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Abstract
The aim of this paper is threefold. First we display solutions of the cubic nonlinear
Schrödinger equation on R in link with initial data a sum of Dirac masses. Secondly
we show a Talbot effect for the same equation. Finally we prove the existence of a
unique solution of the binormal flow with datum a polygonal line. This equation is
used as a model for the vortex filaments dynamics in 3-D fluids and superfluids. We
also construct solutions of the binormal flow that present an intermittency phenomena.
Finally, the solution we construct for the binormal flow is continued for negative times,
yielding a geometric way to approach the continuation after blow-up for the 1-D cubic
nonlinear Schrödinger equation.

Keywords Vortex filaments · Binormal flow · Nonlinear Schrödinger equations ·
Singular data · Talbot effect

1 Introduction

We first present the binormal flow framework and the obtained results. Then in §1.2
we describe the 1-D cubic nonlinear Schrödinger equation results.

1.1 Evolution of Polygonal Lines Through the Binormal Flow and Intermittency

Vortex filaments in 3-D fluids appear when vorticity is large and concentrated in a
thin tube around a curve in R

3. The binormal (curvature) flow, that we refer hereafter
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as BF, is the classical model for one vortex filament dynamics. It was derived by Da
Rios 1906 in his PhD advised by Levi-Civita by using a truncated Biot–Savart law
and a renormalization in time ([18]). The evolution of a R

3-curve χ(t) parametrized
by arclength x by the binormal flow is

χt = χx ∧ χxx . (1)

Keeping inmind theFrenet’s system for the frames of 3-Dcurves composed by tangent,
normal, and binormal vectors (T , n, b)

⎛
⎝
T
n
b

⎞
⎠

x

=
⎛
⎝

0 c 0
−c 0 τ

0 −τ 0

⎞
⎠
⎛
⎝
T
n
b

⎞
⎠ ,

where c, τ are the curvature and torsion, the binormal flow can be rewritten as

χt = c b.

BFwas also derived as formal asymptotics in [1], and in [12] by using the technique of
matched asymptotics in the Navier–Stokes equations (i.e. to balance the cross-section
of the tube with the Reynolds number). In the recent paper [27], and still under some
hypothesis on the persistence of concentration of vorticity in the tube, BF is rigorously
derived; moreover the considered curves are not necessarily smooth. This is based on
the existence of a correspondence between the two Hamilton–Poisson structures that
give rise to Euler and to BF.

Existence results were given for curveswith curvature and torsion in Sobolev spaces
of high order ([21,26,34,42]), and more generally existence results for currents in the
framework of a weak formulation of the binormal flow ([28]). Recently, the Cauchy
problemwas shown to bewell-posed for curveswith a corner and curvature inweighted
space ([3]).

An important feature of BF is that the tangent vector of a solution χ(t) solves the
Schrödinger map onto S

2:

Tt = T ∧ Txx .

Furthermore, Hasimoto remarked in [26] that the function, that he calls the fila-
ment function, u(t, x) = c(t, x)ei

∫ x
0 τ(t,s)ds , satisfies a focusing 1-D cubic nonlinear

Schrödinger equation (NLS).1 Hasimoto’s transform can be viewed as an inverse
Madelung transform sending Gross–Pitaesvskii equation to compressible Euler equa-
tionwith quantumpressure. It is known that in order to avoid issues related to vanishing
curvature, Bishop parallel frames ([7,34]) can be used as explained in §4.3.

Several examples of evolutions of curves through the binormal flowwere given find-
ing first particular solutions of the 1-D cubic NLS and then solving the corresponding

1 The defocusing 1-D cubic Schrödinger equation is achieved if the target of the Schrödinger map equation
is the hyperbolic plane H

2 instead of the sphere S
2.
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Frenet equations. Some of these examples are consistent at the qualitative level with
classical vortex filament dynamics as the line, the ring, the helix and travelling wave
type vortices. A special case are the self-similar solutions of the binormal flow. They
are constructed from the solutions

uα(t, x) = α
ei

x2
4t√

4π i t
= αeit�δ0(x) (2)

of the 1-D cubic NLS equation, renormalized in a sense specified in §1.2, with a Dirac
mass αδ0 at initial time. These BF solutions are of the type χ(t, x) = √

tG( x√
t
), and

form a a 1-parameter family {χα, α ≥ 0}, with χα(t) characterized by its curvature
cα(t, x) = α√

t
and its torsion τα(t, x) = x

2t . These solutions were known and used for

quite a while in the 80’s ([11,36,37,50]). The existence of a trace at time t = 0 was
proved rigorously in [25], and in particular it was shown that χα(0) is a broken line
with one corner having an angle θ satisfying

sin

(
θ

2

)
= e−π α2

2 . (3)

In particular the Dirac mass at the NLS level corresponds to the formation of a corner
on the curve, but the trace αδ0 of the filament function is not the filament function θδ0
of χα(0). This turns out to have relevant consequences regarding the lack of continuity
of some norms at the timewhen the corner is created. In [4] it is proved the ‖T̂x ( ·, t)‖∞
is discontinuous at that time. The same proof works if instead of this norm it is used
the following one

sup
j

∫ 4π( j+1)

4π j
|T̂x (x, t)|2 dx,

that fits better within the framework of Theorem 1.4, because due to the Frenet equa-
tions Tx it is at the same level of regularity as the corresponding filament functions
that solve NLS.

We shall now turn our attention precisely to the evolution of curves that can generate
corners in finite time. The case of the formation and instantaneous disappearance of
one corner is now well understood thanks to the characterization of the family the
self-similar solutions, and the study in [3] of the evolution of non-closed curves with
one corner and with curvature in weighted L2 based spaces. On the other hand, a
planar regular polygon with M sides is expected to evolve through the binormal flow
to skew polygons with Mq sides at times tp,q = p

2πq for odd q, see the numerical
simulations in [23,28], and [19] where the integration of the Frenet equations at the
rational times tp,q is also done.

In the present paper we place ourselves in the framework of initial data being
polygonal lines. The results presented are an important step forward to fill the gap
between the case of one corner and the much more delicate issue of closed polygons.
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Theorem 1.1 (Evolution of polygonal lines through the binormal flow) Let χ0 be
an arclength parametrized polygonal line with corners located at x ∈ Z, with the
sequence of angles θn ∈ (0, π) such that the sequence defined by (cf. (3))

√
− 2

π
log

(
sin

(
θn

2

))
, (4)

belongs to l2,3. Then there exists χ(t), smooth solution of the binormal flow (1) on
t �= 0 and solution of (1) in the weak sense on R, with

|χ(t, x) − χ0(x)| ≤ C
√
t, ∀x ∈ R, |t | ≤ 1.

Remark 1.2 Under suitable conditions on the initial data χ0, the evolution can have an
intermittent behaviour: Proposition 3.2 insures that at times tp,q = 1

2π
p
q the curvature

of χ(t) displays concentrations near the locations x such that x ∈ 1
q Z, and χ(t) is

almost a straight segment in between.

Remark 1.3 There is a striking difference with respect to the case of a polygonal
line with just one corner in the following sense. The trajectory in time of the corner
located at (t, x) = (0, 0) of a self-similar solution, χα(t, 0), is given by a straight line
for t > 0, as the Frenet frame of χα(t) is constant at x = 0. In §4.11 we show that
for the evolution of a polygonal line with several corners the trajectory of each corner,
as t goes to 0, is a logarithmic spiral. Therefore, the presence of another corner on a
nonclosed curve immediately creates a modification of the trajectory.

The proof goes as follows. In view of (3) and Hasimoto’s transform we consider
an appropriate 1-D cubic NLS equation with initial data

∑
k∈Z

αkδk,

with αk complex numbers defined in a precise way from the curvature and torsion
angles of χ0. Theorem 1.4 gives us a solution u(t) on t > 0. From this smooth
solution on ]0,∞[ we construct a smooth solution χ(t) of the binormal flow on
]0,∞[, that we prove it has a limit χ(0) at t = 0. Then the goal is to show that
modulo a translation and a rotation χ(0) is χ0. This is done in several steps. First we
show that the tangent vector has a limit at t = 0. Secondly we show that this limit is
piecewise constant, so χ(0) is a segment for x ∈]n, n + 1[,∀n ∈ Z. Then we prove,
by analyzing the frame of the curve through paths of self-similar variables, that χ(0)
presents corners at the same locations as χ0, of same angles as χ0. We recover the
torsion angles of χ0 by using also a similar analysis for modulated normal vectors

Ñ (t, x) = e
i
∑

j �=x |α j |2 log x− j√
t N (t, x). Therefore we recover χ0 modulo a translation

and a rotation. This translation and rotation applied to χ(t) give us the desired solution
of the binormal flow for t > 0 with limit χ0 at t = 0. Uniqueness holds in the class of
curves having filament functions of type (10). Using the above recipe to construct the
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evolution of a polygonal line for t > 0 we can extend χ(t) to negative times by using
the time reversibility of the equation.

1.2 The Cubic NLS onRwith Initial Data Given by Several Dirac Masses

We consider the cubic nonlinear Schrödinger equation on R

i∂t u + �u ± 1

2
|u|2u = 0. (5)

We first recall the known local well-posedness results, starting with what is known
in the framework of Sobolev spaces. The equation is well-posed in Hs , for any s ≥ 0
([14,22]). On the other hand, for s < 0 the Cauchy problem is ill-posed: in [29]
uniqueness was proved to be lost by using the Galilean transformation, and in [16]
norm-inflation phenomena were displayed. We note that the threshold obtained with

respect of the scaling invariance λu(λ2t, λx) is Ḣ− 1
2 . For s ≤ − 1

2 the presence of
norm inflating phenomena with loss of regularity was pointed out in [13,31], and also
norm inflation around any data was proved in [43]. Finally a growth control of Sobolev
norms of Schwartz solutions for − 1

2 < s < 0 on the line or the circle was shown in
[30] and [33].

On the other hand well-posedness holds for data with Fourier transform in L p

spaces, p < +∞ ([15,24,53]). A natural choice would be to consider initial data with
Fourier transform in L∞, as this space F(L∞) it is also invariant under rescaling.

We shall now focus on the case of initial data of Dirac mass type. Note that the

Dirac mass is borderline for Ḣ− 1
2 and that it belongs to F(L∞). For an initial datum

given by one Dirac mass, u(0) = αδ0, the equation is ill-posed. More precisely, it is
showed in [29] by using the Galilean invariance, that if there exists a unique solution
it should be for positive times

α
e∓i |α|2

4π log
√
t+i x

2
4t√

4π i t
,

and then the initial datum is not recovered. We note here that this issue can be avoided
by a simple change of phase that leads to the equation

{
i∂t u + �u ± 1

2

(|u|2 − A(t)
)
u = 0,

u(0) = αδ0,

with A(t) = α2

4π t . With this choice the equation has as a solution precisely the funda-
mental solution of the linear equation uα(t, x) introduced in (2).Adding a real potential
A(t) is a very natural geometric normalization, as the BF solution constructed from
a NLS solution u(t, x) is the same as the one constructed from eiφ(t)u(t, x), see §4.3.
This type of Wick renormalization has been used in the periodic setting in previous
works as in [9,15,44] and [45], although the motivation in these cases came just from
the need of avoiding some resonant terms that become infinite.
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However, even with this geometric renormalization the problem is still ill-posed,
in the sense that small regular perturbations of uα(t) at time t = 1 were proved in [2]
to behave near t = 0 as uα(t) + ei log t f (x) for some f ∈ H1. Therefore there is a
loss of phase as t goes to zero.

This loss of phase is a usual phenomena in the setting of the nonlinear Schrödinger
equations when singularities are formed, and it is of course a consequence of the gauge
invariance of the equation. How to continue the solution after the singularity has been
formed is therefore an important issue that appears recurrently in the literature, see
for example [10,38–40].

In [3] we found a natural geometric way to continue the BF solution after the
singularity, in the shape of a corner, is created. As BF is time reversible, to uniquely
continue a solution for negative times requires to get a curve trace χ(0) at t = 0
and to construct a unique solution for positive times, having as limit at t = 0 the
inverse oriented curve χ(0,−s). Note that using just continuity arguments and the
characterization result of the self-similar solutions that was proved in [25] one can
construct in an artificialway the continuation of a self-similar solution.Amore delicate
issue is how to determine the curve trace and its Frenet frame at time t = 0 for small
regular perturbations of BF self-similar solutions at some positive time, and we based
our analysis in [3] on the characterization result of the self-similar solutions that was
proved in [25]; in particular the small regular perturbations of BF self-similar solutions
at some positive time do not break the self-similar symmetry of the singularity created
at t = 0.

In Theorem 1.1 we prove that this procedure can be extended, not without difficul-
ties, to the case of a polygonal line, that can be viewed as a rough perturbation of the
broken line with one corner. There is no need for the line to be planar, and infinitely
many corners are permitted. In this case new problems concerning the phase loss
appear at the NLS and frame level, and again the characterization of the self-similar
solutions plays a crucial role.

For these reasons in this article we consider as initial data a combination of Dirac
masses,

u(0) =
∑
k∈Z

αkδk, (6)

with coefficients in weighted summation spaces:

‖{αk}‖l p,s < ∞,

where

‖{αk}‖l p,s :=
∑
k∈Z

(1 + |k|)ps |αk |p.

This choice of initial data has its own interest from the point of view of the Schrödinger
equation, because as far as we know and for the cubic nonlinearity in one dimension
the only results at the critical level of regularity are the ones in [3] mentioned above
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and that deals with just one Dirac mass. The case of a periodic array of Dirac deltas
of the same precise amplitude, was studied in [19] where a candidate for a solution is
proposed.

The case of a combination of Dirac masses as initial data for the Schrödinger
equation |u|p−1u with subcritical nonlinearity p < 3 was considered in [32]. It was
showed that it admits a unique solution, of the form

u(t, x) =
∑
k∈Z

Ak(t)e
it�δk(x), (7)

where {Ak} ∈ C([0, T ]; l2,1) ∩ C1(]0, T ]; l2,1). As the nonlinear power approaches
the critical cubic power, things look more singular. In this paper we prove that the
same type of ansatz is valid for a naturally renormalized cubic equation.

