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Abstract
We obtain a general sufficient condition on the geometry of possibly singular planar
domains that guarantees global uniqueness for anyweak solution to theEuler equations
on them whose vorticity is bounded and initially constant near the boundary. While
similar existing results require domains that are C1,1 except at finitely many convex
corners, our condition involves much less domain smoothness, being only slightly
more restrictive than the exclusion of corners with angles greater than π . In particular,
it is satisfied by all convex domains. The main ingredient in our approach is showing
that constancy of the vorticity near the boundary is preserved for all time because Euler
particle trajectories on these domains, even for general bounded solutions, cannot reach
the boundary in finite time. We then use this to show that no vorticity can be created
by the boundary of such possibly singular domains for general bounded solutions. We
also show that our condition is essentially sharp in this sense by constructing domains
that come arbitrarily close to satisfying it, and on which particle trajectories can reach
the boundary in finite time. In addition, when the condition is satisfied, we find sharp
bounds on the asymptotic rate of the fastest possible approach of particle trajectories
to the boundary.

Keywords 2D Euler equations · Singular domains · Uniqueness of solutions

1 Introduction

The study of motions of incompressible inviscid fluids, in mathematics, physics, as
well as engineering, is both a centuries old endeavor and a vibrant area of current
research. Mathematically, these motions are modeled by the Euler equations

∂t u + (u · ∇) u = −∇ p, (1.1)
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∇ · u = 0, (1.2)

with u the fluid velocity and p its pressure. These PDE are usually considered for
times t > 0 and on spatial domains � ⊆ R

d with impermeable boundaries and hence
with the no-flow (or slip) boundary condition

u · n = 0 (1.3)

on R
+ × ∂�, with n the unit outer normal to �. Despite the immense variety of

advances in the area since Euler’s formulation of this simple looking but incredibly
rich system of PDE in 1755, some of the most important questions about its solutions
remain open to this day. While the most famous of these is the question of finite time
singularity of solutions in three and more dimensions, even in two spatial dimensions
there are several important unsolved problems. One of these is uniqueness of solutions
on irregular domains—even just general convex ones—due to singular effects of rough
boundaries on the dynamics of fluids.

In two dimensions, the case considered here, the Euler equations can be equivalently
reformulated as the active scalar equation

∂tω + u · ∇ω = 0 (1.4)

on R
+ × � ⊆ R

+ × R
2, with

ω := ∇ × u = ∂x1u2 − ∂x2u1

the vorticity of the flow. This conveniently removes the pressure from the system,
and one can now also find the (divergence-free) velocity from the vorticity via the
Biot-Savart law

u = ∇⊥�−1ω, (1.5)

with � the Dirichlet Laplacian on � and ∇⊥ψ := (−∂x2ψ, ∂x1ψ).

Prior Existence and Uniqueness Results
On smooth bounded domains � ⊆ R

2, global well-posedness for strong solu-
tions goes back to the breakthrough 1933 papers by Wolibner [29] and Hölder
[10] (for unbounded domains, see [12, 22]). A natural class of solutions to con-
sider are those with bounded vorticities, due to (1.4) preserving ‖ω(t, ·)‖L∞ , and
global well-posedness for weak solutions with initial conditions ω0 ∈ L∞(�) was
proved in the celebrated work of Yudovich [30] (see also [1, 19, 21, 25]). While exis-
tence of global weak solutions can also be proved for ω0 ∈ L p(�) [7] and even for
ω0 ∈ H−1(�) ∩ M+(�) [5], uniqueness appears likely to not always hold in this
case. Indeed, this is suggested by recent results of Vishik [26, 27], who showed non-
uniqueness of solutions on R

2 with ω0 ∈ L p(R2) for some p > 2, in the presence of
a forcing from the same space.

The above results apply on sufficiently smooth domains, with ∂� being C1,1 or
better. However, global existence of (even unbounded) solutions has been proved to
hold on much less regular domains. Indeed, this was done via L2 estimates on the
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velocity u for ω0 ∈ L p(�) or ω0 ∈ H−1(�)∩M+(�) by Taylor on convex domains
[24], and later by Gérard-Varet and Lacave for very general irregular domains [8, 9].

Low regularity of the boundary is, however, currently a crucial barrier to a resolution
of the uniqueness of solutions question on general bounded domains, even for bounded
solutions. In a nutshell, all presently available uniqueness results require the velocity
to be close to Lipschitz in an appropriate sense, and sufficient smoothness of ∂� is
typically needed to obtain apriori estimates on the Riesz transform ∇∇⊥�−1ω =
∇u. This includes the approach of Yudovich, via the family of Calderón-Zygmund
inequalities

‖∇u(t, ·)‖L p ≤ Cp‖ω(t, ·)‖L p

for all p ∈ [2,∞) andwith a uniformC , as well as the use of the log-Lipschitz estimate

sup
x,y∈�

|u(t, x) − u(t, y)|
|x − y|max{1,− ln |x − y|} ≤ C‖ω(t, ·)‖L∞ (1.6)

(see, e.g., [21]). However, such estimates do not hold in general on less regular
domains. For instance, ∇u may only be L2 near irregular portions of the boundaries
of general convex domains (even for smooth ω), while Jerison and Kenig showed that
∇u may not even be integrable on some C1 domains [11].

It is therefore not surprising that uniqueness of all weak solutions has so far only
been established for a fairly small class of (simply connected) non-C1,1 domains. In
fact, all these must beC1,1 except at finitely many corners with acute (including right)
angles. Specifically, this was achieved first for rectangles by Bardos et al. [2], then
for domains that are C2,γ (for some γ > 0) except at finitely many acute corners by
Lacave et al. [16], and then on domains that are C1,1 except at finitely many acute
corners by Di Plinio and Temam [6]. In all these results, intersections of the domains
with small discs centered at all corners were even assumed to be exact sectors. Corners
with angles greater than π

2 (and all other irregular geometries of ∂�) are excluded in
these results due to the velocity not being close to Lipschitz there even for smooth
ω (at corners with angles greater than π , the velocity is in general even unbounded).
Uniqueness of general solutions outside of the class of domains from [6] therefore
appears to be a very challenging open problem.

Nevertheless, one may still hope to establish uniqueness on irregular domains for
solutions that remain constant in the regions where the velocity fails to be close to
Lipschitz (similarly to results for the vortex-wave system [15,20], when the diffuse
part of the vorticity remains constant near all point vortices). This may mean neigh-
borhoods of corners with angles greater than π

2 for piecewise C1,1 domains, or all of
∂� for general irregular domains. In fact, since Euler particle trajectories for bounded
solutions starting inside smooth domains � cannot approach ∂� faster than double-
exponentially in time, all solutions that are initially constant near all of ∂�will remain
such for all later times. One may hope that this property extends to many less regular
domains, possibly with other asymptotic rates of approach to the boundary, which
would yield a large class of initial data on such domains with unique global weak
solutions.
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This approach was recently taken up by Lacave and the second author. Lacave first
proved in [14] that if ∂� isC1,1 except at finitelymany corners that are all exact sectors
with angles greater than π

2 , and ω0 has a constant sign and is constant near ∂�, then
ω will indeed remain constant near ∂� forever and weak solutions are unique. Then,
together with Zlatoš, they showed the same result when ∂� is C1,1 except at finitely
many corners of arbitrary angles from (0, π) that do not need to be exact sectors,
and without the sign restriction on ω0 [17]. In both works, Euler particle trajectories
for bounded solutions (general ones in [17] and with a constant sign in [14]) were
shown to remain in � for all time (again approaching ∂� no faster than double-
exponentially), and in [17] this was even proved to hold when ∂� is only C1,γ (for
some γ > 0) except at finitely many corners with angles from (0, π). Moreover, [17]
also constructed examples of domains smooth everywhere except at a single corner
with an arbitrary angle from (π, 2π) where Euler particle trajectories can reach ∂� in
finite time, using an idea of Kiselev and Zlatoš [13].

Definitions and Main Results
The uniqueness results in [14, 17], just as those in [2, 6, 16], still require piecewise

C1,1 domains. In the present paper we greatly expand this class by considering general
regulated bounded Lipschitz domains, that is, those having a (counter-clockwise)
forward tangent vector at each point of ∂� (see (1.10) below), whose argument is a
function with left and right limits everywhere. In particular, this includes all convex
domains.

We then obtain a general condition guaranteeing that Euler particle trajectories for
boundedweak solutions in these domains never reach ∂�, and also prove existence and
uniqueness of global weak solutions for all vorticities initially constant near ∂�. Our
condition is only slightly more restrictive than exclusion of corners with angles greater
than π , which was shown to be necessary in [17], and it places no restrictions on those
segments of ∂� where the argument of the forward tangent vector is non-decreasing
(so, in particular, it is satisfied by all convex �). Specifically, our condition is satisfied
precisely when the argument of the forward tangent vector to ∂�, composed with the
Riemann mapping for �, can be written as a sum of an arbitrary increasing function
and a second function that has a modulus of continuity m from a precisely defined
class of moduli (which includes, e.g., m with m(r) = π

2| log r | for all small enough
r > 0). Moreover, for any concave modulus m from this class, we find the exact (up
to a constant factor in time) asymptotic rate of the fastest possible approach of Euler
particle trajectories to ∂� among all domains as above. We also show that no vorticity
can be created by the boundary of these possibly singular domains, a result that even
extends in a weaker form to general bounded domains (see Corollary 1.4).

Finally, we show that our condition is essentially sharp. Specifically, for each con-
cave modulus not in the above class of moduli (e.g., m with m(r) = a

2| log r | for all
small enough r > 0, with any fixed a > π ), we construct a domain as above in which
particle trajectories can reach the boundary in finite time. It therefore appears that our
work pushes right up to the limits of the philosophy from [14,15, 17, 20], within the
class of regulated domains at least, and further significant advances will likely require
a breakthrough in the question of uniqueness for solutions that are not constant near all
those singular segments of ∂� where the Euler velocities corresponding to bounded
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vorticities may be far from Lipschitz. Our Theorem 1.1(ii) and Corollary 1.4 below
represent a first step in this effort.

Let us now state the precise definitions and our main results. Let � ⊆ R
2 be an

open bounded Lipschitz domain with ∂� a Jordan curve, and let T : � → D be a
Riemann mapping (with D the unit disc in C = R

2). By the Kellogg-Warschawski
Theorem (see, e.g., [23,Theorem 3.6]), we can then extend T continuously to �̄. We
also let S := T −1. We will consider here solutions to the Euler equations on � from
the Yudovich class

{
(ω, u) ∈ L∞ ((0,∞); L∞(�) × L2(�)

) ∣∣ ω = ∇ × u, and (1.2) − (1.3) hold weakly
}

,

where the weak form of (1.2)–(1.3) is

∫

�

u(t, ·) · ∇h dx = 0 ∀h ∈ H1
loc(�) with ∇h ∈ L2(�)

for almost all t > 0 (see [8, 9]). Such ω and u are then equivalently related by the
Biot-Savart law (1.5). This can be expressed in terms of T and the Dirichlet Green’s
function GD(ξ, z) = 1

2π ln |ξ−z|
|ξ−z∗||z| for D (with z∗ := z|z|−2 and (a, b)⊥ := (−b, a))

as

u(t, x) = 1

2π
DT (x)T

∫

�

( T (x) − T (y)

|T (x) − T (y)|2 − T (x) − T (y)∗

|T (x) − T (y)∗|2
)⊥

ω(t, y) dy.

