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Abstract
We prove that the Cauchy problem for the Muskat equation is well-posed locally in
time for any initial data in the critical space of Lipschitz functions with three-half
derivative in L2. Moreover, we prove that the solution exists globally in time under a
smallness assumption.

1 Introduction

The Muskat equation describes the dynamics of the interface separating two fluids in
porous media whose velocities obey Darcy’s law [22,30]. This equation belongs to the
family of nonlocal parabolic equations that have attracted a lot of attention in recent
years. Indeed, it has long been observed that one can reduce the Muskat equation
to an evolution equation for the free surface parametrization (see [9,24,34,35]). One
interesting feature of the Muskat equation is that it admits a compact formulation in
terms of finite differences, as observed by Córdoba and Gancedo [19]. More precisely,
assume that the free surface is the graph of some function f = f (t, x) with x ∈ R.
Then, Córdoba and Gancedo [19] showed that the Muskat equation reduces to

∂t f = 1

π

∫
R

∂x�α f

1 + (�α f )2
dα, (1)

where �α f is the slope, defined by
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�α f (x, t) = f (x, t) − f (x − α, t)

α
· (2)

It is easily verified that theMuskat equation is invariant by the change of unknowns:

f (t, x) �→ fλ(t, x) := 1

λ
f (λt, λx) (λ �= 0). (3)

Now, by a direct calculation,

∥∥ fλ
⏐⏐

t=0

∥∥
Ẇ 1,∞ = ‖ f0‖Ẇ 1,∞ ; ∥∥ fλ

⏐⏐
t=0

∥∥
Ḣ

3
2

= ‖ f0‖
Ḣ

3
2

.

This means that the spaces Ẇ 1,∞(R) and Ḣ
3
2 (R) are critical for the study of the

Cauchy problem. Let us clarify that we denoted by Ẇ 1,∞(R) the space of Lipschitz
functions, and by Hs(R) (resp. Ḣ s(R)) the classical Sobolev (resp. homogeneous
Sobolev) space of order s. They are equipped with the norm defined by

‖u‖Ẇ 1,∞ := sup
x,y∈R
x �=y

|u(x) − u(y)|
|x − y| ,

and

‖u‖Ḣ s :=
(∫

R

|ξ |2s
∣∣û(ξ)

∣∣2 dξ
) 1

2

, ‖u‖2Hs = ‖u‖2
Ḣ s + ‖u‖2L2 .

We are interested in the study of the Cauchy problem for the latter equation. Our
main result states that the Cauchy problem for the Muskat equation is well-posed

locally in time for any initial data in the critical space Ẇ 1,∞(R) ∩ H
3
2 (R).

Our analysis is inspired by many previous works, and we begin by reviewing the
literature on this problem. The first well-posedness results were established byYi [38],
Ambrose [4,5], Córdoba and Gancedo [19], Córdoba, Córdoba and Gancedo [18],
Cheng, Granero-Belinchón, Shkoller [14]. In recent years, these results were extended
in several directions. In particular, the well-posedness of the Cauchy problem has
been established in many sub-critical spaces: see Constantin, Gancedo, Shvydkoy and
Vicol [17] for initial data in the Sobolev space W 2,p(R) for some p > 1, Deng, Lei and
Lin [23] and Camerón [10] for initial data in Hölder spaces, and Matioc [29], Alazard
and Lazar [2], Nguyen and Pausader [31] for initial data in Hs(R) with s > 3/2.

Special features of the Muskat equations were exploited to improve the anal-
ysis of the Cauchy problem in several directions. Constantin, Córdoba, Gancedo,
Rodríguez-Piazza and Strain [15] (see also [17,33]) proved a global well-posedness
results assuming that the Lipschitz semi-norm is smaller than 1. Deng, Lei and Lin
in [23] proved the existence of solutions whose slope can be arbitrarily large. Cameron
[10] exhibited the existence of a modulus of continuity for the derivative (see also [1])
and obtained a global existence result assuming only that the product of the maximal
and minimal slopes is bounded by 1. Córdoba and Lazar established in [21] the first
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global well-posedness result assuming only that the initial data is sufficiently smooth
and that the critical Ḣ3/2(R)-norm is small enough (see also [25,26,28] for related
global well-posedness results in Wiener spaces in the critical case, for small enough
initial data). This result was extended to the 3D case by Gancedo and Lazar [27]
for initial data in the critical Sobolev space Ḣ2(R2). Eventually, in our companion
paper [3], we initiated the study of the Cauchy problem for non-Lipschitz initial data.

For our subject matter, another fundamental component of the background is that
the Cauchy problem is not well-posed globally in time: there are blow-up results
for some large enough data by Castro, Córdoba, Fefferman, Gancedo and López-
Fernández [11–13]. More precisely, they proved the existence of solutions such that
at initial time t = 0 the interface is a graph, at a later time t1 > 0 the interface is no
longer a graph and then at a subsequent time t2 > t1, the interface is C3 but not C4.

Our main result in this paper is the following

Theorem 1.1 (i) For any initial data f0 in Ẇ 1,∞(R) ∩ H
3
2 (R), there exists a time

T > 0 such that the Cauchy problem for the Muskat equation has a unique solution

f ∈ L∞([0, T ]; Ẇ 1,∞(R) ∩ H
3
2 (R)

) ∩ L2(0, T ; Ḣ2(R)).

(ii) Moreover, there exists a positive constant δ such that, for any initial data f0 in
Ẇ 1,∞(R) ∩ H3/2(R) satisfying

(
1 + ‖ f0‖4Ẇ 1,∞

) ‖ f0‖
Ḣ

3
2

≤ δ,

the Cauchy problem for the Muskat equation has a unique global solution

f ∈ L∞([0,+∞); Ẇ 1,∞(R) ∩ H
3
2 (R)

) ∩ L2(0,+∞; Ḣ2(R)).

Some remarks are in order.

• Let us discuss statement (i i) about the global well-posedness component of this
result. This is a 2D analogous to the recent result by Gancedo and Lazar [27]
for the 3D problem; it improves on a previous result by Córdoba and Lazar [21]
which proves a similar global existence result for the 2D-problem with a similar
smallness assumption, but under the extra assumption that the initial data belongs
to H5/2(R).

• We now come to statement (i) about the local well-posedness result for arbitrary
initial data. This is, in our opinion, the main new result in this paper. Since we are
working in a critical space, this result is optimal in several directions.

Firstly, it follows from the results about singularity formation by Castro, Córdoba,
Fefferman, Gancedo and López-Fernández [11–13] that one cannot solve the Cauchy
problem for a time T which depends only on the norm of f0 in Ẇ 1,∞(R) ∩ Ḣ3/2(R).
Otherwise, one would obtain a global existence result for any initial data by an imme-
diate scaling argument using (3). Notice that this argument does not contradict our
main result: it means instead that the time of existence must depend on the initial data
itself, and not only on its norm.
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Theprevious discussion shows that one cannot prove statement (i)byusing classical
Sobolev energy estimates. This in turn poses new challenging questions since on the
other hand the Muskat equation is a quasi-linear equation. To overcome this problem,
we will estimate the solution for a norm whose definition depends on the initial data.

