LeLP™

+¢ell(3.12) || ﬂ}”PatfR”ﬁLl’
LeLP? e
&
+;||(3~11)||L%,x,v||mfR||L°° + el G I 2l fR I Ler2

t,x,v

+ (GO 2, + 13Dl ).
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Here the most singular term comes from ﬁL(Pt fr) in the r.h.s. of (3.3) .
On the other hand from (4.122) and the argument of (4.86) we derive

”S(g_t)”L,z((O,T);Lf(TZx]R)) 2 H/ fR,t(t»x’ v)@; (v)+/ po(v)dv B
R3 LE((0,7); LY ()
1
4.128
2 (1= 0@lullos = OGO PO frll 20 710260 (4123)

2
— (kg)r2 ||m/3tfR||L%((O,T);L$?U(Q><R3)) - EII(I = P)or frIl 20, 1) x 2 xR3)-

Here we have used

H /R3 x2() x3(0)A = P)0; fr (7, x, V)@ (v)v/ o (v)dv

L2((0,7); L ()
< [[A—P)o, fr(t, x, v)”er((OsT);LE,u(QXR}))

=2 2
S |18 R, % e 10 = PO RIS )

L}(0.7))
p—2 2 (4.129)
S |o frll e gz | 22 | IA=PA R g
LX,U(QXR ) L[FZ (0.7) LX.U(QXR ) L{ (0,T))
2 , p=2 2 2
S (I{B) P ”m atfR ”L?((O,T);LQO (QXR3)) (KS) P ”(I - P)al‘ fR ||Z2((0,T)><Q><R3)

_2_ _
S We) P20 fRll 20,720, @xmdy + KO T IA =PI fRll 20,7 xR0

Combining (4.128), (4.125), (4.126), and (4.127) and choosing N > 1 we conclude
4.74).

4.4 L°°-Estimate

In this section we develop a unified L°°-estimate in the local Maxwellian setting. We

. . . . d+e -V,
devise the weight functions to control an extra growth in |v| comes from W

and its temporal derivative:
1
W, p(x, v) =10 = exp{Q|v|2 —3p(x3)(x - v)} for 0 < B K % and0 < g < T

where 3 : Ry — Ry is defined as, for § > 0

1 1
38(x3) =B for x3 € [0, i 1], and 3g(x3) = for x3 € [E —1,00).
3

14+x
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We often abuse the notation of tv, g and tv. We compute to have

v - Vito, g(x, v)
0, 5(x, v)
= —36(x3)[v]* — v39x;38(x3) (x1V1 + X202 + X303)
= —35(x3)[v3” = X303 (3) 0317 — 3(x3) (1 1* + [v2]?)
— 0x338(x3) (X1v1 + X202)V3
= =Bl 11 (x3)0]* = Lgo1_ 1 ooy (x3) (1 + x3) |3

— 151 (x3) ! (v1l* + [v2l%)
B=1—1,00) 1 X3

— Ox338(x3) (x1v1 + X202)V3,

where we have used 0y,35(x3) = 1[3 1_1,00)(¥3) 707 The last term, the sole term

without a sign, can be bounded as

(l+x )2

| — 0x3368(x3) (x1v1 + x202) V3]
V21 g1 o) ) (14 x3) 2 (01 ? + (02122 s
4720511 o) (3) (14 x3) 2 (Ju1 2 + Jv2)?)

IA

IA

1 _
+ 5 L1100 (13 (1 +23)Jus .

Therefore we conclude that

1 -
v+ Vitoga(x, v) = {Blig o1y ()0l + —1[571_1 o0 (3) (1 + x3) s

= A g1  (3)  (1 + 02) g e, )
= B0 g g, ).
(4.130)
We consider
h(t, x,v) =ty p(x,v) fr(t, x,v). (4.131)

An equation for 4 can be written from (3.2) and (3.8) as

1 1
dih + —v - Vih + —-h = ——Kwh + S, (4.132)
£ EK EK

hly. =P, (%) 4 (4.133)
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For (4.131), wehave r = —Sw(1—P,,) frand Sy 1= ST (h, h) + 2T (0 f, h) +
to(I — P)R| 4+ woR;, and

v - Vit o +e vV
xWo,B +82K(I x)\/l_/«

vg = v(v) — ek , (4.134)
0,8 \/ﬁ
where we denote I'y, (-, -) (v) := w5, 7)) and K, (¢) := WK (5)-
If we have
&2k 19u| + €2 sup(1 4 x3)|Veu(t, x)| < oo, (4.135)
xeR
then for sufficiently small ¢, « > 0, from (4.130),
eK 5 2
vg > v(v) + 735(x3)|v| — &"x{eldpu| + [Vyullv|}Hv — eul
v(v) ek
> ==+ )l (4.136)

From (1.20), (1.22), and (2.3)

h h
|m(v)l"(g, E)(v)l

< — 0y - ul/ (v eelvs P+ 1]
_//ﬂ§3><82|(v Us) - Ul 1 (vy)e (4.137)

X {IR@OIA@)] + [h(@)|1h(ve)| }dudu.

2
59 V(v)”h”Lgo

From (3.20) clearly we have

1w, (v 20, w1 (umenPojpe—eu®)? gy oy
k(v, v*)L() < Ky (v, V) 1= 2 e 8 8 [v—vk 2 L()_
mQ,B(U*) [V — vl mg,ﬁ(v*)
(4.138)
As in (3.23) we derive
K (v, v)dv, < ———. 4.139
/W w0, v, € (4.139)
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Proposition 10 Recall v, in (2.3). Assume the same assumptions in Proposition 6.
In addition we assume (4.135), and the conditions of o and B3 in (2.3). Then

doo ”mQ,BfR ||L°°

S g f Ol + IGO0 + e (IGDlLy +1G5)l)
1 1
+ 7 | PRless + s | VP A= P)frl 3 (4.140)
+ IV =P frl2 )

el 1Pl e,
where
doo 1= 1= €2(3.10) |5, — e8llwp. frllLss,,. (4.141)
Proposition 11 Assume the same assumptions of Proposition 10. We denote
' (x, v) ==ty p(x,v) foro <o. (4.142)
Let p < 3. Then

/
doo,t1W0°0; R L2 ((0,7); 130, (2 xR3))

< ek 2|w'd, fr(O)| 25, + 123 fll2py

53/17/(3/17

1
+ m ||x/;(1 - P)atf”LlZ’m
£ g2
+ 5||(3~11)||L§?u + ?IIBMHLC;?U 1(3.10)[[ s, (4.143)

+ &%) 3.0) g, + ek N3Gl 2 1
+e(I9ullLes, +ellBAD g + e B.13) ] 2,00) 100 fr 22

1,x,v

+ s(s||(3.11)||Lg§ + el (313) 2,00

+ 19ull oo (1421310 I 50 + 8] fRllLe ))IlmlelLff;,v,

1x,v

with
dooy :=1— 82||(3~10)|IL33 — &8 frlire - (4.144)
In the proof of propositions, for simplicity, we often use || - [loc for [| - Iz,
I llLge, or || - |lee if there would be no confusion.
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Proof of Proposition 10 We define backward exit time and position as

h(x,v) := sx—3, xp(x,v) i=x — x—3v for (x,v) € Q x R3. (4.145)
v3 U3

Since the characteristics for (4.132) are given by (x — ’;—Sv, v), we have, for 0 <
t—s < tp(x,v),

v, V).

(4.146)

o r— —prm 1 4
—1e szth(s,x— sv,v)}=€ LEz"{TKmh+Sh}(S’X—
& &%k

_fz vﬁ(r,xf%u,LV)dr
Here e s 2 . We regard (x; — ZSvp,xp — Z2up) € R?
belongs to T2 without redefining them in [—, 712

Now we represent & using (4.146) and (4.133) as

_ fs[ :B

/(:6‘

[t t
h(tv X, U) =1tftb(x,v)<06 0 gth(Oa X — -V, U)
&

! a1 t—s
+/ e b B S Kh(s,x — —v,v)ds (4.147)
max{0,7—1p(x,v)} E°K &
! [t t—=s
+/ e ks 2e Sp(s, x — v, v)ds
max{0,t—1,(x,v)} &

_ ! B
+ Ly ayz0e 00 B — iy, ), 0, v),v). (4148

Since the integrand of (4.148) reads on the boundary, using the boundary condition
(4.133) and (4.146) again, we represent it as

h(t — tp(x, v), xp(x, v), V)

= 10(xp(x, V), V)epy/ (V) h(t — 1y (x. v), xp(x. V), 1) v/ 1n(v)]o3]

v3<0 m(Xb()C, U), U)
+r(t — tp(x,v), xp(x, v), V)

t 1 (x,v) Vg
= 1w(xp(x, v), v)cyy/ 1(v) 2k
U3<0
t— 1 y v)|v
< (0, xp(x. v) — b (X v)n,n) v (v)|os]
& o (xp(x, v), v)
t—tp(x, U) t h(x,v) Vg
+ 0 (xp (x, v), V) 1w (v) / 2k
Ux<0
1 t—t — Jur(v)|o
X —— Kwh(s, xp(x, v) — b(x v) st) v) p(o)fos| dsdo
&2k o (xp(x, v), )

r th(x,v) vg

t—tp(x, v)
+ 1w (xp(x, v), v)c,“/u(v)/ 0/ 2
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t—tp(x,v) —s A 1(0)|o3]

8 ) ) - U, | d dU
X Sp(s, xp(x, v) A )m(xb(x, 2).9) s
+r(t_tb(xv U),Xb(-x,v),v), (4149)
t—tp (x,v) vg
where r = —S$wo( — P,)fr and e 0 2 =

t—tp(x,v) |
_ f() o

1 (x,v) t—tp (x,0)—s
o ug(r,xbevftbf

v,0)d
e ) r.