Let us notice that the initial data (6) has the property

û(0)(ξ) =
∑
k∈Z

αke
−ikξ , (8)

and in particular û(0) is 2π−periodic. Moreover, the condition {αk} ∈ l2,s translates
into û(0) ∈ Hs(0, 2π). Conversely, every 2π−periodic function can be decomposed
as in (8) and so it represents the Fourier transform on R of a combination of Dirac
masses as (7). We denote

Hs
pF := {u ∈ S ′(R), û(ξ + 2π) = û(ξ), û ∈ Hs(0, 2π)} ⊂ {u ∈ S ′(R),

{‖û‖Hs (2π j,2π( j+1))} j ∈ l∞},

and

‖u‖Hs
pF

= ‖û‖Hs (0,2π).

Our first result concerns the existence of solutions for initial data in Hs
pF .

Theorem 1.4 (Solutions of 1-D cubic NLS linked to several Diracs masses as initial
data) Let s > 1

2 , 0 < γ < 1 and {αk} ∈ l2,s . We consider the 1-D cubic NLS equation:

i∂t u + �u ± 1
2

(|u|2 − M
2π t

)
u = 0, (9)

with M = ∑
k∈Z |αk |2. There exists T > 0 and a unique solution on (0, T ) of the

form

u(t, x) =
∑
k∈Z

e∓i
|αk |2
4π log

√
t (αk + Rk(t))e

it�δk(x), (10)
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with

sup
0<t<T

t−γ ‖{Rk(t)}‖l2,s + t ‖{∂t Rk(t)}‖l2,s < C . (11)

Moreover, considering as initial data a finite sum of N Dirac masses

u(0) =
∑
k∈Z

αkδk,

with coefficients of equal modulus

|αk | = a, (12)

and equation (9) renormalized with M = (N − 1
2 )a

2, we have a unique solution

u(t) = eit�u(0) ± ieit�
∫ t

0
e−iτ�

((
|u(τ )|2 − M

2πτ

)
u(τ )

)
dτ

2
,

such that ̂e−i t�u(t) ∈ C1((−T , T ), Hs(0, 2π)) with

‖e−i t�u(t) − u(0)‖Hs
pF

≤ Ctγ , ∀t ∈ (−T , T ).

Moreover, if s ≥ 1 then the solution is global in time.

Remark 1.5 Note that any α j such that (12) does not hold will imply that the corre-
sponding initial value problem is ill posed, similarly at what was proved in [29] and
[3] in the case of just one Dirac mass and that we mentioned above.

Remark 1.6 It is worth noting that performing the (reversible) pseudo-conformal trans-
form to the solution u of (9)

u(t, x) = ei
x2
4t√

4π i t
v

(
1

t
,
x

t

)
, t > 0

we obtain a solution v of

i∂tv + �v ± 1

8π t

(
|v|2 − 2M

)
v = 0. (13)

This was the procedure we used in [3].
To impose the ansatz (7) on u is equivalent to

v(t, x) =
∑
k∈Z

Ak

(
1

t

)
e−i tk

2
4 +i xk2 . (14)
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Therefore after pseudo-conformal transform our problem reduces to solve (13) in the
periodic setting with period [0, 4π ]. Note that from (7) we have that |̂u(t)(ξ)| is 2π
periodic.

The proof of the theorem goes as follows. Plugging the general ansatz (7) into equa-
tion (9) leads to a discrete system on {Ak(t)}, by using the fact that for fixed t the family

eit�δk(x) = ei
(x−k)2

4t√
4π i t

is an orthonormal family of L2(0, 4π t). We solve the discrete

system on {Ak(t)} by a fixed point argument with Rk(t) = e−i
|αk |2
4π log

√
t Ak(t) − αk

satisfying (11). In the case of initial data a finite sum of N Dirac masses with coeffi-
cients of equal modulus and equation (9) renormalized with M = (N − 1

2 )a
2, we are

led to solve the same fixed point for Rk(t) = Ak(t) − αk .

Remark 1.7 The resonant part of the discrete system of {Ak(t)} is

i∂t ak(t) = 1

8π t
ak(t)

⎛
⎝2

∑
j

|a j (t)|2 − |ak(t)|2 − 2M

⎞
⎠ .

It is a non-autonomous singular time-dependent coefficient version of the resonant
system of standard 1-D cubic NLS. Indeed, usually for questions concerning the long-
time behavior of cubic NLS, one introduces

v(t) = e−i t�u(t).

In the 1-D periodic case the Fourier coefficients of v(t) satisfy the system

i∂tvk(t) =
∑

k− j1+ j2− j3=0

e−i t(k2− j21+ j22− j33 )v j1(t)v j2(t)v j3(t),

so that the resonant system is:

i∂t ak(t) = ak(t)

⎛
⎝2

∑
j

|a j (t)|2 − |ak(t)|2
⎞
⎠ .

Of course, for 1-D periodic NLSwith data in Hs, s > 1
2 (that corresponds to {vn(0)} ∈

l2,s ⊂ l1) there is no issue for obtaining directly the local existence.

Remark 1.8 The regularity of {α j }might be weakened to l p spaces only (p < ∞), see
Remark 2.2. It is evident from (13) that formally

∂t
∑
j

|A j (t)|2 = 0, (15)
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and therefore the l2 norm is preserved.2 As amatter of fact this says that the selfsimilar
solutions have finite mass for the 1-D cubic NLS when the mass is appropriately
defined. This has nothing to do with the complete integrability of the system because
still works in the subcritical cases studied in [32].

Note that to solve (13) for t ≥ T0 > 0 is quite straightforward making use of the
available Strichartz estimates in the periodic setting-see [8] and also [41] for a slight
modification. However, these methods do not give the behavior of the solution v when
time approaches infinity which is absolutely crucial for proving Theorem 1.1. As a
consequence we are led to make a more refined analysis. In view of Theorem 1.1 we
consider weighted l2,s spaces; this in particular will allow us to rigorusly prove that
(15) holds.

The paper is structured as follows. In the next section we prove Theorem 1.4, and
also the extension Theorem 2.3 concerning some cases of Dirac masses not necessary
located at integer numbers. Section 3 contains the proof of a Talbot effect for some
solutions given by Theorem 1.4. In the last section we prove Theorem 1.1.

2 The 1-D Cubic NLS with Initial Data Given by Several Dirac Masses

In this section we give the proof of Theorem 1.4.

2.1 The Fixed Point Framework

We denote N (u) = |u|2u
2 . By plugging the ansatz (7) into equation (9) we get

∑
k∈Z

i∂t Ak (t) eit�δk = N (u) − M

4π t
u = N

⎛
⎝∑

j∈Z
A j (t) e

it�δ j

⎞
⎠

− M

4π t

(∑
k∈Z

Ak (t) eit�δk

)
. (16)

We have chosen here for simplicity the sign − in (9); the sign + can be treated the
same.

The family eit�δk(x) = ei
(x−k)2

4t√
4π i t

is an orthonormal family of L2(0, 4π t) so by taking

the scalar product of L2(0, 4π t) with eit�δk we obtain

i∂t Ak (t) =
∫ 4π t

0
N
⎛
⎝∑

j∈Z
A j (t)

ei
(x− j)2

4t√
4π i t

⎞
⎠ −ei

(x−k)2

4t

√
4π i t

dx − M

4π t
Ak (t) .

2 equivalently
∫ 4π
0 |v(t, x)|2 dx = constant
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Note that as s > 1
2 we have {A j } ∈ l2,s ⊂ l1 and we can develop the cubic power to

get

i∂t Ak(t) = 1

8π t

∑
k− j1+ j2− j3=0

e−i
k2− j21+ j22− j23

4t A j1(t)A j2(t)A j3(t) − M

4π t
Ak(t).

(17)

We note already that for a sequence of real numbers a(k) we have:

∂t
∑
k

a(k)|Ak(t)|2

= 1

4π t
�

∑
k− j1+ j2− j3=0

a(k)e−i
k2− j21+ j22− j23

4t A j1(t)A j2(t)A j3(t)Ak(t)

= 1

8π t i

⎛
⎝ ∑

k− j1+ j2− j3=0

a(k)e−i
k2− j21+ j22− j23

4t A j1(t)A j2(t)A j3(t)Ak(t)

−
∑

j3− j2+ j1−k=0

a(k)e−i
j23− j22+ j21−k2

4t A j2(t)A j1(t)Ak(t)A j3(t)

⎞
⎠

= 1

8π t i

∑
k− j1+ j2− j3=0

(a(k) − a( j3))e
−i

k2− j21+ j22− j23
4t A j1(t)A j2(t)A j3(t)Ak(t)

= 1

16π t i

∑
k− j1+ j2− j3=0

(a(k) − a( j1) + a( j2)

−a( j3))e
−i

k2− j21+ j22− j23
4t A j1(t)A j2(t)A j3(t)Ak(t). (18)

Therefore the system conserves the “mass”:

∑
k

|Ak(t)|2 =
∑
k

|Ak(0)|2, (19)

and the momentum

∑
k

k|Ak(t)|2 =
∑
k

k|Ak(0)|2. (20)

We split the summation indices of (17) into the following two sets:

N Rk = {( j1, j2, j3) ∈ Z
3, k − j1 + j2 − j3 = 0, k2 − j21 + j22 − j23 �= 0},

Resk = {( j1, j2, j3) ∈ Z
3, k − j1 + j2 − j3 = 0, k2 − j21 + j22 − j23 = 0}.
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As we are in one dimension, the second set is simply

Resk = {(k, j, j), ( j, j, k), j ∈ Z},

as for k − j1 + j2 − j3 = 0 we have

k2 − j21 + j22 − j33 = 2(k − j1)( j1 − j2).

In particular we get

∑
k− j1+ j2− j3=0

e−i
k2− j21+ j22− j23

4t A j1(t)A j2(t)A j3(t)

=
∑

j1, j2∈Z
e−i

2(k− j1)( j1− j2)

4t A j1(t)A j2(t)Ak− j1+ j2(t)

=
∑
j1 �=k

∑
j2 �= j1

e−i
2(k− j1)( j1− j2)

4t A j1(t)A j2(t)Ak− j1+ j2(t) +
∑
j1 �=k

A j1(t)A j1(t)Ak(t)

+
∑
j2∈Z

Ak(t)A j2(t)A j2(t).

Therefore the system (16) writes

i∂t Ak(t) = 1

8π t

∑
( j1, j2, j3)∈N Rk

e−i
k2− j21+ j22− j33

4t A j1(t)A j2(t)A j3(t)

+ 1

8π t
Ak(t)(2

∑
j

|A j (t)|2 − |Ak(t)|2 − 2M). (21)

Aswe have already noticed, this system conserves the “mass”
∑

j |A j (t)|2, so since
M = ∑

j |α j |2, finding a solution for t > 0 satisfying

lim
t→0

|A j (t)| = |α j |, (22)

is equivalent to finding a solution for t > 0 satisfying also (22), for the following also
“mass”-conserving system:

i∂t Ak(t) = 1

8π t

∑
( j1, j2, j3)∈N Rk

e−i
k2− j21+ j22− j33

4t A j1(t)A j2(t)A j3(t)

− 1

8π t
|Ak(t)|2Ak(t). (23)
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By doing a change of phase Ak(t) = ei
|αk |2
4π log

√
t Ãk(t) we get as a system

i∂t Ãk(t) = fk(t) − 1

8π t
(| Ãk(t)|2 − |αk |2) Ãk(t), (24)

where

fk(t) = 1

8π t

∑
( j1, j2, j3)∈N Rk

e−i
k2− j21+ j22− j33

4t e−i
|αk |2−|α j1

|2+|α j2
|2−|α j3

|2
4π log

√
t Ã j1(t) Ã j2(t) Ã j3(t). (25)

Now we note that a solution of (24) satisfies

∂t | Ãk(t)|2 = 2�( fk(t) Ãk(t)), (26)

so obtaining a solution of (24) for t > 0 with

lim
t→0

| Ãk(t)| = |αk |, (27)

is equivalent to obtaining a solution for t > 0 also satisfying (27), for the following
system, that also enjoys (26):

i∂t Ãk(t) = fk(t) − 1

8π t

∫ t

0
2�( fk(τ ) Ãk(τ ))dτ Ãk(t). (28)

We recall that we expect solutions behaving as Ak(t) = ei
|αk |2
4π log

√
t (αk + Rk(t)),

with {Rk} in the space:
Xγ := {{ fk} ∈ C1((0, T ), l2,s), ‖{t−γ fk(t)}‖L∞(0,T )l2,s + ‖{t ∂t fk(t)}‖L∞(0,T )l2,s < ∞},

(29)

with T to be specified later. We also denote

‖{ fk}‖Xγ = ‖{t−γ fk(t)}‖L∞(0,T )l2,s + ‖{t ∂t fk(t)}‖L∞(0,T )l2,s .

To prove the theorem we shall show that we have a contraction on a suitable chosen
ball of size δ of Xγ for the operator � sending {Rk} into

�({Rk}) = {�k({R j })},

with

�k({R j })(t) = i
∫ t

0
gk(τ )dτ − i

∫ t

0

∫ τ

0
�(gk(s)(αk + Rk(s))ds (αk + Rk(τ ))

dτ

4πτ
,
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where

gk(t) = 1

8π t

∑
( j1, j2, j3)∈N Rk

e−i
k2− j21+ j22− j23

4t e−iωk, j1, j2, j3 log
√
t (α j1

+R j1(t))(α j2 + R j2(t))(α j3 + R j3(t)),

and ωk, j1, j2, j3 = |αk |2−|α j1 |2+|α j2 |2−|α j3 |2
4π .

Finally we note that in the case of N Dirac masses with coefficients |αk | = a and
equation (9) with M = (N − 1

2 )a
2, we get instead of (23) the equation

i∂t Ak(t) = 1

8π t

∑
( j1, j2, j3)∈N Rk

e−i
k2− j21+ j22− j33

4t A j1(t)A j2(t)A j3(t)

− 1

8π t
(|Ak(t)|2 − |αk |2)Ak(t). (30)

Hence we can write Ak(t) = αk + Rk(t) and the same fixed point argument works for
{Rk}.

2.2 The Fixed Point Argument estimates

Lemma 2.1 For {Rk} ∈ Xγ with ‖{Rk}‖Xγ ≤ δ we have the following estimates:

‖{gk(t)}‖l2,s ≤ C

t

(
‖{αk}‖3l2,s + t3γ δ3

)
, (31)

∥∥∥∥
{∫ t

0
gk(τ )dτ

}∥∥∥∥
l2,s

≤ Ct(‖{α j }‖3l2,s + ‖{α j }‖5l2,s + t3γ (1 + ‖{αk}‖2l2,s )δ3

+‖{α j }‖2l2,s δ + t2γ δ3), (32)∥∥∥∥
{∫ t

0
gk(τ )(αk + Rk(τ ))dτ

}∥∥∥∥
l2,s

≤ Ct(‖{αk}‖l2,s + tγ δ)

×(‖{α j }‖3l2,s + ‖{α j }‖5l2,s + t3γ (1 + ‖{αk}‖2l2,s )δ3 + ‖{α j }‖2l2,s δ + t2γ δ3).