(1.7)
Since u is uniquely determined by ω, we will simply say that ω is from the Yudovich
class.

We say that ω from the Yudovich class is a weak solution to the Euler equations on
�, on time interval (0, T ) and with initial condition ω0 ∈ L∞(�), if

∫ T

0

∫

�

ω (∂tϕ + u · ∇ϕ) dxdt = −
∫

�

ω0ϕ(0, ·) dx ∀ϕ ∈ C∞
0 ([0, T ) × �) .

(1.8)
This is obviously the definition of weak solutions to the transport equation (1.4), but it
is also equivalent to the relevant weak velocity formulation of the Euler equations on
� (see [9, Remark 1.2]). When T = ∞ we call such solutions global. Their existence
is guaranteed by [8] for very general �, but the question of uniqueness is still open in
general.

It is well known (see, e.g., [21,Chapter 2]) that uniform boundedness of ω shows
that the velocity is locally log-Lipshitz, uniformly in time. Specifically, (1.6) holds for
all t ∈ (0,∞) with � replaced by any compact K ⊆ � and with C = C�,K . Then u
is also uniformly-in-time locally bounded on �, and for each x ∈ � there is a unique
solution to the ODE

d

dt
Xx
t = u(t, Xx

t ) and Xx
0 = x (1.9)
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on an interval (0, tx ) such that

tx := sup{t > 0 | Xx
s ∈ � for all s ∈ (0, t)}

(so if Xx
t reaches ∂�, then tx is the first such time). That is, {Xx

t }t∈[0,tx ) is the Euler
particle trajectory for the particle starting at x ∈ �. We note that a priori the ODE only
holds for almost all t ∈ (0, tx ) (with Xx

t continuous in time), but we will show that u
is continuous and therefore (1.9) holds for all t ∈ [0, tx ) (see Corollary 1.4 below).

For any θ ∈ R, the unit forward tangent vector to � at S(eiθ ) ∈ ∂� is the unit
vector

ν̄T (θ) := lim
φ→θ+

S(eiφ) − S(eiθ )

|S(eiφ) − S(eiθ )| , (1.10)

provided this limit exists. If it does for each θ ∈ R, and the limits limφ→θ± ν̄T (φ)

both exists at each θ ∈ R, then the domain � is said to be regulated. In this case
obviously limφ→θ+ ν̄T (φ) = ν̄T (θ), while the argument of the complex number

ν̄T (θ)
[
limφ→θ− ν̄T (φ)

]−1 equals π minus the interior angle of � at S(eiθ ). We then
let

β̄T (θ) := ¯arg ν̄T (θ), (1.11)

where ¯arg is the argument of a complex number plus some integer multiple of 2π . This
multiple is chosen so that β̄T (0) ∈ [0, 2π) and β̄T (θ) − limφ→θ− β̄T (φ) ∈ [−π, π ]
for each θ ∈ R, and if � has cusps, we do it so that this difference is π at exterior
cusps (with interior angle 0) and −π at interior cusps (with interior angle 2π ). Of
course, then this difference is again π minus the interior angle of � at S(eiθ ). Since
we only consider Lipschitz domains here (i.e., without cusps), we will always have
β̄T (θ) − limφ→θ− β̄T (φ) ∈ (−π, π).

The above defines the right-continuous function β̄T : R → R uniquely, and it
satisfies β̄T (θ + 2π) = β̄T (θ) + 2π for all θ ∈ R. As we wrote above, whether
Euler particle trajectories for bounded solutions can reach the boundary in finite time
depends on how quickly is β̄T allowed to decrease locally (which happens when ν̄T
turns clockwise), with no restrictions on its increase. This will be quantified in terms of
a modulus of continuity for one of two components of β̄T , with the other component
being an arbitrary increasing function.

We call a function m : [0, 2π ] → [0,∞) with m(0) = 0 a modulus if it is
continuous, non-decreasing, and satisfies m(a + b) ≤ m(a) + m(b) for any a, b ∈
[0, 2π ] with a + b ≤ 2π . If some f : R → R satisfies | f (θ) − f (φ)| ≤ m(r) for all
r ∈ [0, 2π ] and all θ, φ ∈ Rwith |θ −φ| ≤ r , we say that f hasmodulus of continuity
m. We also let

qm(s) := s exp

(
2

π

∫ 1

s

m(r)

r
dr

)
,

and if
∫ 1
0

ds
qm (s) = ∞, we let ρm : R → (0, 1) be the inverse function to the function

y → ln
∫ 1
y

ds
qm(s) , so
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ρm

(
ln
∫ 1

y

ds

qm(s)

)
= y.

Then ρm is decreasing with limt→−∞ ρm(t) = 1 and limt→∞ ρm(t) = 0, and we
shall see that it is the maximal asymptotic approach rate of Euler particle trajectories
to ∂� (up to a constant factor in time) among all domains for which β̄T above has
modulus of continuity m. In fact, our main results show that this statement extends to
domains with β̄T being a sum of a function with modulus m and any non-decreasing
function (see hypothesis (H) below). Note also that

∫ 1
0

ds
qm (s) = ∞ holds whenever∫ 1

0
m(r)
r dr < ∞, and functions with such moduli m are called Dini continuous.

In our main results, we will assume the following hypothesis.

(H) Let � ⊆ R
2 be a regulated open bounded Lipschitz domain with ∂� a Jordan

curve. Let T : � → D be a Riemann mapping and let βT , β̃T be functions on R

with 2π -periodic (distributional) derivatives such that βT is non-decreasing, β̃T
has somemodulus of continuitym with qm andρm defined above, and the argument
of the (counter-clockwise) forward tangent vector to ∂� is β̄T = βT + β̃T .

Note that if βT , β̃T are as above and their sum is the argument of the forward tangent
vector to a Jordan curve ∂�, then the bounded domain � must automatically be
regulated.

As mentioned above, neither (H) nor our results place any continuity restrictions on
βT . In particular, the following main result of the present paper holds for any convex
domain �, since then one can let βT := β̄T and β̃T ≡ 0 (and therefore m ≡ 0).

Theorem 1.1 Assume (H) and that
∫ 1
0

ds
qm (s) = ∞. Let ω0 ∈ L∞(�) and let ω from

the Yudovich class be any global weak solution to the Euler equations on�with initial
condition ω0 (such solutions are known to exist by [8]).

(i)We have tx = ∞ for all x ∈ �, and for any R < 1 and all large enough t > 0,

sup
|T (x)|≤R

|T (Xx
t )| ≤ 1 − ρm(300‖ω‖L∞ t) (1.12)

(except when ω ≡ 0, but then Xx
t ≡ x). If β̃T is Dini continuous, then the right-hand

side of (1.12) can be replaced by 1 − exp(−e300‖ω‖L∞ t ).
(ii) We have {Xx

t | x ∈ �} = � for all t > 0, and ω(t, Xx
t ) = ω0(x) for

a.e. (t, x) ∈ R
+× �. Moreover, u is continuous on [0,∞)×� and (1.9) holds for all

(t, x) ∈ [0,∞) × �.
(iii) If supp (ω0 − a) ∩ ∂� = ∅ for some a ∈ R, then the solution ω is unique.

Remark 1. This naturally extends to solutions on time intervals (0, T ) for T ∈ (0,∞).
2. Part (i) also shows that inf |T (x)|≤R d(Xx

t , ∂�) ≥ ρm(300‖ω‖L∞ t) for any R < 1,
due to T being Hölder continuous for Lipschitz � (see, e.g., [18,Theorem 2]). This
is because our proof shows that (i) also holds with 299 in place of 300, and one can
easily show that ρm(300ct) ≤ 1

N ρm(299ct)N for any fixed c, N > 0 and all large
enough t > 0.
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3. A “borderline” case for the condition
∫ 1
0

ds
qm (s) = ∞ is m(r) = a

| log r | for all
small r > 0 (with a ≥ 0). Here

∫ 1
0

ds
qm(s) = ∞ holds precisely when a ≤ π

2 , while∫ 1
0

m(r)
r dr = ∞ for all a > 0. In this case ρm is still a double exponential when

a < π
2 , as for Dini continuous β̃T , but a triple exponential when a = π

2 . The double-
exponential rate is known to be the maximal possible boundary approach rate for
smooth domains, due to (1.6) holding there, but (1.6) fails even for general convex
domains. See also the remark after Theorem 1.2 below.

Our second main result, which applies to concave moduli m, shows that Theo-
rem 1.1(i) is essentially sharp, even for stationary solutions. This involves analysis
of Euler particle trajectories on some special domains, which are more sophisticated
versions of domains with concave corners considered in [13, 17].

Theorem 1.2 For any concave modulus m, there is a domain � satisfying (H) and a
stationary weak solution ω from the Yudovich class to the Euler equations on � such
that the following hold.

(i) If
∫ 1
0

ds
qm (s) < ∞, then Xx

t ∈ ∂� for some x ∈ � and t > 0.

(ii) If
∫ 1
0

ds
qm(s) = ∞, then |T (Xx

t )| ≥ 1 − ρm(ct) for some x ∈ �, c > 0, and all
t ≥ 0.

Remark Note that ifm(r) = a(L1(
1
r ) . . . Lk−1(

1
r ))

−1+ π
2

∑k−2
j=1(L1(

1
r ) . . . L j (

1
r ))

−1

for all small enough r > 0, with k ≥ 2, a ∈ [0, π
2 ), and L j (r) being ln r composed

j times, then ρm is essentially a k-tuple exponential. Therefore all such boundary
approach rates do occur on some domains � to which Theorem 1.1(i) applies.

We also note that Theorem 1.1 has a natural analog when the forward tangent vector
is defined via arc-length parametrization of ∂�, rather than viaS. If σ : [0, 2π ] → ∂�

is the (counter-clockwise) constant speed parametrization of ∂� (extended to be 2π -
periodic on R, and obviously unique up to translation), then Lemma 1 in [28] shows
that T ◦ σ and its inverse (modulo 2π ) are Hölder continuous. If we therefore use

ν̄�(θ) := lim
φ→θ+

σ(φ) − σ(θ)

|σ(φ) − σ(θ)| , (1.13)

instead of (1.10), and the corresponding β̃� (with β̄�, β�, β̃� chosen analogously to
β̄T , βT , β̃T ) has some modulus of continuity m, then β̃T has modulus of continuity
m̃(r) := m(Crγ ) for some C, γ > 0. But since a simple change of variables shows
that

∫ 1
0

m(r)
r dr < ∞ is equivalent to

∫ 1
0

m(Crγ )
r dr < ∞, we obtain the following

result.