Note that, from (3.4), (3.5), (3.57), (3.58), and (4.137),

t—s 8 v(v)
|Sh(s, x — v, )| S v(v)Ellhll + —||(3 10)|loo 12l o
4.1
+ 1B Ao + 135 loos (4.150)
(1 —P,)f2l S 11(3.10) -
We derive a preliminary estimate as
h(t, x, ) S ¢ =5 hO0)]o0
+e8 sup [[A(s)]13 + &> sup [|(3.10) ool (5)[loo
O<s=<t 0<s<t
)
+ 5 Sup 13-10) oo + &2k (13- B llo + 11(3:5)lloc) (4.151)
0<s<t
e 22,079 t—s
+/ T/ Ko (v, vy)|h(s, x — , Uy)|dvyds (4.152)
0 E°K R3
t—1p(x,v) 6’_28%'(0_3)
+ 1o (xp(x, v), v)cuvu(v)/ / —
v3<0 JO &K
ih(x,v) —s A/ 1 (v)|o3]

l‘_
X /]1;3 Ko (0, v:) A (s, xp(x, v) — 70, U*)|dv*d5m

(4.153)

We note that |h(s, x — t%s, v4)| has the same upper bound. Then we bound (4.152)
by a summation of (4.151) and

r— tbe 25
sup m(xb,v)cw/u(v/ /
v3<0

(xb,v)eanIRg

=0 (4.154)
t—1ty — /(o) o
x/ Ky (0, vi)|A(s, xp — R su,v*)|dv*dstU,
& e w(xp, 1)

@ Springer



22 Page68o0of103 J.Jang, C.Kim

and importantly

u(u) l)(L*)( 7,[)

(t—s)
e 262k 262k
[oa o [ o
0 (4.155)

— S S —
X Ko (Vs Vi) [ (s, X —
R3

T
Vi, Vsxe) | dUgsdTdvgds.

We consider (4.155). We decompose the integration of T € [0, s] =0, s—o(1)e2k]U
[s — 0(1)8 «, s]. The contribution of f —o(l)e2k -dt is bounded as

1
v(v)(l—e per )”km(U Mg ()8 Kllkm(v*, I 0sup 1A () lloo
<s<t
<o(l) sup [[A(s)lloc- (4.156)
0<s<t

For the rest of term we decompose Ky (Vs, Vi) = Ko, N (Vs Vi) + {Kio (U, Vi) —
km N (Vs U**)}Wherekm N Vs, Vi) i= Ko (Vse, Vi) X1 1 L Jos—vial <N & [ve|<N* From
(4.139), fR3 Ko (Ui, Vi) Ly, >N Vs S 1/N. Also from the fact Ky (vy, Uys) <

e*C\U**U** \2

ool € Ll({v* — Uxx € R3})’ Sup,, fR3 Ko (Vs, v**){lﬁz\v*—v*ﬂ +1|u*—v**|2N}
dvys | 0as N — oo. Hence for N > 1

v(v) ([ S) V(vs) (S‘—‘[)

e 2« §= 0(1)5 K e T 262k
(4.155)5/ T/ - v*>/ e —
0 E°K E°K

r—s S —T
Xf Ko, N (Vs Vss) [ (S, x — Vs, Usere) | dUsedTdvsds

v —

v(v) ( *)(Y 7)

c / e 2k (1—s) / /v o(De%k
=Cn e
[vs| <2N 2K

t—s s —

Xf | fR(s, x — v—
[Vsx [ <2N

+o(l) sup [|A(s)]lLe,

0<s<t

(4.157)

‘ Vs, Uss) |dUssdTdvsds

where we have used the fact sup, K (vs, Vss)0p g(V4+) < Cy < 00 when % <
[ve — Vax| < N and |vi| < N (then |ve| < 2N).

Now we decompose fr = Pfr + (I — P) fr. We first take integrations (4.157)
over v, and v, and use Holder’s inequality with p = 6, p =2in1/p+1/p' =1
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for P fr, (I — P) f respectively to derive

(4.157)

1
< 4N’Cy—  sup ( / /
v(v)  o<s<r 04| <N, || <2N

0<t<s—o(l)e%k

— S sS—T
v —

t
P fr(s, x —

1/6
Vs, Usese) |6dv**dv*)

e (4.158)

£
3 1
+ 4N)’Cy—— sup
v(v)  o<s<r [vsl <N, v <2N

O§r§s—0(l)£21c

— s s —
v —

(0= P) fr(s.x — -

. 12
2
Viey Uses) | dU**dU*> .

Now we consider a map

Ve € (R 1 v < N} > y

t—s s —T
‘U_
& &

— 3
=x — — | =3 4159

0
vy € 2, where )_y
d e

Ux

‘S T‘

We note that this mapping is not one-to-one and the image can cover €2 at most N
times. Therefore we have

1/6
r—3s S§—T
// [P fr(s, x — v — Ux, U**)|6dv**dv*
[V£| <N, Jvsx | <N € &

dy 1/6
[V£| <N, |vsx |[<N EK

1/6
212 ||PfR(S)||LfX>VU,

t—s s—T 5 1/2
|(L=P) fr(s, x — v — Vs, Uses) | “d0sscd vy
[V&| <N, Jvsex | <N & £

1/2
= W”(I - P)fR(S)”L}(’U'

Therefore we conclude that

(4.155)
< (4N)*Cn(4.158) + o(1) sup [[h(s)]Lx,

O<s<t
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1 1
4 - - _

+o(1) sup [h(s)lle,

0<s<t
<y 1
N e 2 PSRy, + i | 1A= Pzl
+ 1A= P frl2 )

1
+ i Il | PArlz, +o(1) sup 1AL, (4.160)

0<s<t

where we have used (A.1) the Sobolev embedding in 1D at the last line.
Now we consider (4.153) and (4.154). We decompose s € [0, t — 1] = [0, —tp —

o(De2k]U[r — ty — 0(1)e%k, t — ty]. The contribution of fzt—_z:,h—o(l)szx -« - is bounded
as

0(1)8 K

[k (0, )1 sup [|2($)]loo < 0(1) sup [[A(s)]loo- (4.161)

0<s<t 0<s<t
Fors € [0, — tp, — 0(1)e%k] we consider a map as (4.159)

pefbeR 03 <0} >y

t—1 d t—4 3
=y — — 27 e Q. where —y‘ — LT T S 03,3 4162)
€ av )
Following the argument to have (4.158) we bound
tftbfo(l)szlc
the contribution of / ... of (4.154)
0

1 1
<y P { I—P (4.163)
~N 81/21(1/2 ” fR(S)”Lg,U 3/2 32 ”( )‘fR||Lt2,x.v

1
+ I — P)aszHL,Z_M]+m||3zM||L,°j. ||PfR||LgX'

In conclusion, we bound |A(t, x, v)| by (4.151), (4.160), (4.161), (4.163) and con-
clude (4.140) by choosing small enough o(1) in (4.160) and (4.161). m]

Proof of Proposition 11 Since many parts of the proof are overlapped with the proof
of Proposition 10 we only pin point the differences. An equation for to’d; fx takes the
similar form of (4.132) and (4.133). We can read (3.3) for

h(t, x,v) = w'(x, v)d; fr(t, x,v), foro’ <o, (4.164)
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as (4.132) and (4.133) replacing

2 ’ 28 ’ 2 1 /
Sp = ;me(m Ja, h) + ;Fm’(m fr.h) + ;Fm/(m 0 f2, 10" fR)

. O +e - Voum
_ t( v

1 1
— Tm/Lt(I - P)fR + Tm/L(Pl‘fR)
&K E°K

m/
)EmfR + ' I —P)R3 + 'Ry

(4.165)

2 1)
+ —m/Ft(fZ, fR) + _m/rl(va fR)y
K EK

Py &
r= —gm/(l - Py+)3,f2 + m/r)/+(fR) - m/gry+(f2),

where r,,, (g) has been defined in (3.9).
We have the same equality of (4.147), (4.148) with (4.149) for h of (4.164)

but replacing S, and r of (4.165). Note that ‘g((Tx,’:j)) < e=(@=e"’ and hence

—1 ,
o, (O ) 1 < (3.13) from (3.13). From (3.36), (3.6), (3.7), (3.57), (3.12),
(3.13), (3.58), and (4.137), we bound terms of (4.165)