(33)

Proof We note first that

{Mj }�{N j }�{Pj }(k) =
∑

( j1, j2, j3)∈N Rk∪Resk

M j1N j2 Pj3 ,

so in particular

∣∣∣∣∣∣
∑

( j1, j2, j3)∈N Rk

M j1N j2 Pj3

∣∣∣∣∣∣
≤ {|Mj |}�{|N j |}�{|Pj |}(k). (34)
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We shall frequently use the following inequality:

‖{Mj }�{N j }�{Pj }‖l∞ + ‖{Mj }�{N j }�{Pj }‖l2,s ≤ C‖{Mj }‖l2,s‖{N j }‖l2,s‖{Pj }‖l2,s .
(35)

The first part follows from l2,s ⊂ l1 and the second part follows using also theweighted
Young argument on two series:

‖{Mj }�{N j }‖l2,s ≤ C‖{Mj }�{(1 + | j |)s N j }‖l2 + C‖{(1 + | j |)sM j }�{N j }‖l2
≤ C‖{Mj }‖l1‖{(1 + | j |)s N j }‖l2 + C‖{(1 + | j |)sM j }‖l2‖{N j }‖l1
≤ C‖{Mj }‖l2,s‖{N j }‖l2,s .

Therefore by (34) we have

|gk(t)| ≤ C

t

∑
( j1, j2, j3)∈N Rk

(|α j1 | + |R j1(t)|)(|α j2 | + |R j2(t)|)(|α j3 | + |R j3(t)|)

≤ C

t
{|α j | + |R j (t)|}�{|α j | + |R j (t)|}�{|α j | + |R j (t)|}(k),

and by (35) we get (31).
To estimate

∫ t
0 gk(τ )dτ we perform an integration by parts to get advantage of the

non-resonant phase and to obtain integrability in time:

i
∫ t

0
gk(τ )dτ = t

∑
( j1, j2, j3)∈N Rk

e−i
k2− j21+ j22− j23

4t e−iωk, j1, j2, j3 log
√
t

π(k2 − j21 + j22 − j23 )
(α j1

+R j1(t))(α j2 + R j2(t))(α j3 + R j3(t))

−
∫ t

0

∑
( j1, j2, j3)∈N Rk

e−i
k2− j21+ j22− j23

4τ

π(k2 − j21 + j22 − j23 )

×∂τ (τe
−iωk, j1, j2, j3 log

√
τ (α j1 + R j1(τ ))(α j2 + R j2(τ ))(α j3 + R j3(τ ))) dτ.

(36)

Indeed, for fixed t , this computation is justified by considering, for 0 < η < t , the
quantity I η

k (t) defined as �1
k({R j })(t) but with the integral in time from η instead of

0. More precisely, I η
k (t) is well defined as the integrand can be upper-bounded using

(34) and (35) by the function C
‖{α j }‖3l2,s+‖{R j (τ )}‖3

l2,s

τ
which is integrable on (η, t). In

particular the discrete summation commutes with the integration in time. Performing
then integrations by parts on I η

k (t) as above, we obtain for I η
k (t) an expression that

yields as η → 0 the above expression for
∫ t
0 gk(τ )dτ .
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We obtain, in view of (35), and on the fact that on the resonant set |k2− j21 + j22 − j23 | ≥
1,

∣∣∣∣
∫ t

0
gk(τ )dτ

∣∣∣∣ ≤ Ct{|α j | + |R j (t)|}�{|α j | + |R j (t)|}�{|α j | + |R j (t)|}(k)

+C(1 + ‖{αk}‖2l∞)

∫ t

0
{|α j | + |R j (τ )|}�{|α j | + |R j (τ )|}�{|α j | + |R j (τ )|}(k) dτ

+C
∫ t

0
{|τ ∂τ R j (τ )|}�{|α j | + |R j (τ )|}�{|α j | + |R j (τ )|}(k) dτ.

We perform Cauchy–Schwarz in the integral terms to get the squares for the discrete
variable and we sum using (35):

∥∥∥∥
{∫ t

0
gk(τ )dτ

}∥∥∥∥
2

l2,s
≤ Ct2 ‖{α j + R j (t)}‖6l2,s

+C(1 + ‖{αk}‖4l2,s ) t
∫ t

0
‖{α j + R j (τ )}‖6l2,s dτ

+Ct
∫ t

0
‖{α j + R j (τ )}‖4l2,s‖{τ∂τ R j (τ )}‖2l2,s dτ.

Therefore we get (32):

∥∥∥∥
{∫ t

0
gk(τ )dτ

}∥∥∥∥
l2,s

≤ Ct(‖{α j }‖3l2,s + ‖{R j (t)}‖3l2,s + ‖{α j }‖5l2,s )
+C(1 + ‖{αk}‖2l2,s )t1+3γ ‖{τ−γ R j (τ )}‖3L∞(0,T ),l2,s

+Ct‖{α j }‖2l2,s‖{τ∂τ R j (τ )}‖L∞(0,T ),l2,s

+Ct1+2γ ‖{τ−γ R j (τ )}‖2L∞(0,T ),l2,s‖{τ∂τ R j (τ )}‖L∞(0,T ),l2,s

≤ Ct(‖{α j }‖3l2,s + ‖{α j }‖5l2,s ) + Ct1+3γ (1 + ‖{αk}‖2l2,s )δ3
+Ct‖{α j }‖2l2,s δ + Ct1+2γ δ3.

The last estimate (33) is obtained the same way as (32), by adding in the
computations the extra-term αk + Rk(τ ) and by upper-bounding it in modulus by
‖{αk}‖l2,s + τγ δ. ��

We now use (31) and (33) to get

∥∥{∂t�k({R j })(t)
}∥∥

l2,s ≤ ‖{gk(t)dτ }‖l2,s
+
∥∥∥∥
{∫ t

0
�(gk(s)(αk + Rk(s))ds (αk + Rk(t))

}∥∥∥∥
l2,s

C

t

≤ C

t
(‖{αk}‖3l2,s + t3γ δ3) + C(‖{αk}‖l2,s + tγ δ)2

×(‖{α j }‖3l2,s + ‖{α j }‖5l2,s + t3γ (1 + ‖{αk}‖2l2,s )δ3 + ‖{α j }‖2l2,s δ + t2γ δ3).
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On the other hand,

|{�k({R j })(t)}| ≤
∣∣∣∣
∫ t

0
gk(τ )dτ

∣∣∣∣

+
∣∣∣∣
∫ t

0

∫ τ

0
�(gk(s)(αk + Rk(s))ds (αk + Rk(τ ))

dτ

4πτ

∣∣∣∣ ,

so by Cauchy–Schwarz

|{�k({R j })(t)}|2 ≤ C

∣∣∣∣
∫ t

0
gk(τ )dτ

∣∣∣∣
2

+C
√
t
∫ t

0

∣∣∣∣
∫ τ

0
�(gk(s)(αk + Rk(s))ds

∣∣∣∣
2

(|αk |2 + |Rk(τ )|2)dτ

τ
3
2

.

Now we use (32) and (33) to get

‖{�k({R j })(t)}‖l2,s ≤ Ct(‖{α j }‖3l2,s + ‖{α j }‖5l2,s + t3γ (1 + ‖{αk}‖2l2,s )δ3
+‖{α j }‖2l2,s δ + t2γ δ3)

+Ct(‖{αk}‖l2,s + tγ δ)2

×(‖{α j }‖3l2,s + ‖{α j }‖5l2,s + t3γ (1 + ‖{αk}‖2l2,s )δ3 + ‖{α j }‖2l2,s δ + t2γ δ3).

Summarizing, we have obtained

‖{�({Rk})}‖Xγ ≤ C(‖{αk}‖3l2,s + T 3γ δ3) + CT (‖{αk}‖l2,s + T γ δ)2

×(‖{α j }‖3l2,s + ‖{α j }‖5l2,s + T 3γ (1 + ‖{αk}‖2l2,s )δ3 + ‖{α j }‖2l2,s δ + T 2γ δ3)

+CT 1−γ (‖{α j }‖3l2,s + ‖{α j }‖5l2,s + T 3γ (1 + ‖{αk}‖2l2,s )δ3 + ‖{α j }‖2l2,s δ + T 2γ δ3)

+CT 1−γ (‖{αk}‖l2,s + T γ δ)2

× (‖{α j }‖3l2,s + ‖{α j }‖5l2,s + T 3γ (1 + ‖{αk}‖2l2,s )δ3 + ‖{α j }‖2l2,s δ + T 2γ δ3). (37)

In view of (37), we can choose δ in terms of ‖{α j }‖l2,s , and T small with respect to
‖{α j }‖l2,s and γ , to obtain the stability estimate

‖{�({Rk})}‖Xγ < δ.

The contraction estimate is obtained in the same way as the stability one. As a con-
clusion the fixed point argument is closed and this settles the local in time existence
of the solutions of Theorem 1.4.

Remark 2.2 We notice that in (36) we just upper-bounded the inverse of the non-
resonant phase by 1. One can actually exploit this decay in the discrete summations
to relax the assumptions on the initial data. More precisely, for 1 ≤ p < ∞ one can
use:
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∥∥∥∥∥∥
∑

( j1, j2, j3)∈N Rk

M j1N j2 Pj3

k2 − j21 + j22 − j23

∥∥∥∥∥∥

p

l p

=
∑
k

⎛
⎝ ∑

j1, j2; j1 /∈{k, j2}

Mj1N j2 Pk− j1+ j2

| j1 − j2||k − j1|

⎞
⎠

p

≤ C
∑
k

⎛
⎝∑

j1, j2

|Mj1 |p|Mj2 |p|Mk− j1+ j2 |p
⎞
⎠

⎛
⎝∑

j1, j2

1

(1 + | j1 − j2|)q(1 + |k − j1|)q

⎞
⎠

p
q

,

where q is the conjugate exponent of p. As 1 ≤ p < ∞ we have q > 1 so

∥∥∥∥∥∥
∑

( j1, j2, j3)∈N Rk

M j1N j2 Pj3

k2 − j21 + j22 − j23

∥∥∥∥∥∥
l p

≤ ‖{Mj }‖l p‖{N j }‖l p‖{Pj }‖l p .

2.3 Global in Time Extension

We consider the local in time solution constructed previously. In the case s = 1 we
shall prove that the growth of ‖{α j +R j (t)}‖L∞(0,T )l2,1 is controlled, so we can extend
the solution globally in time. Global existence for s > 1 is obtained by considering
the l2,1 global solution and proving the persistency of the regularity l2,s .

We shall use (18) with a(k) = k2 to get a control of the “energy”:

∂t
∑
k

k2|Ak(t)|2

= ∓ 1

16π t

∑
k− j1+ j2− j3=0

(k2 − j21 + j22 − j23 )

e−i
k2− j21+ j22− j23

4t A j1(t)A j2(t)A j3(t)Ak(t)

= ± i t

4π

∑
k− j1+ j2− j3=0

∂t

(
e−i

k2− j21+ j22− j23
4t

)
A j1(t)A j2(t)A j3(t)Ak(t).

By integrating from 0 to t and then using integrations by parts we get

∑
k

k2|Ak(t)|2 ≤
∑
k

k2|Ak(0)|2 + Ct
∑

k− j1+ j2− j3=0

|A j1(t)A j2(t)A j3(t)Ak(t)|

+C
∫ t

0

∑
k− j1+ j2− j3=0

|∂τ (τ A j1(τ )A j2(τ )A j3(τ )Ak(τ ))|dτ

≤ ‖{α j }‖2l2,1 + Ct
∑
k

(|A j (t)|�|A j (t)|�|A j (t)|)(k)|Ak(t)|
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+
∫ t

0

∑
k

(|A j (τ )|�|A j (τ )|�|A j (τ )|)(k)|Ak(τ )|dτ

+
∫ t

0

∑
k

(∂τ |A j (τ )|�|A j (τ )|�|A j (τ )|)(k)|Ak(τ )|τdτ

+
∫ t

0

∑
k

(|A j (τ )|�|A j (τ )|�|A j (τ )|)(k)∂τ |Ak(τ )|τdτ.

Weshall use now the following estimate, based onCauchy–Schwartz inequality,Young

and Hölder estimates for weak l p spaces, and the fact that { j− 1
2 } ∈ l2w:

∣∣∣∣∣
∑
k

{Mj }�{N j }�{Pj }(k)Rk

∣∣∣∣∣ ≤ ‖{Mj }�{N j }�{Pj }‖l2‖R j‖l2

≤ C‖{Mj }‖l1w‖{N j }‖l1w‖{Pj }‖l2‖R j‖l2
≤ C‖{Mj j

1
2 }‖l2w‖{N j j

1
2 }‖l2w‖{Pj }‖l2‖R j‖l2

≤ C‖{Mj }‖
1
2
l2

‖{Mj }‖
1
2
l2,1

‖{N j }‖
1
2
l2

‖{N j }‖
1
2
l2,1

{Pj }‖l2‖R j‖l2

to obtain

‖{A j (t)}‖2l2,1 ≤ ‖{α j }‖2l2,1 + Ct‖{A j (t)}‖3l2‖{A j (t)}‖l2,1
+
∫ t

0
‖{A j (τ )}‖3l2‖{A j (τ )}‖l2,1dτ

+
∫ t

0
‖{∂τ A j (τ )}‖l2‖{A j (τ )}‖2l2‖{A j (τ )}‖l2,1τdτ.

Now we notice that for system (17) we get

‖{∂τ A j (t)}‖l2 ≤ C

t
(‖{A j (t)}�{A j (t)}�{A j (t)}‖l2 + ‖{A j (t)}‖l2)

≤ C

t
(‖{A j (t)}‖l2,1‖{A j (t)}‖2l2 + ‖{A j (t)}‖l2).

By using also the conservation of “mass” (19) we finally obtain

‖{A j (t)}‖2l2,1 ≤ ‖{α j }‖2l2,1 + Ct‖{α j }‖3l2‖{A j (t)}‖l2,1
+
∫ t

0
‖{α j }‖3l2‖{A j (τ )}‖l2,1dτ +

∫ t

0
‖{α j }‖4l2‖{A j (τ )}‖2l2,1dτ.