• We will also prove a result which elaborates on the previous discussion, stating
that whenever one controls a bigger norm than the critical one, the time of existence
is bounded from below on a neighborhood of the initial data.

To introduce this result, let us fix some notations.

Definition 1.2 Given a real number s ≥ 0 and a function φ : [0,∞) → [1,∞) satis-
fying the following assumptions:

(H1) φ is increasing and lim φ(r) = ∞ when r goes to +∞;
(H2) there is a positive constant c0 such that φ(2r) ≤ c0φ(r) for any r ≥ 0;
(H3) the function r �→ φ(r)/ log(4 + r) is decreasing on [0,∞).

Then |D|s,φ denotes the Fourier multiplier with symbol |ξ |sφ(|ξ |), so that

F(|D|s,φ f )(ξ) = |ξ |sφ(|ξ |)F( f )(ξ).

Moreover, we define the space

X s,φ(R) = { f ∈ Ẇ 1,∞(R) ∩ L2(R) : |D|s φ(|Dx |) f ∈ L2(R)},

equipped with the norm

‖ f ‖X s,φ := ‖ f ‖Ẇ 1,∞ + ‖ f ‖L2 +
(∫

R

|ξ |2s (φ(|ξ |))2∣∣ f̂ (ξ)
∣∣2 dξ

) 1
2

.

Remark 1.3 The Fourier multiplier |D|s,φ with φ(r) = log(2 + r)a was introduced
and studied in [6–8] for s ∈ [0, 1) (also see [32]).
Theorem 1.4 Consider a real number M0 > 0 and a function φ satisfying assump-
tions (H1)–(H3) in Definiton 1.2. Then there exists a time T0 > 0 such that, for any

initial data f0 in X 3
2 ,φ(R) satisfying

‖ f0‖X 3
2 ,φ

≤ M0,

the Cauchy problem for the Muskat equation has a unique solution

f ∈ L∞([0, T0]; Ẇ 1,∞(R) ∩ H
3
2 (R)

) ∩ L2(0, T0; Ḣ2(R)). (4)

Remark 1.5 Statement (i) in Theorem 1.1 is a consequence of Theorem 1.4. Indeed,
it is easily seen that (cf [3, Lemma 3.8]), for any f0 in the critical space Ẇ 1,∞(R) ∩
Ḣ

3
2 (R), one may find a function φ such that f0 belongs to X 3

2 ,φ(R) (and satisfying
assumptions (H1)–(H3) in Definiton 1.2).

Theorem 1.1 and Theorem 1.4 are proved in the next section.
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2 Proof

2.1 Regularization

In order to rigorously justify the computations, we want to handle smooth func-
tions (hereafter, a ‘smooth function’ is by definition a function that belongs to
C1([0, T ]; Hμ(R)) for any μ ∈ [0,+∞) and some T > 0). To do so, we must
regularize the initial data and also consider an approximation of the Muskat equation.
For our purposes, we further need to consider a regularization of the Muskat equation
which will be compatible with the Sobolev and Lipschitz estimates. It turns out that
this is a delicate technical problem.

Our strategy will consist in smoothing the equation in two different ways: (i) by
introducing a cut-off function in the singular integral, removing wave-length shorter
than some parameter ε and (i i) by adding a parabolic term of order 2 with a small
viscosity of size |log(ε)|−1.

More precisely, we introduce the following Cauchy problem depending on the
parameter ε ∈ (0, 1]:

⎧⎨
⎩

∂t f − | log(ε)|−1∂2x f = 1

π

∫
R

∂x�α f

1 + (�α f )2

(
1 − χ

(α

ε

))
dα,

f |t=0 = f0�χε,

(5)

where χε(x) = ε−1χ(x/ε) where χ is a smooth bump function satisfying 0 ≤ χ ≤ 1
and

χ(y) = χ(−y), χ(y) = 1 for |y| ≤ 1

4
, χ(y) = 0 for |y| ≥ 2,

∫
R

χ dy = 1.

The equation (5) does not belong to a general class of parabolic equations. However,
we will see that it can be studied by standard tools in functional analysis together with
two estimates for the nonlinearity in the Muskat equation which plays a central role
in our analysis.

Proposition 2.1 For any ε in (0, 1] and any initial data f0 in H
3
2 (R), there exists a

unique global in time solution fε satisfying

fε ∈ C1([0,+∞); H∞(R)).

We postpone the proof of this proposition to §2.9.

2.2 An Estimate of the Lipschitz Norm

Lemma 2.2 For any real number β0 in (0, 1/2), there exists a positive constant C0 ≥ 1
such that, for any ε ∈ (0, 1] and any smooth solution f ∈ C1([0, T ]; H∞(R)) of the
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7 Page 6 of 25 T. Alazard, Q.-H. Nguyen

Muskat equation (5),

d

dt
‖ f (t)‖Ẇ 1,∞ ≤ C0 ‖ f (t)‖2

Ḣ2 + C0ε
β0 ‖ f (t)‖Ċ2,β0 , (6)

where

‖u‖Ċ2,β0 = ‖∂xx u‖C0,β0 = sup
x,y∈R
x �=y

|(∂xx u)(x) − (∂xx u)(y)|
|x − y|β0 ·

Proof The proof is partially based on arguments from [10,20,27]. Firstly, it follows
from the proof of [20, Lemma 5.1] that

∂x
1

π

∫
R

∂x�α f (x)

1 + (�α f (x))2
dα

= ∂2x f (t, x)

2π

∫ (
1

1 + (�α f (t, x))2
− 1

1 + (�−α f (t, x))2

)
dα

α

− 2

π

∫
∂x f (t, x) − �α f (t, x)

α2

1 + ∂x f (t, x)�α f (t, x)

1 + (�α f (t, x))2
dα.

Moreover, ∣∣∣∣∂x

(
1

π

∫
R

∂x�α f

1 + (�α f )2
χ

( |α|
ε

)
dα

)∣∣∣∣
�
∫

|α|≤2ε

(
|�α fxx | + |�α fx |2

)
dα

�
∫
R

|�α fx |2 dα + εβ0 ‖ fxx‖Ċ0,β0 ,

(7)

where we used the notations fx = ∂x f and fxx = ∂xx f . Thus, for any t and any x ,
we have

(∂x∂t f )(t, x) − | log(ε)|−1∂2x fx (t, x)

≤ ∂2x f (t, x)

2π

∫ (
1

1 + (�α f (t, x))2
− 1

1 + (�−α f (t, x))2

)
dα

α

− 2

π

∫
∂x f (t, x) − �α f (t, x)

α2

1 + ∂x f (t, x)�α f (t, x)

1 + (�α f (t, x))2
dα

+ C
∫

|�α fx (t, x)|2 dα + Cεβ0 ‖ fxx (t)‖Ċ0,β0 .