1 8
1Snl < V(v){;|(3-10)| + E”mfR”oo}”h”oo +(3.6)+3.7)

v(v) 1 3 §
+<—(3~11) + (3.13) + [9u|(— + —(3.10) + —IImleloo)>||mfR||oo,
K &Kk K K
(4.166)
e &2
Irl < 5(3.11) + EIB,u|(3.10) + e|a:ul|lvo frllco- 4.167)
Then as in (4.151)-(4.155) we derive a preliminary estimate as
|h(t, x, v)]|
_v &2k
< e 2% |h(0)]lo + o )(4.166)+(4.167) (4.168)
v(v

e 17 t—s
+/0 T/ﬂ@ K/ (v, vi) (s, x — A , Ux)|dvsds (4.169)

S (=)

=tp(x,0) T 020
+ 10’ (xp (x, V), V) M(v)/ / —
v3<0J0 &

K
X/ Ky (0, v)|A (s, xp(x, v)
]R3

t— 1 s — A/ n)|v
_ b(x—v)sm v*)|dv*ds&dn. (4.170)
g 0’ (xp(x, v), V)
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As (4.154) and (4.155), we bound (4.169) by a summation of (4.168) and

C, C;
/l e—ﬁ([—s) /‘S—D(I)EZK e—ﬁ(s—r) /
0 &2k 0 &2k |ve|<2N

t—s s—T
x/ lh(s,x —
[Vss | <2N

v —

Vs, Vs |[dUgdvgdrds, 4.171)

t—ty—o(1)e2k e_ﬁ(’_s)
+ sup 1w’ (xp, v)cw/,ud(v)/ / —
(X, v)€IQ2XR3 03<0J0 &K
t—1,>0
F—ty — NI
x / (s, xp — — 2 "2y v*)|dv*dswdn (4.172)
lv.|<2N € 1’ (xp, v)
+o(1) sup [|A(s)lLee,- (4.173)
0<s<t

Then we follow the argument of (4.158)-(4.160) to derive that, for p < 3,

¢ Cy
_ﬁ(f—s) ‘/s—o(l)SZK e—ﬁ(s—r) N1/3
0

t
(4171 £ /0 £ IP3, £ (0)ll,p deds

ek 2k g3/pi3/p
(4.174)

f b 9 ps—o(ledc ,mad 6D A2
+,/(‘) T‘/O 2k £3/2,:3/2 “Patf(f)”L%’vdeS.
(4.175)

Now we use the Young’s inequality for temporal convolution twice to derive that, for
p <3,

”(4'171)“L,2(0,T)

: i /S T IP3; f ()|
T p
~ &2 Li® 1 Jo ek &3/pi3p ! Ly,
Nl 2
=P f (D)l 2 >df
£3/23/2 o .
C ¢ (4.176)

—Lr g eI

e 2% P
<
~ 82K 1 82K

Lg(R) LI(R)

1/3 1/2
x <m”Patf”L,z((O,T);Lf(Q)) + Snoanlld- P)alf||L2((0,T)><Q><R3)>
,SN mnpatf”Ltz((o’T);Lf(g)) + WH(I - P)atf||L2((0,T)><Q><R3)'
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As in (4.163), for (4.172) we use (4.162) to derive that, for p < 3,

14 172)1l 20,7y

¢ e,%(t,s) 1 Po
/0 82IC 83/1’K3/1’ ” lf(s)”Lf:.U

1
+ W”(I - P)atf(S)HLgv)ds

5 ‘

L2(0,T)
9 (4.177)
e*mm
e2x Ll(R){g?’/[’K?’/P P9 f 120,772 @)

t Fmanld- P)atf||L2((O,T)><Q><R3)}

1
S e Pz T mman 1A= Pl <axr)-

where we have used the Young’s inequality for temporal convolution.
In conclusion, we bound ||h||L,2L°.° by ||(4.168)||L[2Loc , (4.176), (4.173), (4.177)
and conclude (4.143) by choosing small enough o(1) in (4.173). O

4.5 Proof of Theorem 2
An existence of a unique global solution F for each ¢ > 0 can be found in [12-15].
Thereby we only focus on the (a priori) estimates (2.13).

Step 1. Define T, > 0 as

T =sup {1 = 0 min{ds, d;, do. di. ds.1. doo e} =

Sel/2 el/2s
VD) +edliog s f ez, + I PR < 1 4178)

and
K

forall0 < s < t},

where da, da 4, de, d3, d3 1, doo, deo,r are defined in (4.3), (4.5), (4.45), (4.73), (4.75),
(4.141) and (4.144).
From (2.10) and (4.178) we read all the estimates of Proposition 7, Proposition 8,
Proposition 10, Proposition 9, and Proposition 11 in terms of £(¢) and D(¢) as follows.
From (4.140), (4.178), and (2.10)

sup [[Wo,8/R ()L

0<s<t o
S ! PRI
< ——— su QI
e /2c1/2 OSXI; LS,
1 1
+ 12V D(f)-l-W”PfR”L,ZJ
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3
+ e f Ollse + 2 exp (5 )- 4.179)

Now applying (4.179) to (4.44) we derive that

&€ 1
sup 12Sx(5)lzg % = exp (—57) sup VE®) + 15 DO+ | Pz,

0<s<t 0<s<t

3
+ (e 108 Ol +e‘/2exp( )

(4.180)
From (4.179), (4.180), and (4.178) and (2.10) we conclude that
1 1
sup {i 2 [IPfr($)llLe + e2kllwgs fr(9)llzs, }
O<s<t
3 1
Soxp (=) + {50 + s (VEG) + VPO 1Pl iz,
4.181),
(4.181)

From (4.72), (4.181), (4.178) and (2.10)

1
k2| Pfr “L?((OJ):LK-’)

p—2

1725 +2 2 p=2
(4.181)*+(8725,—z>,cm(4.181)*> y } (4.182)

< (4.181)*{1 4 &

4.182),

Using (4.181) and (2.9), from (4.74) and (4.143), we deduce that, for p < 3 and
o' <o.

3+8 3/p,3+B
2P SR 20.0:) + @ a2 g 60 frll 20,000,

< (4.182)*{1 4 T ST (4181, + (4.182)*}} . (4.183)

4.183),

Step 2. Using the estimates of the previous step we will close the estimate ultimately
in the basic energy estimates (4.2) and (4.4) via the Gronwall’s mequahty We note
that from (2.9) the multipliers of fot ||PfR(s)|| 2ds in (4.2) and fo ||P8;fR(s)||2 ds

in (4.4) are bounded above by
O 2P (1 4+ ex2™® 4 (ex 7™ F)2) < 2, (4.184)

where we have used (2.11).
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In (4.2) and (4.4) we bound

lic' 2P frll 23 <xz“-?>||PfR|| 3 ||x1/2PfR||L2Lp
<r (sx)*f“*?)m 181)*|‘*§|<4.183)*|§,
1P3y frll 203 S ||PatfR||L2* ||Pasz||L2Lp

< e DB 075 4 183y .

(4.185)

We can check that the multiplier of || e~ Le=1/2 Jv(A=P) fr ||i2 in (4.4)is bounded
as, from (2.10) and (4.181),

{s(l +ell3.10) | L) 10ru | s, + excl| Vadsuell s + (exc'/((313)ll32)°

1,x,v

< e PP 468272 (4.181) 4%

+ (edllw frllugs, )

Applying (4.181), (4.182), (4.183), (4.185) to (4.2)+o(1)(4.4), using the above
bound and (2.11), and collecting the terms, we derive that

sup E(s) + (1 — 82k ~2|(4.181),|*)D(1)

0<s<t

6 T
< E(0) + F(0) + exp (KT> 1 (4.184) /0 E(s)ds

(4.186)
482451 4181), 4 F | (4.183), | ¥
6 p 6
+82 0170325025 (4181, 2 (4.183), .
Under the assumption of
e 28k 1 (4.181), <« 1,
+2 2
e T (181), < 1, [ 7 sk ] 281, < 1,
(4.187)

(826~ 0= 4+511/44.181), « 1
[825 p( ) 73 2‘13 *(1 3)]1/4(4 181)* <<1

we derive that, for some constants €; > 0 and &, > 0,

t
sup £(5) + D) = €1 (£0) + Fp(0) + exp( ?n)) + e ® fo £(s)ds.

0<s<t

(4.188)
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Note that among others the last condition condition is the strongest in (4.187), which
can be read as, from § = /¢ of (2.11),

3

1_3(1_r2) _3_B_3q_p
523 (128) =13 -50-5 4 181), « 1. (4.189)

Applying the Gronwall’s inequality to (4.188) (we may redefine £(¢) as supg; -, £(s)
if necessary), we derive that

s 02660 750+ (1)) 1+ o (51

Applying this estimate to the last term of (4.188) and using the fact P’ < 3 we derive
that, after redefining €; if necessary,

2¢
sup E(s) + D(t) + Fp(t) < €1 (£0) + Fp(0) + 1) exp (K—;t) forall 1 <T,,

0<s<t

(4.190)

under the assumptions of (2.10), (4.178), and (4.187).