We thus obtain by Grönwall’s inequality a control of the growth of ‖A j (t)‖l2,1 , so the
local solution can be extended globally and the proof of Theorem (1.4) is finished.
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2.4 Cases of Dirac Masses Not Necessary Located at Integer Numbers

Some cases of Dirac masses, not necessary located at integer numbers, were treated
in [32] and can be extended here to the cubic case. We denote for doubly indexed
sequences

‖{αk,k̃}‖2l2,s :=
∑

k,k̃∈Z
(1 + |k| + |k̃|)2s |αk,k̃ |2.

We note that a distribution f = ∑
k∈Z αk,k̃δak+bk̃ satisfies

f̂ (ξ) = ̂
∑
k∈Z

αk,k̃δak+bk̃(ξ) =
∑
k∈Z

αk,k̃ e
−iξ(ak+bk̃),

that can be seen as the restriction to ξ1 = ξ2 = ξ of

∑
k∈Z

αk,k̃ e
−iξ1ak−iξ2bk̃,

which is the Fourier transform of

E( f ) :=
∑
k∈Z

αk,k̃δ(ak,bk̃).

We denote

Hs
pF;a,b :=

{
u ∈ S ′ (

R
2
)

, û

(
ξ1 + 2π

a
, ξ2

)
= û

(
ξ1, ξ2 + 2π

b

)

= û (ξ1, ξ2) , û ∈ Hs
((

0,
2π

a

)
×
(
0,

2π

b

))}
,

and

‖ f ‖
Hs,diag

pF;a,b
= ‖Ê( f )‖Hs ((0, 2πa )×(0, 2πb )).

Theorem 2.3 Let s > 1
2 , T > 0 and 1

2 < γ < 1. Let a, b ∈ R
∗ such that a

b /∈ Q. We
consider the 1-D cubic NLS equation:

i∂t u + �u ± 1

2

(
|u|2 − M

2π t

)
u = 0. (38)
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with M = ∑
k,k̃∈Z |αk,k̃ |2 and #{(k, k̃), αk,k̃ �= 0} < ∞. There exists ε0 > 0 such that

if ‖{αk,k̃}‖l2,s ≤ ε0 then we have T > 0 and a unique solution on (0, T ) of the form

u(t) =
∑

k,k̃∈Z
e∓i

|α
k,k̃

|2
4π log

√
t (αk,k̃ + Rk,k̃(t))e

it�δak+bk̃, (39)

with the decay

sup
0<t<T

t−γ ‖{Rk,k̃(t)}‖l2,s + t ‖{∂t Rk,k̃(t)}‖l2,s < C . (40)

Moreover, considering an initial data a finite sum of N Dirac masses

u(0) =
∑
k∈Z

αk,k̃δak+bk̃,

with coefficients of same modulus |αk,k̃ | = a and equation (38) normalized with

M = (N − 1
2 )a

2, we have a unique solution on (−T , T )

u(t) = eit�u(0) ± ieit�
∫ t

0
e−iτ�

((
|u(τ )|2 − M

2πτ

)
u(τ )

)
dτ

2
,

such that ̂E(e−i t�u(t)) ∈ C1((−T , T ), Hs((0, 2π
a ) × (0, 2π

b ))) with

‖e−i t�u(t) − u(0)‖
Hs,diag

pF;a,b
≤ Ctγ , ∀t ∈ (−T , T ).

The new phenomenon here is that if for instance the initial data is the sum of three
Dirac masses located at 0, a and b then we see small effects on the dense subset on
R given by the group aZ + bZ. Another difference with respect to the previous case
is that the non-resonant phases can approach zero so we shall perform integration
by parts from the phase only on the free term. Due to this small divisor problem we
impose on one hand only a finite number of Dirac masses at time t = 0, and on the
other hand a smallness condition on the data.

The proof of Theorem 2.3 goes similarly to the one of Theorem 1.4, by plugging
the ansatz (39) into equation (38) to get by using the orthogonality of the family

{ ei
(x−ak−bk̃)2

4t√
4π i t

} the associated system

i∂t Ak,k̃(t)

= ∓ 1

8π t

∑

(( j1, j̃1),( j2, j̃2),( j3, j̃3))∈N Rk,k̃

e−i
(ka+k̃b)2−( j1a+ j̃1b)

2+( j2a+ j̃2b)
2−( j3a+ j̃3b)

2

4t A j1, j̃1
(t)A j2, j̃2

(t)A j3, j̃3
(t)
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± 1

8π t
Ak,k̃(t)

⎛
⎝2

∑

j, j̃

|A j, j̃ (t)|2 − |Ak,k̃(t)|2 − 2M

⎞
⎠ ,

where N Rk,k̃ is the set of indices such that the phase does not vanish i.e. such that

k− j1+ j2− j3 = 0, k̃− j̃1+ j̃2− j̃3 = 0, k2− j21 + j22 − j23 �= 0, and k̃− j̃1+ j̃2− j̃3 �= 0.
We have to solve the equivalent “mass”-conserving system:

i∂t Ak,k̃(t)

= ∓ 1

8π t

∑

(( j1, j̃1),( j2, j̃2),( j3, j̃3))∈N Rk,k̃

e−i
(ka+k̃b)2−( j1a+ j̃1b)

2+( j2a+ j̃2b)
2−( j3a+ j̃3b)

2

4t A j1, j̃1
(t)A j2, j̃2

(t)A j3, j̃3
(t)

∓ 1

8π t
|Ak,k̃(t)|2Ak,k̃(t). (41)

We look for solutions of the form Ak,k̃(t) = e∓i
|α
k,k̃

|2
4π log

√
t (αk,k̃ + Rk,k̃(t)), with{Rk,k̃} ∈ Y γ :

Y γ := {{ fk,k̃} ∈ C((0, T ); l2,s)}. (42)

As for Theorem 1.4, we make a fixed point argument in a ball of Y γ of size depending
on ‖{αk,k̃}‖l2,s for the operator � sending {Rk,k̃} into

�({Rk,k̃}) = {�k,k̃({R j, j̃ })},

with

�k,k̃({R j, j̃ }(t))

= ∓i
∫ t

0
fk,k̃(τ ) dτ ± i

∫ t

0

∫ τ

0
�( fk,k̃(s)(αk,k̃ + Rk,k̃(s))ds(αk,k̃ + Rk,k̃(τ ))

dτ

4π t
,

where

fk,k̃(t) =
∑

(( j1, j̃1),( j2, j̃2),( j3, j̃3))∈N Rk,k̃

e−i
(ka+k̃b)2−( j1a+ j̃1b)

2+( j2a+ j̃2b)
2−( j3a+ j̃3b)

2

4t

8π t

×e−i
|α
k,k̃

|2−|α
j1, j̃1

|2+|α
j2, j̃2

|2−|α
j3, j̃3

|2
4π log t (α j1, j̃1

+ R j1, j̃1
(t))(α j2, j̃2

+ R j2, j̃2
(t))(α j3, j̃3

+R j3, j̃3
(t)).

To avoid issues related to having the non-resonant phase approaching zero, we perform
integrations by parts only in the free term involving a finite number of terms, as
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#{(k, k̃), αk,k̃ �= 0} < ∞. All the remaining terms contain powers of R j, j̃ (τ ) so
we get integrability in time by using the Young inequalities (35) for double indexed
sequences. However, due to the presence of terms linear in R j, j̃ (τ )we need to impose
a smallness condition on the initial data ‖{α j, j̃ }‖l2,s . Moreover, from the cubic terms

treated without integrations by parts as previously, we need to impose γ > 1
2 . The

control of ‖{t∂t Rk,k̃(t)}‖L∞(0,T )l2,s is easily obtained a-posteriori, once a solution is
constructed in Y γ .

3 The Talbot Effect

The Talbot effect for the linear and nonlinear Schrödinger equations on the torus
with initial data given by functions with bounded variation has been largely studied
([5,17,20,46,48,52]). Here we place ourselves in a more singular setting on R, and get
closer to the Talbot effect observed in optics (see for example [6]) which is typically
modeled with Dirac combs as we consider in this paper.

As a consequence of Theorem 1.4 the solution u(t) of equation (9) with initial data

u(0) =
∑
k∈Z

αkδk,

behaves for small times like eit�u0.We compute first the linear evolution eit�u0 which
displays a Talbot effect.

Proposition 3.1 (Talbot effect for linear evolutions) Let p ∈ N and u0 with û0
2π−periodic. For all tp,q = 1

2π
p
q with q odd and for all x ∈ R we have

eitp,q�u0(x) = 1√
q

∫ 2π

0
û0(ξ)e−i tp,qξ2+i xξ

∑
l∈Z

q−1∑
m=0

eiθm,p,q δ

(
x − 2tp,q ξ − l − m

q

)
dξ, (43)

for some θm,p,q ∈ R. We suppose now that moreover û0 is located modulo 2π only in
a neighborhood of zero of radius less than ηπ

p with 0 < η < 1. For a given x ∈ R we
define

ξx := πq

p
dist

(
x,

1

q
Z

)
∈ [0, π

p
).

Then there exists θx,p,q ∈ R such that

eitp,q�u0(x) = 1√
q
û0(ξx ) e

−i tp,q ξ2x +i x ξx+iθx,p,q . (44)
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In particular |eitp,q�u0(l + m
q )| = |eitp,q�u0(0)| and if x is at distance larger than η

q

from 1
q Z then eitp,q�u0(x) vanishes.

Moreover, the solution can concentrate near 1
q Z in the sense that there is a family

of initial data uλ
0 = ∑

k∈Z αλ
k δk and C > 0 such that

∣∣∣∣∣
eitp,q�uλ

0(0)

eitp,q�αλ
0δ0(0)

∣∣∣∣∣
λ→∞−→ ∞. (45)

We note here that thanks to Poisson summation formula the above proposition
applies to u0 = ∑

k∈Z δk . Therefore eit�u0(x) = 0 for x /∈ 1
q Z, and is a Dirac mass

otherwise, which is the classical Talbot effect. However this kind of data does not
satisfy the conditions of Theorem 1.4. Nevertheless, the concentration phenomena
(45) is obtained by taking a sequence of initial data {uλ

0} whose Fourier transform is
periodic and concentrates near the integers.

Proposition 3.1 insures the persistence of the Talbot effect at the nonlinear level.

Proposition 3.2 (Talbot effect for nonlinear evolutions) Let p ∈ N, ε ∈ (0, 1) and qε

such that ε2
√
qε log qε < 1

2 ; in particular qε
ε→0−→ +∞.

Let u0 be such that û0 is a 2π−periodic, located modulo 2π only in a neighborhood
of zero of radius less than ηπ

p with 0 < η < 1 and having Fourier coefficients such

that ‖{αk}‖l2,s ≤ ε for some s > 1
2 . Let u(t, x) be the solution of (9) obtained in

Theorem 1.4 from {αk}. Then for all tp,q = 1
2π

p
q with 1 ≤ q ≤ qε odd and for all x at

distance larger than η
q from 1

q Z the function u(t, x) almost vanishes in the sense:

|u(tp,q , x)| ≤ ε. (46)

Moreover, the solution can concentrate near 1
q Z in the sense that there is a family

of sequences {αλ
k } with ‖{αλ

k }‖l2,s
λ→∞−→ 0 such that the corresponding solutions uλ

obtained in Theorem 1.4 satisfy

∣∣∣∣∣
uλ(tp,q , 0)

eitp,q�αλ
0δ0(0)

∣∣∣∣∣
λ→∞−→ ∞. (47)

3.1 Proof of Propositions 3.1–3.2

We start by recalling the Poisson summation formula
∑

k∈Z fk = ∑
k∈Z f̂ (2πk) for

the Dirac comb:

(∑
k∈Z

δk

)
(x) =

∑
k∈Z

δ(x − k) =
∑
k∈Z

ei2πkx ,
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as

̂δ(x − ·)(2πk) =
∫ ∞

−∞
e−i2πkyδ(x − y) dy = e−i2πkx .

The computation of the free evolution with periodic Dirac data is

eit�
(∑
k∈Z

δk

)
(x) =

∑
k∈Z

e−i t(2πk)2+i2πkx . (48)

For t = 1
2π

p
q we have (choosing M = 2π in formulas (37) combined with (42) from

[19])

eit�
(∑
k∈Z

δk

)
(x) = 1

q

∑
l∈Z

q−1∑
m=0

G(−p,m, q)δ

(
x − l − m

q

)
, (49)

which describes the linear Talbot effect in the periodic setting. Here G(−p,m, q)

stands for the Gauss sum

G(−p,m, q) =
q−1∑
l=0

e2π i
−pl2+ml

q .

Now we want to compute the free evolution of data u0 = ∑
k∈Z αkδk . As û0(ξ) =∑

k∈Z e−ikξ is 2π−periodic we have:

eit�u0(x) = 1

2π

∫ ∞

−∞
eixξ e−i tξ2 û0(ξ) dξ = 1

2π

∑
k∈Z

∫ 2π(k+1)

2πk
eixξ−i tξ2 û0(ξ) dξ

= 1

2π

∫ 2π

0
û0(ξ)

∑
k∈Z

eix(2πk+ξ)−i t(2πk+ξ)2 dξ

= 1

2π

∫ 2π

0
û0(ξ)e−i tξ2+i xξ

∑
k∈Z

e−i t (2πk)2+i2πk(x−2tξ) dξ.

Therefore, for tp,q = 1
2π

p
q we get using (48)–(49):

eitp,q�u0(x)

= 1

q

∫ 2π

0
û0(ξ)e−i tp,qξ2+i xξ

∑
l∈Z

q−1∑
m=0

G(−p,m, q)δ

(
x − 2tp,qξ − l − m

q

)
dξ.
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For q even G(−p,m, q) can be null. Therefore we consider q odd. In this case
G(−p,m, q) = √

qeiθm for some θm,p,q ∈ R so we get for tp,q = 1
2π

p
q

eitp,q�u0(x)

= 1√
q

∫ 2π

0
û0(ξ)e−i tp,qξ2+i xξ

∑
l∈Z

q−1∑
m=0

eiθm,p,q δ

(
x − 2tp,q ξ − l − m

q

)
dξ.

We note that for 0 ≤ ξ < 2π we have 0 ≤ 2tξ <
2p
q . For a given x ∈ R there exists

a unique lx ∈ Z and a unique 0 ≤ mx < q such that

x − lx − mx

q
∈ [0, 1

q
).

We denote

ξx := πq

p

(
x − lx − mx

q

)
= πq

p
d

(
x,

1

q
Z

)
∈ [0, π

p
).