Corollary 1.3 Theorem 1.1 continues to hold when (1.10) and β̄T , βT , β̃T in (H) are
replaced by (1.13) and β̄�, β�, β̃�, respectively, and if β̃� is also Dini continuous.

Remark 1. Of course, while β̄T , βT , β̃T depend on T , they can also be made to only
depend on � because we are free to choose T .

2. Note that if an open bounded simply connected Lipschitz domain � can be
touched from the outside by a disc of uniform radius at each point of ∂� (i.e.,� satisfies
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the uniform exterior sphere condition), and we replace (1.10) by (1.13), then these
hypotheses are satisfied with m(r) = Cr for some constant C . Hence Corollary 1.3
holds for all such domains.

Finally, we provide here a version of Theorem 1.1(ii) for general open bounded
domains, which follows from its proof and is also of independent interest. To the best
of our knowledge, such results previously required ∂� to be at least piecewise C1,1

(see, e.g., [14, 16, 17]).

Corollary 1.4 Let ω from the Yudovich class be a weak solution to the Euler equations
on an open bounded domain � ⊆ R

2, on time interval (0, T ) for some T ∈ (0,∞]
and with initial condition ω0 ∈ L∞(�). Then ω(t, Xx

t ) = ω0(x) for a.e. t ∈ (0, T )

and a.e. x ∈ � with tx > t , the velocity u is continuous on [0, T ) × � (as well as on
[0, T ] × � if T < ∞), and (1.9) holds for all x ∈ � and t ∈ [0, tx ).
Remark So even when ∂� is very irregular, vorticity might be created (at ∂�) only if
enough particle trajectories “depart” from the boundary into�, so that�\{Xx

t | x ∈ �}
has positive measure for some t ∈ (0, T ).

Organization of the Paper
We prove Theorem 1.1(i) in Section 2, and then show in Section 3 how Theo-

rem 1.1(ii,iii) follows from it (the proof of Theorem 1.1(ii) also yields Corollary 1.4).
The proof of Lemma 2.1, a crucial estimate used to obtain Theorem 1.1(i), appears
in Section 4 (with a technical lemma used in it proved in Section 6). We note that
this proof becomes much simpler when the forward tangent vector β̄T is itself Dini
continuous (see the start of Section 4). The proof of Theorem 1.2, which is related to
that of Lemma 2.1, follows it in Section 5.

2 Proof of Theorem 1.1(i)

Take any x ∈ � and let

d(t) := 1 − |T (Xx
t )|

be the distance of T (Xx
t ) from ∂D. Then we have

d ′(t) = − T (Xx
t )

|T (Xx
t )|

· DT (Xx
t )

d

dt
Xx
t

as long as |T (Xx
t )| ∈ (0, 1). Since DT is of the form

(
a b

−b a

)
because T is analytic,

we have DT DT T = (det DT )I2. The Biot-Savart law (1.7) for d
dt X

x
t now shows that

d ′(t) = − det DT (Xx
t )

2π |T (Xx
t )|

∫

�

(−T (Xx
t ) · T (y)⊥

|T (Xx
t ) − T (y)|2 + T (Xx

t ) · T (y)∗⊥

|T (Xx
t ) − T (y)∗|2

)
ω(t, y) dy

=det DT (Xx
t )(1 − |T (Xx

t )|2)
2π |T (Xx

t )|
∫

�

|T (y)|2(1 − |T (y)|2)T (Xx
t ) · T (y)⊥

|T (Xx
t ) − T (y)|2 ||T (y)|2T (Xx

t ) − T (y)|2 ω(t, y) dy.
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where z∗ := z|z|−2 and (a, b)⊥ := (−b, a). After the change of variables z = T (y),
we obtain

|d ′(t)| ≤ d(t)
2‖ω‖L∞

π |T (Xx
t )|

det DT (Xx
t )

∫

D

(1 − |z|)|T (Xx
t ) · z⊥|

|T (Xx
t ) − z|2 ||z|2T (Xx

t ) − z|2 det DT −1(z) dz.

This estimate already appeared in [17], but we will use the following crucial result
to tightly bound its right-hand side for much more general domains.

Lemma 2.1 Assume (H) and that
∫ 1
0

ds
qm (s) = ∞. There is C < 147π and a (T -

dependent) constant CT > 0 such that if |ξ | ∈ [ 12 , 1), then

det DT (T −1(ξ))

∫

D

(1 − |z|)|ξ · z⊥|
|ξ − z|2 ||z|2ξ − z|2 det DT −1(z) dz

≤ C Qm(1 − |ξ |)
(∫ 1

1−|ξ |
ds

sQm(s)
+ CT

)
, (2.1)

with Qm(s) := s−1qm(s) = exp
(
2
π

∫ 1
s

m(r)
r dr

)
.

Remark Note that Qm is non-increasing, and lims→0 sαQm(s) = 0 for all α > 0
because sα = exp(−α

∫ 1
s

dr
r ).

Lemma 2.1 with ξ := T (Xx
t ) now yields

d ′(t) ≥ −C‖ω‖L∞qm(d(t))

(∫ 1

d(t)

ds

qm(s)
+ CT

)

with some C < 300 and CT > 0 when d(t) ∈ (0, 1
50 ]. Hence

d

dt
ln

(∫ 1

d(t)

ds

qm(s)
+ CT

)
≤ C‖ω‖L∞ ,

and so

ln
∫ 1

d(t)

ds

qm(s)
≤ C‖ω‖L∞ t + ln

(∫ 1

min{d(0),1/2}
ds

qm(s)
+ CT

)

for all t ≥ 0. Therefore

d(t) ≥ ρm

(
C‖ω‖L∞ t + ln

(∫ 1

min{d(0),1/2}
ds

qm(s)
+ CT

))
. (2.2)

This is no less than ρm (300‖ω‖L∞ t) for all large t ≥ 0, uniformly in all x with
|T (x)| ≤ R (for any R < 1, except when ω ≡ 0). And if M := ∫ 1

0
m(r)
r dr < ∞,

then ρm(z) ≥ exp(−ez+2M/π ) (because ρm(z) equals y such that ez = ∫ 1
y

ds
qm(s) ≥
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e−2M/π
∫ 1
y

ds
s ), so this is no less than exp(−e300‖ω‖L∞ t ) for all large t ≥ 0, uniformly

in all x with |T (x)| ≤ R.
Hence, to conclude Theorem 1.1(i), it only remains to prove Lemma 2.1. Its proof,

which relies on the crucial representation formula (4.1) for DT , is somewhat involved.
We postpone it to Section 4 and first show how to obtain Theorem 1.1(ii,iii) from
Theorem 1.1(i).

3 Proofs of Theorem 1.1(ii,iii) and Corollary 1.4

Theorem 1.1(iii) follows immediately from Theorem 1.1(ii) and Proposition 3.2 in
[17], which shows that solutions from Theorem 1.1(ii) are unique as long as they
remain constant near ∂� (constancy near the non-C2,γ portion of ∂� for some γ > 0,
where u may be far from Lipschitz, is in fact sufficient). It therefore suffices to prove
Theorem 1.1(ii).

The first claim follows from the fact that the estimate (2.2) equally applies to the
solutions of the time-reversed ODE d

ds Y (s) = −u(t − s,Y (s))with Y (0) ∈ � (which

of course satisfy Y (s) = XY (t)
t−s ). The proof of the second claim was obtained in

[14, 16, 17] for some sufficiently regular domains by looking at (1.4) as a (passive)
transport equation with given u and ω0, and proving uniqueness of its solutions (using
also that tx = ∞ for all x ∈ �). This is because ω̃(t, Xx

t ) := ω0(x) can be shown to be
its weak solution in the sense of (1.8). The uniqueness proofs used the DiPerna–Lions
theory, which required relevant extensions of u and ω to R

2 \ � (the latter by 0). This
necessitated ∂� to be piecewise C1,1, in addition to having tx = ∞ for all x ∈ �,
so that the extension of u is sufficiently regular for the DiPerna-Lions theory to be
applicable.

We avoid this extension argument, and hence also extra regularity hypotheses on
�, thanks to the following result concerning weak solutions to the transport equation
(1.4).

Lemma 3.1 Let � ⊆ R
d be open and T > 0. Let u ∈ L∞

loc([0, T ] × �) satisfy

sup
t∈[0,T ]

sup
x,y∈K

|u(t, x) − u(t, y)|
|x − y|max{1,− ln |x − y|} < ∞ (3.1)

for any compact K ⊆ �, as well as (1.2) on (0, T ) × �. If ω ∈ L∞
loc([0, T ] × �) is

a weak solution to the linear PDE (1.4) with initial condition ω0 ∈ L∞
loc(�) and Xx

t
is from (1.9), then we have ω(t, Xx

t ) = ω0(x) for a.e. t ∈ (0, T ) and a.e. x ∈ � with
tx > t .

Proof Let �1 ⊆ �2 ⊆ . . . be smooth open bounded sets in R
2 with �̄n ⊆ � =⋃

n≥1 �n . Since ω is also a weak solution to (1.4) on �n and exit times tx,n of Xx
t

from �n then satisfy limn→∞ tx,n = tx for each x ∈ �, it obviously suffices to prove
that ω(t, Xx

t ) = ω0(x) for a.e. t ∈ (0, T ) and a.e. x ∈ �n such that tx,n > t . We can
therefore assume that � is smooth and bounded, (3.1) holds with K replaced by �,
and u, ω, ω0 are all bounded.We can also assume without loss thatω ≥ 0 andω0 ≥ 0,
by adding a large constant to them.
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20 Page 12 of 31 Z. Han, A. Zlatoš

Extend the particle trajectories from (1.9) by Xx
t := lims↑tx X x

s ∈ ∂� for all t ≥ tx ,
and let �t := {Xx

t | x ∈ � & tx > t} for all t ∈ [0, T ) (these sets are open due to
(3.1)). Then the lemma essentially follows from Theorem 2 in [3] but in order to apply
it, we need to show that ω weakly satisfies some boundary conditions on (0, T ) × ∂�

(even though these do not affect the result). To this end we employ Theorem 3.1 and
Remark 3.1 in [4], which show that there is indeed some κ ∈ L∞((0, T ) × ∂�) such
that

∫ T

0

∫

�

ω (∂tϕ + u · ∇ϕ) dxdt = −
∫

�

ω0ϕ(0, ·) dx +
∫ T

0

∫

∂�

(u · n)ϕκ dσdt

holds for all ϕ ∈ C∞
0

([0, T ) × �̄
)
.