Step 3. Now we find out the ranges of §, «, ¢ satisfying the assumptions of (4.178)
and (4.187). From (2.12) and (4.190), if we choose § as

(B
=

€1 (E0) + Fp(0) + 1

1
—28,T |75
)exp( = )} . (4.191)

then we can achieve (4.189) and hence all conditions of (4.187). Clearly (2.11) and
(2.12) ensure (4.191).
Now from (4.190) and (2.11) we derive (2.13), which implies

sup {12 P ()15 + e kg fr(6) iz

0<s<t

1
+ ||(8K)3/pK2+mmg/,BfR(S)”LZ((O,s);LEf,,)}

3
< g3ty -5)

These imply min{ds, da,;, dg, d3, d 1, doc, doo s} > + and 22 /D) < 1 from

(4.3), (4.5), (4.45), (4.73), (4.75), (4.141) and (4.144).
Then by the standard continuation argument we can verify all assumptions (4.178)
uptotr < T and T = T. The estimate (2.13) follows easily.
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5 Navier-Stokes Approximations of the Euler Equations

In this section we prove Theorem 3. The proof of the theorem relies on the integral
representation of the solution to the Navier-Stokes equations using the Green’s function
for the Stokes problem in the same spirit of [47].

5.1 Elliptic Estimates and Nonlinear Estimates

In this section, we prove the estimates of the solutions of incompressible Navier-
Stokes equations in large Reynolds numbers with the no slip boundary condition
satisfying (1.13)-(1.15) based on recent Green’s function approach using the vorticity
formulation of (2.16)-(2.18) applied to the inviscid limit problem [38,44,47,54]. An
advantage of working with analytic function spaces is the Cauchy estimates useful for
recovery of the loss of derivatives. We recall the spaces, norms, and terminology we
have defined in Section 2.

Lemma 7 ([47,54], Embeddings and Cauchy estimates) The following holds

(1) Bt < gbh gpng Brx c glr,
(2) llg1g2lls S lgtlloorllg2lls s

legll, s ~
(3) 2 ip1=1 IDP gl < X_)’\k,foranyo <A <A
For (2) and (3), || - ||+, can be either || - lloo,nic OF |l - lloo,r,kr OF I - lloo,2,0 OF I - [l1,5.-

Lemma 8 ([47,54], Elliptic estimates) Let ¢ be the solution of —A¢ = w with the
zero Dirichlet boundary condition, and let u = V x ¢. Then

lulloon + IVullin S Nl

IVatlloo + IVisloos S D IVE@ll1a
0=IB|=1

l0snlloos S Y IVE@ILs + lonlloc.s. CRY
0=<|Bl=1

_ / 48
1671V oo £ Y IVE T wplni
0=IB|=1

Proof Here we only sketch the proofs. For full justification we refer to Proposition 2.3
in [47] for 2D and Section 4 of [54] for 3D and the proofs therein. From (| |*>— 83)(1)5 =
wg and ¢¢ (0) = 0 we write

¢z (2) =/‘G—(y,z)ws(y)dy+/ G+ (y, Dwe (y)dy,
0 L (5.2)

: T EEG—y) _ —lEl(+2)
with GL(y,z) := e (e Y — e8IV )

The first two estimates of (5.1) can be easily derived from this explicit form. For
the third estimate of (5.1), we write u; = 9,(—A) 'w3 — 33(—A) " lw; and d3u; =
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9302(—A) "Lz — 3393(—A) ' w,. Then the third estimate of (5.1) follows from the
identity

1 < : B
3. (33(—=A) Lan)e =5< /0 E]e BIE (1 — e 7280wz 5 (s, y)dy
o0
+ / 1&1e 107D (1 4 7281w 5 (x, y)dy
ZOO
+/ (—2|$|)e_|§|(y_x)€_2$Zws,z(s,Y)dY> — wg 2(2).
Z

Next we prove the last estimate. Note that

+z

Viu3z(z)
1 Z
= Z/o 0y Vpus(xp, y)dy + Viyus(z)

1 Z
=- / Vi (8195 (—A) " s — 9235(—A) o) . y)dy + Va3 ().
0

From (5.2) we read that fori =1, 2

‘Ellﬁl(a?,(_A)i]a)l)é(s, Z)‘
= 1(/ e IGT (1 — 7260 Pl o (5, y)Idy
23\ Jo

o0
+/ e—|é|<y—z>(1+e—2|5|Z)|g|lﬁl|wg,,~(s,y)ldy>
Zz

18I
< o;lzx |1g1' wévh”Ll(i)Ha)'

From the identity and estimate above we conclude the last bound of (5.1). O

As a consequence of Lemma 8, we have the following nonlinear estimates.

Lemma 9 ([47,54]) Let u and u be the velocity field associated with w = V, X u and
@ = Vy x u respectively. Then

lu - Vol S llwllialVadlli + 110+ VDol allg ool
low- Vsl S lonliall Vaislio,. + llwslliallozis o,
S llwlliall (X + [VaDall,a, (5.3)
- Vipllin S lonlliallVainlloox + @3l 103inll1,5
Slolia(l@slles + 1+ 1ViDollz)-
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Moreover

- Vol S Il Vadnlls + (I + 1VaD@ll 4 18 8:@31l00,2) 1 3200 1,1
lw - Vil S lwslloo,no(I (1 + [VaD@Ix + @)

8 5.4)
Flonller Y V4@l
0=[Bl=1
where || - ||x,a can be either || - loo,x.x OF || - loo,nk1-
Furthermore
lu - Vslloonro S ol ill Va@sllcon,0 + 114 VDol 180303 (| 00,105
~ 2\ ~ ~
- Vitzlloor,0 S lwnllsal(1 4 Vil F)én 1 + llwslloo,oll (1 + [VaD@nli,x,
(5.5)

where ||(1+ [Val")glls = X5 _o 1Vig

Proof Again we refer to Proposition 2.3 in [47] for 2D and Section 4 of [54] for the
full justification. The bounds (5.3) and (5.4) directly follow from Lemma 8. The proof
of the first estimate of (5.5) is an outcome of applying (5.1) to an easy bound

~ ~ 1 ~
lu - Vaslloor,0 S llthlloo x| Ved3lloo,r,0 + 11£(2) 7 3 lloo,2 1€ (2) 3303 |00, 1,0-

For the second estimate of (5.5) it suffices to prove the bound for wy, - V3. From

1E@ A+ de @) S Tor 7)1+ ¢ (@) + der (D] S 1,

- Vi3
lon - Viiislloo0 S lonlles [ @1+ 8@ + b @) 7= |
¢(z) lloo,r
S lonlle e ™ Vaiis oo,
Then we use the last bound of (5.1) to finish the proof. m]
We finally record the crucial estimate of nonlinear forcing terms N = —u - Vo +

o - Vu, as an outcome of Lemma 9, that will be also crucially used to control B =
[0xs (=AY —u - Vo+ o Vu)] |;=0 in the vorticity formulation (2.16) and (2.18).

Lemma 10 ([47,54], Nonlinear estimate) Let . € (0, Ag — y's) be given. We have the
following:

I+ IVADN T S (I + 1VRD@l + [+ [VaD@slloos 0) 1+ [VaPolls

+ 1A+ VA DP ol all (1 + VAPl 1. (5.6)
1Bl=1
> IDPA 4 VaDN 1.
IBl=1
<Y IpPa+ |vh|)w||1,x< > UDPA 4 Vil + I+ |vh|)w||oo,k,o>
1Bl=1 1B1=2
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+ 3 IDPA + [VaD@3lloonoll (1 + Vi)l (5.7)
IBI1=<1

For [[ - 11«,5. to be either [[ - oo, 0 [[ - oo, k15

[Nl S 1A+ Vel alloles + [+ [VaDollLa[Dolls,  (5.8)

D UDPNIL S )0 1A+ VAl P ol el
IB1=1 18l=1

+ Y UMD ollas (I + [VaPoll1a + B3IIDE o]).1)
|B1=1

+ Y UDPollall (1 + [Vihol s (5.9)
|B1=2

The proof relies on Lemma 9. We refer to Lemma 4.2 and Lemma 4.5 in [54] for
the detailed proof.

5.2 Green’s Function and Integral Representation for the Vorticity Formulation
By taking the Fourier transform of (2.16)-(2.18) in x;, € TZ, we obtain

Orwg — knoAgweg = Ng inRy, (5.10)
kn0(0xy + 1EDwen = Bg, wg3 =0 onx3z =0, (5.11)

with wg |;=0 = wog for § € Z2. Here

Ag = —|E]* + 92 (5.12)

X3

and

Ng = Ne(t,x3) == (—u - Vo + o - Vu)g (1, x3),
Bg = B:(t) i= (3, (—Ag) ™ N (1)) |xy=0. (5.13)

Here (— Ag)_l denotes the inverse of —A¢ with the zero Dirichlet boundary condition
at x3 = 0.

We give the integral representation and present key estimates on Green’s function
for the Stokes problem. As shown in [47,54], letting Gg (¢, x3, y) be the Green’s
function for (5.10)-(5.11), the solution can be represented by the integral formula via
Duhamel’s principle:

o0 t o0
we (T, x3) =/ Ge(t, x3, y)woe (y)dy +/ f Ge(t —s,x3, y)Ne (s, y)dyds
0 070 (5.14)

t
— / Ge(t — s, x3,0)(Be(s), 0)ds,
0
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where
Gep, 0O
Ge=| 0 Ggr 0 |, (5.15)
0 0 Gegs

with Ggj, of (5.19) and Geg3 of (5.22): for G¢4 can be either G¢j, or Gg3

0:Gex(t, x3,y) — knoAgGex(t, x3,y) =0, x3 >0, (5.16)
kn0(dx; + 15D Gen(t, x3,y) =0, x3 =0, (5.17)
Ggs(t,x3,y) =0, x3=0. (5.18)

The following estimates and properties for G¢ will be useful to show the propagation
of analytic norms of w, d;w and a}w.

