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Abstract
We study the nonlinear stability of the (3+ 1)-dimensional Minkowski spacetime as
a solution of the Einstein vacuum equation. Similarly to our previous work on the
stability of cosmological black holes, we construct the solution of the nonlinear initial
value problem using an iteration scheme in which we solve a linearized equation
globally at each step; we use a generalized harmonic gauge and implement constraint
damping to fix the geometry of null infinity. The linear analysis is largely based on
energy and vector field methods originating in work by Klainerman. The weak null
condition of Lindblad andRodnianski arises naturally as a nilpotent coupling of certain
metric components in a linear model operator at null infinity. Upon compactifying R

4

to a manifold with corners, with boundary hypersurfaces corresponding to spacelike,
null, and timelike infinity, we show, using the framework of Melrose’s b-analysis, that
polyhomogeneous initial data produce a polyhomogeneous spacetime metric. Finally,
we relate the Bondi mass to a logarithmic term in the expansion of the metric at null
infinity and prove the Bondi mass loss formula.
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1 Introduction

We prove the nonlinear stability of (3+1)-dimensional Minkowski space as a vacuum
solution of Einstein’s field equation and obtain a precise full expansion of the solution,
in a mildly generalized harmonic gauge, in all asymptotic regions, i.e. near spacelike,
null, and timelike infinity. On a conceptual level, we show how some of the meth-
ods we developed for our proofs of black hole stability in cosmological spacetimes
[53,60] apply in thismore familiar setting, studied byChristodoulou–Klainerman [27],
Lindblad–Rodnianski [79,80], and many others: this includes the use of an iteration
scheme for the construction of the metric in which we solve a linear equation glob-
ally at each step, keeping track of the precise asymptotic behavior of the iterates by
working on a suitable compactification M of the spacetime, and the implementation
of constraint damping.

The estimateswe prove for the linear equations—which arise as linearizations of the
gauge-fixed Einstein equation around metrics which lie in the precise function space
in which we seek the solution—are largely based on energy estimates and a version of
the vector field method [64]. The estimates are rather refined in terms of a splitting of
the symmetric 2-tensor bundle (different metric components behave differently at null
infinity); the vector fields we use are closely related to those in [27,64,79,80]. In our
systematic approach, both the relevant notion of regularity (matching [74]) and the
determination of the precise asymptotic behavior of the solution follow readily from
an inspection of the geometric and algebraic properties of the linearized gauge-fixed
(or ‘reduced’) Einstein equation; correspondingly, once M and the required function
spaces are defined (§§2–3), the proof of stability itself is rather concise (§§4–6).

The weak null condition of Lindblad–Rodnianski [78] manifests itself in our lin-
earization approach as a nilpotent coupling of certain metric components for a linear
model operator at null infinity: the logarithmic growth (relative to the typical decay
rate of r−1 of waves on (3 + 1)-dimensional Minkowski space near null infinity) of
one metric component is rendered harmless due to its coupling (to leading order) only
to a metric component g00 which governs the ‘long range’ behavior of outgoing light
cones and which decays faster than r−1 by a factor of r−γ for some γ > 0 (see the
discussions in §§1.1.2 and 3.3). For the reader already familiar with the weak null con-
dition, we mention here that the better decay of g00 in [80] (corresponding, roughly,
to gLL in the reference) is a consequence of the harmonic gauge condition being
satisfied by the nonlinear solution, while in the present paper we have decay of the
(0, 0)-component of every iterate in our iteration scheme since we arrange constraint
damping, which, roughly speaking, ensures that our gauge condition is satisfied to
high accuracy (in the sense of decay) even though we are only solving ‘nongeometric’
(linear) equations. (This makes constraint damping attractive for numerical analysis,
see [46,95] and Remark 1.2 below).

We proceed to state a simple version of our main theorem, before returning to an
in-depth discussion of our approach, the relevant estimates, and the structure of the
Einstein equation in §1.1.Recall that inEinstein’s theory of general relativity, a vacuum
spacetime is described by a 4-manifoldM◦which is equippedwith a Lorentzianmetric
g with signature (+,−,−,−) satisfying the Einstein vacuum equation
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Ric(g) = 0. (1.1)

The simplest solution is theMinkowski spacetime (M◦, g) = (R4, g),

g := dt2 − dx2, R
4 = Rt × R

3
x . (1.2)

The far field of an isolated gravitational system (M◦, g) with total (ADM) mass m is
usually described by the Schwarzschild metric

g ≈ gSm =
(
1− 2m

r

)
dt2 −

(
1− 2m

r

)−1
dr2 − r2/g, r � 1, (1.3)

where /g denotes the round metric on S
2; the Minkowski metric g = gS0 differs from

this by terms of size O(mr−1). In the study of weak nonlinear gravity in vacuum (in
particular, black holes are excluded), one then works with metrics g which are smooth
extensions of (a short range perturbation of) gSm to all of R

4. Such spacetimes are
asymptotically flat: letting |t | + |x | → ∞ in R

4, the metric g (in a suitable gauge)
approaches the flat Minkowski metric g in a quantitative fashion.

Suitably interpreted, the field equation (1.1) has the character of a quasilinear wave
equation; in particular, it predicts the existence of gravitational waves, which were
recently observed experimentally [70]. Correspondingly, the evolution and long time
behavior of solutions of (1.1) can be studied from the perspective of the initial value
problem: given a 3-manifold �◦ and symmetric 2-tensors γ, k ∈ C∞(�◦; S2T ∗�◦),
with γ aRiemannianmetric, one seeks a vacuum spacetime (M◦, g) and an embedding
�◦ ↪→ M◦ such that

Ric(g) = 0 on M◦, g|�◦ = −γ, IIg = k on �◦, (1.4)

where IIg denotes the second fundamental form of �◦, and where we use the embed-
ding �◦ ↪→ M◦ to identify the tensors γ, k on �◦ with (tangential) tensors on the
imageof�◦ inM◦. (Theminus sign in (1.4) is due to our sign convention forLorentzian
metrics). A fundamental result due to Choquet-Bruhat and Geroch [17,19] states that
necessary and sufficient conditions for the well-posedness of this problem are the
constraint equations for γ and k,

Rγ + (trγ k)
2 − |k|2γ = 0, δγ k + d trγ k = 0, (1.5)

where Rγ is the scalar curvature of γ , and δγ is the (negative) divergence. Concretely,
if these are satisfied, there exists a maximal globally hyperbolic solution (M◦, g)
of (1.4) which is unique up to isometries. By the future development of an initial
data set (�◦, γ, k), we mean the causal future of �◦ as a Lorentzian submanifold of
(M◦, g). Our main theorem concerns the long time behavior of solutions of (1.4) with
initial data close to those of Minkowski space:

Theorem 1.1 Let b0 > 0. Suppose that (γ, k) are smooth initial data on R
3 satisfying

the constraint equations (1.5) which are small in the sense that for some small δ > 0,
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Fig. 1 Left: the compact manifold M (solid boundary), containing a compactification � of the initial
surface �◦. The boundary hypersurfaces I 0, I+, and I+ are called spatial infinity, (future) null infinity,
and (future) timelike infinity, respectively. One can think of M as the blow-up of a Penrose diagram at
timelike and spatial infinity. A global compactification would extend across � to the past, with additional
boundary hypersurfacesI− (past null infinity) and I− (past timelike infinity). Right: for comparison, the
Penrose diagram of Minkowski space

a cutoff χ ∈ C∞c (R3) identically 1 near 0, and γ̃ := γ − (1−χ)(−gSm)|{t=0},1 where
|m| < δ, we have

∑
j≤N+1

‖〈r〉−1/2+b0(〈r〉∇) j γ̃ ‖L2 +
∑
j≤N

‖〈r〉1/2+b0(〈r〉∇) j k‖L2 < δ, (1.6)

where N is some large fixed integer (N = 26 works). Assume moreover that the
weighted L2 norms in (1.6) are finite for all j ∈ N.

Then the future development of the data (R3, γ, k) is future causally geodesically
complete and decays to the flat (Minkowski) solution. More precisely, there exist a
smooth manifold with corners M with boundary hypersurfaces �, I 0, I +, I+, and
a diffeomorphism of the interior M◦ with {t > 0} ⊂ R

4, as well as an embedding
R
3 ∼= �◦ of theCauchy hypersurface, and a solution g of the initial value problem (1.4)

which is conormal (see below) on M and satisfies |g− g| � (1+ t + |r |)−1+ε for all
ε > 0. See Figure 1. For fixed ADM mass m, the solution g depends continuously on
γ̃ , k, see Remark 6.4.

If the normalized initial data (〈r〉γ̃ , 〈r〉2k) are in addition E-smooth, i.e.
polyhomogeneous at infinity with index set E (see below), then the solution g is also
polyhomogeneous on M, with index sets given explicitly in terms of E .

More precise versions will be given in Theorem 1.8 and in §6. The condition (1.6)
allows for γ̃ to be pointwise of size r−1−b0−ε , ε > 0; since b0 > 0 is arbitrary, this
means that we allow for the initial data to be Schwarzschildean moduloO(r−1−ε) for
any ε > 0.

InTheorem1.1, conormality is a (local) regularity notion on amanifoldwith corners
M which is equivalent to smoothness in M◦, but differs from it near ∂M: in the model
case M = [0,∞)

p
x × R

q
y , and with α ∈ R

p, a function u ∈ xαL∞loc(M) is called
conormal relative to the space xαL∞loc(M) if

V1 · · · VNu ∈ xαL∞loc(M) ∀ N ∈ N,

1 We use polar coordinates on R
3 and define −gSm |t=0 := (1− 2m

r )−1dr2 + r2/g.
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where each Vj is one of the vector fields xk∂xk , ∂yl , 1 ≤ k ≤ p, 1 ≤ l ≤ q. (A typical
example of a conormal function is xβ , where β ∈ R

p, β ≥ α component-wise). We
say that a distribution u is conormal if it is conormal relative to xαL∞loc(M) for some
vector α ∈ R

p of weights. In the context of Theorem 1.1, the weights are specified in
Theorem 1.8 and Remark 1.9 below; at this point we simply content ourselves with
taking them to be 0 at each hypersurface.

Before continuing the discussion of Theorem 1.1, we remark that the assumption
that all weighted norms in (1.6) are finite is only needed to conclude the conormality
of g. If one is only interested in controlling a finite number of derivatives of g, we
only need to require the finiteness of finitely many weighted norms (1.6) (as can be
seen by inspecting the Nash–Moser theorem we use in our nonlinear iteration).

Next, E-smoothness is a refinement of conormality: the assumption of E-
smoothness, i.e. polyhomogeneity with index set E ⊂ C × N0, means, roughly
speaking, that 〈r〉γ̃ (similarly 〈r〉2k) has a full asymptotic expansion as r → ∞
of the form

〈r〉γ̃ ∼
∑

(z,k)∈E
r−i z(log r)k γ̃(z,k)(ω), ω = x/|x | ∈ S

2, γ̃(z,k) ∈ C∞(S2; S2T ∗R3),

(1.7)
with Im z < −b0, where for any fixed C , the number of (z, k) ∈ E with Im z > −C is
finite. (That is, 〈r〉γ̃ admits a generalized Taylor expansion into powers of r−1, except
the powers may be fractional or even complex—that is, oscillatory—and logarithmic
terms may occur. A typical example is that all z are of the form z = −ik, k ∈ N, in
which case (1.7) is an expansion into powers r−k , with potential logarithmic factors).
The polyhomogeneity of g on the manifold with corners M means that at each of
the hypersurfaces I 0, I +, and I+, the metric g admits an expansion similar to (1.7),
with r−1 replaced by a defining function of the respective boundary hypersurface (for
example I +) such that moreover each term in the expansion (which is thus a tensor
on I +) is itself polyhomogeneous at the other boundaries (that is, at I + ∩ I 0 and
I +∩ I+). We refer the reader to §2.2 for precise definitions, and to Examples 7.2 and
7.3 for the list of index sets for two natural classes of polyhomogeneous initial data.

Christodoulou [24] showed that, generically, one can only expect the metric g,
suitably rescaled to a non-degenerate metric on a compactification of R

4, to be of
class C1,α , α < 1, due to the presence of logarithmic terms in the expansion of
certain geometric quantities at null infinity; polyhomogeneity of themetric (rather than
smoothness of a conformalmultiple down toI +) is thus the best one can hope for, and
this is what we establish here. (We also prove that the metric is indeed conformal to a
non-degenerate metric of class C1,α , α < min(b0, 1), down toI +; see Remark 8.12).

If the initial data do not have a full polyhomogeneous expansion, but only a partial
expansion (containing only finitely many terms) plus a sufficiently regular remainder
decaying faster than the terms in the expansion, the solution g will itself have a finite
partial expansion at each boundary hypersurface, plus a faster decaying remainder;
we shall not, however, record results of this nature here.