(8)

Consider the function ϕ(t) = ‖∂x f (t)‖L∞ and a function t �→ xt such that

‖∂x f (t)‖L∞ = (∂x f )(t, xt ).
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Then (∂2x f )(t, xt ) = 0 and −(∂xx fx )(t, xt ) ≥ 0. So, it follows from (8) that

ϕ̇(t) ≤ − 2

π

∫
∂x f (t, xt ) − �α f (t, xt )

α2 dα

− 2

π

∫
(∂x f (t, xt ) − �α f (t, xt ))

2

α2

�α f (t, xt )

1 + (�α f (t, xt ))2
dα

+ C
∫

|�α fx (t, xt )|2 dα + Cεβ0 ‖ fxx (t)‖Ċ0,β0 .

As already observed in [20] (see also [10,27]), the first term in the right-hand side has
a sign since ∂x f (t, xt ) ≥ �α f (t, xt ) for any α. It follows that

ϕ̇(t) ≤ 1

π

∫
(∂x f (t, xt ) − �α f (t, xt ))

2

α2 dα + C
∫

|�α fx (t, xt )|2 dα
+ Cεβ0 ‖ fxx (t)‖Ċ0,β0 .

We now apply Hardy’s inequality to infer that

∫
(∂x f (t, xt ) − �α f (t, xt ))

2

α2 dα �
∫

|�α fx (t, xt )|2 dα.

Consequently, we end up with

ϕ̇(t) �
∫

‖�α fx (t)‖2L∞ dα + εβ0 ‖ fxx (t)‖Ċ0,β0 .

Introducing the difference operator δαg(x) = g(x)−g(x −α), the previous inequality
is better formulated as follows:

ϕ̇(t) �
∫

‖δα(∂x f )(t)‖2L∞
dα

|α|1+ 1
2 2

+ εβ0 ‖ fxx (t)‖Ċ0,β0 .

Now the right-hand side is equivalent to the following homogeneous Besov norm:
‖∂x f (t)‖2

Ḃ
1
2∞,2

(see [36,37] or Section 2 in [3]). Then it follows from Sobolev embed-

dings that

ϕ̇(t) � ‖ f (t)‖2
Ḣ2 + εβ0 ‖ fxx (t)‖Ċ0,β0

which is the wanted result. ��

2.3 Sobolev Estimates

In this paragraph we recall a generalized Sobolev energy estimate proved in our com-
panion paper [3]. By generalized Sobolev energy estimate, we mean that, instead of
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estimating the L∞
t (L2

x )-norm of (−�)s f , we shall estimate the L∞
t (L2

x )-norm of
|D|s,φ f for some function φ satisfying the assumptions in Definition 1.2.

There two technical results that we will borrow from [3]. The first result, which is
Lemma 3.4 in [3], gives an energy estimate.

Lemma 2.3 There exists a positive constant C such that, for any T > 0 and any
smooth solution f ∈ C1([0, T ]; H∞(R)) to (1), there holds

d

dt

∥∥ |D| 32 ,φ f
∥∥2

L2 +
∫
R

∣∣ |D|2,φ f
∣∣2

1 + (∂x f )2
dx + | log(ε)|−1

∫
R

∣∣ |D| 52 ,φ f
∣∣2 dx

≤ C Q( f )
∥∥ |D|2,φ f

∥∥
L2 , (9)

where

Q( f ) =
(

‖ f ‖Ḣ2 + ‖ f ‖2
Ḣ

7
4

)∥∥ |D| 32 ,φ f
∥∥

L2 + ∥∥ |D| 74 ,φ f
∥∥

L2 ‖ f ‖
H

7
4

+
(

‖ f ‖3/2
H

19
12

+ ‖ f ‖1/2
Ḣ

7
4

)∥∥ |D| 74 ,φ2
f
∥∥1/2

L2 ‖ f ‖
Ḣ

7
4

.

Remark 2.4 Some explanations are in order since the reader may notice several mod-
ifications compared to our paper [3]. Firstly, in [3] we considered a function φ whose
definition depends on an extra function κ . Herewe ignore this point since it is irrelevant
for the present analysis. Indeed, the functions φ and κ are shown in [3] to be equivalent
(such that cκ(λ) ≤ φ(λ) ≤ Cκ(λ)), and the distinction between them served only to
organize the proof. Secondly, in [3] we also assume that φ(r) is bounded from below
by (log(4+r))a for some a ≥ 0. Here we will use that this property holds with a = 0.
Once the previous clarifications have been done, it remains to explain that in [3] we
consider the equation (1) while here we work with (5). The elliptic term (−∂2x ) is
trivial to handle since in [3] we only applied an L2-energy estimate and since the latter
operator is positive. Eventually, the cut-off function (1 − χ(α/ε)) is also harmless in
the various computations used to prove Lemma 3.4 in [3].

Secondly, we recall two interpolation inequalities from [3, Lemma 3.5]. Hereafter,
we use the notations

Aφ(t) = ∥∥ |D| 32 ,φ f (t)
∥∥2

L2 ,

Bφ(t) = ∥∥ |D|2,φ f (t)
∥∥2

L2 ,

Pφ(t) = ∥∥ |D| 52 ,φ f (t)
∥∥2

L2 ,

(10)

and

μφ(t) =
(

φ

(
B(t)

A(t)

))−1

.

Lemma 2.5 Consider a real number 7/4 ≤ s ≤ 2. Then, there exists a positive
constant C such that, for any T > 0, any smooth solution f ∈ C1([0, T ]; H∞(R))

to (5) and any t ∈ [0, T ],
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‖ f (t)‖Ḣ s ≤ Cμφ(t)Aφ(t)2−s Bφ(t)s− 3
2 , (11)∥∥ |D| 74 ,φ2

f (t)
∥∥

L2 ≤ Cμφ(t)Aφ(t)
1
4 Bφ(t)

1
4 . (12)

From these two lemmas, we get at once the following

Proposition 2.6 There exist two positive constants C1 and C2 such that, for any T > 0
and any smooth solution f ∈ C1([0, T ]; H∞(R)) of the Muskat equation (5),

d

dt
Aφ(t) + C1

Bφ(t)

1 + ‖ fx (t)‖2L∞
+ | log(ε)|−1Pφ(t)

≤ C2

(√
Aφ(t) + Aφ(t)

)
μφ(t)Bφ(t). (13)

We will also need an estimate for the L2-norm.