Lemma 11 ([47,54])

(1) (Bounds on Ggjp) The Green’s function Ggy, for the Stokes problem (5.16) and
(5.17) is given by

Gen = Hi + R, (5.19)

where ﬁg is the one dimensional Heat kernel in the half-space with the homoge-
neous Neumann boundary condition which takes the form of

He(t,x3,y) = He(t, x3 — y) + He (1, x3 + )

1 _ 3=y EESIEE W e
— Kn()t (e 4ot +e 4rngt >e 1o , (520)
and the residual kernel Rg due to the boundary condition satisfies
1 N
k < phH1—Oob(x3+y) % — Lol
|3x3Rg(t,X3,y)| Sbh e + (Knot)(k+l)/2e 0 e g,
(5.21)

with b = |§] + 2= and Re (1, x3, ) = R (t, x3 + ).
(2) (Formula of Gg3) The Green’s function Gg3 for the Stokes problem (5.16) and
(5.18) is given by one dimensional Heat kernel in the half-space with the homo-

geneous Dirichlet boundary condition as

Ges(t,x3,y) = He(t,x3 —y) — He (¢, x3 + )

L (ol o Jememkr (5.2)
= e Hml —e Al e ’ '
Vknot
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(3) (Complex extension) The Green’s function Gg¢ has a natural extension to the
complex domain H, for small A > 0 with similar bounds in terms of Re y and
Rez (c¢f. (3.16) in [47]). The solution wg to (5.10)-(5.11) in 'H; has a similar
representation: for any z € H,, let o be the positive constant so that 7 € d'H,;,
then wg satisfies

t
wg(t,z)=/ Gg(t,z,y)wog(y)dy+// Ge(t — 5,2, y)Ne (s, y)dyds
OH 0 JoH;

13
—/ Ge(t — 5,2, 0)(Be(s), 0)ds.
0

The proof of Lemma 11 can be found in Proposition 3.3 and Section 3.3 of [47].
The next lemma concerns the convolution estimates.

Lemma 12 Let T > 0 be given. Recall the norms defined in Section 2. For any 0 <
s <t < T andk > 0, there exists a constant Ct > 0 so that the following estimates
hold: for Ggy can be either Ggp, or Gg3

(1) (/J){ estimates)

k o k ‘
> (§(z)81)j/ Gex(t, 2, y)ge (V)dy|| < CTZH(C(Z)az)Jgs‘U,
i=0 0 z; i=0 *
(5.23)
k oo k .
> ewa [ Gg*a—s,z,y)gg(y)dy' =cr Yy |e@are, -
j=0 0 z =0 »
(5.24)
(2) (L33, estimates)
k . poo
> (((Z)BZ)’/ Gex(t,2,y)8: (y)dy
j=0 0 L3t
k .
=cr ) |e@aie,. . (5.25)
jZO Ak
k . poo
3 | @@a) [ Geult — 5.2, V)ge (1)dy
Jj=0 0 ‘kat
ko ‘
<Cr X(j)/g lc@ar e, - (5:26)
p= ,
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(3) (Ei‘fk estimates) For either k = 0 ork > 0

k

2

j=0

o2
(5.27)

€@ [ Gtz g2y s ) el
j=0

ALK

k i~ k .
> l€@a [~ Gt —sznemn] o) Je@iiy],. -
=0 0 ﬁio j=0 K

K

(5.28)

Proof We only give a proof for G, since G¢3 can be handled easier than the other.
The proof of (1) and (2) can be found in Propositions 3.7 and 3.8 of [47]. Here we
present the detail for (3), the second inequality. We consider real values y, z € R4
only as the complex extension follows similarly (cf. (3) in Lemma 11). Note that in
view of (5.19), (5.20) and (5.21), it suffices to show

(E(Z)f)z)j/O R(t — 5,2, )8 (y)dy N
.j:0 Ak

ey [c@age] .. .
j=0

(5.29)

00 k
€@ [ HE =55 500 LD M (CINE
Jj=0 b

=0 Dok

~

(5.30)

y—z[?

where R(t,z,y) = be ?0%9 and H(t,z,y) = ~ et for some M > 0. We

start with (5.29). Let k = O first. First note that

1
«/th

ay

ge(y)dy

*© b [ G-+b €
‘ /0 R(I—S,Z,y)gs(y)dy‘=€_z /O be™ DY (1 4 ¢y (v))

1+ ¢ ()

0 -
< e+ 3 0) s [ . fo be™ @y,

since ¢, is a decreasing function. The last integral is uniformly finite for all || and
x. Hence,

/O R(t —s,z,y)g:(y)dy

1+ 6:0) o )
< TPk L(a=b)z ..
o (1 + @ lecler,

Fora > 0,ifk < ;_zthen
4noa

sup ( 1 + ¢ (0) e(a_b)z)
z 1+ ¢ (2)
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1 1
< Vit <minil,ﬁ—+}, (5.31)
inf | (Vi + qr=7)e V0" a0 p!
‘HW“’
where the last bound follows from the fact that

1 z 1 1
—Ze2 0K Z—Z{ +—| |”}Zmin{1,—}.
T+ T+15r ! 2m 27 p!

For k > 1, since |¢(2)9;R| < be_%, the derivative estimates follow analogously.
Therefore, (5.29) holds true.
We move onto (5.30). Let k = O first. Note that, for0 <s <t < T andk < 1

2
|y—2] 2
e IG5 " — ¢ 2l i Mk(r 5ty Mic=s)]

e%&%(r—s)e—az < 6701 2k (1=5) p=0z < e % (5.32)

and thus

/0 H(t—s.z. y)gg(y)dy'

%0 1 bz e
_ T M- oYY (] ” _
/0 ¢ I U O g ()

_ ! =5 + e ())dy.

el | o=

z
For the last integral, we divide the integral into two: fooo = foz + [ 2°. For the latter,
2

since ¢, is decreasing and the kernel is in L, we deduce

1 ly—
e ~ i J) I+ o)Ay <1+ ¢ (2).
/2 VKt —s)

For foﬁ dy,note |y —z| > 5 and 1 + ¢ (y) < 1 4 ¢(0) for y € (0, §). Hence

Z

z 1 = 1z
/2 I (1 + e ()dy < e T (1 + ¢ (0)).
0 VK —s)

Then

<su
o0
L)MK

( + ¢K(0)

6/</v 1 o -
0D i )ngsuﬁ

/O H(t —s,z,y)gs(y)dy‘
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1+¢, (0)
I+ (2)

- A o
A similar argument as in (5.31) shows that e 16Mki=s) is uniformly finite in k.

This shows (5.30) for k = 0.
For the derivative estimate, by splitting the integral into two parts and using
0. H(t,z,y) =—0yH(t, z,y), we rewrite

/0 C()0 H(t — 5,2, y)g:(y)dy
% Z Z
=/0 () H( — 5,2, y)8(V)dy — C()H(t — 5, z, z)gg(z)

+fz C(H( — 5,2z, y)0yge(y)dy.
3

For the first integral, since |y — z| > % for y € (0, %),

£ H N LS Sy
Z t—s,2, S e =) < -z e K(i—s
£(2)9; M ST Ikt —9) YR,
2
<;e—4/3k7&‘_5).
~ Vet =)

Hence, by the same argument as in k = 0 leads to the desired bound. For the second
term,

zZ, 2 SR z
C@HE =52, D)8 (DI S e M e (14 ¢ (5) [l ge] oo

Z
Vit —s)
< e—%e*&%(l + 0 (2)) | ge] o
- e*%lﬁm*&mﬁe%&z”“;”e’&z

(14 ¢ (@) | ge ”ﬁi‘jk

< e (1 + & (2)) ”gf Hﬁio,( ’

which leads to the desired bound. For the last integral, note that {(z) < 2¢(y) for
y = 5. Therefore the corresponding integral can be treated in the same way as in
k = 0 with g¢ (y) replaced by ¢(y)dygs (). This shows (5.30) for k = 1. Other k > 2
can be estimated analogously. O

The next result concerns the estimates for the trace kernel.