Applying a suitable version of this theorem both towards the future and the past, we
show that themaximal globally hyperbolic development is given by a causally geodesi-
cally complete metric g, with analogous regularity and polyhomogeneity statements
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as in Theorem 1.1, on a suitable manifold with corners whose interior is diffeomorphic
to R

4 (and contains �◦), which now has the additional boundary hypersurfaces I −
and I−; see Theorem 6.7 and the end of §7.

Like many other approaches to the stability problem (see the references below),
our arguments apply to the Einstein–massless scalar field system Ric(g) = |∇φ|2g ,
�gφ = 0, with small initial data for the scalar field in order to obtain global stability.
They also give the stability of the far end of a Schwarzschild black hole spacetimewith
any massm ∈ R, i.e. of the domain of dependence of the complement of a sufficiently
large ball in the initial surface, without smallness assumptions on the data: in this
case, we control the solution up to some finite point along the radiation faceI +. See
Remark 6.6.

The compactification M only depends on the ADM mass m of the initial data set;2

for the class of initial data considered here, the mass gives the only long range con-
tribution to the metric that significantly (namely, logarithmically) affects the bending
of light rays: for the Schwarzschild metric (1.3), radially outgoing null-geodesics lie
on the level sets of t − r − 2m log(r − 2m). Concretely, near I 0 ∪ I +, M will
be the Penrose compactification of the region {t/r < 2, r � 1} ⊂ R

4 within the
Schwarzschild spacetime, i.e. equipped with the metric gSm , blown up at spacelike
and future timelike infinity. As in our previous work [53,60] on Einstein’s equation,
we prove Theorem 1.1 using a Newton-type iteration scheme (more precisely: Nash–
Moser) in which we solve a linear equation globally on M at each step. While this
approach brings many advantages (cf. Remark 1.3), a disadvantage of using a Nash–
Moser iteration is the typically rather large number of derivatives needed compared
to other approaches.

We do not quite use the wave coordinate gauge as in Lindblad–Rodnianski [79,80],
but rather a wave map gauge with background metric given by the Schwarzschild met-
ric with mass m near I 0 ∪I +, glued smoothly into the Minkowski metric elsewhere;
this is a more natural choice than using the Minkowski metric itself as a background
metric (which would give the standard wave coordinate gauge), as the solution g will
be a short range perturbation of gSm there. This gauge, which can be expressed as the
vanishing of a certain 1-form ϒ(g), fixes the long range part of g and hence the main
part of the null geometry atI +. In order to ensure the gauge condition to a sufficient
degree of accuracy (i.e. decay) atI + throughout our iteration scheme, we implement
constraint damping, first introduced in the numerics literature in [46], and crucially
used in [60]. This means that we use the 1-form encoding the gauge condition in a
careful manner when passing from the Einstein equation (1.1) to its ‘reduced’ quasi-
linear hyperbolic form: we can arrange that for each iterate gk in our iteration scheme,
the gauge 1-form ϒ(gk) vanishes sufficiently fast at I + so as to fix the long range
part of g. In order to close the iteration scheme and control the nonlinear interactions,
we need to keep precise track of the leading order behavior of the remaining metric
coefficients at I +. We discuss this in detail in §1.2.

2 By the positive mass theorem [101,113], we have m ≥ 0, but we will not use this information. In fact,
our analysis of the Bondi mass, summarized in Theorem 1.10 below, implies the positive mass theorem for
the restricted class of data considered in Theorem 1.1.
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Remark 1.2 Fixing the geometry at I + in this manner, the first step of our iteration
scheme, i.e. solving the linearized gauge-fixed Einstein equation with the given (non-
linear) initial data of size δ, produces a solution with the correct long range behavior
and which is δ2 close to the nonlinear solution in the precise function spaces on M in
which we measure the solution. (Subsequent iteration steps give much more accurate
approximations since the convergence of the iteration scheme is exponential). This
suggests that our formulation of the gauge-fixed Einstein equation could allow for
improvements of the accuracy of post-Minkowskian expansions—which are iterates
of a Picard-type iteration scheme as in [80, Equation (1.7)]—used to study gravita-
tional radiation from isolated sources [9].

The global stability of Minkowski space was established, building in particular
on [22,64], in the monumental work of Christodoulou–Klainerman [27] for asymp-
totically Schwarzschildean data (similar to those in (1.6) but with b0 ≥ 1

2 , though
requiring only N = 3 derivatives) and precise control at null infinity, with an alterna-
tive proof using double null foliations by Klainerman–Nicolò [66]; and more recently
in [79,80] using the wave coordinate gauge, for initial data as in Theorem 1.1 (but
requiring only N = 10 derivatives on the initial data). Friedrich [42] (see [43] for the
Einstein–Yang–Mills case) established non-linear stability, using a conformal method,
for a restrictive class (shown to be nonempty in [31]) of initial data, but with precise
information on the asymptotic structure of the spacetime. Bieri [16] studied the prob-
lem for a very general class of data which are merely decaying like 〈r〉−1/2−δ for some
δ > 0—thus more slowly even than the O(r−1) terms of Schwarzschild—and even
less regularity than Christodoulou–Klainerman; in this case, the ‘correct’ compactifi-
cation on which the metric has a simple description will have to depend on more than
just theADMmass (this is clear e.g. for the initial data constructed byCarlotto–Schoen
[33], which are nontrivial only in conic wedges); Bieri and Chruściel [8,26] construct
a piece of I + for the data considered in [16] but without a smallness assumption.
Further works on the stability of Minkowski space for the Einstein equations coupled
to other fields, in the wake of [27,79,80], include those by Speck [99] on (a gener-
alization of) the Einstein–Maxwell system, Taylor [103], Lindblad–Taylor [81], and
Fajman–Joudioux–Smulevici [38] for both the massless and the massive Einstein–
Vlasov system. We also mention Keir’s very general quasilinear results [63] which in
particular imply the global solvability for small data of the gauge-fixed Einstein equa-
tion in harmonic coordinates (but without constraint damping) even when the gauge
condition is violated, albeit at the expense of losing the precise asymptotic control
at null infinity. The global stability for a minimally coupled massive scalar field was
proved by LeFloch–Ma [75] and Wang [112].