Lemma 2.7 There holds

1

2

d

dt
‖ f (t)‖2L2 ≤ Cε

1
2 ‖ f ‖

Ḣ
3
2

‖ f ‖L2 .

In particular,

‖ f (t)‖L2 ≤ ‖ f0‖L2 + Cε
1
2

∫ t

0
‖ f (τ )‖

Ḣ
3
2
dτ. (14)

Proof Set

Rε( f ) = − 1

π

∫
R

∂x�α f

1 + (�α f )2
χ
(α

ε

)
dα. (15)

We multiply the equation by f to obtain

1

2

d

dt
‖ f (t)‖2L2 ≤ 1

π

〈 ∫
R

∂x�α f

1 + (�α f )2
dα, f

〉
+ 〈Rε( f ), f 〉.

Now, by [16, Section 2], the first term in the right-hand side has a sign. Indeed:

∫
R

[∫
R

∂x�α f

1 + (�α f )2
dα

]
f (x) dx

= −
∫∫

R2
log

⎡
⎣
√
1 + ( f (t, x) − f (t, x − α))2

α2

⎤
⎦ dx dα.

It remains to estimate Rε( f ). To do so, we use the estimate (19) to get

‖Rε( f )‖L2 �
∫

|α|≤2ε
‖�α fx‖L2 dα

� ε
1
2

(∫
R

‖�α fx‖2L2 dα

) 1
2

� ε
1
2 ‖ f ‖

Ḣ
3
2

,

(16)
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which completes the proof. ��

2.4 Estimate of the Hölder Norm

To exploit the Sobolev energy estimate (13), the main difficulty is to estimate from
above the factor 1+ ‖ fx (t)‖2L∞ . This is where we will apply Lemma 2.2. This in turn
requires to estimate the Hölder norm ‖·‖Ċ2,β0 of f . This is the purpose of the following
result.

We will prove an estimate valid on arbitrary large time scale, which will be used
later to prove a global existence result.

Proposition 2.8 For any 0 < β < 1/2, there exist two positive constant ε0 and c0
such that, for any ε ∈ (0, ε0], any smooth solution f ∈ C1([0, T ]; H∞(R)) of the
Muskat equation (5), and any time t ≤ min{ε−c0 , T }, there holds

εβ

∫ t

0
‖ f (τ )‖C2,β dτ ≤ ε

β
2 ‖ f0‖

Ḣ
3
2

+ ε
β
2

(
1 + sup

s∈[0,t]
‖ f (s)‖

H
3
2

)2

log

(
2 +

∫ t

0
‖ f (s)‖2

Ḣ2 ds

) 1
2
(∫ t

0
‖ f (s)‖2

Ḣ2 ds

) 1
2

.

Proof The classical Sobolev embeddings implies that

‖ f (t)‖Ċ2,β � ‖ f (t)‖
Ḣ

5
2+β

.

To estimate the latter Sobolev norm, the key point will be to apply the following
interpolation inequality. ��
Lemma 2.9 Consider three real numbers

γ > 0, β1 > 0 and 0 < β2 < 2.

Then, there exists a constant C such that, for any function g = g(t, x),

‖g(t)‖Ḣγ � 1

(νt)
β1
2

‖g(0)‖Ḣγ−β1

+
∫ t

0

1

(ν(t − s))
β2
2

∥∥∂t g(s) − ν∂xx g(s)
∥∥

Ḣγ−β2 ds.

(17)

Proof Set G := ∂t g − ν∂xx g. Then, one has,

ĝ(t, ξ) = e−νt |ξ |2 ĝ(0, ξ) +
∫ t

0
e−ν(t−s)|ξ |2 Ĝ(s, ξ) ds.

The desired results then follows from Minkowski’s inequality. ��
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On the Cauchy Problem for the Muskat Equation. II: Critical Initial Data Page 11 of 25 7

Now, apply (17) with

γ = 5

2
+ β, β1 = 1 + β, β2 = 3

2
+ β, ν = | log(ε)|−1,

to get

‖ f (t)‖Ċ2,β � ‖ f (t)‖
Ḣ

5
2+β

� | log(ε)| 1+β
2 t−

1+β
2 || f0||

Ḣ
3
2

+
∫ t

0
| log(ε)|

3
2+β

2 (t − s)−
3
2+β

2
∥∥∂t f − | log(ε)|−1∂2x f

∥∥
Ḣ1 ds. (18)

It remains to estimate the Ḣ1-norm of ∂t f − | log(ε)|−1∂xx f . In view of the equa-
tion (5), this is equivalent to bound the Ḣ1-norm of

1

π

∫
R

∂x�α f

1 + (�α f )2

(
1 − χ

(α

ε

))
dα.

We will split the latter term into two pieces and estimate them separately.
Firstly, directly from (7) and Minkowski’s inequality, we obtain that

∥∥∥∥ 1π
∫
R

∂x�α f

1 + (�α f )2
χ
(α

ε

)
dα

∥∥∥∥
Ḣ1

�
∫

|α|≤2ε

(
‖�α fxx‖L2 + ‖�α fx‖2L4

)
dα

� ε
1
2+β

(∫
R

‖�α fxx‖2L2 |α|−2β dα

) 1
2

+
∫
R

‖�α fx‖2L4 dα.

Now we use the following inequality:

∫∫
R2

∣∣�α f̃
∣∣2|α|−2β dα dx ∼ ∥∥ f̃

∥∥2
Ḣ

1
2+β . (19)

Indeed,

∫∫
R2

∣∣�α f̃
∣∣2|α|−2β dα dx =

∫∫
R2

[∣∣ f̃ (x) − f̃ (x − α)
∣∣

|α|1/2+β

]2
dα

|α| dx ∼ ∥∥ f̃
∥∥2

Ḣ
1
2+β .

Similarly, using Sobolev embedding in Besov’s spaces, we get

∫
R

‖�α fx‖2L4 dα � ‖ f ‖2
Ḣ

7
4

.
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7 Page 12 of 25 T. Alazard, Q.-H. Nguyen

It follows that

∥∥∥∥ 1π
∫
R

∂x�α f

1 + (�α f )2
χ
(α

ε

)
dα

∥∥∥∥
Ḣ1

� ε
1
2+β ‖ f ‖

Ḣ
5
2+β

+ ‖ f ‖Ḣ2 ‖ f ‖
Ḣ

3
2

, (20)

where we used an interpolation inequality in Sobolev spaces. On the other hand, it
follows from the estimate (41) below that,

∥∥∥∥
∫
R

∂x�α f

1 + (�α f )2
dα

∥∥∥∥
Ḣ1

� ‖T ( f ) f ‖Ḣ1

�
(
1 + ‖ f ‖

H
3
2

)2
log

(
2 + ‖ f ‖2

Ḣ2

) 1
2 ‖ f ‖Ḣ2 .