Lemma 13 Letag(s) = [8z(—Ag)_1gg] |.=0. ThenforanyQ <s <t < T andk > 0,
we have the following

k
Y €@ Gente 5.2, 006, < e (5.33)
Jj=0 g
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Z | €87 Genr = 5.2, 00|, A (5.34)

ooN\/_

Proof Note that from (5.19), (5.20) and (5.21), the conormal derivatives (¢(z)d,)/ of
Gegp(t — 5, 2, 0) enjoy the same bounds as Gg, (¢t — s, z, 0): for some small constant

CO’

) 1 [z
0.) Ge(t —5,2,0)| < be 0P 4 ——— ¢ Vi, 5.35
[(£(2)0) Ge(t — 5,2,0)| S be + me (5.35)

Therefore, it suffices to show the bounds for k = 0. We first recall the representation
formula for ag (cf. (4.29) of [38] or (4.2) of [54]):

ag(s) = /0 e ge (y)dy,

from which we have ||ag ||L§° < ” g H 1-Since the above upper bound of G (¢ —s, z, 0)
is integrable in z, (5.33) follows. To show (5.34), we compute ||G¢p (t — s, 2, 0) ”ﬁfo,(:

_ - 1z
bel@—cob)z 1 X0k
1Gen(t — 5.2, 0)ll g < sup[ + su
4

1+ 0@ | T Vios 2| V& + Jihe @)

It is a routine to check that both supremum norms are uniformly bounded in « and |&].
Therefore (5.34) is obtained. O

5.3 Proof of Theorem 3

Our goal is to show that w(¢) indeed belongs to CL([0, T1; B**) without the initial
layer under the compatibility condition (2.34), and that 8,20) in B! with the initial
layer. The existence of w(¢) in C1([0, T']; B*") under the assumption of Theorem 3
can be proved by following the argument of [47] and [54]. For the 2D case, Theorem 1.1
of [47] indeed ensures the existence of w (¢) in C' ([0, T']; B**") under the assumption
of Theorem 3. Such a result follows from Lemma 7, Lemma 11, Lemma 12, Lemma 8§,
Lemma 9. A 3D result can be obtained analogously. Hence, it suffices to show the
propagation of the analytic norms in (2.35).

Step 1: Propagation of analytic norms for w. It is convenient to define

llw Il == Nl @l + M@l (5.36)

The estimation of @ follows from the nonlinear iteration using the representation
formula (5.14).

The estimates for the L!-based norm [l (@)]ll; are already available in Section 5 of
[54] (for 2D see Section 4.1 of [47]): From (5.23), (5.24) and (5.33), we have that for
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k=0,1,2

k
Do I3 w1

j=0

k
=
j=0
k — np
+y /
j=070

(£(x3)y,)7 /0 Ge(t, x3, y)wog (y)dy H 1
LA

ds
L;

(;(-x3)ax3)j'/0 G.{):([—S,x:;, y)Né:(ss )’)dy

kot
3 [ € Gett = .50, 089, 0, 0
j=0 g

<y H(;(x3>aX3>fwoqu+2kj/0t Jcemnanee| o+ [ vz as
— =0

J

For k = 1, after summing up over & € 72, we deduce that

YDA+ VDo s S Y. IDPA +[Vaheol.
0=|gl=1 0=|gl=1
(5.37)

t
+/0 > IDPA+ VAN ()1 ads.

0=<|BI=1

Using (5.6), (5.7), and the definition of ||| - ||[; in (5.36) we derive that

t t
[ 1P+ 1N G Iads S [ oG+ Go— 1~ yos) s
0 0<|B1=1 0 (538)

1
S (1) sup ol
Y0/ 0<s<t

The second order derivatives can be treated similarly except for the contributions
of N for which we apply the analyticity recovery estimate using (3) of Lemma 7 while
other terms are estimated in the same way. More precisely, we have

S ADPA+ VAN $) 1.
1B1=2

1 -
S=—— Y IDPA+|VaDN(s)], 5 forany & > A, (5.39)
A=A odipis ’
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while we choose A = HAOT_VOS in particular. We note that still A < Ao — pos if

A < Ao — Yos and hence from (5.6) and (5.7)

> DA+ IVADN O 54

0=[BI=1
S P+ VDe® I ) X IPPoN 0. )
0<|BI=1 0=<|pl=2
+ (X IDPA+19De@5) (X IDPA+ VDol )
0=<|B1=2 0<|pl<I1

S+ Qo = 2 = y05) " Jllw )12

Therefore we derive that for t < ;7"0 and A < Ao — ot

> PP+ Viho )l
|B1=2

t
< S UDP(1 + [Vabwoll s + /O [1+ Go — 4 — 709~V ]l (5)12ds
[B]1=2

o 1
S DDA+ VaDwolli g + (o =2 = w0 ™ — +1) sup flo@II
1B1=2 Yo 0<s<t

(5.40)

Therefore, we conclude that, from (5.37) with (5.38), and (5.40)

1 Ao
ol £ Y IDPA+1ViDwolii + @+ —) sup llo@II; forr < —.
0=[Bl=2 Y0 0<s<t 20

(5.41)

The propagation of the boundary layer norm ||| () |ll  , can be shown analogously
using LCA’OK estimates of Lemma 12 and Lemma 13: For k = 0, 1,2 and « > 0 for

i = 1,2éndx=0fori = 3 we have

k
D I (3)dx) g il ose,

j=0
k oo
< Z (§(x3)3x3)]/ Ggi(l,xs,y)wog,i(y)d)"
j=0 0 Li?/c
kot  poo
+ Z/ (§(X3)3x3)]/ Ge,i(t —5,x3,¥)Ng i (s, y)dy ds
j=070 0 L3,
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(£(x3)33) Ge i (t — 5, x3,0) B i (5)

ds
Lif’,(

ko
+Z/
=070

(£(x3)3x;)7 Ng i (5)

e

K

k koo
< Z H (£ (x3) )  wog i + 2/
j=0 =07

ds
Eifk

t
1
+ (=6 ———|INeill o1
( ,3>/0 —=INeil

Let k = 1. After summing up over £ € Zandi = 1,2 (withx > 0)andi = 3
(with ¥ = 0) , we deduce that

1
D Do S Y, DPwollocsgn + /0 > UDPN$)]lods

0=<[Bl=1 0=<[Bl=1 0=|BI=1

'
1 2

+ w(s)||7ds.
/o TR

Using the definition of ||| - |||, in (5.36), and applying Lemma 10 with (5.6), (5.8), and
(5.9), we derive

> [[Dﬂzv(smoo,ws( > ||Dﬂ(1+|vh|>w<s)||1,x)

0<[p|=1 0<[B|=2

> 1P )l )

0=|pl=<1

A+ VDo) 1x Y D o ($)]loorx
|B1=2

<[+ o =2 = y09) ™ llw )12

Therefore we derive that
> D o )lor
0<|BlI=1

t
S Y Dol + /O o I2[1+ (o — & — yos)~]ds
0=|pl=1

(5.42)
t 1 )
+ fo S lle®lids
1
S Y D ol + (Vi+—) sup llo@)I2,
0=pI=1 Y07 Oss=t
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Now we control the second order derivatives similarly except for the N. Asin (5.39)
we use the analyticity recovery estimate using Lemma 7

1 -
D UDPNOooswe S = D [DPN©)y ., forany & > A, (5.43)
|B1=2 M o<|pl=l
while again we choose A = HAOT_VOS in particular. We note that still A < Ao — yos if

A < Ao — yos and hence from (5.8) and (5.9)

D DN sy S o= 2= 108) llo @)
0=|B|=1

Therefore we derive that for r < 2% and A < Ao — ot

> Do )]lsor
|B1=2
! 3
S Y IDPlloo g + / (o = 2 =109~ “F DNl ()7 ds
|p1=2 0
+/t Lok
w(s S
0 At—sS !
S Y IDPw0llcoren + (o — A — o) @ (5.44)
|B1=2
t 3 )
([ Go=2=wo)3ds) sup Hlo:
0 0<s<t

+ V1 sup o)l

0<s<t

o 1
S 2 1DPwolloc g + (o = = o)™ — + i) sup llos)I2
\Bl=2 Yo 0<s<t

Therefore we conclude that, from (5.42) and (5.44),

1 Ao
lo®llocse S D 1D 0l + (Vi+=) sup llo@I? forr < ==
0<|B|<2 Y0/ 0<s<t 2y

(5.45)

In conclusion, from (5.41), (5.45), and by a standard continuity argument we obtain
for sufficiently large yg

sup Nlo®ll, S Y I1DPoollciguc + Y IDP(L+ [ VaDwoll1.a-

0=r<72 0<|pl<2 0<|p|<2

(5.46)
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Step 2: Propagation of analytic norms for ;. The continuity of w(¢) in # follows
from the mild solution form (5.14) of wg (t). We claim that w(¢) € C! ([0, T1; B*)
and moreover [||d; () |||, is bounded. To this end, we first derive the mild form of 9;w¢
from (5.14):

o0
Orwe (1, x3) 2/ Ge(t, x3, y)0rwpe (y)dy
0
t o0
+//‘Gw—&mw%me®® (5.47)
0 JO
t
—/ Ge(t — 5. x3, 0)(3, Be (), 0)ds,
0

where we recall 9;wq in (2.32). To justify this formula, we first recall (5.16)-(5.18).
We start with the horizontal part of the formula (5.47) for d;wg . From Lemma 11,
Gep(t,x3,y) = He(t,x3 — y) + He(t, x3 + y) + Re(t, x3 + y). Then by using the
fact that Hé (t,-) is an odd function, we see 3y, Gep(r, X3, ¥)|xy=0 = Rg (t, y). Now
we read (5.17) as

KNoRE (1, ¥) + knol§|Gen(t,0,y) =0, «knoRE(t, x3) + knol§|Gen(t, x3,0) = 0,
(5.48)

where we have used that Hg (¢, -) is an even function for the second relation. On the
other hand, since we also have dy, G¢, (1, X3, ¥)|y=0 = Ré (t, x3), we deduce that

kno(dy; +1ENGen(t, x3,y3) =0, y3=0. (5.49)