The present paper contains the first proof of full conormality and polyhomogeneity
of small nonlinear perturbations of Minkowski space in 3+ 1 dimensions. Lindblad–
Rodnianski also established high conormal regularity, see [80, Equation (1.14)],
though, in the context of the present paper, on the compactification corresponding
to Minkowski rather than on M , and hence with a loss in the decay rates. This was
improved by Lindblad [74] who proved sharp decay for the metric at null infinity
(albeit in a slightly different gauge), and uses them to establish a relationship between
the ADM mass and the total amount of gravitational radiation. The decay in [74]
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corresponds to the leading order decay which we prove at I +; we improve this by
proving definite decay rates towards the leading order terms atI +, and we strengthen
the decay rate towards I+ to t−1; in fact, we show decay at a faster rate to an O(t−1)
leading order term, see the proof of Theorem 8.14. (Neither improvement requires
polyhomogeneous initial data).

Previously, polyhomogeneity was established in spacetime dimensions ≥ 9 for the
Einstein vacuum and Einstein–Maxwell equations, for initial data stationary outside of
a compact set, by Chruściel–Wafo [34]; this relied on earlier work by Chruściel-Łeski
[29] on the polyhomogeneity of solutions of hyperboloidal initial value problems3

for a class of semilinear equations, and Loizelet’s proof [76,77] of the electrovacuum
extension (using wave coordinate and Lorenz gauges) of [79]; see also [7]. Lengard
[69] studied hyperboloidal initial value problems and established the propagation of
weighted Sobolev regularity for the Einstein equation, and of polyhomogeneity for
nonlinear model equations. In spacetime dimensions 5 and above, Wang [110,111]
obtained the leading term (i.e. the ‘radiation field’) of g − g at I +, and proved
high conormal regularity. Baskin–Wang [15] and Baskin–Sá Barreto [11] defined
radiation fields for linear waves on Schwarzschild as well as for semilinear wave
equations on Minkowski space. For initial data which are exactly Schwarzschildean
outside a compact set and in even spacetime dimensions ≥ 6, a simple conformal
argument, which requires very little information on the structure of the Einstein(–
Maxwell) equation, stability and smoothness ofI + were proved by Choquet-Bruhat–
Chruściel–Loizelet [18]; see also [3] for a different approach in the vacuum case. The
construction of the required initial data sets as well as questions of their smoothness
and polyhomogeneity were taken up in the hyperboloidal context by Andersson–
Chruściel–Friedrich [4] and extended in [1,2], see also [28]. Paetz and Chruściel
[32,93] studied this for characteristic data; we refer to Corvino [31], Chruściel–Delay
[21], and references therein for the case of asymptotically flat data sets.

The backbone of our proof is a systematic treatment of the stability of Minkowski
space as a problem of proving regularity and asymptotics for a quasilinear (hyperbolic)
equation on a compact, but geometrically complete manifold with corners M . That
is, we employ analysis based on complete vector fields on M and the correspond-
ing natural function spaces, which in this paper are b-vector fields, i.e. vector fields
tangent to ∂M , and spaces with conormal regularity or (partial) polyhomogeneous
expansions; following Melrose [85,87], this is called b-analysis (‘b’ for ‘boundary’).
The point is that once the smooth structure (the manifold M) and the algebra of dif-
ferential operators appropriate for the problem at hand give a simple background on
which to do analysis;4 we will give examples and details in §1.1. In this context, it
is often advantageous to work on a more complicated manifold M if this simplifies

3 This means that the initial data are posed on a spacelike but asymptotically null hypersurface transversal
to I+.
4 This is akin to how making use of the notion of a smooth manifold allows one to study PDE in an
invariant, coordinate-free manner. Indeed, viewing a global PDE, a priori on a noncompact space, as a
(typically degenerate) PDE on a compactification M (typically a compact manifold with boundary or
corners), one frees oneself from any particular local coordinate expression, and, for instance, gains the
flexibility of being able to work with the local coordinate system (or, more narrowly, a set of boundary
defining functions) appropriate for calculations in the region/asymptotic regime of interest. Moreover, if one
defines function spaces by using only the smooth structure on M (and possibly using some extra data, such
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the algebraic structure of the equation at hand. While this point of view has a long
history in the study of elliptic equations, see e.g. [48,84,85,88,98], its explicit use in
hyperbolic problems is, to a large part, rather recent [13,14,52,58–60,86,89,90,104].
We also point out that fixing the smooth structure on M , one gains the

A (clean) description of polyhomogeneous expansions, in particular at the transi-
tions between different regimes such as near I 0 ∩I + orI + ∩ I+, requires working
on a manifold with corners. More generally, it is often easier to define function spaces
on M◦ by working uniformly up to ∂M , and decay rates from the perspective of M◦
can be encoded as orders of vanishing at ∂M (the latter making sense since M is
equipped with a smooth structure).5

Working in a compactified setting furthermore makes the structures allowing for
global existence clearly visible in the form of linear model operators defined at the
boundary hypersurfaces.Among the key structures forTheorem1.1 are the symmetries
of the model operator L0 at I +, which is essentially the product of two transport
ODEs, as well as constraint damping and a certain null structure, both of which are
simply a certain Jordan block structure of L0, with the null structure corresponding
to a nilpotent Jordan block. At I+, the model operator will be closely related (via a
conformal transformation) to the conformal Klein–Gordon equation on static de Sitter
space, which enables us to determine the asymptotic behavior of g there via resonance
expansions from known results on the asymptotics of conformal waves on de Sitter
space.

A closely related reason for viewing a global problem (i.e. to be solved, at first
glance, on a noncompact set) as a (degenerate) problem on a compact manifold with
boundary or corners is that asymptotic data of the solution become restrictions of
the solution to boundary hypersurfaces: it was for the purpose of giving a simple
and conceptually clean description of the radiation field of scalar, electromagnetic,
or gravitational waves, and also of solutions of the full nonlinear Einstein equation,
that Penrose introduced his compactifications and diagrams. (These restrictions may
solve interesting equations by themselves, as is the case for the Bondi mass loss
formula at I +, and in the case of the scattering argument which we will use at
I+ to prove the vanishing of the final Bondi mass at the future boundary of I +).
While a compactified perspective is often not strictly necessary for the description of
asymptotic data and relations between them, it is usually conceptually advantageous,
and brings to light the key features of a PDE problem which may be difficult to detect
from the noncompact point of view, cf. the references above. (For example, finding
the linearized version of the weak null structure of Lindblad–Rodnianski does not
require any careful inspection, but simply the calculation of a partial Jordan block
decomposition of a coefficient of a model operator defined at null infinity).