Theorem 2 in [3] now shows that there is a positive measure η on � such that

∫

�t

ψ(y)ω(t, y) dy =
∫

�

ψ(Xx
t ) dη(x) (3.2)

for almost all t ∈ (0, T ) and allψ ∈ C∞
0 (�t ). (In fact, the measure in [3] is supported

on the set of all maximal solutions to the ODE d
dt Y (t) = u(t,Y (t)) on (0, T ), and the

relevant formula holds for all ψ ∈ C∞
0 (Rd). But this becomes (3.2) when restricted

to the ψ above, with η the restriction of the measure from [3] to the set of solutions
{{Xx

t }t∈(0,T ) | x ∈ �}. This is because uniqueness of solutions for the ODE shows that
the other solutions have Y (t) /∈ �t for any t ∈ (0, T ).) By taking t → 0 in (3.2), we
obtain

∫

�

ψ(y)ω0(y) dy =
∫

�

ψ(x) dη(x)

for any ψ ∈ C∞
0 (�), so dη(x) = ω0(x)dx . Letting ψ in (3.2) be approximate delta

functions near all y ∈ �t then shows that for almost all t ∈ (0, T )we haveω(t, Xx
t ) =

ω0(x) whenever x and Xx
t are Lebesgue points of ω0 and ω(t, ·), respectively. This

finishes the proof. ��

Since tx = ∞ for all x ∈ �, Lemma 3.1 with T → ∞ now proves the second claim
in Theorem 1.1(ii). As in [17], uniform boundedness of u on any compact subset of �

then yields ω ∈ C([0,∞); L1(�)), and continuity of u on [0,∞) × � follows from
this and the Biot-Savart law. Then also (1.9) holds pointwise, finishing the proof of
Theorem 1.1(ii).

This argument actually applies on general open bounded � ⊆ R
2, without needing

tx = ∞ for all x ∈ �. This is because boundedness of ω implies u ∈ L∞((0, T )×K )

for any compact K ⊆ � as well as (3.1) (for solutions on a time interval (0, T )

with T < ∞), and these three facts then again yield ω ∈ C([0, T ]; L1(�)) (with
ω(0, ·) := ω0 and ω(T , ·) defined by continuity). This yields Corollary 1.4.
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4 Proof of Lemma 2.1

We can assume that β̃T (0) = 0, which is achieved by subtracting β̃T (0) from β̃T and
adding it to βT . Since T is analytic, we have det DT (z) = |T ′(z)|2, where T ′ is the
complex derivative when T is considered as a function on C. The same is true for its
inverse S, and we also have S ′(z) = T ′(S(z))−1. Since � is regulated, Theorem 3.15
in [23] shows that

S ′(z) = |S ′(0)| exp
(

i

2π

∫ 2π

0

eiθ + z

eiθ − z

(
β̄T (θ) − θ − π

2

)
dθ

)
(4.1)

for all z ∈ D, and from
∫ 2π
0

eiθ+z
eiθ−z

dθ = 2π ∈ R and Im eiθ+z
eiθ−z

= 2Im z
eiθ−z

we get

det DS(z) = det DS(0) exp

(
− 2

π

∫ 2π

0
Im

z

eiθ − z

(
β̄T (θ) − θ

)
dθ

)
(4.2)

(with β̄T (θ) − θ being 2π -periodic).
We note that if β̄T is itself Dini continuous (so we can have β̃T = β̄T and∫ 1

0
m(r)
r dr < ∞), then the integral in (4.2) is uniformlyboundedby somem-dependent

constant. Indeed, letting θz := arg z, this follows from Im z
ei(θz−θ ′)−z

= −Im z
ei(θz+θ ′)−z

and | z
ei(θz+θ ′)−z

| ≤ π
2|θ ′| for all θ ′ (which show that

∫ 2π
0 Im z

eiθ−z
(β̄T (θz) − θ)dθ is

uniformly bounded), and from the latter bound also implying

∣∣∣∣
z

eiθ − z

(
β̄T (θ) − β̄T (θz)

)∣∣∣∣ ≤
π

2

m(|θ − θz |)
|θ − θz | .

One can also easily show that
∫
D

(1−|z|)|ξ ·z⊥|
|ξ−z|2 ||z|2ξ−z|2 dz ≤ C | ln(1 − |ξ |)| for some

C > 0 when |ξ | ∈ [ 12 , 1), using (4.14) below and the argument following it, with
the exponential terms removed. So (2.1) with the right-hand side Cm | ln(1 − |ξ |)|
follows immediately in this case. The rest of this section (and Section 6) proves (2.1)
in the general case.

We will now split the exponential in (4.2) into the parts corresponding to βT and
β̃T . Let κ := 1

2π (β̃T (2π) − β̃T (0)), so that β̃T (θ) − κθ and βT (θ) − (1 − κ)θ are

both 2π -periodic (note that we also have κ ∈ [−m(2π)
2π ,min{1, m(2π)

2π }] because βT is
non-decreasing). Integration by parts then shows that

∫ 2π

0

z

eiθ − z
(βT (θ) − (1 − κ)θ) dθ = i

∫ 2π

0
ln(1 − ze−iθ ) d (βT (θ) − (1 − κ)θ) ,

so from
∫ 2π
0 ln(1 − ze−iθ )dθ = ln 1 = 0 we obtain

∫ 2π

0
Im

z

eiθ − z
(βT (θ) − (1 − κ)θ) dθ =

∫ 2π

0
ln |eiθ − z| dβT (θ). (4.3)
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20 Page 14 of 31 Z. Han, A. Zlatoš

In order to simplify notation, letβ be the positivemeasurewith distribution function
βT , and define the function β̃(θ) := β̃T (θ) − κθ . Then β̃ has modulus of continuity
m̃(r) := m(r) + |κ|r , and we have m̃(r) ≤ m(r) + m(2π)

2π r ≤ 3m(r) for r ∈ [0, 2π ].
This is because any modulus satisfies m(2−na) ≥ 2−nm(a) for any a ∈ [0, 2π ] and
n ∈ N (by induction), and thus m(b) ≥ b

2am(a) whenever 0 ≤ b ≤ a ≤ 2π since m
is non-decreasing. We also let

|β| := β((0, 2π ]) = βT (2π) − βT (0) = 2π(1 − κ) ∈ [0, 2π + m(2π)].

Next, for any z ∈ D, bounded measurable A ⊆ R, and θ∗ ∈ R, let

I(z, A) := 2

π

∫

A
ln |eiθ − z| dβ(θ),

J (z, A, θ∗) := 2

π

∫

A
Im

z

eiθ − z
(β̃(θ) − β̃(θ∗)) dθ,

as well as

I(z) := I(z, (0, 2π ]),
J (z) := J (z, (0, 2π ], θ∗)

(with the latter independent of θ∗ due to
∫ 2π
0 Im z

eiθ−z
dθ = 0). Then (4.2) and (4.3)

yield

det DS(z) = det DS(0) e−I(z)−J (z)

and
det DT (S(z)) = det DS(0)−1 eI(z)+J (z) (4.4)

(recall that β̃(0) = 0). In view of this, (2.1) becomes

∫

D

(1 − |z|)|ξ · z⊥|
|ξ − z|2 ||z|2ξ − z|2 e

I(ξ)−I(z)eJ (ξ)−J (z) dz ≤ C Qm(1 − |ξ |)
(∫ 1

1−|ξ |
ds

sQm(s)
+ CT

)
.

(4.5)

To prove this, we need the following lemma, whose proof we postpone to Section 6.

Lemma 4.1 Let β be a (positive) measure on R and let I := [θ∗ − 2δ, θ∗ + 2δ] for
some θ∗ ∈ R and δ ∈ (0, π

2 ]. Let H ⊆ D be an open region such that if rei(θ
∗+φ) ∈ H

for some r ∈ (0, 1) and |φ| ≤ π , then rei(θ
∗+φ′) ∈ H whenever |φ′| ≤ |φ| (i.e., H

is symmetric and angularly convex with respect to the line connecting 0 and eiθ
∗
). If

α ≥ 1, then
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∫

H
f (z)

[
g(z) + 1

β(I )

∫

I
h(|eiθ − z|)dβ(θ)

]α
dz ≤

∫

H
f (z)

[
g(z) + h(|eiθ∗ − z|)

]α
dz

(4.6)

holds for any non-increasing h : (0,∞) → [0,∞) and non-negative f , g ∈ L1(H)

such that f (rei(θ
∗+φ′)) ≥ f (rei(θ

∗+φ)) and g(rei(θ
∗+φ′)) ≥ g(rei(θ

∗+φ)) whenever
r ∈ (0, 1) and |φ′| ≤ |φ|.
Remark The right-hand side of (4.6) is just the left-hand side for the Dirac measure
at θ∗ with mass β(I ). That is, concentrating all the mass of β on I into θ∗ cannot
decrease the value of the integral in (4.6).

Next, we claim that there is δ > 0 such that β([θ −2δ, θ +2δ]) ≤ 4
3π for all θ ∈ R

(any number from (π, 3
2π) would work in place of 4

3π here). Let δ′ > 0 be such that
any interval of length 4δ′ contains at most one θ with β({θ}) ≥ π

9 (there are only
finitely many such θ in (0, 2π ]). Then for each θ ∈ [0, 2π ], find δθ ∈ (0, δ′] such that
β([θ−2δθ , θ+2δθ ]) ≤ β({θ})+π

9 . Since {(θ−2δθ , θ+2δθ ) | θ ∈ [−π, 3π ]} is an open
cover of [−π, 3π ], there is a finite sub-cover {(θk − 2δθk , θk + 2δθk ) | k = 1, . . . , N }.
If we let δ := min{δθk | k = 1, . . . , N } > 0, then indeed β([θ − 2δ, θ + 2δ]) ≤
(π + π

9 ) + (π
9 + π

9 ) = 4
3π for all θ ∈ [0, 2π ] (and so for all θ ∈ R). This is because

[θ − 2δ, θ + 2δ] ⊆ [θk − 2δθk , θk + 2δθk ] ∪ [θ j − 2δθ j , θ j + 2δθ j ] for some k, j such
that |θk − θ j | ≤ 4δ′, and hence at most one of β({θk}) and β({θ j }) is greater than
π
9 (unless k = j), while obviously each is at most π .
Moreover, let us decrease this constant so that δ ∈ (

0, ln 2
103(1+m(2π))

]
and

m(2δ) ≤ ln 2
300 . With this (T -dependent) δ, we can now prove the following estimates

(recall (4.5)).

Lemma 4.2 Let β, β̃,m and δ be as above. There are C|β|,δ and Cm (depending only
on |β|, δ and on m, respectively, so only on T ) such that for any ξ ∈ D we have

∫

D

z−1(1 − |z|)5/6eI(ξ)−I(z)dz ≤ C|β|,δ, (4.7)

and for all z, ξ ∈ D also

eJ (ξ)−J (z) ≤ Cm
Qm(min{1 − |ξ |, |ξ − z|})

Qm(|ξ − z|)
Qm(min{1 − |z|, |ξ − z|})

Qm(|ξ − z|) . (4.8)

Moreover, if
|ξ − z| ≤ 4δ, then for θξ := arg ξ

and I := [θξ − 2δ, θξ + 2δ] we have

eJ (ξ,I ,θξ )−J (z,I ,θξ ) ≤ 2
Qm(min{1 − |ξ |, |ξ − z|})

Qm(|ξ − z|)
Qm(min{1 − |z|, |ξ − z|})

Qm(|ξ − z|) .