(21)

By gathering the two previous estimates, we conclude that

∥∥∥∂t f − | log(ε)|−1∂2x f
∥∥∥

Ḣ1

� ε
1
2+β ‖ f ‖

H
5
2+β

+
(
1 + ‖ f ‖

H
3
2

)2
log

(
2 + ‖ f ‖2

Ḣ2

) 1
2 ‖ f ‖Ḣ2 .

Set

b =
3
2 + β

2
·

By reporting this bound in (18), we find that

‖ f (t)‖
Ḣ

5
2+β

� | log(ε)| 1+β
2 t−

1+β
2 ‖ f0‖

Ḣ
3
2

+ ε
1
2+β | log(ε)|b

∫ t

0
(t − s)−b ‖ f (s)‖

Ḣ
5
2+β

ds

+ | log(ε)|b
∫ t

0
(t − s)−b

(
1 + ‖ f (s)‖

H
3
2

)2
log

(
2 + ‖ f (s)‖2

Ḣ2

) 1
2 ‖ f (s)‖Ḣ2 ds.

So,

∫ t

0
‖ f (τ )‖

Ḣ
5
2+β

dτ � |log(ε)| 1+β
2 t1−

1+β
2 ‖ f0‖

Ḣ
3
2

+ ε
1
2+β | log(ε)|bt1−b

∫ t

0
‖ f (s)‖

Ḣ
5
2+β

ds

+ | log(ε)|bt1−b
∫ t

0

(
1 + ‖ f (s)‖

H
3
2

)2
log

(
2 + ‖ f (s)‖2

Ḣ2

) 1
2 ‖ f (s)‖Ḣ2 ds.
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As a result, there exists c0 > 0 and ε0 ≤ 1 such that, if t ≤ ε−c0 and ε ≤ ε0,

∫ t

0
‖ f (τ )‖

Ḣ
5
2+β

dτ ≤ ε− β
2 || f0||

Ḣ
3
2

+ | log(ε)|bt1−bK(t)
∫ t

0
log

(
2 + ‖ f (s)‖2

Ḣ2

) 1
2 ‖ f (s)‖Ḣ2 ds,

where

K(t) = sup
s∈[0,t]

(
1 + ‖ f (s)‖

H
3
2

)2
.

Now observe that

∫ t

0
log

(
2 + ‖ f (s)‖2

Ḣ2

) 1
2 ‖ f (s)‖Ḣ2 ds

≤ (t + 1)
1
2 log

(
2 +

∫ t

0
‖ f (s)‖2

Ḣ2 ds

) 1
2
(∫ t

0
‖ f (s)‖2

Ḣ2 ds

) 1
2

.

Therefore, up to modifying the values of c0 > 0 and ε0, we see that, for t ≤ ε−c0 and
ε ≤ ε0, we have

εβ

∫ t

0
‖ f (τ )‖Ċ2,β dτ � ε

β
2 ‖ f0‖

Ḣ
3
2

+ ε
β
2 K(t) log

(
2 +

∫ t

0
‖ f (s)‖2

Ḣ2 ds

) 1
2
(∫ t

0
‖ f (s)‖2

Ḣ2 ds

) 1
2

.

This completes the proof. ��

2.5 Global in Time Estimates, Under a Smallness Assumption

Proposition 2.10 Let T > 0 and consider a smooth solution f ∈ C1([0, T ], H∞(R))

of the Muskat equation (5). Set

K = 1 + 16

(
C2

C1

)2

and assume that

2

(
K + C0

C1

) 1
2 (

2 + ‖∂x f0‖L∞
)2 ‖ f0‖

Ḣ
3
2

≤ 1, (22)

where the constants C0, C1, C2 are as defined in the statements of Lemma 2.2 and
Proposition 2.6. Then there exists ε0 depending only on C0, C1, C2 and || f0||L2 such
that, if ε ≤ ε0, then
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7 Page 14 of 25 T. Alazard, Q.-H. Nguyen

sup
0≤τ≤T

‖ f (τ )‖
H

3
2

≤ 1√
K
(
2 + ‖∂x f0‖L∞

)2 and
∫ T

0
‖ f (τ )‖2

Ḣ2 dτ ≤ 1

C0
· (23)

Proof We apply the previous a priori estimate (13) in the simplest case where φ = 1.
With this choice, the quantities Aφ and Bφ defined by (10) simplify to

A(t) = ∥∥ |D| 32 f (t)
∥∥2

L2 ,

B(t) = ∥∥ |D|2 f (t)
∥∥2

L2 = ‖ f (t)‖2
Ḣ2 .

(24)

Introduce the set

I =
{

t ∈ [0, T ] ;
∫ t

0
B(τ ) dτ ≤ 2

3C0
and sup

0≤τ≤t
A(τ ) ≤ 1

K
(
2 + ‖∂x f0‖L∞

)4
}

.

We want to prove that I = [0, T ]. Since 0 belongs to I by assumption on the initial
data, and since I is closed, it suffices to prove that I is open. To do so, we consider a
time t∗ ∈ [0, T ) which belongs to I . Our goal is to prove that

∫ t∗

0
B(τ ) dτ ≤ 1

2C0
and sup

0≤τ≤t∗
A(τ ) ≤ 1

4K
(
2 + ‖∂x f0‖L∞

)4 .

This will imply at once that t∗ belongs to the interior of I .
Since μ(t) = 1 for φ ≡ 1, the estimate (13) implies that there are two positives

constants C1, C2 such that

d

dt
A(t) + C1

B(t)

1 + ‖∂x f (t)‖2L∞
≤ C2

(
A(t) +√

A(t)
)

B(t). (25)

By combining Proposition 2.8 with Lemma 2.2, we get, for any t ,

‖∂x f (t)‖L∞ − ‖∂x f0‖L∞ ≤ C0

∫ t

0
B(τ ) dτ + C0ε

β
2 ‖ f0‖

Ḣ
3
2

+ C0ε
β
2

[
sup

s∈[0,t]

(
1 + ‖ f (s)‖

H
3
2

)2]
log

(
2 +

∫ t

0
B(τ ) dτ

) 1
2
(∫ t

0
B(τ ) dτ

) 1
2

.

By (14),

sup
s∈[0,t]

‖ f (s)‖L2 ≤ ‖ f0‖L2 + Cε
1
2 t sup

s∈[0,t]
‖ f (s)‖

Ḣ
3
2

.

This implies

sup
s∈[0,t]

‖ f (s)‖
H

3
2

≤ ‖ f0‖L2 + (1 + Cε
1
2 t) sup

s∈[0,t]
‖ f (s)‖

Ḣ
3
2

. (26)
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If t ≤ t∗, then the bound on the integral of B, sup0≤τ≤t∗ || f ||
Ḣ

3
2

≤ 1 and (26)

imply that

‖∂x f (t)‖L∞ − ‖∂x f0‖L∞ ≤ 1

2
+ C0ε

β
2 + C0ε

β
2
(
1 + ‖ f0‖L2

+(1 + Cε
1
2 t∗)

)2
log (3)

1
2 .