It is straightforward to see AgGep = 97, Gen — 1§17Gen = 37Gen — 1§1°Gen.
We now take 9; of (5.14):

oo

o0
3:/ Ggh(t,xyy)wog,h(y)dy:/ 0 G n(t, x3, y)wog n (y)dy
0 0
o0
= / Kkno(33 — €1 Gen(t, x3. Y)aoen (v)dy
0
=00 o0 2
= [Knoangh(t,x,%y)wog,h(y)]i,zo —/ knolé1°Gen(t, x3, y)woe,n(y)dy
0

o0
- / kn00yGep(t, x3, ¥)0ywoe, 1 (y)dy
0

= [kn0dyGen(t, x3, y)wos,h(y)]izgo

— [kn0Gen(t, x3, y)3ywos,h(y)]§zgo
o0
—i—/ Gen(t, x3, y)knoAgwog n (y)dy
0
= —kn0dyGen(t, x3, 0)woe, 1 (0) + knoGen(t, x3, 0)dywoe, 1 (0)

o0
+ / Gen(t, x3, y)knoAgpwos n(y)dy,
0
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and

t 00
at/O /o Gep(t — s, x3, Y)Ne (s, y)dyds
o0
= /0 Gep(t, x3, y)Ng (0, y)dy
t 00
+/ / Géh(S,X& y)a;Ngﬁh([_s’y)dyds’
0 Jo
t
8t/ Gep(t — 5, x3,0)Be (s)ds = Ggj (2, x3,0)B: (0)
0
t
+/ Ggh(t _S’x3’0)8sB§(S)ds
0

Therefore we obtain

Orwe p (1, x3) = — kModyGen(t, x3, 0)woe 1 (0) + knoGen(t, x3, 0)dywoe, 1 (0)
— Gep(t, x3,0)B:(0)

o0
+/ Gep(t, x3, Y){knoAgwog, 1 (y) + Nen (0, y)}dy
0

o (5.50)
+ /0 /O Gep(t —5,x3, )05 Ne (s, y)dyds
t
— / Gep(t — s, x3,0)05 Be (s)ds.
0
Next we show that the first line in the right-hand side is 0. From (5.49)
—kn0dyGep(t, x3, 0)woe 1 (0) + knoGep (t, x3, 0)0ywoe, 1 (0)
= Gep(t, x3, 0)kno(1&] + dy)woe, 1 (0),
and hence the first line of (5.50) reads
Gen(t, x3,0) [kno (€| 4 0x;)w06,1,(0) — B (0)] (5.51)

which is zero due to the first compatibility condition of (2.34). Recalling 9; @ in (2.32),
the formula (5.47) for 9, wg j, has been established. We may follow the same procedure
to verify the vertical part of the formula (5.47) for 0;w¢ 3 by noting that the second com-
patibility condition of (2.34) removes the term —«nodyGe3(2, x3, 0)woe 3(0) which
would create the initial layer otherwise because 9, G¢3(z, x3, 0) does not vanish.

We may now repeat Step 1 for 9, using the representation formula (5.47). The
estimates are obtained in the same fashion. For the nonlinear terms, since o;N =
—u-Vorw— it - Vo + w - Voiu + 9;w - Vu, the structure of 9; N with respect to ;@
is consistent with the one of N with respect to w and we can use the bilinear estimates
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(5.3) and (5.4). In summary, one can derive that for r < 2%

ool < > IDPA + VDol

0=IB|=2
1
+ <t+—> sup [lw(s)llls sup [II3;w(s)llls, (5.52)
Y0/ 0<s<t 0<s<t
I9rOlloon S D 1D diw0llo.20.0
0=|B|=2
1
+ (vt +—) sup llws)lls sup M)y, (5.53)
Y0/ o0<s<t 0<s<t

which lead to the desired bounds for 9, (¢) by choosing sufficiently large yp.

Step 3: Propagation of analytic norms for Bfwg. As a consequence of Step 2,
0;ws (1, x3) solves the following system

3w — knoAgdws =  Ng inRy, (5.54)
kno(0x; + 1£1)0rwe n = ;B onx3 =0, (5.55)
dwe3 =0 onx3=0, (5.56)

with 0, wg |,=0 = 0;wp¢ Tor§ € 72 where 9;wy is defined in (2.32). Then as done in Step
2, by using the properties of G¢ and integration by parts and by the last compatibility
condition of (2.34), we can derive the representation formula for Btzw:

0 wg (1, x3) = (Gen(t, x3,0) [kn0(I€] + Bxy) ;0021 (0) — B B¢ (0)], 0)

o0 t o0
+ f Ge (1, x3, )82 woe (v)dy + f f Ge(t —5,x3, )32 Ne (s, y)dyds
0 0 JO

t
—/ Ge(t — s, x3,0)(32 Be (5), 0)ds,
0
(5.57)

where we recall 8,2a)0 in (2.32). As we do not require higher order compatibility
condition for the horizontal vorticity, a new term representing the initial-boundary
layer emerges. We first examine Gg(f, z, 0). Recall (5.35).

Similar to Lemma 13, we have for Cyp < oo

< Co.

~

> |¢@87Get. 2,0
j=0

k
rl S Co, Z H(é’(Z)az)ng(t,z,O)
A s

£

Kt

(5.58)
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From (5.58), (5.33) and (5.3)

> Y | pfa+ien

0<[B1=2¢e72

[(Gente. x3.0) (enoClg] + 01k (0) = 0,B:©) 0] |
A

Skno Y IVEA+IVaDVawonliia+ Y. IVEA+ VaDdNO)1s
0=<|pl=2 0=[B1=2

S ienoll(1+ 1V, 13 Vol s

H I+ VD dwolia Y IDPA+ValH)dwoll 1
0=[B|=1

Hence an L'-based analytic norm is easily obtained as

oo,

S enoll(1 + [VaP)Varwollis + (1 + [ValHowolia Y IDPA
0=|pl=1

+ 1Val®)drwoll1 5

B 2 1 2
+ Y DA+ VDol + (t 4+ —) sup flo)lls sup [|97a(s) \
0<|B|<2 Y0 0<s<t 0<s<t §
1
+(t+—) sup [[d)I
Y0 O<s<t
(5.59)

Now we move to the L°°-based analytic norm bound. We compute || G¢ (7, z, 0)[I zz0

1(€@)8:)7 Ge(t. 2. 0) 2, < sup [
z

bel@—cob)z
I+ ¢ (2) + Pt (2)

[z[2

AzZ—C0

e
=+ sup

z «/E+«/E¢K(Z)+«/E¢Kt(z)

It is a routine to check that both supremum norms are uniformly bounded in « and |&].
Hence (5.58) shows that the kernel G¢ (t, z, 0) is well-behaved in £ )1\ and the initial-
boundary layer analytic space £3°, . Then we run the same argument as in Step 2 but
with L5, in place of £3°, . Thanks to (5.58), the estimates of the first term in (5.57)
are bounded by the initial norm (2.33):

> 2 M DE[Gentr, x5, 0) (kno(lE] + 01 thene.n0) — B ), 0) ]|

0<|BI=2cez2 Tkt
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Skno Y IV wolloor + Y IVEHNO)14

0=<|pl=2 0=|B|=2
<o Y IV Vawolloon
0=|pl=2
A+ VPl Y IDPA+[ValP)drwoll i
0=|pl=1

Other three terms are estimated in the same way as in [47] or [54] and we arrive that

[lezo]]
o0,Kt
<k Y IVEVawolisen
0=IB|=2
+ 1A+IVaP)drwollin Y, IDPA+IVal?)dwoll1s
0=|gl=1
1
+ 3 IDPR 0l som + Wi+ —) sup lloGll, sup [[oo||
0<|Bl<2 Y0 0<s<t 0<s<t s
1
+ (Vi + =) sup [0
Yo 0<s<t
(5.60)

Finally combining (5.59) and (5.60) and then choosing sufficiently large yn we
derive a desired estimate for |||8,2w(t)|||t fort € (0, %).

Altogether from (5.46), (5.52), (5.53), (5.59), and (5.60), we finish the proof of the
estimate (2.35).

Step 4: Estimate (1), vorticity estimates. Both (2.36) and (2.37) are direct con-
sequences of (2.35). To show (2.38), we first note that the boundedness of w(r)
norms implies |8y, we (¢, x3)| < e~ %3¢l for all |£] and x3 > 1 (away from the
boundary). When x3 < 1, we draw on the equation (5.10) to rewrite B)éwg,h =
1
Kno

{0;we p + Kn0|.§|2a)g,h — Ng,;,} and the boundary condition (5.11):

x3
Oy e 1 (t, x3) = dywe 1 (2, 0) +/ Biwg,h(t, y)dy
0

1 5
— [Ewen (. 0) + —— Be () + / L wen + knolePwgs
Kno 0 K10

— Ngpl(, y)dy.
(5.61)
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We now appeal to | B¢ (1)| < || Ng (D)l o1 and Yoo ([[|3f 0 ||, +[[[87 0] }) <
0o to obtain that for all x3 € R4

1 -
g,z 5 (, x3)| S —e el for 0 < A < A, (5.62)
K

which proves (2.38) for wy, and £ = 0. The remaining case can be estimated similarly.
Near O(1) boundary, from (5.54) and (5.55), we derive

Oy 0rwe j (1, X3)

1
= —|&|dwe n (1, 0) + %8,350) (5.63)

X} 1
+/ —[3[2605,11 + K770|§|23twg,h — 0;Ne (¢, y)dy.
0 KMNo

Together with 3o, [||f 0 (||| o +Xo<¢<2 [[|0f @®]]]; < 00 we deduce (2.38)
for wy, and £ = 1. For w3 we use V - w = 0 to write d3w3 = —diw1 — dhwy. Now
(2.38) for w3 follows from (2.36).