Footnote4 continued
as fibrations of boundary hypersurfaces), it becomes simple to verify whether estimates, done in convenient
local coordinates, do give estimates of the invariantly defined function spaces.
5 As an example, reminiscent of the behavior of linear waves on Minkowski space near null infinity,
consider the space X of smooth functions on [1,∞)r which for any N ∈ N can be written as an N -th
degree polynomial in 1/r , without constant term, plus aO(r−N ) remainder. Passing to the compactification
I , which is diffeomorphic to a closed interval,with boundary defining functions (r−1)/r for the left endpoint
and x := 1/r for the right endpoint (thus the point x = 0 is a rigorous definition of ‘r = ∞’), we simply
have X = xC∞(I ): smooth functions on I vanishing simply at the right endpoint x = 0.
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We also note that the symmetries and dynamical/geometric features of (asymptot-
ically) Minkowski metrics relevant in each of these regimes are different. Hence, we
find it advantageous to adapt our descriptions of coordinates, operators, and function
spaces to the various asymptotic regimes and symmetries of the problem, rather than
e.g. working throughout with standard (t, x)-coordinates on R

4: the latter seem to be
most useful for capturing the (approximate) translation-invariance of wave equations
on (asymptotically) Minkowski spacetimes—which does not play a role in the stabil-
ity proof—while scaling, boosts and rotations, while of course expressible in (t, x)
coordinates, become very simple on M , simply becoming smooth vector fields on M
with some extra properties, such as tangency to ∂M .

While the manifold M is compact, our analysis of the linear equations (arising from
a linearization of the gauge-fixed Einstein equation) on M lying at the heart of this
paper is not a short-time existence/regularity analysis near the interiors of I 0, resp. I+,
but rather a global in space, resp. global in time analysis. (Conformal methods such
as [44] bringing I 0 to a finite place have the drawback of imposing very restrictive
regularity conditions on the initial data). At I +, we use a version of Friedlander’s
rescaling [39] of thewave equation,which does give equationswith singular (conormal
or polyhomogeneous) coefficients; but sinceI + is a null hypersurface, conormality or
polyhomogeneity—which are notions of regularity defined with respect to (b-)vector
fields, which are complete—are essentially transported along the generators ofI +. At
the past and future boundaries ofI +, i.e. at I 0 ∩I + andI + ∩ I+, the two pictures
fit together in a simple and natural fashion. We discuss this in detail in §§1.1.1 and
1.1.3.

We reiterate that our goal is to exhibit the conceptual simplicity of our approach,
which we hope will allow for advances in the study of related stability problems which
have amore complicated geometry on the base, i.e. on the level of the spacetimemetric,
on the fibers, i.e. for equations on vector bundles, or both. In particular, we are not
interested in optimizing the number of derivatives needed for our arguments based on
Nash–Moser iteration.

Following our general strategy, one can also prove the stability of Minkowski space
in spacetime dimensions n + 1, n ≥ 4, for sufficiently decaying initial data, with the
solution conormal (or polyhomogeneous, if the initial data are such), thus strengthen-
ingWang’s results [111]. There are a number of simplifications due to the faster decay
of linear waves inR

1+n : the compactification M ofR
1+n does not depend on the mass

anymore and can be taken to be the blow-up of the Penrose diagram of Minkowski
space at spacelike and future timelike infinity; we do not need to implement constraint
damping asmetric perturbations no longer have a long range termwhichwould change
the geometry ofI +; and we do not need to keep track of the precise behavior (such as
the existence of leading terms atI +) of the metric perturbation. We shall not discuss
this further here.

1.1 Aspects of the systematic treatment; examples

Consider a nonlinear partial differential equation P(u) = 0, with P encoding bound-
ary or initial data as well, whose global behavior one wishes to understand for high
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regularity data which have small norm; denote by Lu := Du P the linearized opera-
tors. In the present problem, P will be the map assigning a metric to the value of the
(gauge-fixed) Einstein operator on it, as well as its pair of initial data. Our strategy,
with references to their implementation for the present problem, is:

1. fix a C∞ structure, that is, a compact manifold M , with boundary or corners,
on which one expects the solution u to have a simple description (regularity,
asymptotic behavior)—see §2.1 for the definition of the compactification of R

4

on which we will work;
2. choose an algebra of differential operators and a scale of function spaces on M ,

say X s,Ys , encoding the amount s ∈ R of regularity as well as relevant asymp-
totic behavior, such that for u ∈ X∞ := ⋂

s>0 X s small in some X s norm, the
operator Lu lies in this algebra and maps X∞ → Y∞ := ⋂

s>0 Ys—see §§2.2
and 3.1 for the function spaces we will use: conormal sections of certain vector
bundles together with certain leading order terms at null infinity; and §3.2 for the
verification of the mapping property;

3. show that for such small u, the operator Lu has a (right) inverse

(Lu)
−1 : Y∞ → X∞ (1.8)

on these function spaces—see §§4, 5, discussed below;
4. solve the nonlinear equation using a global iteration scheme, schematically

u0 = 0; uk+1 = uk + vk, vk = −(Luk )
−1(P(uk)); u = lim

k→∞ uk ∈ X∞.
(1.9)

See §6.
5. (Optional.) Improve on the regularity of the solution u ∈ X∞, provided the data

has further structure such as polyhomogeneity or better decay properties, by using
the PDE P(u) = 0 directly, or its approximation by linearized model problems in
the spirit of 0 = P(u) ≈ L0u + P(0) and a more precise analysis of L0. See §7,
where we prove the polyhomogeneity for asymptotically Minkowski metrics.

We stress that steps 1 and 2 are nontrivial, as they require significant insights into
the geometric and analytic properties of the PDE in question, and are thus intimately
coupled to step 3; the function spaces in step 2 must be large enough in order to
contain the solution u, but precise (i.e. small) enough so that the nonlinearities and
linear solution operators are well-behaved on them.

Note that if one has arranged 3, then the iteration scheme (1.9) formally closes, i.e.
all iterates uk lie in X∞ modulo checking their required smallness in X s . Checking
the latter, thus making (1.9) rigorous, is however easy in many cases, for example
by using Nash–Moser iteration [51,100], which requires (Lu)

−1 to satisfy so-called
tame estimates; these in turn are usually automatic from the proof of (1.8), which is
often ultimately built out of simple algebraic operations likemultiplications and taking
reciprocals of operator coefficients or symbols, and energy estimates, for all of which
tame estimates follow from the classical Moser estimates. The precise bookkeeping,
done e.g. in [59], can be somewhat tedious but is only of minor conceptual importance:
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it only affects the number of derivatives of the data which need to be controlled, i.e.
the number N in (1.6); in this paper, we shall thus be generous in this regard.