In particular if û0 is located modulo 2π only in a neighborhood of zero of radius less
than π

p then

eitp,q�u0(x) = 1√
q
û0(ξx ) e

−i tp,q ξ2x +i x ξx+iθm,p,q ,

for some θx,p,q ∈ R. If moreover û0 is located modulo 2π only in a neighborhood of
zero of radius less than ηπ

p with 0 < η < 1, then the above expression vanishes for x

at distance larger than η
q from 1

q Z.
We are left with proving the concentration effect (45) of Proposition 3.1. We shall

construct a family of sequences {αλ
k } such that

∑
k∈Z αλ

k δk concentrates in the Fourier
variable near the integers. To this purpose we considerψ a real bounded function with
support in [− 1

2 ,
1
2 ] and ψ(0) = 1. We define

f λ(ξ) = λβψ(λξ),∀ξ ∈ [−π, π ],

with β ∈ R. Thus we can decompose

f λ(ξ) =
∑
k∈Z

αλ
k e

ikξ ,

and consider

uλ
0 =

∑
k∈Z

αλ
k δk .
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In particular, on [−π, π ], we have ûλ
0 = f λ. Given tp,q = 1

2π
p
q , for λ > p, the

restriction of ûλ
0 to [−π, π ] has support included in a neighborhood of zero of radius

less than ηπ
p for a η ∈]0, 1[. We then get by (44)

eitp,q�uλ
0(0) = 1√

q
ûλ
0(0) e

−i tp,q ξ2x +i x ξx+iθmx ,

so

|eitp,q�uλ
0(0)| = 1√

q
| f λ(0)| = 1√

q
λβψ(0) = 1√

q
λβ.

On the other hand, at tp,q = 1
2π

p
q we have

|eitp,q�αλ
0δ0(0)| =

√
4q

p
|αλ

0 | =
√
4q

p

1

2π

∣∣∣∣
∫ π

−π

f λ(ξ)dξ

∣∣∣∣ = C(ψ)

√
q

p
λβ−1

Therefore

∣∣∣∣∣
eitp,q�uλ

0(0)

eitp,q�αλ
0δ0(0)

∣∣∣∣∣ =
√
p

C(ψ)q
λ

λ→∞−→ ∞,

and the proof of Proposition 3.1 is complete.
Finally, for the first part of Proposition 3.2, as the sequence {αk} satisfies the con-

ditions of Theorem 1.4,

u(tp,q , x) =
∑
k∈Z

e∓i
|αk |2
4π log

√
tp,q (αk + Rk(tp,q))e

itp,q�δk(x),

so

∣∣∣∣∣u(tp,q , x) −
∑
k∈Z

eitp,q�αkδk(x)

∣∣∣∣∣

≤
∑
k∈Z

(1 − e∓i
|αk |2
4π log

√
tp,q )αke

itp,q�δk(x) +
∑
k∈Z

e∓i
|αk |2
4π log

√
tp,q Rk(tp,q )e

itp,q�δk(x).

FromProposition 3.1, if x is at distance larger than η
q from 1

q Z then eitp,q�
∑

k αkδk(x)
vanishes. Also, from (37) we can choose the radius δ of the fixed point argument for
{Rk} to be of type C‖{αk}‖3l2,s so we get

|u(tp,q , x)| ≤
∑
k∈Z

|1 − ei
∓|αk |2
4π log

√
tp,q ||αk | C√

tp,q
+ C‖{αk}‖3l2,s t

γ− 1
2

p,q .
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If q is such that ‖{αk}‖2l∞ log q < 1
2 then we obtain

|u(tp,q , x)| ≤ C
√
q log q

∑
k∈Z

|αk |3 + C

qγ− 1
2

‖{αk}‖3l2,s ,

and therefore (46) follows for C
√
q log q ε2 < 1.

For the last part of Proposition 3.2 we proceed as for the last part of Proposition
3.1, and we suppose also that ψ ∈ Hs(R) with s > 1

2 , and impose β < 1
2 − s. Then

the condition ψ ∈ Hs(R) insures us that {αλ
k } ∈ l2,s , and moreover ‖{αλ

k }‖l2,s =
C(ψ)λβ+s− 1

2
λ→+∞−→ 0. Therefore, for λ large enough, by using the same estimates as

above we obtain for 1
2 < γ < 1

|uλ(tp,q , 0) − eitp,q�uλ
0(0)| ≤ C

√
q log q‖{αλ

k }‖3l2,s + C

qγ− 1
2

‖{αλ
k }‖3l2,s

≤ C
√
q log qλ3β+3s− 3

2 ,

so ∣∣∣∣∣
uλ(tp,q , 0)

eitp,q�αλ
0δ0(0)

− eitp,q�uλ
0(0)

eitp,q�αλ
0δ0(0)

∣∣∣∣∣ ≤ C log qλ2β+3s− 1
2 .

By choosing β = 3
2 (

1
2 −s)− we have λ2β+3s− 1

2 � λ so in view of (45) the divergence
(47) follows.

4 Evolution of Polygonal Lines Through the Binormal Flow

In this section we prove Theorem 1.1.

4.1 Plan of the Proof

We consider equation (9) with initial data

u(0) =
∑
k∈Z

αkδk,

where the coefficients αk will be defined in §4.2 in a specific way involving geometric
quantities characterizing the polygonal line χ0. Then Theorem 1.4 gives us a solution
u(t, x) on t > 0. From this smooth solution on ]0,∞[ we construct in §4.3 a smooth
solution χ(t) of the binormal flow on ]0, ,∞[, that has a limit χ(0) at t = 0. Now the
goal is to prove that the curve χ(0) is the curve χ0 modulo a translation and a rotation.
This is done in several steps. First we show in §4.4 that the tangent vector has a limit at
t = 0. Secondlywe show in §4.5 thatχ(0) is a segment for x ∈]n, n+1[,∀n ∈ Z. Then
we prove in §4.7, by analyzing the frame of the curve through self-similar variables
paths, that at points x = k ∈ Z the curve χ(0) presents a corner of same angle as χ0.
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In §4.9 we recover the torsion of χ0 by using also a similar analysis for modulated
normal vectors in §4.8. Therefore we conclude in §4.10 that χ(0) and χ0 coincide
modulo a translation and a rotation. By considering the corresponding translated and
rotated χ(t) we obtain the desired binormal flow solution with limit χ0 at t = 0. The
extension to negative times is done by using time reversibility. Uniqueness holds in
the class of curves having filament functions of type (7). In §4.11 we describe some
properties of the binormal flow solution given by the Theorem 1.1.

4.2 Designing the Coefficients of the Dirac Masses in Geometric Terms

Let χ0(x) be a polygonal line paramatrized by archlength, having at least two con-
secutive corners, located at x = x0 and x = x1. We denote by {xn, n ∈ L} ⊂ R, the
locations of all its corners ordered incresingly: xn < xn+1. Here L stand for a finite or
infinite set of consecutive integers starting at n = 0. We can characterize such a curve
by the location of its corners {xn, n ∈ L} ⊂ R and by a triple sequence {θn, τn, δn}n∈L
where θn ∈]0, π [, τn ∈ [0, π ] and δn ∈ {−,+}, τ0 = 0, δ0 = +, in the following way.

Let us first denote by Tn ∈ S
2 the tangent vector of χ0(x) for x ∈]xn, xn+1[. For

n ∈ L we define θn ∈]0, π [ to be the (curvature) angle between Tn−1 and Tn . We note
that given only Tn−1 and θn we have a [0, 2π [-parameter of possibilities to choose Tn .
We define τ0 = 0, δ0 = + and for n > 0 we define a (torsion) angle τn ∈ [0, π ] at the
corner located at xn to be such that

cos(τn) = Tn−1 ∧ Tn
|Tn−1 ∧ Tn| .

Tn ∧ Tn+1

|Tn ∧ Tn+1| . (50)

We note now that given only Tn−1, Tn , θn and τn we have two possibilities to choose
Tn+1. Indeed, Tn+1 is determined by the position of Tn ∧Tn+1 in the plane�n orthog-
onal to Tn , given by the oriented frame Tn−1 ∧ Tn and Tn ∧ (Tn−1 ∧ Tn). Therefore
we have two possibilities by orienting it with respect to Tn−1 ∧ Tn : by τn or by −τn .
We define δn = + if (Tn−1 ∧ Tn) ∧ (Tn ∧ Tn+1) points in the same direction as Tn ,
and δn = − if it points out in the opposite direction. For n < 0 we define similarly
(torsion) angles τn ∈ [0, π [ at the corner located at xn .

Conversely, given L a set of consecutive integers containing 0 and 1, given an
increasing sequence {xn, n ∈ L} ⊂ R, and given a triple sequence {θn, τn, δn}n∈L
where θn ∈]0, π [, τn ∈ [0, π ] and δn ∈ {−,+}, such that τ0 = 0, δ0 = + , we can
determine a polygonal line χ0, unique up to rotations and translation, in the following
way. We construct first the tangent vectors, then χ0 is obtained by setting χ ′

0(x) = Tn
on x ∈]xn, xn+1[. We pick a unit vector and denote it T−1. Then we pick a unit vector
having an angle θ0 with T−1, and we call it T0. Then we consider all unit vectors
v having an angle θ1 with T0. Among them, we choose the two of them such that
T0 ∧ v, that lives in the plane �0 orthogonal to T0, have an angle τ1 with T−1 ∧ T0.
Eventually, we choose T1 to be the one of the two such that if δ0 = + the vector
(T−1 ∧ T0) ∧ (T0 ∧ v) points in the same direction as T0, and such that if δ0 = + the
vector (T−1 ∧ T0) ∧ (T0 ∧ v) points in the opposite direction of T0. We iterate this
process to construct χ0(x) on x > x0, and similarly to construct χ0(x) on x < x0.

123



6 Page 30 of 53 V. Banica, L. Vega

Given χ0 the polygonal line of the statement, we define {xn, n ∈ L} the ordered set
of its integer corner locations and the corresponding sequence {θn, τn, δn}n∈L where
θn ∈]0, π [, τn ∈ [0, π ] and δn ∈ {−,+}, τ0 = 0, δ0 = +. Then we define αk = 0
if k /∈ {xn, n ∈ L} and if k = xn for some n ∈ L we define αk ∈ C in the following
way. First we set

|αk | =
√

− 2

π
log

(
sin

(
θn

2

))
. (51)

Then we set Arg(αx0) = 0 and we define Arg(αk) ∈ [0, 2π) to be determined by

{
cos(τn) = − cos(φ|αxn | − φ|αxn+1 | + βn + Arg(αxn ) − Arg(αxn+1)),

δn = −sgn(sin(φ|αxn | − φ|αxn+1 | + βn + Arg(αxn ) − Arg(αxn+1))),
(52)

where {φ|αxn |} are defined in Lemma 4.8 and depend only on |αxn |, and

βn = (|αxn |2 − |αxn+1 |2) log |xn − xn+1|.

We consider the solution u(t, x) given by Theorem (1.4) for the sequence
√
4π iαk

and 1
2 < γ < 1, that solves

i∂t u + �u + 1
2

(|u|2 − 2M
t

)
u = 0, (53)

with M = ∑
k∈Z |αk |2, and can be written as

u(t, x) =
∑
k∈Z

e−i |αk |2 log
√
t (αk + Rk(t))

ei
|x−k|2

4t√
t

, (54)

with

sup
0<t<T

t−γ ‖{Rk(t)}‖l2,s + t ‖{∂t Rk(t)}‖l2,s < C .

4.3 Construction of a Solution of the Binormal Flow for t > 0

Given an orthonormal basis (v1, v2, v3) of R
3, a point P ∈ R

3 and a time t0 > 0 we
construct a frame at all points x ∈ R and times t > 0 by imposing3 (T , e1, e2)(t0, 0) =
3 Actually we should work in the definition of the evolution in time and in space laws for the frame

with v(t, x) = eiM log
√
t u(t, x) instead of u(t, x). Indeed, this construction leads, by identifying Ttx =

Txt , e1t x = e1xt , e2t x = e2xt to the NLS equation (53) with nonlinearity 1
2

(
|v|2 − M

t

)
v. However,

for simplicity of the presentation we shall use u(t, x) as the space-independent change of phase does not
change the BF constructed curve. Indeed, it is easy to see that if (T , N ) is constructed by (55)–(58), then
(T , e−iφ(t)N ) is constructed by the same evolution laws with v(t, x) = eiφ(t)u(t, x) instead of u(t, x) and
so the constructed tangent vector is the same.
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(v1, v2, v3),

⎛
⎝

T
e1
e2

⎞
⎠

t

(t, x) =
⎛
⎜⎝

0 −�ux �ux
�ux 0 −|u|2

2 + M
2t

−�ux
|u|2
2 − M

2t 0

⎞
⎟⎠
⎛
⎝

T
e1
e2

⎞
⎠ (t, x),

and
⎛
⎝

T
e1
e2

⎞
⎠

x

(t, x) =
⎛
⎝

0 �u �u
−�u 0 0
−�u 0 0

⎞
⎠
⎛
⎝

T
e1
e2

⎞
⎠ (t, x).

We can already notice that T (t, x) satisfies the Schrödinger map:

Tt = T ∧ Txx .

We define now for all points x ∈ R and times t > 0:

χ(t, x) = P +
∫ t0

t
(T ∧ Tx )(τ, 0)dτ +

∫ x

0
T (t, s)ds.

As T (t, x) satisfies the Schrödinger map we have Tt = (T ∧ Tx )x , so we can easily
compute that χ(t, x) satisfies the binormal flow:

χt = T ∧ Tx = χx ∧ χxx .

We note that there are two degrees of freedom in this construction— the choice of the
orthonormal basis (v1, v2, v3) of R

3 and the choice of the point P ∈ R
3. Changing

these parameters is equivalent to rotate and translate respectively the solution χ(t).
The resulting evolution of curves is still a solution of the binormal flow, with the same
laws of evolution in time and space for the frame.

We introduce now the complex valued normal vector

N (t, x) = e1(t, x) + ie2(t, x).