For ε small enough, we conclude that

‖∂x f (t)‖L∞ ≤ 2

3
+ ‖∂x f0‖L∞ .

On the other hand, if t∗ ∈ I , then for any t ≤ t∗ we have

A(t) +√
A(t) ≤ 2

√
A(t) ≤ 2√

K
(
2 + ‖∂x f0‖L∞

)2 ·

Consequently, for any t ≤ t�, (25) gives

d

dt
A(t) + C1

B(t)(
2 + ‖∂x f0‖L∞

)2 ≤ 2C2√
K
(
2 + ‖∂x f0‖L∞

)2 B(t).

By definition of K , we have

K ≥ 16C2
2

C2
1

,

so, for any t ≤ t�,
d

dt
A(t) + C1

2

B(t)(
2 + ‖∂x f0‖L∞

)2 ≤ 0. (27)

Integrate this on the time interval [0, t∗], to infer that

sup
t∈[0,t∗]

A(t) + C1

2
(
2 + ‖∂x f0‖L∞

)2
∫ t∗

0
B(t) dt ≤ A(0).

Using the smallness assumption (22), the previous inequality (27) implies at once that

sup
t∈[0,t∗]

A(t) ≤ A(0) ≤ 1

4K
(
2 + ‖∂x f0‖L∞

)4 ,

∫ t∗

0
B(t) dt ≤ 2

(
2 + ‖∂x f0‖L∞

)2
C1

A(0) ≤ 1

2C0
.

These are the wanted bootstrap inequalities. As explained above, by connexity, this
proves that I = [0, T ], which implies the desired results in (23). ��
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2.6 A Priori Estimates Locally in Time, for Arbitrary Initial Data

Proposition 2.11 Consider φ satisfying assumptions (H1)–(H3) in Definiton 1.2. Let
T > 0 and consider a smooth solution f ∈ C1([0, T ], H∞(R)) of the Muskat equa-
tion (5). For any M0 > 0 there exists ε0 > 0 and T0 > 0 such that the following
properties holds. If ε ∈ (0, ε0] and

∥∥ |D| 32 ,φ f (0)
∥∥2

L2 ≤ M0,

then, with T ∗ = min{T , T0}, there holds

sup
t∈[0,T ∗]

Aφ(t) ≤ 5M0,

∫ T ∗

0
μφ(t)2Bφ(t) dt ≤ 1

C0
,

where Aφ , Bφ , μφ are defined in (10) while C0 is given by Lemma 2.2.

Proof For this proof we skip the index φ and write simply A, B, μ.
Since (see (11)),

‖ f (t)‖Ḣ2 ≤ Cμ(t)B(t)
1
2 .

We then apply Proposition 2.8 for some fixed parameter β > 0. Then, it follows
from (13) that

d

dt
A(t) + C1

B(t)

ν(t)2
≤ C2

(√
A(t) + A(t)

)
μ(t)B(t), (28)

where

ν(t) = 1 + ‖∂x f0‖L∞ + C0

∫ t

0
μ(τ)2B(τ ) dτ + C0ε

β
2 ‖ f0‖

Ḣ
3
2

+ C0ε
β
2

[
sup

τ∈[0,t]

(
1 + ‖ f (τ )‖

H
3
2

)2]
log

(
2 +

∫ t

0
μ(τ)2B(τ ) dτ

) 1
2

(∫ t

0
μ(τ)2B(τ ) dτ

) 1
2

.

Given a positive number T0 to be determined, introduce the set

I (T0) =
{

t ∈ [0,min{T , T0}] ;
∫ t

0
μ(τ)2B(τ ) dτ ≤ 2

3C0
and sup

0≤τ≤t
A(τ ) ≤ 5M0

}
.

We want to prove that I (T0) = [0,min{T , T0}]. Since 0 belongs to I (T0) by assump-
tion on the initial data, and since I (T0) is closed, it suffices to prove that I (T0) is open.
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To do so, we consider a time t∗ ∈ [0,min{T , T0}) which belongs to I (T0). Our goal
is to prove that

∫ t∗

0
μ(τ)2B(τ ) dτ ≤ 1

2C0
and sup

0≤τ≤t∗
A(τ ) ≤ 4M0.

This will imply at once that t∗ belongs to the interior of I (T0).
As in the previous proof, we use (26) to write

sup
s∈[0,t]

‖ f (s)‖
H

3
2

≤ ‖ f0‖L2 + (1 + Cε
1
2 t) sup

s∈[0,t]
‖ f (s)‖

Ḣ
3
2

. (29)

It t ≤ t∗ with t∗ ∈ I (T0), then

ν(t) ≤ 1 + ‖∂x f0‖L∞ + 2

3
+ C0ε

β
2 M0

+ C0ε
β
2
(
1 + ‖ f0‖L2 + 6M0

)2 log
(
2 + 2

3C0

) 1
2
(

2

3C0

) 1
2

.

Hence, one can define ε0 small enough, depending only on M0, ‖ f0‖L2 and the fixed
parameter β, such that if ε ≤ ε0 and if t∗ ∈ I (T0), then for any t ∈ [0, t∗], we have

ν(t) ≤ 2 + ‖∂x f0‖L∞ .

Consequently

d

dt
A(t) + C1

B(t)

(2 + ‖∂x f0‖L∞)2
≤ C2

(
A(t) +√

A(t)
)
μ(t)B(t).

Introduce the function

E(r , m) := sup
ρ≥0

{
C2
(√

r + r
) (

φ
(ρ

r

))−1
ρ − C1

2

ρ

m

}
·

Then, for any t ∈ [0, t∗], we have

d

dt
A(t) + C1

2

B(t)(
2 + ‖∂x f0‖L∞

)2 ≤ E
(

A(t), ‖∂x f0‖L∞
)
.

Assume that the number T0 satisfies

T0 ≤ A(0)

4E
(
4A(0), ‖∂x f0‖L∞

) ·
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Then, for any t ≤ t∗, we get that

sup
τ≤t

A(τ ) + C1

2

1(
2 + ‖∂x f0‖L∞

)2
∫ t

0
B(τ ) dτ ≤ 4A(0).

In particular, for t = t∗, this gives

sup
t≤t∗

A(t) ≤ 4A(0),
∫ t∗

0
B(t) dt ≤ 8A(0)

C1

(
2 + ‖∂x f0‖L∞

)2
. (30)

To get the result, we must show that

C0

∫ T

0
μ(t)2B(t) dt ≤ 1

2
. (31)

Recall that

μ(t) =
(

φ

(
B(t)

A(t)

))−1

.

Since φ is increasing and since A(t) ≤ 4A(0), we have

μ(t) ≤
(

φ

(
B(t)

4A(0)

))−1

.