As a further guiding principle, which applies in the context of our proof of Theo-
rem 1.1, one can often separate step 3, i.e. the analysis of the equation Luv = f , into
two pieces:

3.1. prove infinite regularity of v but without precise asymptotics—see §4, where we
accomplish this using simple energy estimates;

3.2. improve on the asymptotic behavior of v to show v ∈ X∞—see §5, where we use
integration along approximate characteristics as well as spectral theory/normal
operator arguments for this purpose.

The point is that a ‘background estimate’ from step 3.1 may render many terms of
Lu lower order, thus considerably simplifying the analysis of asymptotics and decay;
see e.g. the discussion around (1.22).

Remark 1.3 Let us compare this strategy to proofs using bootstrap arguments, which
are commonly used for global existence problems for nonlinear evolution equations as
e.g. in [27,80,82]. The choice of bootstrap assumptions is akin to choosing the function
space X∞ (and thus implicitly Y∞) in step 2, while the consistency of the bootstrap
assumptions, without obtaining a gain in the constants in the bootstrap, is similar to
proving (1.8). However, note that the bootstrap operates on a solution of the nonlinear
equation,whereasweonly consider linear equations; the gain in the bootstrap constants
thus finds its analogue in the fact that one canmake the iteration scheme (1.9) rigorous,
e.g. using Nash–Moser iteration, and keep low regularity norms of uk bounded (and
vk decaying with k) throughout the iteration scheme. In the context in particular of
Einstein’s equation, a bootstrap argument has the advantage that the gauge condition is
automatically satisfied as one is dealing with solutions of the nonlinear equation; thus
the issue of constraint damping does not arise, whereas we do have to arrange this. In
return, we gain significant flexibility in the choice of analytic tools for the global study
of the linearized equations (e.g. methods from microlocal analysis, scattering theory),
as used extensively in [60]; bootstrap arguments on the other hand are strongly tied
to the character of P(u) as a (nonlinear) hyperbolic (or parabolic) and differential
operator, or at least to its locality in ‘time’, and it is much less clear how to exploit
global information (e.g. resonances).

Before discussing Einstein’s equation in §1.2, we first describe this strategy for
scalar nonlinear wave equations on Minkowski space. The most significant part of
the work required to implement this strategy is the analysis of the linear operators
called Lu above; we thus begin in §1.1.1 by explaining how we obtain estimates for
solutions of linear wave equations onMinkowski space in a manner that will work for
linearizations of the gauge-fixed Einstein equation in §4. In §1.1.2, we then put a few
examples of nonlinear scalar equations into the abstract general framework described
above, including a discussion of polyhomogeneity (step 5 above) in §1.1.3.

1.1.1 Linear waves in Minkowski space

For step 1, we seek a convenient compactification M of R
4. The goal, from the PDE

perspective, is for the asymptotic behavior of linear waves on R
4 to have a simple
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description on M ; closely related to this is that the asymptotic behavior of natural
geometric objects such as (null)geodesics should be simple. Consider first ‘null infin-
ity’: a (rescaled) linear wave on R

4 has a limit as r → ∞ along any null-geodesic,
e.g. the one defined by t − r = s0, ω = ω0 ∈ S

2 (using polar coordinates on R
3)

for (s0, ω0) ∈ R × S
2. Thus, we want to define M in such a way that a sequence of

points, with r →∞, along such a ray has a unique limit in M ; that is, one boundary
hypersurface of M should be equal to (the closure6 of) all such limiting points, with a
bijection between (s0, ω0) and points in (the interior of) this boundary hypersurface,
and such a boundary hypersurface then deserves the name I +. (The interior of I +
is thus (I +)◦ ∼= R × S

2). The radiation field is then the restriction of the rescaled
wave, extended from R

4 to M by continuity, to I + ⊂ ∂M (or (I +)◦ in standard
terminology).

For other asymptotic regimes, there are a number of choices one can make on
Minkowski space: the Penrose diagram, or the conformal embedding of Minkowski
space into the Einstein universe give two (closely related) compactifications of R

4 in
which future timelike and spacelike geodesic rays have limit points. In order to facili-
tate the generalization to compactifications ofasymptoticallyMinkowskian spacetimes
in §2, we choose to work with a compactification in which the closure of the set of
these limiting points, called future timelike infinity I+ and spacelike infinity I 0, are
3-dimensional (rather than 2-dimensional, as in the Penrose compactification); coor-
dinates in their interiors are x/t with |x/t | < 1, t−1 = 0 in (I+)◦, and (t/r , ω) with
|t/r | < 1, r−1 = 0 in (I 0)◦.

At future timelike infinity I+, the asymptotic behavior of waves is governed, quite
generally on suitable asymptotically Minkowski spacetimes, by quantum resonances
[13];7 also, nonlinear interactions are much simpler to deal with than nearI +. (This
is a further reason to keep (I +)◦ and (I+)◦ separate: it keeps the delicate analysis
at I + separate on M from the more straightforward analysis at I+. The analysis at
I 0 is even simpler). We also point out that it is a specific feature of exact Minkowski
space that one can ‘blow down’ I+; that is, suitably rescaled linear waves are smooth
directly on the Penrose compactification, and the blow-up of timelike infinity i+ and
spacelike infinity i0 in the Penrose diagram, as in Figure 1, is not required; on more
general asymptotically Minkowski spacetimes on the other hand, one needs to resolve
i+ and i0 via real blow-up, obtaining I+ and I 0, in order to exhibit linear waves as
polyhomogeneous (read: having a simple asymptotic description) functions on the
compactification.

Thus, we begin by defining R4:

6 We also want to capture the asymptotics of the radiation field itself, leading us to consider the limits
s0 →±∞ of such limiting points.
7 See [13, Theorem 1.1] for the rough theorem. Here, quantum resonances σ j ∈ C are poles of the
meromorphic continuation of the resolvent of an asymptotically hyperbolic Laplacian (plus a potential)
arising naturally by Mellin-transforming the wave operator, or rather L as in (1.13), in (t2 − r2)1/2; linear
waves then have expansions into t iσ j a j (x/t) for suitable distributions a j , smooth in |x/t | < 1. For present
purposes, one can deduce the asymptotic behavior of linear waves equivalently by relating the linear scalar
wave equation to the conformal wave equation on static de Sitter space and the asymptotics of its solutions;
see §5.2. Even so, we shall use spectral theoretic methods to accomplish the latter.
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Definition 1.4 The radial compactification of R
4 is defined as

R4 := R
4 � ([0, 1)R × S

3)/ ∼, (1.10)

where ∼ identifies (R, ω), R > 0, ω ∈ S
3, with the point R−1ω ∈ R

4. The quotient
carries the smooth structure in which the smooth functions are precisely those which
overR

4 (the interior ofR4) are smooth in the usual sense, and which over [0, 1)R×S
3
ω

are smooth in (R, ω) down to R = 0.