With this vector we can write in a simpler way the laws of evolution in time and space
for the frame, that will be useful in the rest of the proof:

Tx = �u e1 + �u e2 = �(u N ), (55)

Nx = e1x + ie2x = −�u T − i�u T = −u T , (56)

Tt = −�ux e1 + �ux e2 = �(ux N ), (57)

Nt = �ux T +
(

−|u|2
2

+ M

2t

)
e2 − i�ux T + i

( |u|2
2

− M

2t

)
e1

= −iux T + i

( |u|2
2

− M

2t

)
N , (58)
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χt = T ∧ Tx = T ∧ �(u N ) = �(u N ). (59)

In particular from (54) and (59) we have for 0 < t1 < t2 < 1:

|χ(t2, x) − χ(t1, x)| =
∣∣∣∣
∫ t2

t1
χt (t, x)dt

∣∣∣∣ ≤
∫ t2

t1
|u(t, x)|dt

≤
∫ t2

t1

∑
j

|α j + R j (t)| dt√
t

≤ C
√
t2(‖{α j }‖l1 + ‖{R j }‖L∞(0,1)l1).

This implies the existence of a limit curve at t = 0 for all x ∈ R:

∃ lim
t→0

χ(t, x) =: χ(0, x).

Moreover, χ(0) is a continuous curve.

4.4 Existence of a Trace at t = 0 for the Tangent Vector

For further purposes we shall need to show that the tangent vector T (t, x) has a limit
T (0, x) at t = 0, and moreover we shall need to get a convergence decay of selfsimilar

type
√
t

d(x,Z)
for x close to Z. This is insured by the following lemma.

Lemma 4.1 Let 0 < t1 < t2 < 1. If x ∈ R\ 1
2Z then

|T (t2, x) − T (t1, x)| ≤ C(1 + |x |)√t2

(
1

d(x, 1
2Z)

+ 1

d(x, Z)

)
, (60)

while if x ∈ 1
2Z then

|T (t2, x) − T (t1, x)| ≤ C(1 + |x |)√t2. (61)

In particular for any x ∈ R there exists a trace for the tangent vector at t = 0:

∃ lim
t→0

T (t, x) =: T (0, x). (62)

Proof In view of (57) and (54) we have

T (t2, x) − T (t1, x)

=
∫ t2

t1
�(ux N (t, x)) dt

= �
∫ t2

t1

∑
j

ei |α j |2 log
√
t (α j + R j (t))

e−i (x− j)2

4t√
t

(−i)
(x − j)

2t
N (t, x) dt .
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In case j = x the integrant vanishes so we get the left-hand-side of (61) null.
For j �= x we perform an integration by parts that exploits the oscillatory phase to

get integrability in time:

T (t2, x) − T (t1, x)

=
⎡
⎣�

∑
j �=x

ei |α j |2 log
√
t (α j + R j (t))

e−i (x− j)2

4t√
t

(−i)
4t2

(x − j)2
(−i)

(x − j)

2t
N (t, x)

⎤
⎦
t2

t1

+ 2�
∫ t2

t1

∑
j �=x

e−i (x− j)2

4t

x − j
(
√
t ei |α j |2 log

√
t (α j + R j (t))N (t, x))t dt

=: I0 + I1 + I2 + I3 + I4,

wherewe have denoted by I0 the boundary term and by I1, I2, I3, I4 the terms obtained
after the differentiation in time of the quadruple product in the integral part. We
consider first the boundary term

|I0| ≤ C
√
t2
∑
j �=x

|α j + R j (t2)| 1

|x − j | + C
√
t1
∑
j �=x

|α j + R j (t1)| 1

|x − j | .

If x ∈ Z then we have

|I0| ≤ C
√
t2(‖{α j }‖l1 + ‖{R j }‖L∞(0,t2)l1),

while if x /∈ Z

|I0| ≤ C

√
t2

d(x, Z)
(‖{α j }‖l1 + ‖{R j }‖L∞(0,t2)l1).

Therefore the contribution of I0 fits with the estimates in the statement of the Lemma.
The terms I1 and I2 can be treated the same, as

∫ t2
t1

(
√
te−i |αk |2 log

√
t )t dt ≤ C

√
t2. Also

the term I3 can be treated similarly, as |∂t R j (t))| ≤ C
t on (0, 1). We are left with the I4

term, which contains in view of (58) the expression Nt = −iux T + i
( |u|2

2 − M
2t

)
N :

I4 = 2�
∫ t2

t1

∑
j �=x

e−i (x− j)2

4t

x − j

√
t ei |α j |2 log

√
t (α j + R j (t))

×
⎛
⎝−i

∑
k

e−i |αk |2 log
√
t (αk + Rk(t))

ei
(x−k)2

4t√
t

i
(x − k)

2t
T (t, x)

+i

⎛
⎝
∑

r ,r̃ e
−i(|αr |2−|αr̃ |2) log

√
t (αr + Rr (t))(αr̃ + Rr̃ (t))e

i (x−r)2−(x−r̃)2
4t

2t
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−M

2t

)
N (t, x)

)
dt .

We notice that the second term can be upper-bounded as I0. We are thus left with the
first term:

I4,1 = �
∫ t2

t1

∑
j,k �=x

e−i ( j−k)( j+k−2x)
4t

x − k

x − j
ei(|α j |2−|αk |2) log

√
t (α j + R j (t))(αk

+Rk(t))T (t, x)
dt

t
,

for which we still have an obstruction for the integrability in time. The terms in the
sum for which j = k have null contribution as they are real numbers. Also, in case
2x ∈ Z, the terms in the sum for which j + k − 2x = 0 give

−�
∫ t2

t1

∑
k �=x

ei(|α−k+2x |2−|αk |2) log
√
t (α−k+2x + R−k+2x (t))(αk + Rk(t))T (t, x)

dt

t

= −�
∫ t2

t1

∑
j �=x

ei(|α j |2−|α− j+2x |2) log
√
t (α j + R j (t))(α− j+2x + R− j+2x (t))T (t, x)

dt

t

= �
∫ t2

t1

∑
j �=x

ei(−|α j |2+|α− j+2x |2) log
√
t (α j + R j (t))(α− j+2x + R− j+2x (t))T (t, x)

dt

t

= �
∫ t2

t1

∑
k �=x

ei(|α−k+2x |2−|αk |2) log
√
t (α−k+2x + R−k+2x (t))(αk + Rk(t))T (t, x)

dt

t
,

so their contribution is null.
Therefore we have, for all x ∈ R,

I4,1 = �
∫ t2

t1

∑
j,k �=x; j �=k; j+k �=2x

e−i ( j−k)( j+k−2x)
4t

x − k

x − j

× ei(|α j |2−|αk |2) log
√
t (α j + R j (t))(αk + Rk(t))T (t, x)

dt

t
.

We perform an integration by parts:

I4,1 = �
⎡
⎣ ∑

j,k �=x; j �=k; j+k �=2x

e−i ( j−k)( j+k−2x)
4t

(−i)4t2

( j − k)( j + k − 2x)

x − k

x − j

× ei(|α j |2−|αk |2) log
√
t (α j + R j (t))(αk + Rk(t))

T (t, x)

t

]t2
t1

+ 4�
∫ t2

t1

∑
j,k �=x; j �=k; j+k �=2x

e−i ( j−k)( j+k−2x)
4t

i

( j − k)( j + k − 2x)

x − k

x − j
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× (tei(|α j |2−|αk |2) log
√
t (α j + R j (t))(αk + Rk(t))T (t, x))t dt

=: I 04,1 + I 14,1 + I 24,1 + I 34,1 + I 44,1 + I 54,1,

where I 04,1 stands for the boundary term and I 14,1, I
2
4,1, I

3
4,1, I

4
4,1 and I 54,1 are the terms

after differentiating in time the quintuple product in the integral. For the boundary
term we have

|I 04,1| ≤ 4t2
∑

j,k �=x; j �=k; j+k �=2x

|x − k|
| j − k|| j + k − 2x ||x − j | |α j + R j (t2)||αk + Rk(t2)|

+ 4t1
∑

j,k �=x; j �=k; j+k �=2x

|x − k|
| j − k|| j + k − 2x ||x − j | |α j + R j (t1)||αk + Rk(t1)|.

As for j �= k

|x − k|
| j − k|| j + k − 2x ||x − j |
≤ |x − j | + | j + k − 2x |

| j − k|| j + k − 2x ||x − j | ≤ 1

| j + k − 2x | + 1

|x − j | , (63)

we have for x ∈ 1
2Z

|I 04,1| ≤ Ct2(‖{α j }‖l1 + ‖{R j }‖L∞(0,t2)l1)
2.

while for x /∈ 1
2Z we obtain

|I 04,1| ≤ Ct2

(
1

d(x, 1
2Z)

+ 1

d(x, Z)

)
(‖{α j }‖l1 + ‖{R j }‖L∞(0,t2)l1)

2.

The terms I 14,1, I
2
4,1, I

3
4,1 and I 44,1 can be upper-bounded as I

0
4,1 by using moreover for

I 34,1 and I 44,1 the bound ∂t R j (t)) ≤ C
t on (0, 1). The last term I 54,1 involves, in view

of (57),

Tt (t, x) = �(ux N )(t, x)

= �
∑
r

ei |αr |2 log
√
t (αr + Rr (t))

e−i (x−r)2
4t√
t

(−i)
(x − r)

2t
N (t, x)

so

I 54,1 = −1

2
�
∫ t2

t1

∑
j,k �=x; j �=k; j+k �=2x

e−i ( j−k)( j+k−2x)
4t

i

( j − k)( j + k − 2x)

x − k

x − j

×ei(|α j |2−|αk |2) log
√
t (α j + R j (t))(αk
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+Rk(t))�
∑
r

ei |αr |2 log
√
t (αr + Rr (t))e

−i (x−r)2
4t (x − r)N (t, x)

dt√
t
,

and in particular

|I 54,1| ≤ C
∫ t2

t1

∑
j,k �=x; j �=k; j+k �=2x

|x − k|
| j − k|| j + k − 2x ||x − j |

×|α j + R j (t)||αk + Rk(t)|
∑
r

|αr + Rr (t)||x − r | dt√
t
.

We can write

∑
r

|αr + Rr (t)||x − r | ≤ C(1 + |x |)(‖{α j }‖
l2,

3
2

+ + ‖{R j }‖
L∞(0,t2)l

2, 32
+ ),

so by using (63) we get for x ∈ 1
2Z:

|I 54,1| ≤ C(1 + |x |)√t2(‖{α j }‖l1
+‖{R j }‖L∞(0,t2)l1)

2(‖{α j }‖
l2,

3
2

+ + ‖{R j }‖
L∞(0,t2)l

2, 32
+ ),

while for x /∈ 1
2Z we obtain:

|I 54,1| ≤ C
√
t2(1 + |x |)

(
1

d(x, 1
2Z)

+ 1

d(x, Z)

)

×(‖{α j }‖l1 + ‖{R j }‖L∞(0,t2)l1)
2(‖{α j }‖

l2,
3
2

+ + ‖{R j }‖
L∞(0,t2)l

2, 32
+ ).

Therefore the proof of the Lemma is completed. ��

4.5 Segments of the Limit Curve at t = 0

Lemma 4.2 Let n ∈ Z and x1, x2 ∈ (n, n + 1). Then

T (0, x1) = T (0, x2).

In particular, we recover that χ(0) is a polygonal line, and might have corners only
at integer locations.

Proof From Lemma 4.1 we have

T (0, x1) − T (0, x2) = lim
t→0

(T (t, x1) − T (t, x2)). (64)
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In view of (55) we compute

T (t, x1) − T (t, x2) =
∫ x2

x1
�(uN (t, x)) dx

= �
∫ x2

x1

∑
j

ei |α j |2 log
√
t (α j + R j (t))

e−i (x− j)2

4t√
t

N (t, x) dx .

In this case the integral is well defined, but we need decay in time. For this purpose
we perform an integration by parts, that is allowed on (x1, x2) ⊂ (n, n + 1):

T (t, x1) − T (t, x2) =
⎡
⎣�

∑
j

ei |α j |2 log
√
t (α j + R j (t))

e−i (x− j)2

4t√
t

i
2t

x − j
N (t, x)

⎤
⎦
x2

x1

+2
√
t�
∫ x2

x1

∑
j

ei |α j |2 log
√
t (α j + R j (t))e

−i (x− j)2

4t

(
1

x − j
N (t, x)

)

x
dx

= O(
√
t) + 2

√
t�
∫ x2

x1

∑
j

ei |α j |2 log
√
t (α j + R j (t))e

−i (x− j)2

4t
1

x − j
Nx (t, x) dx .

As by (56) we have Nx = −uT ,

T (t, x1) − T (t, x2) = O(
√
t)

−2�
∑
j,k

ei(|α j |2−|αk |2) log
√
t (α j + R j (t))(αk + Rk(t))

∫ x2

x1

e−i (x− j)2−(x−k)2

4t

x − j
T (t, x) dx .

The summation holds only for j �= k, as for j = k the contribution is null. Moreover,
from (11) we have ‖{R j (t)}‖l1 = O(tγ ), γ > 1/2, so

T (t, x1) − T (t, x2)

= O(
√
t) − 2�

∑
j �=k

ei(|α j |2−|αk |2) log
√
tα jαke

i j2−k2

4t

∫ x2

x1

ei
( j−k)x

2t

x − j
T (t, x) dx .

To get decay in time we need to perform again an integration by parts:

T (t, x1) − T (t, x2) = O(
√
t)

−
⎡
⎣2�

∑
j �=k

ei(|α j |2−|αk |2) log
√
tα jαke

i j2−k2

4t
ei

( j−k)x
2t

x − j

2t

i( j − k)
T (t, x)

⎤
⎦
x2

x1
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+ 4t �
∑
j �=k

ei(|α j |2−|αk |2) log
√
tα jαk

ei
j2−k2

4t

j − k

∫ x2

x1
ei

( j−k)x
2t

(
1

x − j
T (t, x)

)

x
dx

= O(
√
t) + 4t �

∑
j �=k

ei(|α j |2−|αk |2) log
√
tα jαk

ei
j2−k2

4t

j−k

∫ x2

x1
ei

( j−k)x
2t

1

x − j
Tx (t, x) dx .

From (55) we have Tx = �(u N ) so finally

T (t, x1) − T (t, x2) = O(
√
t) + 4t �

∑
j �=k

ei(|α j |2−|αk |2) log
√
tα jαk

ei
j2−k2

4t

j − k

×
∫ x2

x1

ei
( j−k)x

2t

x − j
�
⎛
⎝∑

r

ei |αr |2 log
√
t (αr + Rr (t))

e−i (x−r)2
4t√
t

N (t, x)

⎞
⎠ dx = O(

√
t).

Therefore in view of (64) we have indeed

T (0, x1) − T (0, x2) = 0.

��

4.6 Recovering Self-Similar Structures Through Self-Similar Paths

In this subsection we shall use the results in [25] that characterize all the selfsimilar
solutions of BF and give their corresponding asymptotics (see Theorem 1 in [25]).