Now, we claim that the function F : [0,+∞) → [0,+∞), defined by

F(r) =
(

φ

(
r

4A(0)

))−1

r ,

is increasing. To see this decompose F(r) under the form F(r) = F1(r) (F2 (r))2

with

F1(r) = r

(log(λ0 + r))2
F2(r) = log(λ0 + r)

φ(r/4A(0))
·

Then

∫ t∗

0
μ(t)B(t) dt ≤

∫ t∗

0

(
φ

(
B(t)

4A(0)

))−2

B(t) dt

≤
∫ t∗

0

(
φ

(
r

4A(0)

))−2

r dt +
∫ t∗

0

(
φ

(
r

4A(0)

))−2

B(t) dt

(30)≤ t∗
(

φ

(
r

4A(0)

))−2

r +
(

φ

(
r

4A(0)

))−2

8A(0)
(
2 + ‖∂x f0‖L∞

)2
,
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for any r ≥ 1. Now we successively determine two numbers r0 > 1 and T0 > 0 such
that

C0

(
φ

(
r0

4A(0)

))−2

8A(0)
(
2 + ‖∂x f0‖L∞

)2 = 1

4
, (32)

and

T0

(
φ

(
r0

4A(0)

))−2

r0 = 1

4
· (33)

With this choice we get (31) and we obtain that I (T0) = [0,min{T , T0}], which is
equivalent to the statement of the proposition. ��

2.7 Transfer of Compactness

Previously, we have proven a priori estimates for the spatial derivatives. In this para-
graph, we gather results from which we will infer estimates for the time derivative as
well as for the nonlinearity in the Muskat equation. These estimates serve to pass to
the limit the equation (which is needed to regularize the solutions).

The Muskat equation (1) can be written under the form

∂t f + |D| f = T ( f ) f , (34)

where T ( f ) is the operator defined by

T ( f )g = − 1

π

∫
R

(∂x�αg)
(�α f )2

1 + (�α f )2
dα. (35)

We recall the following result from Proposition 2.3 in [2] and from Remark 2.9 and
Propositions 2.10 and 2.13 in [3].

Proposition 2.12 (i) For all δ ∈ [0, 1/2), there exists a constant C > 0 such that, for

all functions f1, f2 in Ḣ1−δ(R) ∩ Ḣ
3
2+δ(R),

‖(T ( f1) − T ( f2)) f2‖L2 ≤ C ‖ f1 − f2‖Ḣ1−δ ‖ f2‖
Ḣ

3
2+δ

.

(ii) One can decompose the nonlinearity under the form

T ( f )g = (∂x f )2

1 + (∂x f )2
|D| g + V ( f )∂x g + R( f , g), (36)

where the coefficient V ( f ) and the remainder term R( f , g) satisfy the following
estimates:

‖V ( f )‖L∞ ≤ C
∫
R

|ξ | ∣∣ f̂ (ξ)
∣∣ dξ, (37)

‖R( f , g)‖L2 ≤ C‖g‖
Ḣ

3
4

‖ f ‖
Ḣ

7
4

, (38)
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for some absolute constant C. Moreover,

‖T ( f ) f ‖Ḣ1 ≤ C

(
‖ f ‖

Ḣ
3
2

+ ‖ f ‖2
Ḣ

3
2

+ 1 + ‖V ( f )‖L∞

)
‖ f ‖Ḣ2 , (39)

and, ∣∣(V ( f )∂x g, |D| g
)∣∣ ≤ C

(
‖ f ‖Ḣ2 + ‖ f ‖2

Ḣ
7
4

)
‖g‖

Ḣ
1
2

‖g‖Ḣ1 . (40)

For later purpose, we need a refinement of (39).

Proposition 2.13 There exists a positive constant C > 0 such that, for all function
f ∈ H2(R),

‖T ( f ) f ‖Ḣ1 ≤ C
(
1 + ‖ f ‖

H
3
2

)2
log

(
2 + ‖ f ‖2

Ḣ2

) 1
2 ‖ f ‖Ḣ2 . (41)

Proof In view of (39) and (37), it is sufficient to estimate the L1-norm of |ξ | f̂ . Write,

∫
R

|ξ || f̂ | dξ =
∫

|ξ |>λ

|ξ |−1|ξ |2| f̂ | dξ +
∫

|ξ |≤λ

(|ξ | + 1)−
1
2 |ξ |(1 + |ξ |) 1

2 | f̂ | dξ

�
(∫

|ξ |>λ

1

|ξ |2 dξ
) 1

2 ‖ f ‖Ḣ2

+
(∫

|ξ |≤λ

1

(|ξ | + 1)
dξ

) 1
2 (‖ f ‖

Ḣ
3
2

+ ‖ f ‖L2

)

� λ− 1
2 ‖ f ‖Ḣ2 + log(1 + λ)

1
2

(
‖ f ‖

Ḣ
3
2

+ ‖ f ‖L2

)
.

Choosing λ = ‖ f ‖2
Ḣ2 , we obtain

∫
R

|ξ || f̂ | dξ � 1 + log(1 + ‖ f ‖2
Ḣ2)

1
2

(
‖ f ‖

Ḣ
3
2

+ ‖ f ‖L2

)
.

By reporting this in (37) and then using (39), we get the desired result (41). ��
By using the equation (34), we deduce at once the following bound.

Corollary 2.14 There exists a non-decreasing function F : R+ → R
+ such that, for

any T > 0, any ε and any smooth solution f in C1([0, T ]; H∞(R)) of the Muskat
equation (5), if one sets

Mε(T ) = sup
t∈[0,T ]

(
‖ f (t)‖2

Ḣ
3
2

+ ‖ f (t)‖2L2

)

+
∫ T

0
‖ f (t)‖2

Ḣ2 dt + |log(ε)|−1
∫ T

0
‖ f (t)‖2

Ḣ
5
2
dt
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then, ∫ T

0

‖T ( f ) f ‖2
Ḣ1

log
(
2 + ‖T ( f ) f ‖Ḣ1

) dt ≤ F(Mε(T )), (42)

and ∫ T

0

‖∂t f ‖2
Ḣ1

log
(
2 + ‖∂t f ‖2

Ḣ1)
dt ≤ F(Mε(T )). (43)

Proof Let C be the constant given by Proposition 2.13 and set C̃ = max{C, 1}. We
claim that

‖T ( f ) f ‖2
Ḣ1

log
(
2 + ‖T ( f ) f ‖Ḣ1

) ≤ C̃2
(

‖ f ‖
Ḣ

3
2

+ ‖ f ‖2
Ḣ

3
2

+ ‖ f ‖Ḣ1 + 1

)2

‖ f ‖2
Ḣ2 .