(4.9)
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Proof Let us start with (4.8). Let θξ := arg ξ and θz := arg z, as well as

A :=
{
θ ∈ (0, 2π ]

∣∣∣ min{d(θ, θξ ), d(θ, θz)} ≥ 1

2
|ξ − z|

}
,

where d is the distance in [0, 2π ] with 0 and 2π identified. Then from

∣∣∣∣
ξ

eiθ − ξ
− z

eiθ − z

∣∣∣∣ =
∣∣∣∣

eiθ (ξ − z)

(eiθ − ξ)(eiθ − z)

∣∣∣∣ ≤ π2 |ξ − z|
d(θ, θξ ) d(θ, θz)

we obtain

|J (ξ, A, π) − J (z, A, π)| ≤ 4π |ξ − z|m̃(π)

(∫ π

|ξ−z|/2
dr

r(r + 2a)
+
∫ a

b

dr

r(2a − r)

)
,

where a := 1
2d(θξ , θz) and b := min{ 12 |ξ − z|, a} ≤ a, and we separately integrated

over the 2 or 4 regions obtained by cutting A at the two midpoints between θξ and θz .
That is,

|J (ξ, A, π) − J (z, A, π)| ≤ 4πm̃(π)

(
2 + b

a
ln

a

b

)
≤ 10πm̃(π) ≤ Cm .

On the complement Ac := (0, 2π ]\Awe can estimate the twoJ terms individually.
To conclude (4.8), it now suffices to show

|J (z, Ac, π)| ≤ Cm + ln
Qm(min{1 − |z|, |ξ − z|})

Qm(|ξ − z|) (4.10)

because an analogous estimate then follows for J (ξ, Ac, π) as well. First note that if
we let A′ := {θ ∈ Ac | d(θ, θz) > 1

2 |ξ − z|}, then

|J (z, A′, π)| ≤ 2m̃(π)

∫ 3d(A′,θz)

d(A′,θz)

dr

r
≤ Cm .

With A′′ := {θ ∈ Ac | d(θ, θz) ≤ 1
2 min{1 − |z|, |ξ − z|}} we also have

|J (z, A′′, π)| ≤ 2

π
m̃(π) ≤ Cm

due to |eiθ − z| ≥ 1 − |z|. This proves (4.10) when |ξ − z| ≤ 1 − |z|. If instead
|ξ − z| > 1 − |z|, then we also use Im z

ei(θz−r)−z
= −Im z

ei(θz+r)−z
(note that the

region Ac \ (A′ ∪ A′′) is symmetric across θz , so
∫
Ac\(A′∪A′′) Im

z
ei(θz+r)−z

dθ = 0) and

|eiθ − z| ≥ sin |θ − θz | to estimate

|J (z, Ac \ (A′ ∪ A′′), π)| ≤ 2

π

∫ |ξ−z|/2

(1−|z|)/2
m̃(2r)

sin r
dr ≤ Cm + ln

Qm(1 − |z|)
Qm(|ξ − z|) ,

123



Euler Equations on General Planar Domains Page 17 of 31 20

with the last inequality due to

∫ b/2

a/2

m̃(2r)

sin r
dr ≤

∫ b

a

m̃(s)

sin s
ds ≤

∫ b

a

m(s)

s
ds +

∫ b

a
(10m̃(s) + |κ|) ds

≤
∫ b

a

m(s)

s
ds + Cm

for 0 ≤ a ≤ b ≤ 2 (because sups∈[0,2]( 1
sin s − 1

s ) ≤ 10). Hence (4.10) follows, proving
(4.8).

To obtain (4.9), we repeat this argument with some minor adjustments. For

A :=
{
θ ∈ I

∣∣∣ min{d(θ, θξ ), d(θ, θz)} ≥ 1

2
|ξ − z|

}
,

we obtain the bound

|J (ξ, A, θξ ) − J (z, A, θξ )| ≤ 4πm̃(2δ)

(
2 + b

a
ln

a

b

)
≤ 10πm̃(2δ) ≤ 30πm(2δ) ≤ ln 2

3

(recall that m̃(s) ≤ 3m(s)). Hence it suffices to show (4.10) with Ac := I \ A, and
with θξ and ln 2

3 in place of π and Cm . As above, we now obtain

|J (z, A′, θξ )| ≤ 2m̃(2δ)
∫ 3d(A′,θz)

d(A′,θz)

dr

r
≤ 4 ln 3m(2δ) ≤ ln 2

9

and

|J (z, A′′, θξ )| ≤ 2

π
m̃(2δ) ≤ 4

π
m(2δ) ≤ ln 2

9
.

Finally, if |ξ − z| > 1 − |z|, then we also get

|J (z, Ac \ (A′ ∪ A′′), θξ )| ≤ 2

π

∫ |ξ−z|/2

(1−|z|)/2
m̃(2r)

sin r
dr ≤ ln 2

9
+ ln

Qm(1 − |z|)
Qm(|ξ − z|)

because
∫ b
a (10m̃(s) + |κ|) ds ≤ 4δ(21m(2π)) ≤ ln 2

9 when 0 ≤ a ≤ b ≤ 4δ.
Now we prove (4.7). We obviously have

max{I(ξ), |I(z)|} ≤ 2 ln 2

π
|β| (4.11)

for all ξ ∈ D and all z ∈ B(0, 1
2 ), so it suffices to prove

∫

D

(1 − |z|)5/6e−I(z)dz ≤ C|β|,δ. (4.12)
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The integrand is clearly bounded above by ( δ
2 )

−2|β|/π on B(0, 1 − δ
2 ). Since

D \ B(0, 1 − δ
2 ) can be covered by O( 1

δ
) disks with centers on ∂D and radii δ, it

suffices to prove (4.12) with H := B(eiθ
∗
, δ) ∩ D in place of D, for any θ∗ ∈ R.

Let I := [θ∗ − 2δ, θ∗ + 2δ] and α := 2β(I )
π

∈ [0, 8
3 ]. Since

I
(
z, (0, 2π ] \

⋃
k∈Z

(I + 2kπ)

)
≥ 2|β|

π
ln

δ

2

for all z ∈ H , it in fact suffices to prove

∫

H
(1 − |z|)5/6e−I(z,I )dz ≤ C . (4.13)

If α ∈ [0, 1], then from 1 − |z| ≤ |eiθ − z| for all (z, θ) ∈ D × R we indeed have

∫

H
(1 − |z|)5/6e−I(z,I )dz =

∫

H
(1 − |z|)−α+5/6 exp

(
2

π

∫

I
ln

1 − |z|
|eiθ − z|dβ(θ)

)
dz

≤
∫

D

(1 − |z|)−1/6dz,

as needed.
If α ∈ [1, 8

3 ], then we instead use Jensen’s inequality and Lemma 4.1 with f (z) =
(1 − |z|)5/6, g(z) = 0, and h(s) = 1

s to obtain

∫

H
(1 − |z|)5/6e−I(z,I )dz ≤

∫

H
(1 − |z|)5/6 exp

[
α ln

(
1

β(I )

∫

I

1

|eiθ − z|dβ(θ)

)]
dz

=
∫

H
(1 − |z|)5/6

(
1

β(I )

∫

I

1

|eiθ − z|dβ(θ)

)α

dz

≤
∫

H
(1 − |z|)5/6|eiθ∗ − z|−αdz

≤
∫

H
|eiθ∗ − z|−α+5/6dz

≤ 12π.

This proves (4.13) and hence also (4.7). ��
Now we are ready to prove Lemma 2.1

Proof of Lemma 2.1 For the sake of simplicity, we first prove the result with C < 105,
and at the end indicate the changes required to obtain C < 147π . Consider the
(T -dependent) δ from above. Recall that we only need to prove (4.5), and note that
ξ · z⊥ = (ξ − z) · z⊥ implies

|ξ · z⊥|
|ξ − z|2 ||z|2ξ − z|2 ≤ 1

|ξ − z| |z| ||z|ξ − z
|z| |2

= 1

|ξ − z| |z|3 |ξ − z
|z|2 |2

. (4.14)
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Together with (4.11) and (4.8) this yields Cm such that for any ξ ∈ D \ B(0, 1
2 ) we

have

∫

B(0, 14 )

(1 − |z|)|ξ · z⊥|
|ξ − z|2||z|2ξ − z|2 e

I(ξ)−I(z)eJ (ξ)−J (z)dz ≤ CmQm(1 − |ξ |)

because |z| |ξ − z
|z|2 | = ||z|ξ − z

|z| | ≥ 1− |z| and the last fraction in (4.8) is bounded

above by exp
(
2
π

∫ 5/4
3/4

m(r)
r dr

)
when z ∈ B(0, 1

4 ) (note that the dependence of the

constant on |β| need not be indicated here because 0 ≤ |β| ≤ 2π + m(2π)).
If now |ξ | ∈ [ 12 , 1) and z ∈ B(ξ,

1−|ξ |
2 ), then I(ξ) − I(z) ≤ 2|β|

π
due to

|eiθ − ξ ||eiθ − z|−1 ≤ 2 for all θ ∈ R. Hence using |ξ − z
|z|2 | ≥ 1 − |ξ | ≥ 1−|z|

2 in

(4.14) (because z
|z|2 /∈ D) and |ξ − z| ≤ min{1 − |ξ |, 1 − |z|} in (4.8) yields

∫

B(ξ,
1−|ξ |
2 )

(1 − |z|)|ξ · z⊥|
|ξ − z|2||z|2ξ − z|2 e

I(ξ)−I(z)eJ (ξ)−J (z)dz ≤ Cm

∫

B(ξ,
1−|ξ |
2 )

1

|ξ − z|(1 − |ξ |) dz ≤ Cmπ.