Let us denote by A±
|αk | ∈ S

2 the directions of the corner generated at time t = 0 by

the canonical self-similar solution χ|αk |(t, x) of the binormal flow of curvature |αk |√
t
:

A±
|αk | := ∂xχ|αk |(0, 0±).

We recall also that the frame of the profile (i.e. χ|αk |(1)) satisfies the system
⎧⎨
⎩

∂x T|αk |(1, x) = �(|αk |e−i x
2
4 N|αk |(1, x)),

∂x N|αk |(1, x) = −|αk |ei x
2
4 T|αk |(1, x),

(65)

and that for x → ±∞ there exist B±
|αk | ⊥ A±

|αk |, with �(B±
|αk |),�(B±

|αk |) ∈ S
2, such

that

T|αk | (1, x) = A±
|αk | + O

(
1

x

)
, ei |αk |2 log |x |N|αk | (1, x)

= B±
|αk | + O

(
1

|x |
)

. (66)
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Lemma 4.3 Let tn be a sequence of positive times converging to zero. Up to a subse-
quence, there exists for all x ∈ R a limit

(T∗(x), N∗(x)) = lim
n→∞ (T (tn, k + x

√
tn), e

i |αk |2 log√
tn N (tn, k + x

√
tn)),

and there exists a unique rotation �k such that

⎧⎨
⎩
T∗(x) = �k(T|αk |(x)),
�(ei Argαk N∗(x)) = �k(�(N|αk |(x))),
�(ei Argαk N∗(x)) = �k(�(N|αk |(x))).

(67)

Moreover, for x → ±∞

T∗ (x) = �k

(
A±

|αk |
)

+ O
(

1

|x |
)

,

ei |αk |2 log |x |ei Arg(αk )N∗ (x) = �k

(
B±

|αk |
)

+ O
(

1

|x |
)

. (68)

Proof Let tn be a sequence of positive times converging to zero. We introduce for
x ∈ R the functions

(Tn(x), Nn(x)) = (T (tn, k + x
√
tn), e

i |αk |2 log√
tn N (tn, k + x

√
tn)).

This sequence is uniformly bounded. In view of (55) and (56) we have

T ′
n(x) = √

tn�(uN )(tn, k + x
√
tn)

= �
⎛
⎝∑

j

ei |α j |2 log√
tn (α j + R j (tn))e

−i (k+x
√
tn− j)2

4tn N (tn, k + x
√
tn)

⎞
⎠ ,

and

N ′
n(x) = −ei |αk |2 log

√
tn
√
tn(uT )(tn, k + x

√
tn)

= −
∑
j

ei(|αk |2−|α j |2) log√
tn (α j + R j (tn))e

i (k+x
√
tn− j)2

4tn T (tn, k + x
√
tn).

Therefore the sequence (T ′
n(x), N

′
n(x)) is also uniformly bounded. These two facts

give via Arzela–Ascoli’s theorem the existence of a limit in n (of a subsequence, that
we denote again (Tn(x), Nn(x))):

∃ lim
n→∞ (Tn(x), Nn(x)) =: (T∗(x), N∗(x)).
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Moreover, as ‖{R j (tn)}‖l1 = o(n) we can write

T ′
n(x) = �

⎛
⎝∑

j

ei |α j |2 log√
tnα j e

−i (k+x
√
tn− j)2

4tn N (tn, k + x
√
tn)

⎞
⎠+ o(n)Nn(x)

= �(αke
−i x

2
4 Nn(x)) + �( fn(x)Nn(x)) + o(n)Nn(x),

where

fn(x) =
∑
j �=k

ei(|α j |2−|αk |2) log√
tnα j e

−i x
2
4 +i x j−k

2
√
tn

−i (k− j)2

4tn .

For a test function ψ ∈ C∞
c (R) we have by integrating by parts, avoiding in case a

region os size o(n) around x = 0,

〈 fn(x), ψ(x)〉 =
∫ ∑

j �=k

ei(|α j |2−|αk |2) log√
tnα j e

−i x
2
4 +i x j−k

2
√
tn

−i (k− j)2

4tn ψ(x) dx

= −
∫ ∑

j �=k

ei(|α j |2−|αk |2) log√
tnα j2

√
tn
e
ix j−k

2
√
tn

−i (k− j)2

4tn

i( j − k)

(e−i x
2
4 ψ(x))x dx = C(ψ)o(n).

Similarly we obtain

N ′
n(x) = −αke

i x
2
4 Tn(x) + gn(x)Tn(x) + o(n)Tn(x),

with gn = o(n) in the weak sense. Therefore (T∗(x), ei Arg(αk )N∗(x)) satisfies system
(65) in the weak sense. As the coefficients involved in the ODE are analytic we
conclude that (T∗(x), ei Arg(αk )N∗(x)) satisfies system (65) in the strong sense, as
(T|αk |(x), N|αk |(x)) does. Therefore there exists a unique rotation �k such that (67)
holds. We obtain (68) as a consequence of (66). ��

4.7 Recovering the Curvature Angles of the Initial Data

Lemma 4.4 Let k ∈ Z. Then, with the notations of the previous subsection,

T (0, k±) = �k(A
±
|αk |).

In particular, in view of (3) and (51) we recover that χ(0) is a polygonal line with
corners at the same locations as χ0, and of same angles.4

4 This also implies that the rotation �k does not depend on the choice of the sequence tn .
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Proof Let ε > 0. In view of (68) we first choose x > 0 large enough such that

|T∗(x) − �k(A
+
|αk ||) ≤ ε

3
,

and that C(1+|k|)
x ≤ ε

3 , where C is the coefficient in (60). Then we choose n large
enough such that |x√tn| < 1

2 and that |T (tn, k + x
√
tn) − T∗(x)| ≤ ε

3 . The last fact
is possible in view of Lemma 4.3. Finally, we have, in view of Lemma 4.2 and (60):

|T (0, k+) − �k(A
+
|αk |)| = |T (0, k + x

√
tn) − �k(A

+
|αk |)|

≤ |T (0, k + x
√
tn) − T (tn, k + x

√
tn)| + |T (tn, k + x

√
tn) − T∗(x)|

+|T∗(x) − �k(A
+
|αk |)| ≤ ε,

so

T (0, k+) = �k(A
+
|αk |).

Similarly we show by taking x < 0 that

T (0, k−) = �k(A
−
|αk |).

��

The lemma insures us that χ(0) has corners at the same locations as χ0, and of same
angles. To recover χ0 up to rotation and translations we need to recover also the torsion
properties of χ0.

4.8 Trace and Properties of Modulated Normal Vectors

In order to recover the torsion angles we shall need to get informations about N (t, x)
as t goes to zero. For x /∈ Z we denote the modulated normal vector

Ñ (t, x) = ei�(t,x)N (t, x), (69)

where

�(t, x) =
∑
j

|α j |2 log |x − j |√
t

. (70)

We start with a lemma insuring the existence of a limit for Ñ (t, x) at t = 0, with a

convergence decay of selfsimilar type
√
t

d(x,Z)
for x close to Z.
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Lemma 4.5 Let 0 < t1 < t2 < 1. For x /∈ 1
2Z we have

|Ñ (t2, x) − Ñ (t1, x)| ≤ C(1 + |x |)√t2

(
1

d(x, 1
2Z)

+ 1

d(x, Z)

)
, (71)

while if x ∈ 1
2Z\Z then

|Ñ (t2, x) − Ñ (t1, x)| ≤ C(1 + |x |)√t2. (72)

In particular for any x /∈ Z there exists a trace for the modulated normal vector at
t = 0:

∃ lim
t→0

Ñ (t, x) =: Ñ (0, x).

Moreover for any x ∈ Z there exists a trace

∃ lim
t→0

e
i
∑

j �=x |α j |2 log |x− j |√
t N (t, x), (73)

with a rate of convergence upper-bounded by C(1 + |x |)√t .

Proof In view of (58) and (54) we have

Ñ (t2, x) − Ñ (t1, x) =
∫ t2

t1

(
−iux T + i

( |u|2
2

− M

2t

)
N + i�t N

)
ei�dt

=
∫ t2

t1

⎛
⎝−i

∑
j

e−i |α j |2 log
√
t (α j + R j (t))

ei
(x− j)2

4t√
t

i
(x − j)

2t
T (t, x)

+i
∑
j �=k

e−i(|α j |2−|αk |2) log
√
t (α j

+R j (t))(αk + Rk(t))
ei

(x− j)2−(x−k)2

4t

2t
N (t, x) + i�t N (t, x)

⎞
⎠ ei�dt .

We can integrate by parts in the first term to get

Ñ (t2, x) − Ñ (t1, x)

=
⎡
⎣∑

j �=x

e−i |α j |2 log
√
t (α j + R j (t))

ei
(x− j)2

4t√
t

(
− 4t2

i(x − j)2

)
(x − j)

2t
T (t, x)

⎤
⎦
t2

t1

−2i
∫ t2

t1

∑
j �=x

ei
(x− j)2

4t

x − j
(
√
te−i |α j |2 log

√
t (α j + R j (t))T (t, x)ei�)t dt
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+i
∫ t2

t1

⎛
⎝ ∑

j �=x,k

e−i(|α j |2−|αk |2) log
√
t (α j + R j (t))(αk + Rk(t))

ei
(x− j)2−(x−k)2

4t

2t
N (t, x)

+�t N (t, x)) ei�dt .

Having in mind the expression (57) for Tt we obtain

Ñ (t2, x) − Ñ (t1, x) = O

( √
t2

d (x, Z)

)

−2i
∫ t2

t1

∑
j �=x

ei
(x− j)2

4t

x − j

√
te−i |α j |2 log

√
t (α j + R j (t)

)

×�
⎛
⎝∑

k

ei |αk |2 log
√
t (αk + Rk (t)

) e−i (x−k)2

4t√
t

(
−i

x − k

2t

)
N (t, x) ei�dt

+i
∫ t2

t1

⎛
⎝ ∑

j �=x,k

e−i
(|α j |2−|αk |2

)
log

√
t (α j

+R j (t)
) (

αk + Rk (t)
) ei (x− j)2−(x−k)2

4t

2t
N (t, x) + �t N (t, x)

⎞
⎠ ei�dt .

The integrals are in 1
t . By writing �(−i z) = − z+z

2 in the first integral, we have terms

ei
(x− j)2−(x−k)2

4t or ei
(x− j)2+(x−k)2

4t , both oscillant except for the first one, in case j = k or
2x = j + k. For x /∈ 1

2Z we perform integrations by parts in all terms, except in case
j = k for the first integral, that allow for a gain of t2 minus at worse terms involving
Nt that are in 1

t
√
t
:

Ñ (t2, x) − Ñ (t1, x) = O

(
(1 + |x |)√

t2

(
1

d
(
x, 1

2Z
) + 1

d (x, Z)

))

+i
∫ t2

t1

∑
j

|α j + R j (t) |2
2t

Nei� + �t N (t, x) ei�dt .

In view of the decay of {R j (t)} and the expression (70) of the phase � we obtain (71).
We are left with the case x ∈ 1

2Z. The computations goes as above, with some extra
non-oscillant terms that actually calcel:

Ñ (t2, x) − Ñ (t1, x) = O((1 + |x |)√t2

+i
∫ t2

t1

∑
j �=x,k; j+k=2x

e−i(|α j |2−|αk |2) log
√
t (α j + R j (t))(αk + Rk(t))

x − k

x − j

N (t, x)

2t
ei�dt
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+i
∫ t2

t1

∑
j �=x,k; j+k=2x

e−i(|α j |2−|αk |2) log
√
t (α j + R j (t))(αk + Rk(t))

N (t, x)

2t
ei�dt .

+i
∫ t2

t1

∑
j �=x

|α j + R j (t)|2
2t

Nei� + �t N (t, x)ei�dt = O((1 + |x |)√t2.

��
Next we shall prove that Ñ (0, x) is piecewise constant.

Lemma 4.6 Let n ∈ Z and x1, x2 ∈ (n, n + 1). Then

Ñ (0, x1) = Ñ (0, x2).

Moreover, the same statement remains valid for x1, x2 ∈ (n − 1, n + 1) if αn = 0.

Proof From Lemma 4.5 we have

Ñ (0, x1) − Ñ (0, x2) = lim
t→0

(Ñ (t, x1) − Ñ (t, x2)). (74)

In view of (56) we compute

Ñ (t, x1) − Ñ (t, x2) =
∫ x2

x1
(−uT (t, x) + i�x N (t, x)) ei� dx

=
∫ x2

x1

⎛
⎝−

∑
j

e−i |α j |2 log
√
t (α j + R j (t)

) ei (x− j)2

4t√
t

T (t, x) + i�x N (t, x)

⎞
⎠ ei� dx .

The integral is well defined, and In view of the decay of {R j (t)} we have

Ñ (t, x1) − Ñ (t, x2)

= O
(√

t
)

+
∫ x2

x1

⎛
⎝−

∑
j

e−i |α j |2 log
√
tα j

ei
(x− j)2

4t√
t

T (t, x) + i�x N (t, x)

⎞
⎠ ei� dx .

If we are in the case x1, x2 ∈ (n − 1, n + 1) and αn = 0, the phase x − j can vanish
on (x1, x2) only for j = n but in this case the whole term vanishes as αn = 0. In the
case (x1, x2) ∈ (n, n + 1) the phase x − j �= 0 cannot vanish on (x1, x2). Therefore
to get decay in time we integrate by parts:

Ñ (t, x1) − Ñ (t, x2) = O(
√
t) +

⎡
⎣−

∑
j

e−i |α j |2 log
√
tα j

ei
(x− j)2

4t√
t

4t

2i(x − j)
T (t, x)ei�

⎤
⎦
t2

t1

+
∫ x2

x1

∑
j

e−i |α j |2 log
√
tα j

2
√
t

i
ei

(x− j)2

4t

(
1

x − j
T (t, x)ei�

)

x
+ i�x N (t, x)ei� dx .
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In view of formula (55) for the derivative Tx and the expression (70) of�(t, x)we get

Ñ (t, x1) − Ñ (t, x2) = O
(√

t
)

+i
∫ x2

x1

⎛
⎝−2

∑
j

e−i |α j |2 log
√
tα j e

i (x− j)2

4t
1

x − j
�
⎛
⎝∑

j

ei |αk |2 log
√
tαke

−i (x−k)2

4t N (t, x)

⎞
⎠

+�x N (t, x)) ei� dx

= O
(√

t
)

+ i
∫ x2

x1

⎛
⎝−

∑
j,k

e−i
(|α j |2−|αk |2

)
log

√
tα jαke

i (x− j)2−(x−k)2

4t
1

x − j
N (t, x)

+�x N (t, x)) ei� dx

−i
∫ x2

x1

∑
j,k

e−i
(|α j |2+|αk |2

)
log

√
tα jαke

i (x− j)2+(x−k)2

4t
1

x − j
N (t, x)ei� dx .