The function ρ := (1 + t2 + r2)−1/2 ∈ C∞(R4) is a boundary defining function,
i.e. ∂R4 = ρ−1(0) with dρ nondegenerate everywhere on ∂R4. Letting v = (t − r)/r
away from r = 0, all future null-geodesics tend to S+ = {ρ = 0, v = 0}, and we
then define M as the closure of t ≥ 0 within the blow-up8 [R4; S+] of R4 at S+ (see
Figure 1), i.e. the smooth manifold obtained by declaring polar coordinates around
S+ to be smooth down to the origin. We refer to the front face I + of this blow-up
as null infinity or the radiation face; it has a natural fibration by the fibers of the map
I + → S+, which we call the fibers of the radiation face/null infinity/I +. (The
interior of a typical fiber is equal to Rs0 × {ω0} for some fixed ω0 ∈ S

2).
We can equivalently describe M by giving a list of local coordinate patches and

how (pieces of) R
4 are glued to them. We describe two exemplary coordinate charts

here: the first one is

[0, 1)ρ0 × [0, 1)ρI × S
2
ω,

and we identify (ρ0, ρI , ω) for ρ0, ρI > 0 with the point (t, x) ∈ R × R
3 for t =

ρ−10 (ρ−1I − 1), x = ρ−10 ρ−1I ω. Thus,

ρ0 = (r − t)−1, ρI = (r − t)/r; (1.11)

then I 0, resp. I + is locally given by ρ0 = 0, resp. ρI = 0; thus, this chart describes
a neighborhood of I 0 ∩ I +, i.e. the transition from spacelike to null infinity. (For
example, {ρ0 = 0, ρI = c} for some fixed c ∈ (0, 1) consists of the points ‘at
(spacelike) infinity’ of a spacelike cone in Minkowski space, while {ρ0 = c, ρI = 0}
consists of the points ‘at (null) infinity’ of a null cone). See Figure 2.

The second coordinate chart is

[0, 1)ρ̃I × [0, 1)ρ+ × S
2
ω,

8 The prototypical example of a blow-up is that of the origin in R
n : we have [Rn; {0}] ∼= [0,∞)r × S

n−1,
i.e. the origin in R

n is resolved, and r = 0 is no longer merely a point, but a full (n − 1)-sphere. The
front face of this blow-up is {r = 0} ∼= S

n−1, and the blow-down map is the map (r , ω) �→ rω: it is a
diffeomorphism in r > 0, but at r = 0 collapses an (n − 1)-sphere to a single point (the origin). In the
setting of interest for us, the blow-up [M; X ] of an embedded boundary submanifold X ⊂ ∂M is, in a
similar manner, the union (M \ X) � SN+X of the complement of X and the inward pointing spherical
(i.e. the quotient by the R+ action in the fibers of the) normal bundle of X in M . See the local coordinate
descriptions below, as well as [87, Chapter 5] for a detailed discussion of blow-ups.
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Fig. 2 Illustration of the coordinate chart (1.11). Shown are a number of level sets of ρ0 (red dashed lines)
and ρI (blue dashed lines) projected onto the (t, r) plane. Indicated on the top right is the (ρ0, ρI , ω)
coordinate system including the boundary hypersurfaces I 0 and I+ which are glued onto R

4

and (ρ̃I , ρ+, ω) for ρ̃I , ρ+ > 0 is identified with (t, x) for t = ρ−1+ (ρ̃−1I + 1),
x = ρ̃−1I ρ−1+ ω; thus

ρ̃I = (t − r)/r , ρ+ = (t − r)−1. (1.12)

(Now {ρ̃I = c, ρ+ = 0} for c ∈ (0, 1) consists of the points ‘at (future timelike)
infinity’ of a timelike cone inMinkowski space).When the coordinate system inwhich
we work is clear, we simply write ρI instead of ρ̃I .

To motivate a preliminary choice of function spaces for step 2, recall that the
behavior of solutions of�gu := −u;μμ nearI + can be studied using the Friedlander
rescaling

L := ρ−3�gρ. (1.13)

This operator has smooth coefficients down to the interior (I +)◦ of null infinity: it
is equal to the conformal wave operator �ρ2g − 1

6 Rρ2g , and ρ
2g is a smooth, non-

degenerate Lorentzian metric down to (I +)◦: in local coordinates ρ = r−1 ≥ 0,
x1 = t − r ∈ R, ω ∈ S

2 near (I +)◦, we have ρ2g = −2 dx1 dρ − /g + ρ2(dx1)2.

Thus, solutions of Lu = 0, with C∞c (R3) initial data, are smooth up to I + and typ-
ically nonvanishing there. We shall refer to this reasoning as Friedlander’s argument
below. (Amore sophisticated version of this observation lies at the heart of Friedrich’s
conformal approach [40] to the study of Einstein’s equation). However, for more gen-
eral initial data, and, more importantly, in many nonlinear settings (see §§1.1.2 and
1.2 below), smoothness will not be the robust notion, and we must settle for less:
conormality at ∂M . Namely, let Vb(M) denote the Lie algebra of b-vector fields, i.e.
vector fields tangent to the boundary hypersurfaces of M other than the closure �
of the initial surface �◦ = {t = 0}, a function u on M is conormal iff it remains in
a fixed weighted L2 space on M upon application of any finite number of b-vector
fields. For M defined above, Vb(M) is spanned over C∞(M) by translations ∂t and
∂xi as well as the scaling vector field t∂t + x∂x , boosts t∂xi + xi∂t , and rotation vector
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fields xi∂x j − x j∂xi .
9 (Note however that the definition of Vb(M) depends only on the

smooth structure of M .10)
Let us now explain how to obtain a background estimate, step 3.1 above, for the

forcing problem Lu = f with trivial initial data. First, we can estimate u in H1 on any
compact subset ofR

4∩{t ≥ 0} by f on another compact set. Then, on a neighborhood
of (I 0)◦ which is diffeomorphic to [0, 1)ρ0 × (0, 1)τ × S

2, where

ρ0 := r−1, τ := t/r ,

with ρ0 a local boundary defining function of I 0, this problem roughly takes the form

(
D2
τ − (ρ0Dρ0)

2 − /�
)
u = f , (1.14)

where we use the standard notation

D = 1

i
∂, i = √−1. (1.15)

In (1.14), /� = �/g ≥ 0 is the Laplacian on S
2, and f has suitable decay proper-

ties making its norms in the estimates below finite. This is a wave equation on the
(asymptotically) cylindrical manifold [0, 1)ρ0 × S

2. Let

U0 = {0 ≤ τ ≤ c, ρ0 ≤ 1}, c ∈ (0, 1).