For all other z ∈ D \ B(0, 1
4 ), we can bound the right-hand side of (4.14) above

by 64
|ξ−z|3 , using that | z

|z|2 | − 1 ≥ 1 − |z| implies |ξ − z
|z|2 | ≥ |ξ − z|. This, (4.8),

(4.7), and Qm being non-increasing and satisfying the bounds Qm(1 − |ξ |) ≥ 1 and
Qm(1 − |z|) ≤ Cm(1 − |z|)−1/6 (see the remark after Lemma 2.1) now yield

∫

D\(B(ξ,δ3)∪B(0, 14 ))

(1 − |z|)|ξ · z⊥|
|ξ − z|2||z|2ξ − z|2 e

I(ξ)−I(z)eJ (ξ)−J (z)dz ≤ Cm,δ Qm(1 − |ξ |)

(note that the constant now also depends on δ). To obtain (4.5), it therefore suffices to
prove

∫

Hξ

1 − |z|
|ξ − z|3 e

I(ξ)−I(z)eJ (ξ)−J (z)dz ≤ C Qm(1 − |ξ |)
(∫ 1

1−|ξ |
ds

sQm(s)
+ 1

)

(4.15)
when |ξ | ∈ [1 − 2δ3, 1), with Hξ := [B(ξ, δ3) \ B(ξ,

1−|ξ |
2 )] ∩ D and a universal

C < 105(1 − 3δ3)3. Since (1 − 3δ3)3 ≥ (1 − 3
109

)3 > 1 − 1
108

, it suffices to obtain

C ≤ 105 − 1 here
Let θξ := arg ξ , and again let I := [θξ −2δ, θξ +2δ] as well as α := 2β(I )

π
∈ [0, 8

3 ].
Then |eiθ −ξ | ≥ δ for all θ /∈⋃k∈Z(I+2kπ), hence for all such θ and all z ∈ B(ξ, δ3)

wehave |eiθ−ξ |
|eiθ−z| ≤ 1

1−δ2
≤ 1+ π

2|β| (the last inequality follows from δ2 ≤ π
π+2|β| , which

is due to π
π+2|β| ≥ π

5π+2m(2π)
≥ ln 2

103(1+m(2π))
≥ δ). This yields for all z ∈ B(ξ, δ3),

I(ξ) − I(z) = 2

π

∫

(0,2π ]
ln

|eiθ − ξ |
|eiθ − z| dβ(θ) ≤ 1 + 2

π

∫

I
ln

|eiθ − ξ |
|eiθ − z| dβ(θ). (4.16)
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Similarly, for the same z and θ we have

∣∣∣∣
ξ

eiθ − ξ
− z

eiθ − z

∣∣∣∣ =
|ξ − z|

|eiθ − ξ ||eiθ − z| ≥ δ

1 − δ2
≥ 1

4m̃(2π)
,

so

J (ξ)−J (z) = J (ξ, (0, 2π ], θξ )−J (z, (0, 2π ], θξ ) ≤ 1+J (ξ, I , θξ )−J (z, I , θξ ).

(4.17)
Using (4.9), combined with Qm( 12 (1 − |ξ |))Qm(1 − |ξ |)−1 ≤ e2m(2δ3)/π ≤ e1/100π

(recall that |ξ − z| ≥ 1−|ξ |
2 ) and Qm(a)Qm(b)−1 ≤ exp( 16

∫ b
a

1
r dr) = b1/6a−1/6 for

0 < a ≤ b ≤ δ3 (because m(δ3) ≤ m(2δ) ≤ π
12 ), we thus obtain

eJ (ξ)−J (z) ≤ 2 · 31/6e1+1/100π Qm(1 − |ξ |)
Qm(|ξ − z|)

|ξ − z|1/6
(1 − |z|)1/6 , (4.18)

where we also used that 1−|z| ≤ 3|ξ − z| for all z ∈ D\ B(ξ,
1−|ξ |
2 ). Estimates (4.16)

and (4.18), together with 2 · 31/6e1+1/100π ≤ 3e and

∫ 1−|ξ |
1
2 (1−|ξ |)

ds

sQm(s)
≤ ln 2

Qm(1 − |ξ |) ≤
∫ 2(1−|ξ |)

1−|ξ |
ds

sQm(s)
≤
∫ 1

1−|ξ |
ds

sQm(s)
, (4.19)

now show that (4.15) will follow from
∫

Hξ

(1 − |z|)5/6
|ξ − z|17/6 exp

(
2

π

∫

I
ln

|eiθ − ξ |
|eiθ − z| dβ(θ)

)
dz

Qm(|ξ − z|) ≤ C

(∫ 1

1
2 (1−|ξ |)

ds

sQm(s)
+ 1

)

(4.20)

whenever |ξ | ∈ [1 − 2δ3, 1), with some universal C ≤ 105−1
6e2

.

Consider now the case α ∈ [0, 1]. We have 1−|z| ≤ |eiθ −z| for all (z, θ) ∈ D×R,
and 1 − |z| ≤ 3|ξ − z| for all z ∈ Hξ . This and the triangle inequality yield

|eiθ − ξ |
|eiθ − z| ≤ |ξ − z|

|eiθ − z| + 1 ≤ 4
|ξ − z|
1 − |z| (4.21)

for all (z, θ) ∈ Hξ × I . Therefore the left-hand side of (4.20) is bounded above by

4α

∫

Hξ

(1 − |z|)−α+5/6

|ξ − z|−α+17/6

dz

Qm(|ξ − z|) ≤ 4α31−α

∫

Hξ

(1 − |z|)−1/6

|ξ − z|11/6
dz

Qm(|ξ − z|)

≤ 4
∫ 1

1
2 (1−|ξ |)

(∫

As

s1/6

(1 − |ξ + seiφ |)1/6 dφ

)
ds

sQm(s)

= 4
∫ 1

1
2 (1−|ξ |)

(∫

As

(s−1 − |s−1ξ + eiφ |)−1/6dφ

)
ds

sQm(s)
,
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with

As := {φ ∈ (0, 2π ] ∣∣ |ξ + seiφ | < 1} = {φ ∈ (0, 2π ] ∣∣ |s−1ξ + eiφ | < s−1}.

It is not difficult to see that the inside integral is maximized when s = 1 − |ξ | (i.e.,
(0, 2π ] \ As is a single point) for any |ξ | ∈ [1−2δ3, 1), in which case the integrand is
bounded above by [ 12 (1− cos(φ − θξ ))]−1/6 = [sin 1

2 (φ − θξ )]−1/3 because δ ≤ 1
103

.

But then the inside integral is bounded above by 2
∫ π

0

(
φ
π

)−1/3
dφ = 3π . Hence

(4.20) holds with C = 12π .
Next consider the caseα ∈ [1, 8

3 ], anddefine the functions g(z) := min{ 1
|ξ−z| ,

2
1−|ξ | }

and

f (z) := min

{
(1 − |z|)5/6

|ξ − z|−α+17/6Qm(|ξ − z|) ,
2−α+17/6(1 − |z|)5/6

(1 − |ξ |)−α+17/6Qm( 12 (1 − |ξ |))

}
,

as well as H ′
ξ := B(ξ, δ3)∩D ⊇ Hξ . We can now use Jensen’s inequality, (4.21), and

Lemma 4.1 to bound the left-hand side of (4.20) above by

∫

Hξ

(1 − |z|)5/6
|ξ − z|17/6

(
1

β(I )

∫

I

|eiθ − ξ |
|eiθ − z| dβ(θ)

)α
dz

Qm(|ξ − z|)

≤
∫

Hξ

(1 − |z|)5/6
|ξ − z|17/6

(
1 + 1

β(I )

∫

I

|ξ − z|
|eiθ − z|dβ(θ)

)α dz

Qm(|ξ − z|)

=
∫

Hξ

(1 − |z|)5/6
|ξ − z|−α+17/6

(
1

|ξ − z| + 1

β(I )

∫

I

1

|eiθ − z|dβ(θ)

)α dz

Qm(|ξ − z|)

≤
∫

H ′
ξ

f (z)

(
g(z) + 1

β(I )

∫

I

1

|eiθ − z| dβ(θ)

)α

dz

≤
∫

H ′
ξ

f (z)

(
g(z) + 1

|eiθξ − z|
)α

dz

≤ 35/62απ

Qm( 12 (1 − |ξ |)) +
∫

Hξ

(1 − |z|)5/6
|ξ − z|−α+17/6

(
1

|ξ − z| + 1

|eiθξ − z|
)α dz

Qm(|ξ − z|)

≤ 24π + 4
∫

Hξ

(1 − |z|)5/6
|ξ − z|−α+17/6

(
1

|ξ − z|α + 1

|eiθξ − z|α
)

dz

Qm(|ξ − z|) .

Notice that Lemma 4.1 applies because 2
π
m(δ3) ≤ 2

π
m(2δ) ≤ 1

6 ≤ 17
6 −α shows that

s−α+17/6Qm(s) is increasing on (0, δ3]. Using again 1 − |z| ≤ 3|ξ − z| for z ∈ Hξ

yields

∫

Hξ

(1 − |z|)5/6
|ξ − z|17/6

dz

Qm(|ξ − z|) ≤ 35/6
∫

Hξ

1

|ξ − z|2
dz

Qm(|ξ − z|) ≤ 6π
∫ 1

1
2 (1−|ξ |)

ds

sQm(s)
,

and then we also have with H∗ := B(eiθξ ,
1−|ξ |
2 ) ∩ D,

∫

Hξ \H∗
(1 − |z|)5/6

|ξ − z|−α+17/6|eiθξ − z|α
dz

Qm(|ξ − z|) ≤ 3α

∫

Hξ \H∗
(1 − |z|)5/6
|ξ − z|17/6

dz

Qm(|ξ − z|)
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≤ 162π
∫ 1

1
2 (1−|ξ |)

ds

sQm(s)
. (4.22)

Finally, from 1 − |z| ≤ |eiθξ − z|, α ≤ 8
3 , and Qm ≥ 1 on [0, 1] we obtain

∫

H∗
(1 − |z|)5/6

|ξ − z|−α+17/6|eiθξ − z|α
dz

Qm(|ξ − z|) ≤
(
1 − |ξ |

2

)α−17/6 ∫

H∗
|eiθξ − z|−α+5/6dz ≤ 12π.

This proves (4.20) with C = 672π ≤ 105−1
6e2

.
Finally, to obtain C < 147π , we perform the following adjustments to the above

argument. We choose δ > 0 so that β([θ − 2δ, θ + 2δ]) ≤ 1.01π for all θ ∈ R, so we
always have α ∈ [0, 2.02]. The 1 in (4.16) and (4.17) can be replaced by an arbitrary
positive constant by lowering δ further. Similarly the 2 in (4.9) can be replaced by
an arbitrary constant greater than 1, and the power 1

6 in (4.18) by an arbitrarily small
positive power (which allows us to turn the 31/6 in (4.18) into an arbitrary constant
greater than 1; this power then also propagates through the rest of the proof). This
means that the constant in (4.18) with the new power can be made arbitrarily close
to 1. The right-hand side of (4.19) can be multiplied by an arbitrarily small positive
constant if we replace the upper bound in the second integral by a large multiple of
1 − |ξ | instead of 2(1 − |ξ |) (which is again possible when δ > 0 is small enough),
so it follows that it suffices to prove (4.20) with some C < 147π . Since in (4.22)
we can actually replace 3α by (

√
5)α ≤ 51.01 < 5.1, we indeed obtain (4.20) with

C = 4(6π + 30.6π) < 147π . While further lowering of C is possible, we do not do
so here. ��

5 Proof of Theorem 1.2

Let � ⊆ R
2 be a regulated open bounded Lipschitz domain with ∂� a Jordan curve.