If ‖T ( f ) f ‖Ḣ1 ≤ ‖ f ‖Ḣ2 , then this is obvious. Otherwise, this follows at once
from (41). This implies (42).

The proof of (43) follows from similar argument, using the equation to estimate
∂t f in terms of T ( f ) f . ��

It follows from the previous results that one can extract from the solutions of the
approximate Cauchy problems (5) a sub-sequence converging to a solution of the
Muskat equation (1). Since it is rather classical, we do not include the details and refer
for instance to [19,21].

2.8 Uniqueness

To prove the uniqueness of the solution to the Cauchy problem for rough initial data,
we shall prove an estimate for the difference of two solutions.

Proposition 2.15 Let T > 0 and consider two solutions f1, f2 of the Muskat equation,
with initial data f1,0, f2,0 respectively, satisfying

fk ∈ C0([0, T ]; Ẇ 1,∞(R) ∩ Ḣ
3
2 (R)) ∩ C1([0, T ]; Ḣ

1
2 (R)) ∩ L2(0, T ; Ḣ2(R)), k = 1, 2.

Assume that

sup
t∈[0,T ]

(
‖ fk(t)‖2

Ḣ
3
2

+ ‖ fk(t)‖2Ẇ 1,∞

)
+
∫ T

0
‖ fk‖2Ḣ2 dt ≤ M < ∞, k = 1, 2. (44)

Then the difference g = f1 − f2 is estimated by

sup
t∈[0,T ]

‖g(t)‖
Ḣ

1
2

≤ ‖g(0)‖
Ḣ

1
2
exp

(
C(M + 1)5

∫ T

0

(
‖ f1‖2Ḣ2 + ‖ f2‖2Ḣ2

)
dt

)
.

(45)
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Proof Since ∂t fk + |D| fk = T ( fk) fk , it follows from the decomposition (36) of
T ( fk) fk that the difference g = f1 − f2 satisfies

∂t g + |D| g

1 + (∂x f1)2
= V ( f1)∂x g + R( f1, g) + (T ( f2 + g) − T ( f2)) f2.

Since g belongs to C1([0, T ]; Ḣ
1
2 (R)), we may take the L2-scalar product of this

equation with |D| g to get

1

2

d

dt
‖g‖2

Ḣ
1
2

+
∫

(|D| g)2

1 + (∂x f1)2
dx ≤ ∣∣(V ( f1)∂x g, |D|g)∣∣+ ‖R( f1, g)‖L2 ‖g‖Ḣ1

+ ‖(T ( f2 + g) − T ( f2)) f2‖L2 ‖g‖Ḣ1 .

It follows from Proposition 2.12 that

d

dt
‖g‖2

Ḣ
1
2

+ M−1||g||2
Ḣ1 �

(
‖ f1‖Ḣ2 + ‖ f1‖2

Ḣ
7
4

)
‖g‖

Ḣ
1
2

‖g‖Ḣ1

+ ‖ f2‖
Ḣ

7
4

‖g‖
Ḣ

3
4
||g||Ḣ1 .

By Gagliardo-Nirenberg interpolation inequality

d

dt
‖g‖2

Ḣ
1
2

+ M−1||g||2
Ḣ1 � ‖ f1‖Ḣ2

(
1 + ‖ f1‖

Ḣ
3
2

)
‖g‖

Ḣ
1
2

‖g‖Ḣ1

+ ‖ f2‖
1
2

Ḣ2 ‖ f2‖
1
2

Ḣ
3
2

‖g‖
1
2

Ḣ
1
2

‖g‖
3
2

Ḣ1

� ‖ f1‖Ḣ2 (1 + M) ‖g‖
Ḣ

1
2

‖g‖Ḣ1

+ M
1
2 ‖ f2‖

1
2

Ḣ2 ‖g‖
1
2

Ḣ
1
2

‖g‖
3
2

Ḣ1 .

Thus, thanks to Holder’s inequality, one gets

d

dt
‖g‖2

Ḣ
1
2

+ 1

2M
||g||2

Ḣ1 ≤ C(M + 1)5
(
‖ f1‖2Ḣ2 + ‖ f2‖2Ḣ2

)
‖g‖2

Ḣ
1
2

which in turn implies (45). ��

2.9 The Cauchy Problem for the Approximate Equations

It remains to prove Proposition 2.1.
Rewrite the equation (5) under the form

∂t f − | log(ε)|−1∂2x f = Nε( f ), (46)

123



On the Cauchy Problem for the Muskat Equation. II: Critical Initial Data Page 23 of 25 7

with

Nε( f ) = 1

π

∫
R

∂x�α f

1 + (�α f )2

(
1 − χ

( |α|
ε

))
dα.

The next proposition shows that Equation (46) can be seen as a sub-critical parabolic
equation.

Lemma 2.16 There holds

‖Nε( f )‖Ḣ1 � ε
1
2 ‖ f ‖

Ḣ
5
2

+
(
1 + ‖ f ‖

H
3
2

)2
log

(
2 + ‖ f ‖2

Ḣ2

) 1
2 ‖ f ‖Ḣ2 , (47)

and

‖Nε( f )‖L2 ≤ C
(
1 + ‖ f ‖

H
3
2

)2
. (48)

Proof The estimate (47) follows at once from (20) and (21). To prove (48), we decom-
pose Nε( f ) = − |D| f + T ( f ) f + Rε( f ) where T ( f ) is the operator already
introduced in §2.7 and the remainder Rε( f ) is as defined by (15). Recall from Propo-
sition 2.3 in [2] that

‖T ( f ) f ‖L2 � ‖ f ‖Ḣ1 ‖ f ‖
Ḣ

3
2

.

So the wanted conclusion follows from the estimate (16) for Rε( f ). ��
Multiply the latter equation by (I − �)3/2 f and integrate in time, to obtain

1

2

d

dt
‖ f ‖2

H
3
2

+ | log(ε)|−1 ‖|D| f ‖2
H

3
2

≤ ‖Nε( f )‖H1 ‖ f ‖H2 . (49)

Recall that

‖Nε( f )‖Ḣ1 � ε
1
2 ‖ f ‖

Ḣ
5
2

+
(
1 + ‖ f ‖

H
3
2

)2
log

(
2 + ‖ f ‖2

Ḣ2

) 1
2 ‖ f ‖Ḣ2 , (50)

Since ε
1
2 � |log(ε)|−1 for ε � 1, we can absorb the contribution of ε

1
2 ‖ f ‖

Ḣ
5
2
in

the right-hand side of (50) by the left-hand side of (49). On the other hand, since
5/2 > 2, one can absorb the contribution of the other terms by using the Hölder’s
inequality. This proves an a priori estimate for (46). We also get easily a contraction
estimate similar to (but much simpler) the one given by Proposition 2.15. Then by
using classical tools for semi-linear equations, we conclude that the Cauchy problem
for (46) can be solved by standard iterative scheme.
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