Step 5: Estimate (2), velocity estimates, except (2.42). From (5.2)

&P 18530 e (2, 2)| / &It B I =2l 5 0 (1, y)[Idy]| for B3 < 1. (5.64)

oH;,

For |B| = |Bn] + B3 = 1 we bound (5.64) by e *¢1||dfw () ||1 ;.. Then from (2.35) we
conclude (2.39).
For |B] > 2 and B3 < 1, we bound (5.64) by

(5.64) S /3 Sl ETE T (L 4 60 + 0 () 4]

< | [IF12g el min. vy / IR (11 6 (3) + der () Iy
IH,;,
< [g]/A1m2e Ml mmin D0 for ) = 2, and B3 < 1,
and ¢ =0,1,2, andt € [0, T],
(5.65)

where we have used |£||y — z| + %Rey > min(1, %)xg for |£] > 1 and (2.35).
For B3 = 2,3 we use 320/¢: = |£1?3 ¢ + 9{w. Then following the same
argument of (5.65), we derive
|&1Pn 1052 8f e (1. 2)]
SIENPI21055720 g (2, 2) | + 1617710552 0f we (1, )|
(&]1F1=2 4 |g|Prye*Ele=min DR (1 4 ¢ (2)) for € =0, 1, and f3 =2,
< (E1P1=2 4 (g | PyeHElgmmin( DRez, =1 for ¢ = 0,1, and B3 = 3,
(111172 4 |g|Prye=HEl = minth 2IRe2 (] 4 6 (2) + s (2)) for € =2, and B3 = 2.

@ Springer



Incompressible Euler Limit from Boltzmann Equation... Page 97 of 103 22

(5.66)

Finally from (5.65) and (5.66) we conclude (2.40) and (2.41).

Step 6: Estimate (3), pressure estimates and (2.42). We next turn to the pressure.
Taking the divergence to (1.13) and using (1.14), we deduce

3

—Ap=)_ gumdmuy. (5.67)
,m=1

We obtain the boundary condition of p by reading the third component of (1.13), and
then using (1.14) and (1.15),

03p = knoAusz = kn00d303u3 = —knod1d3u; — knod203u2
= —knd1 (w2 + 01u3) — knpd2(—w1 + d2u3) (5.68)
= —kngdiwr + knoorw; for x3 =0,

where w| = dyu3z — d3up and wy = —0oju3 + d3uq.
In the Fourier side we read the problem as

3

(617 — ) pe(t, x3) = ge(t,x3) := Y (pumOnue)i (1, x3) forxz € Ry,
,m=1

03pe(t, 0) = —iknoérwe 2(t, 0) + iknoérwe,1 (¢, 0).
(5.69)

A representation of pg (7, x3) is given by

Bl ey R SIS
pe(t, x3) = —/ e FI Y ge (y)dy —/ e 1T ge (y)dy
0 X3

2|&| 21|
o
1
_/ _e—lél(y+x3)g§(y)dy (5.70)
o 2l&l
1 _ . .
- Ee B3 (i nogwe 2 (2, 0) + ik nobrwe 1 (2, 0)),

which is valid for all £ # 0. When & = 0, by integrating (5.69) and by using the
boundary conditions 93 po (¢, 0) = 0, u(¢, x5, 0) = 0 and the divergence free condition
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V -u = 0, we first obtain

3
e
d3po(t, x3) = _W/o //;rz Z d¢tt Omut¢dxpdy3

- (2]‘()2/ (u - Vuz)(t, xp, x3)dxp (5.71)

= (271)2/ (u303u3)(t, xp, x3)dxy,

where we have used the integration by parts and V - u = 0 at the last step.
Observe that 93 pg decays exponentially in x3, and in particular fooo |03 po(t, x3)|dx3
< 00. The integration yields

X3
po(t, x3) = po(t,0) —/ / (u303u3)(t, xp, y3)dxpdys.
0

(2m)?

Since py(t, 0) is a free constant in x3, we fix po(¢, x3) by choosing

2 [o/0]
pott.0) = o [ [ st @ v < o
2m)= Jo T2
such that
2 o0
po(t, x3) = —2/ / (u303u3)(t, xp, y3)dxpdys. (5.72)
2m)* Jxy T2

The pressure p is then recovered by

P, xn, x3) = pot,x3) + D pelt, x3)e™, (5.73)
§1>1,5€22

where po(t, x3) and pg (¢, x3) are given in (5.72) and (5.70).

Now the pressure estimate follows readily from the velocity and vorticity
estimates. To show (2.43), we first note from (2.39) and (2.40) |po(t, x3)| <
lus(t, x)| fQ |03u3(t, x)|dx < 1 and from Lemma 8

2

1961 S €0 (I0hunlZe s + 16~ Btrslloe 11 D50 o )
i=1

el Z ||V£0)||%,A+ Z ||V£wh||1,,x

0<[B|=1 1=<|p|=2

x| > IVi ol + Iconlss | |-
0=|Bl=1
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from which we deduce |p(¢, xp, x3)| < 1. The estimation of 9, p and 312 p follows
analogously.

For the decay estimates (2.44), we start with £ = 0 and 8 = 0. Due to our choice of
po(t, x3) in (5.72), using (2.39) and (2.40), we have the spatial decay for po(¢, x3):

*© in(1,%)y I~ min(1,&
Ipot. x3)| < / f (I e (ya)e™ MM dxdys S w7z ML,
X3 T

For & # 0, we use another estimate for |g¢| and Lemma 8

3 )
lgeIS Y Y e MElem M (1 4 o (1)) (@mtte)y ()]

tm=1pez2

3
i —mi a
<k Ze |&] p— min(l,5)y Z Ze)”l"”(&muz)r;()’)h
f,m:lnezz

(5.74)

from which we deduce that | pg (7, x3)| < k3o~ min(L5)% Hence (2.44) holds for
£ = 0and B = 0. For the pressure gradient estimate when || = 1, from (5.71) and
(2.40) we first note

193 p0(1, x3)| < sup (usl|d3u3]) < (1 + py(x3))e™Min-2)x3,
xhe'I[‘z

For £ = 0, by (5.74) it is easy to see that |& p (7, x3)| S Kk=1e~Mn(L5)¥ Note that
03 pe (1, x3) has a similar integral form as |&|pg (¢, x3) and the estimate follows in the
same way, which results in |33 pg (f, x3)| < =3¢~ min(1,5)% This finishes (2.44) for
£ = 0 and |B| = 1. The remaining cases for £ = 1 and |B| = 0, 1 can be treated in
the same way.

For the decay estimate of 8,2 p, we take into account the initial layer which occurs
at 3w and Vd?u. First using (2.39), (2.40) and (2.41) we have

o0
102 po(t, x3)| < / //2(u3838,2u3 + 02u3d3u3 + 20,u3030;u3)(t, xp, y3)dx;dys
X3 T
S (14 9 (x3) + iy (x3) ) e~ mind 2,

while for |£] £ O we have

3 _
072 S D D e Ml MDY (1 4 g ()| Btte) ()]

m=1 nez?

2 3
Sk 3o HElmminL D SN S S 3,001, (1)1,

i=1 t,m=1pez?

from which we deduce (2.45).
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The last estimate for afu for £ = 1, 2 follows from the equation: d;u = xknoAu —
u-Vu—Vpand 8,214 =knoAdiu —u-Vou —oru - Vu — Vo p.
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Appendix A. Sobolev Embedding in 1D

Often we have used a standard 1D embedding: For T > 0,

T T
lg)* <r / lg(s)|*ds + / g'(s)|*ds forz € [0, T]. (A.1)
0 0

A proof is based on an equality:

2O = — /t”/z( (s) / ’(t)dt)zd
=— s) — 5.
g 77 ) g X

For0 <t <T/2,

) 1 t+T/2 ) s , 2
1g(0)]? < T_/Z/t (2|g(s)| +2‘/, g(r)dt‘ )ds

1 t+T/2 s
s7n /(o2 - [P
t t

/2
2 t+T/2 5 2 t+T/2 K , 5
< d —_— —t dzd
_T/Z/t 12| s+T/2[ s '/,'g(’)' rds
s (T2 ) HT2
<2 g(s)]2ds + Tf 1 () Pds
T/zfz t

T T
< fo g(s)Pds + [0 /() [2ds.

ForT/2 <t < T, using

, 1 ! s, 2
lg@®” = T_/Z/t‘—T/Z <g(S)_/z g(f)dr) ds,
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we derive that

2 1 ! 2
80P =70 [ (g +2
t

—-T/2

s 2
/t g (r)dr‘ )ds

t t
<2 / g(s)Pds + T / 18'(5)[2ds
‘ —T)2

)

T T
< /0 lg(s)|2ds + /O g/ (s)]°ds.
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