Also assume that� is symmetric with respect to the real axis, 0 ∈ ∂�, and (1−ε, 1)×
{0} ⊆ � for some ε > 0. Let�± := �∩(R×R

±) and�0 := �∩(R×{0}) (these are
obviously all simply connected). Then there is a Riemann mapping T : � → D with
T (�0) = (−1, 1) and T (0) = 1, and therefore also T (�±) = D

± := D ∩ (R × R
±).

Assume also that there are βT , β̃T as in (H), and β̃T has bounded variation. Then
I(z),J (z) from the last section are the integrals

I(z) = 2

π

∫

(−π,π ]
ln |eiθ − z| dβT (θ),

J (z) = 2

π

∫

(−π,π ]
ln |eiθ − z| dβ̃T (θ), (5.1)

wherewe replaced integration over (0, 2π ]by (−π, π ] for convenience, and the second
formula follows similarly to (4.3).

Given any concave modulusm and r0 ∈ (0, 1
2 ]withm(2r0) ≤ π

6 , assume that there
are � and T as above with βT ≡ 0 on (−1, 1) and
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β̃T (θ) = π

2
− sgn(θ)

2
m(2min{|θ |, r0})

for θ ∈ (−π, π ]. Concavity of m then guarantees that β̃T indeed has modulus of
continuity m. Notice also that dβ̃T (θ) = −χ(−r0,r0)m

′(2|θ |)dθ on (−π, π ], as well
as |βT | = 2π +m(2r0) ≤ 7. We show at the end of this section that such � and T do
exist for any m and r0 ∈ (0, 1

2 ] with m(2r0) ≤ π
6 .

We will first show that if
∫ 1
0

ds
qm (s) < ∞ and x ∈ �0, then the trajectory Xx

t for
the stationary weak solution ω := χ�+ − χ�− to the Euler equations on � will reach
0 ∈ ∂� in finite time. This will prove Theorem 1.2(i).

Due to symmetry, the particle trajectories Xx
t for this solution coincide with those

for the stationary solution ω ≡ 1 on �+. We will therefore now employ the Biot-
Savart law on �+. Let R : D

+ → D be a Riemann mapping with R(1) = 1, so
that T + := RT : �+ → D is a Riemann mapping with T +(0) = 1. The (time-
independent) Biot-Savart law for ω ≡ 1 on �+ can therefore be written as

u(x) = DT +(x)T
∫

�+
∇⊥

ξ GD(T +(x), T +(y)) dy, (5.2)

with GD(ξ, z) = 1
2π ln |ξ−z|

|ξ−z∗||z| the Dirichlet Green’s function for D. If x ∈ �0 ⊆
∂�+, we have T +(x) ∈ ∂D, where GD(·, z) vanishes for any fixed z ∈ D (and
GD(·, z) < 0 on D), so

∇⊥
ξ GD(T +(x), T +(y)) = |∇ξGD(T +(x), T +(y))|T +(x)⊥.

This suggests one to evaluate

DT +(x)T T +(x)⊥ = DT +(x)T (det DT +(x))−1/2DT +(x)(1, 0),

where (1, 0) is the counterclockwise unit tangent to �+ at x ∈ �0, and we used that
the action of the matrix DT +(x) is just multiplication by a complex number with

magnitude
√
det DT +(x). Since DT + is of the form

(
a b

−b a

)
, we have

DT +(x)T DT +(x) = (det DT +(x))I2,

so (5.2) for x ∈ �0 becomes

u1(x) =
√
det DT +(x)

∫

�+
|∇ξGD(T +(x), T +(y))| dy and u2(x) = 0.

Since �0 is a smooth segment of ∂�+, standard estimates show that DT +(x) is
continuous and non-vanishing on �0. Since d

dt X
x
t = u(Xx

t ), it follows that for each
x ∈ �0, the trajectory Xx

t either reaches 0 in finite time or converges to 0 as t → ∞.
It therefore suffices to analyze u1(x) for x ∈ �0 close to 0.
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If x ∈ �+ ∪ �0 is not close to the left end of �0, then T (x) ∈ D+ is not close to
−1, so standard estimates yield

√
det DR(T (x)) ∈ [c|T (x) − 1|, c−1|T (x) − 1|] for

some c = cT ∈ (0, 1] (because DR(z) ∼ z − 1 for z near 1, and DR only vanishes
at ±1). So for all x ∈ �+ ∪ �0 not close to the left end of �0 we have

√
det DT +(x)

(
|T (x) − 1|√det DT (x)

)−1 ∈ [c, c−1]. (5.3)

From (4.4) we have

det DT (x) = det DT (T −1(0))eI(T (x))+J (T (x)). (5.4)

Since βT is supported away from θ = 0, the term eI(T (x)) is bounded above and
below by positive numbers, uniformly in all x that are either close to 0 or not close to
∂D. Moreover, (5.1) and the specific form of β̃T give us for z ∈ D,

J (z) ≥ − 4

π

∫ r0

0
ln(|z − 1| + θ)m′(2θ)dθ = − 2

π
m(2r0) ln(|z − 1| + r0) + 2

π

∫ r0

0

m(2θ)

|z − 1| + θ
dθ.

We can now estimate (with a constant Cm,r0 changing from one inequality to another)

∣∣∣∣
∫ r0

0

m(2θ)

|z − 1| + θ
dθ −

∫ 1

|z−1|
m(r)

r
dr

∣∣∣∣ ≤
∣∣∣∣
∫ 1/2

|z−1|/2
m(2θ)

|z − 1| + θ
dθ −

∫ 1/2

|z−1|/2
m(2θ)

θ
dθ

∣∣∣∣+ Cm,r0

≤
∣∣∣∣
∫ 1/2

|z−1|/2
|z − 1|m(2θ)

θ(|z − 1| + θ)
dθ

∣∣∣∣+ Cm,r0

≤ ‖m‖L∞
∣∣∣∣
∫ 1/2

|z−1|/2
|z − 1|

θ2
dθ

∣∣∣∣+ Cm,r0

≤ Cm,r0 .

For z ∈ D
0 := D ∩ (R × {0}), we now obtain

∣∣∣∣J (z) − 2

π

∫ 1

|z−1|
m(r)

r
dr

∣∣∣∣ ≤ Cm,r0 (5.5)

from this and from an opposite estimate via

J (z) ≤ − 4

π

∫ r0

0
ln

(
1

2
(|z − 1| + θ)

)
m′(2θ)dθ.

Hence, for a new c = cT ,r0,m > 0 and all x ∈ �0 not close to the left end of �0 we
obtain

det DT (x) Qm(|T (x) − 1|)−1 ∈ [c, c−1].
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This and (5.3) show that there is c = cT ,r0,m > 0 such that for all x ∈ �0 close to 0
we have

u1(x) ≥ c|T (x) − 1|√Qm(|T (x) − 1|)
∫

�+
|∇ξGD(T +(x), T +(y))| dy and u2(x) = 0.

If now Xx
t ∈ �0 is close to 0 and we let d(t) := 1 − |T (Xx

t )| = |T (Xx
t ) − 1|, then

d ′(t) = −
∣∣∣∣DT (Xx

t )
d

dt
Xx
t

∣∣∣∣ = −√det DT (Xx
t )u1(X

x
t )

because DT is a multiple of I2 on �0. Therefore we have (with a new c > 0)

d ′(t) ≤ −cd(t)Qm(d(t))
∫

�+
|∇ξGD(T +(Xx

t ), T +(y))| dy. (5.6)

Since |∇ξGD(ξ, z)| is uniformly bounded away from 0 in (ξ, z) ∈ ∂D × κD for any
fixed κ ∈ (0, 1), the integral is bounded below by a positive constant. But then d ′(t) ≤
−cqm(d(t)), which implies

∫ 1

d(t)

ds

qm(s)
≥ ct +

∫ 1

d(0)

ds

qm(s)

for some c = cT ,m,r0 ∈ (0, 1]. Since the left-hand side is bounded in t if ∫ 10 ds
qm (s) < ∞,

we must have d(t) = 0 for some t < ∞. This proves that Xx
t reaches 0 ∈ ∂� in finite

time, and hence Theorem 1.2(i).
This construction also allows us to prove Theorem 1.2(ii). When

∫ 1
0

ds
qm (s) = ∞, we

can estimate the integral in (5.6) better after first rewriting it via a change of variables
as ∫

D

|∇ξGD(T +(Xx
t ), z)|

[
det DT +((T +)−1(z))

]−1
dz. (5.7)

Now with ξ := T +(Xx
t ) (and still assuming Xx

t ∈ �0) we have

|∇ξGD(ξ, z)| =
∣∣∣∣

ξ − z

|ξ − z|2 − ξ − z∗

|ξ − z∗|2
∣∣∣∣ ≥

10c

|ξ − z| ≥ c

|z − 1|

for some c > 0 (which will below change from one inequality to another and may
also depend on T ,m, r0) and all z ∈ D ∩ (B(1, 1) \ B(1, |ξ − 1|)) that also lie in the
sector with vertex 1, angle π

2 , and axis being the real axis (call this set C∼ and note
that Cξ ⊆ C1).

If z ∈ C1, then for y := (T +)−1(z) (so T (y) = R−1(z)) we have as above

det DT +(y) ≤ c|T (y) − 1|2Qm(|T (y) − 1|) = c|T (y) − 1|qm(|T (y) − 1|).

Indeed, this follows from (5.3), (5.4), and also (5.5) for T (y) in place of z. The latter
extends here even though T (y) ∈ R−1(C1) ⊆ D

+ and so T (y) /∈ D
0 because for some

123



20 Page 26 of 31 Z. Han, A. Zlatoš

y-independent C > 0 we have J (T (y)) ≤ − 4
π

∫ r0
0 ln( 1

C (|T (y) − 1| + θ))m′(2θ)dθ

(recall (5.1)). This in turn is due to the distance of any v ∈ R−1(C1) to ∂D being
comparable to |v − 1|, since C1 has the same property.

So for z ∈ Cξ , the integrand in (5.7) can be bounded below by a multiple of

1

|z − 1||R−1(z) − 1|qm(|R−1(z) − 1|) ≥ c3

|z − 1|3/2qm(c|z − 1|1/2) ,

with the inequality due to |R(v) − 1| ∈ [c|v − 1|2, c−1|v − 1|2] for all v ∈ D+ as well
as qm(a−1b) = a−1bQm(a−1b) ≤ a−1bQm(b) = a−1qm(b) for a ∈ (0, 1]. The integral
is therefore bounded below by a multiple of

∫ 1

|ξ−1|
dr√

rqm(c
√
r)

= 2

c

∫ c

c
√|ξ−1|

ds

qm(s)
.