In the first integral the terms with j = k cancel with the ones from �x . In the second
integral the phase (x − j)2 + (x − k)2 does not vanish as (x1, x2) does not contain
integers, so we can integrate by parts, use the expression (56) for Nx and gain a

√
t

decay in time. We are left with

Ñ (t, x1) − Ñ (t, x2) = O(
√
t)

−i
∫ x2

x1

∑
j �=k

e−i(|α j |2−|αk |2) log
√
tα jαke

i (x− j)2−(x−k)2

4t
1

x − j
N (t, x)ei� dx .

If n ± 1
2 /∈ (x1, x2) the phase (x − j)2 − (x − k)2 does not vanish, so again we can

perform an integration by parts to get the decay in time. If n+ 1
2 ∈ (x1, x2) ⊂ (n, n+1)

we split the integral into three pieces: (x1, n+ 1
2 −√

t), (n+ 1
2 −√

t, n+ 1
2 +√

t) and
(n + 1

2 + √
t, x2). On the middle segment, of size 2

√
t we upper-bound the integrant

by a constant. On the extremal segments we perform an integration by parts, that gives
a power

√
t as

1

|(x − j)2 − (x − k)2| ≤ C

d(2x, Z)
.

The cases when n ± 1
2 ∈ (x1, x2) ⊂ (n − 1, n + 1) are treated similarly. Therefore

Ñ (t, x1) − Ñ (t, x2) = O(
√
t),

and in view of (74) we get the conclusion of the Lemma. ��
We end this section with a lemma that gives a link between Ñ (0, k±) and the

rotation �k from Lemma 4.3.

Lemma 4.7 Let tn be a sequence of positive times converging to zero, such that

ei
∑

j |α j |2 log(√tn) = 1. (75)
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Using the notations in Lemma 4.3 we have the following relation:

�k(B
±
|αk |) = e−i

∑
j �=k |α j |2 log |k− j | ei Arg(αk ) Ñ (0, k±).

Proof Let ε > 0. We choose x > 0 large enough such that in view of (68)

|ei |αk |2 log |x | ei Arg(αk )N∗(x) − �k(B
+
|αk |)| ≤ ε

4
, (76)

and such that

C(1 + |k|)
x

≤ ε

4
, (77)

whereC is the coefficient in (71). Thenwe choose n large enough such that |x√tn| < 1
2

and such that

|e−i
∑

j �=k |α j |2 log |x√tn+k− j | − e−i
∑

j �=k |α j |2 log |k− j | ≤ ε

4
, (78)

and

|ei |αk |2 log
√
tn N (tn, k + x

√
tn) − N∗(x)| ≤ ε

4
. (79)

The last fact is possible in view of Lemma 4.3. Therefore we have, in view of Lemma
4.6:

I := |e−i
∑

j �=k |α j |2 log |k− j | ei Arg(αk ) Ñ (0, k+) − �k(B
+
|αk |)|

= |e−i
∑

j �=k |α j |2 log |k− j | ei Arg(αk ) Ñ (0, k + x
√
tn) − �k(B

+
|αk |)|

≤ |Ñ (0, k + x
√
tn) − Ñ (tn, k + x

√
tn)|

+|e−i
∑

j �=k |α j |2 log |k− j | ei Arg(αk ) Ñ (tn, k + x
√
tn) − �k(B

+
|αk |)|.

By using the convergence (71) of Lemma 4.5 together with (77), and the definition
(69) of Ñ we get

I ≤ ε

4
+ |e−i

∑
j �=k |α j |2 log |k− j | ei Arg(αk ) ei

∑
j |α j |2 log |x√tn+k− j |√

tn N (tn, k + x
√
tn)

−�k(B
+
|αk |)|.

In view of (78) and (75) we have

I ≤ 2ε

4
+ |ei Arg(αk ) ei |αk |2 log |x |e−i

∑
j �=k |α j |2 log(√tn) N (tn, k + x

√
tn) − �k(B

+
|αk |)|

= ε

2
+ |ei Arg(αk ) ei |αk |2 log |x |ei |αk |2 log(

√
tn) N (tn, k + x

√
tn) − �k(B

+
|αk |)|.
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Finally, by (79)

I ≤ 3ε

4
+ |ei Arg(αk ) ei |αk |2 log |x | N∗(x) − �k(B

+
|αk |)|,

and we conclude by (76) that

I ≤ ε,∀ε > 0,

thus

�k(B
+
|αk |) = e−i

∑
j �=k |α j |2 log |k− j | ei Arg(αk ) Ñ (0, k+).

For x < 0 we argue similarly to get

�k(B
−
|αk |) = e−i

∑
j �=k |α j |2 log |k− j | ei Arg(αk ) Ñ (0, k−).

��

4.9 Recovering the Torsion of the Initial Data

Recall that in §4.2 we have denoted by {xn, n ∈ L} the ordered set of the integer
corner locations of χ0 and by {θn, τn, δn}n∈L the sequence determining the curvature
and torsion angles of χ0. Lemma 4.4 insured us that χ(0) has corners at the same
locations as χ0, and of same angles. Let us denote {θn, τ̃n, δ̃n}n∈L the correspondent
sequence of χ(0). To recover χ0 up to rotation and translations we need to recover
also the torsion properties of χ0, i.e. τ̃n = τn and δ̃n = δn .

In §4.2 we have defined the torsion parameters in terms of the vectorial product
of two consecutive tangent vectors, and in view of the way the tangent vectors of
χ(0) are described in Lemma 4.4, we are lead to investigate vectorial products of type
�k(A

−
|αk | ∧ A+

|αk |). We start with the following lemma.

Lemma 4.8 For a > 0 there exists a unique φa ∈ [0, 2π) such that

A−
a ∧ A+

a

|A−
a ∧ A+

a | = �(eiφa B+
a ) = −�(e−iφa B−

a ).

Proof For simplicity we drop the subindex a. We recall from (66) that the tangent
vectors of the profile χ(1) have asymptotic directions the unitary vectors A± that can
be described in view of formula (11) in [25] as

A+ = (A1, A2, A3), A− = (A1,−A2,−A3).

This parity property for the tangent vector implies similar parity properties for normal
and binormal vectors and from (66) we also get

B+ = (B1, B2, B3), B− = (B1,−B2,−B3).
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In particular we have

A− ∧ A+

|A− ∧ A+| = 1√
1 − A2

1

(0,−A3, A2),

so

A− ∧ A+

|A− ∧ A+| .B
+ = 1√

1 − A2
1

(A3B2 − A2B3) = − A− ∧ A+

|A− ∧ A+| .B
−. (80)

Since B+ ⊥ A+ and�B+,�B+, A+ is an orthonormal basis ofR
3, we have a unique

φ ∈ [0, 2π) such that

A− ∧ A+

|A− ∧ A+| = cosφ �B+ + sin φ �B+ = �(e−iφB+),

thus the first inequality in the statement. The second inequality follows from (80). ��
We continue with some useful information on the connection between quantities

involving normal components at two consecutive corners of χ(0). Recall that we have
defined αk = 0 if k /∈ {xn, n ∈ L} and if k = xn for some n ∈ L we have defined
αk ∈ C by (51) and (52). In particular two consecutive corners are located at xn and
xn+1, and the corresponding information is encoded by αxn and αxn+1 .

Lemma 4.9 Let tn be a sequence of positive times converging to zero, such that the
hypothesis (75) of Lemma 4.7 holds. We have the following relation concerning two
consecutive corners located at xn and xn+1:

�xn (B
+
|αxn |) = eiβn ei Arg(αxn )−Arg(αxn+1 )

�xn+1(B
−
|αxn+1 |),

where

βn = (|αxn |2 − |αxn+1 |2) log |xn − xn+1|.

Proof The result is a simple consequence of Lemma 4.7 and Lemma 4.6. ��
Now we shall recover in the next lemma the modulus and the sign of the torsion

angles of χ0.

Lemma 4.10 The torsion angles of χ(0) and χ0 coincide:

τ̃n = τn, δ̃n = δn, ∀n ∈ L.

Proof From the definition (50) we have

cos(τ̃n) = T (0, x−
n ) ∧ T (0, x+

n )

|T (0, x−
n ) ∧ T (0, x+

n )| .
T (0, x−

n+1) ∧ T (0, x+
n+1)

|T (0, x−
n+1) ∧ T (0, x+

n+1)|
.
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Now we use Lemma 4.4:

cos(τ̃n) = �xn

(
A−

|αxn | ∧ A+
|αxn |

|A−
|αxn | ∧ A+

|αxn ||

)
.�xn+1

⎛
⎝ A−

|αxn+1 | ∧ A+
|αxn+1 |

|A−
|αxn+1 | ∧ A+

|αxn+1 ||

⎞
⎠ .

By using Lemma 4.8 we write

cos(τ̃n) = �xn

(
�(eiφ|αxn | B+

|αxn |)
)

.�xn+1

(
−�(e

iφ|αxn+1 | B−
|αxn+1 |)

)

= −�
(
�xn (e

iφ|αxn | B+
|αxn |)

)
.�
(
�xn+1(e

iφ|αxn+1 | B−
|αxn+1 |)

)
.

Finally, by Lemma 4.9 we get

cos(τ̃n) = −�
(
eiφ|αxn |+iβn+i(Arg(αxn )−Arg(αxn+1 ))

�xn+1(B
−
|αxn+1 |)

)

.�
(
�xn+1(e

iφ|αxn+1 | B−
|αxn+1 |)

)
.

Since �B−
|αxn+1 | and �B−

|αxn+1 | are unitary orthogonal vectors, we obtain

cos(τ̃n) = − cos(φ|αxn | + βn + Arg(αxn ) − Arg(αxn+1) − φ|αxn+1 |).

Therefore, by definition (52) of {Arg(α j )} we get

cos(τ̃n) = cos(τn),

and in particular τ̃n = τn .
Similarly, we compute

T (0, x−
n ) ∧ T (0, x+

n )

|T (0, x−
n ) ∧ T (0, x+

n )| ∧ T (0, x−
n+1) ∧ T (0, x+

n+1)

|T (0, x−
n+1) ∧ T (0, x+

n+1)|
= −�xn+1(�B−

|αxn+1 |) ∧ �xn+1(�B−
|αxn+1 |) sin(φ|αxn | + βn + Arg(αxn )

−Arg(αxn+1) − φ|αxn+1 |).

As �(B−
|αxn+1 |) ∧ �(B−

|αxn+1 |) = A−
|αxn+1 |, in view of Lemma 4.4 we get

T (0, x−
n ) ∧ T (0, x+

n )

|T (0, x−
n ) ∧ T (0, x+

n )| ∧ T (0, x−
n+1) ∧ T (0, x+

n+1)

|T (0, x−
n+1) ∧ T (0, x+

n+1)|
= −T (0, x−

n+1) sin(φ|αxn | + βn + Arg(αxn ) − Arg(αxn+1) − φ|αxn+1 |),

so by definition (52) of {Arg(α j )} we conclude δ̃n = δn . ��
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4.10 End of the Existence Result Proof

From Lemma 4.4 and Lemma 4.10 we conclude that χ(0) and χ0 have the same
characterizing sequences {θn, τn, δn}n∈L . In view of the definition of this sequence in
§4.2 we conclude that χ(0) and χ0 coincide modulo a rotation and a translation. This
rotation and translation can be removed by changing the initial point P and frame
(v1, v2, v3) used in the construction of χ(t) in §4.3. Therefore we have constructed
the curve evolution in Theorem 1.1 for positive times. The extension in time is done
by using the time reversibility of the Schrödinger equation and the one of the binormal
flow, that means solving for positive times the binormal flow with initial data χ(−s),
which is still a polygonal line satisfying the hypothesis.

4.11 Further Properties of the Constructed Solution

In this last subsection we describe the trajectories in time of the R
3−locations of the

corners, χ(t, k).

Lemma 4.11 Let k such that αk �= 0, that is a location of corner for χ0. Then there
exists two orthogonal vectors v1, v2 ∈ S

2 such that

χ(t, k) = χ(0, k) + √
t (v1 sin(M log

√
t) + v2 cos(M log(

√
t)) + O(t).

Proof From (59) and the decay of {R j (τ )} we have

χ(t, k) − χ(0, k) =
∫ t

0
�(uN (τ, k)) dτ

= �
∫ t

0

∑
j

ei |α j |2 log√
τ (α j + R j (τ ))

e−i (k− j)2

4τ√
τ

N (τ, k) dτ

= �
∫ t

0

∑
j

ei |α j |2 log√
τ α j

e−i (k− j)2

4τ√
τ

N (τ, k) dτ + O(t
1
2+γ ).

In the terms with j �= k we perform an integration by parts to get decay in time

χ(t, k) − χ(0, k) = �
∫ t

0
ei |αk |2 log

√
τ αk N (τ, k)

dτ√
τ

+ O(t
1
2+γ )

+
⎡
⎣�

∑
j �=k

ei |α j |2 log√
τ α j

e−i (k− j)2

4τ√
τ

4τ 2

i(k − j)2
N (τ, k)

⎤
⎦
t

0

−�
∫ t

0

∑
j �=k

4α j
e−i (k− j)2

4τ

i(k − j)2
(ei |α j |2 log√

τ τ
√

τ N (τ, k))τ dτ.
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The boundary term is of order O(t
√
t). In view of (58) we get a 1

τ
√

τ
estimate for Nτ

so the last term is of order O(t), and we have

χ(t, k) − χ(0, k) = �
∫ t

0
ei |αk |2 log

√
τ αk N (τ, k)

dτ√
τ

+ O(t).

Now, from (73) in Lemma 4.5 we get the existence of w1, w2 ∈ S
2 such that

w1 + iw2 = lim
t→0

e−i
∑

j �=k |α j |2 log
√
t N (t, k),

with a rate of convergence upper-bounded by C(1 + |k|)√t . This implies

χ(t, k) − χ(0, k) = �αk (w1 + iw2)

∫ t

0
ei
∑

j |α j |2 log√
τ dτ√

τ
+ O(t),

and thus the conclusion of the Lemma. ��
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