Finally, since |ξ − 1| = |R(T (Xx
t )) − 1| ≤ c−1|T (Xx

t ) − 1|2 = c−1d(t)2, from (5.6)
and cqm(c−1d) ≤ qm(d) for c ∈ (0, 1] and d ∈ (0, c] we obtain

d ′(t) ≤ −cqm(d(t))

(∫ 1

c−1d(t)

ds

qm(s)
− C

)
≤ −c2qm(c−1d(t))

(∫ 1

c−1d(t)

ds

qm(s)
− C

)

whenever Xx
t ∈ �0 is close enough to 0, with some c = cT ,m,r0 ∈ (0, 1] and C =

CT ,m,r0 ≥ 0. But dividing this by the right-hand side and integrating yields (with a
new C)

ln
∫ 1

d(t)

ds

qm(s)
≥ ln

(∫ 1

c−1d(t)

ds

qm(s)
− C

)
≥ ct + ln

(∫ 1

c−1d(0)

ds

qm(s)
− C

)
≥ ct

for all t > 0, as long as x ∈ �0 is close enough to 0 (so the last parenthesis is ≥ 1).
This now yields Theorem 1.2(ii).

Construction of a Domain Corresponding to a Given Modulus
We will now show that a domain as above does exist. We will do this by taking the

desired β̄T = βT + β̃T and obtaining the domain � := S(D) via the corresponding
mapping S from (4.1). Since β̄T has bounded variation, we can now use the equivalent
formula

S ′(z) = S ′(0) exp
(

− 1

π

∫

(−π,π ]
ln(1 − ze−iθ ) dβ̄T (θ)

)
(5.8)

(see [23,Corollary 3.16]). Our � will in fact be a perturbed isosceles triangle, with
one vertex and the center of the opposite “side” on the real axis, and the modulus m
will be “attained” at the center of that side (where � will therefore be concave).

Given any concave modulus m and r0 ∈ (0, 1
2 ] with m(2r0) ≤ π

6 , let us define
β̃(θ) := π

2 − sgn(θ)
2 m(2min{|θ |, r0}) on (−π, π] (and let its derivative be 2π-periodic).

Then let β be such that β(0) = 0 and

dβ|(−π,π ] :=
(
2π

3
+ πm0

)
δπ + 2π

3
δπ/3 + 2π

3
δ−π/3,
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where m0 := 1
π
m(2r0) and δθ0 is the Dirac measure at θ = θ0. Clearly β̄ := β + β̃

satisfies β̄(π) = β̄(−π) + 2π , and β̄ − π
2 is odd on R (which is needed for symmetry

of � with respect to the real axis).
We now use (5.8) with the choice S ′(0) := 1 to define

V(z) := exp

(
− 1

π

∫

(−π,π ]
ln(1 − ze−iθ ) dβ̄(θ)

)
= (1 + z3)−2/3v(z),

where we consider the branch of the logarithm with ln : R
+ × R → R × (−π

2 , π
2 )

(since Re(1− ze−iθ ) > 0), use that �2
k=0(1− ze−i(2k−1)π/3) = 1+ z3, and also define

v(z) := (1 + z)−m0 exp

(
2

π

∫ r0

0
ln(1 − ze−iθ )m′(2θ) dθ

)
.

Since Im ln(1 − ze−iθ ) ∈ (−π
2 , π

2 ) for all (z, θ) ∈ D × R, the imaginary part of the
above exponent belongs to (−π

2m0,
π
2m0). This and Re(1 + z) > 0 now yield

| arg v(z)| < πm0 = m(2r0) ≤ π

6

for all z ∈ D. Since also | arg(1 + z3)| < π
2 , it follows that ReV(z) > 0 for all z ∈ D.

But then the mapping S : D → C given by

S(z) :=
∫ z

1
V(ξ) dξ

is injective, and T := S−1 is a Riemann mapping for � := S(D) with ∂� is a Jordan
curve. Note that � is bounded because V(z) = O(

∑2
k=0 |ei(2k−1)π/3 − z|−5/6). Since

V((−1, 1)) ⊆ R
+, we have S((−1, 1)) ⊆ R, and then S((−1, 1)) = �0, with S(1) =

0 ∈ ∂� its right endpoint.
Observe that arg(V(eiφ)) is uniformly continuous on (ei(2k−1)π/3, ei(2k+1)π/3) for

k = 0, 1, 2. This is because the same is true for arg((1+ e3iφ)−2/3(1+ eiφ)−m0), while

arg
(
V(eiφ)(1 + e3iφ)2/3(1 + eiφ)m0

)
= 2

π

∫ r0

0
arg(1 − ei(φ−θ))m′(2θ) dθ,

which is continuous in φ because m is continuous. We therefore have that for each
ε > 0 there are points 0 = φ0 < · · · < φN = 2π (with ei(2k−1)π/3 being among them)
and a1, . . . , aN ∈ R such that | arg(S(eiφ

′
) − S(eiφ)) − an | < ε whenever φn−1 <

φ < φ′ < φn . Then � is a regulated domain by Theorem 3.14 in [23]. So it has a
unit forward tangent vector from (1.10) for each θ ∈ R, and (4.1) shows that with its
argument β̄T from (1.11) we have

V(z) = S ′(z) = exp

(
i

2π

∫ π

−π

eiθ + z

eiθ − z

(
β̄T (θ) − θ − π

2

)
dθ

)
(5.9)

because S ′(0) = V(0) = 1.
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In the definition of V, we can replace β̄(θ) by the 2π-periodic function β̄(θ)−θ − π
2

because
∫ 2π
0 ln(1 − ze−iθ )dθ = ln 1 = 0. Integration by parts then yields

V(z) = exp

(
i

π

∫ π

−π

z

eiθ − z

(
β̄(θ) − θ − π

2

)
dθ

)

= exp

(
i

2π

∫ π

−π

(
eiθ + z

eiθ − z
− 1

)(
β̄(θ) − θ − π

2

)
dθ

)
.

From this and (5.9) we find that

1

2π

∫ π

−π

eiθ + z

eiθ − z

(
β̄T (θ) − β̄(θ)

)
dθ = 1

2π

∫ π

−π

(
β̄(θ) − θ − π

2

)
dθ + 2kπ = 2kπ

for some k ∈ Z and all z ∈ D (because β̄(θ)− π
2 and θ are odd). Hence β̄T − β̄ ≡ 2kπ ,

so � and T are indeed the domain and Riemann mapping we wanted to construct.

6 Proof of Lemma 4.1

Monotone Convergence Theorem shows that it suffices to consider bounded f , g, h.
We will prove this via a series of “foldings” of β|I onto smaller and smaller intervals
that shrink toward θ∗. We will show that at each step the relevant integral cannot
decrease.

Define β0 := β|I and let β1 be the measure for which

β1(A) =

⎧⎪⎨
⎪⎩

β0(A) if A ⊆ (−∞, θ∗ − 2δ) ∪ (θ∗,∞),

0 if A ⊆ [θ∗ − 2δ, θ∗ − δ),

β0(A ∪ (2(θ∗ − δ) − A)) if A ⊆ [θ∗ − δ, θ∗]

for any measurable A ⊆ R. That is, we obtain β1 from β0 by reflecting β0|[θ∗−2δ,θ∗−δ)

across θ∗ − δ onto (θ∗ − δ, θ∗]. In particular, β1 is supported on [θ∗ − δ, θ∗ + 2δ] and
both measures have total mass β(I ). We now let

G j (z) := g(z) + 1

β(I )

∫

I
h(|eiθ − z|) dβ j (θ),

and want to show that
∫

H
f (z)G0(z)αdz ≤

∫

H
f (z)G1(z)αdz. (6.1)

Let H̃ := {reiφ ∈ H | φ ∈ [θ∗ − δ −π, θ∗ − δ]} and let H ′ := {rei(2(θ∗−δ)−φ) | reiφ ∈
H̃} be its reflection across the line connecting 0 and ei(θ

∗−δ). The properties of H
ensure that H ′ ⊆ H . If now z ∈ H \ H̃ , then |eiθ − z| ≥ |ei(2(θ∗−δ)−θ) − z| for any
θ ∈ [θ∗ − 2δ, θ∗ − δ). This and h being non-increasing show that G0(z) ≤ G1(z) for
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all z ∈ H \ H̃ , and in particular for all z ∈ H \ (H̃ ∪ H ′). To conclude (6.1), it hence
suffices to show that

f (z)G0(z)α + f (z′)G0(z′)α ≤ f (z)G1(z)α + f (z′)G1(z′)α (6.2)

holds for any z = reiφ ∈ H̃ , with z′ := rei(2(θ
∗−δ)−φ) ∈ H ′ its reflection across the

line connecting 0 and ei(θ
∗−δ).

Note that the properties of f and g show that f (z′) ≥ f (z) and g(z′) ≥ g(z). Let

b+ := g(z) + 1

β(I )

∫

[θ∗−δ,θ∗+2δ]
h(|eiθ − z|) dβ0(θ) (≥ 0),

b− := 1

β(I )

∫

[θ∗−2δ,θ∗−δ)

h(|eiθ − z|) dβ0(θ) (≥ 0),

b′+ := g(z′) + 1

β(I )

∫

[θ∗−δ,θ∗+2δ]
h(|eiθ − z′|) dβ0(θ) (≥ 0),

b′− := 1

β(I )

∫

[θ∗−2δ,θ∗−δ)

h(|eiθ − z′|) dβ0(θ) (≥ 0).

Then G0(z) = b+ + b−, G0(z′) = b′+ + b′−, G1(z) = b+ + b′−, and G1(z′) = b′+ + b−,
so

G0(z) + G0(z′) = G1(z) + G1(z′).

We also have b′+ ≥ b+ and b′− ≤ b− due to g(z′) ≥ g(z), h being non-increasing, and
the definition of z′. This implies

0 ≤ G1(z) ≤ min{G0(z),G0(z′)} ≤ max{G0(z),G0(z′)} ≤ G1(z′).

The last two relations, together with convexity of the function xα on [0,∞), now yield

G0(z)α + G0(z′)α ≤ G1(z)α + G1(z′)α.

From this and ( f (z′) − f (z))(G1(z′)α − G0(z′)α) ≥ 0 we obtain (6.2), and therefore
(6.1).

An identical (modulo reflection) argument shows that if β2 is obtained from β1 by
reflecting β1|(θ∗+δ,θ∗+2δ] across θ∗ + δ onto [θ∗, θ∗ + δ), then we have

∫

H
f (z)G1(z)αdz ≤

∫

H
f (z)G2(z)αdz.

We can then repeat this with δ
2 in place of δ because β2 is supported on [θ∗ − δ, θ∗ + δ]

and has total mass β(I ). Continuing in this way, we obtain a sequence of mea-
sures β0, β2, β4, . . . , each β2 j having total mass β(I ) and supported on the interval
[θ∗ − 21− jδ, θ∗ + 21− jδ], such that

∫

H
f (z)G2 j (z)αdz ≤

∫

H
f (z)G2( j+1)(z)αdz
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for j = 0, 1, . . . . Since the integrands are uniformly bounded and converge pointwise
to f (z)(g(z) + h(|eiθ∗ − z|))α as j → ∞, Dominated Convergence Theorem finishes
the proof.
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