For any weight a0 ∈ R, we can run an energy estimate using the vector field multiplier
ρ
−2a0
0 ∂τ and obtain

‖u‖
ρ
a0
0 H1

b (U0)
� ‖ f ‖

ρ
a0
0 L2

b(U0)
(1.16)

for f supported in U0; see Figure 3. Here L2
b is the L2 space with respect to the b-

density dτ dρ0
ρ0
|d/g|, the weighted L2

b norm is defined by ‖ f ‖
ρ
a0
0 L2

b
= ‖ρ−a00 f ‖L2

b
, and

H1
b is the space of all u ∈ L2

b such that Vu ∈ L2
b for all V ∈ Vb(M); in U0, Vb(M) is

spanned (over C∞(M) by ∂τ , ρ0∂ρ0 , /∇, so we let

‖u‖
ρ
a0
0 H1

b (U0)
:= ‖u‖

ρ
a0
0 L2

b(U0)
+ ‖∂τu‖ρa00 L2

b(U0)

+‖ρ0Dρ0u‖ρa00 L2
b(U0)

+ ‖ /∇u‖
ρ
a0
0 L2

b(U0)
.

9 In the coordinate chart (1.11), Vb(M) is spanned by ρ0∂ρ0 = −t∂t − r∂r , ρI ∂ρI = −r(∂t + ∂r ), and
rotation vector fields. In the chart (1.12),Vb(M) is spanned by ρI ∂ρI = −r(∂t+∂r ), ρ+∂ρ+ = −t∂t−r∂r ,
and rotation vector fields. It is then straightforward to check, in either of these two coordinate systems, that
translations, scaling, and boosts are linear combinations, with C∞(M) coefficients, of these vector fields.
10 The smoothness of elements of Vb(M) on the compactification M in particular constrains their growth
as one leaves every compact set of R

4. As ‘counterexamples’, one can check that the vector field t3∂t ,
expressed in local coordinates near ∂M , is singular near any point of ∂M (though of course it is smooth
on R

4!); similarly, the vector field t∂t is singular at I+ in the sense that it does not extend, by continuity
from R

4, to be tangent to I+ as is required from b-vector fields on M ; it is, on the other hand, a smooth
b-vector field down to (I 0)◦ and (I+)◦.
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Fig. 3 The domainU0 on which the energy estimate (1.16) holds. Left: as a subset of M . Right: as a subset
of the Penrose compactification

In order to obtain a higher regularity estimate, one can commute any number of b-
vector fields through (1.14); the estimate (1.16) only relies on the principal (wave)
part of L; lower order terms arising as commutators are harmless. Thus, f ∈ ρ

a0
0 H∞

b
(weighted L2

b-regularity with respect to any finite number of b-vector fields) implies
u ∈ ρ

a0
0 H∞

b , with estimates.
The same conclusion holds for the initial value problem for Lu = 0 with

initial data which near I 0 are (u|τ=0, ∂τu|τ=0) = (u|t=0, r∂t u|t=0) = (u0, u1),
u j ∈ ρ

a0
0 H∞

b (R3), whereR3 is the radial compactification ofR
3, defined analogously

to (1.10), which has boundary defining function ρ0 = r−1. The assumption (1.6) on
the size of initial data is a smallness condition on ‖〈r〉γ̃ ‖

ρ
b0
0 HN+1

b
+ ‖〈r〉2k‖

ρ
b0
0 HN

b
.

Re-defining ρ = r−1 near S+, a neighborhood of I 0 ∩ I + is diffeomorphic to
[0, 1)ρ0 × [0, 1)ρI × S

2, where (as in (1.11))

ρ0 := −ρ/v = (r − t)−1, ρI := −v = (r − t)/r (1.17)

are boundary defining functions of I 0 andI +, respectively. (Thus, a function bounded
by ρa00 ρ

aI
I decays like r−a0 near (I 0)◦ and like r−aI near (I +)◦). The lift of L to

M is singular as an element of Diff2b(M) but with a very precise structure at I +: the
equation Lu = f is now of the form

(
2∂ρI (ρ0∂ρ0 − ρI ∂ρI )− /�

)
u = f (1.18)

modulo terms with more decay; here, ignoring weights, ρI ∂ρI ∼ ∂t + ∂r and ρ0∂ρ0 −
ρI ∂ρI ∼ ∂t − ∂r are the radial null vector fields. Assuming f vanishes far away from
I +, we can run an energy estimate using V = ρ

−2a0
0 ρ

−2aI
I V0 as a multiplier, where

V0 = −cρI ∂ρI + ρ0∂ρ0 is future timelike in M \ I + if we choose c < 1; note that
V0 is tangent to I 0 and I + (and null atI +); it is necessary to arrange this tangency
for compatibility with our conormal function spaces, but it comes at the expense of
giving control at I + that is weaker (but more robust, i.e. holds for a larger class of
spacetimes) than the smoothness following from Friedlander’s argument. A simple
calculation, cf. Lemma 4.4, shows that for aI < a0 and aI < 0,

‖u‖
ρ
a0
0 ρ

aI
I L2

b
+ ‖(ρ0∂ρ0 , ρI ∂ρI , ρ1/2I

/∇)u‖
ρ
a0
0 ρ

aI
I L2

b
� ‖ρI f ‖ρa00 ρ

aI
I L2

b
in UI , (1.19)

see Figure 4, where L2
b is the L2 space with integration measure dρ0

ρ0

dρI
ρI
|d/g|. The

assumptions on the weights are natural: since ∂t − ∂r transports mass from I 0 toI +,
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Fig. 4 The domain UI on which the energy estimate (1.19) holds

we certainly need aI ≤ a0, while aI < 0 is necessary since, in view of the behavior
of linear waves discussed after (1.13), the estimate must apply to u which are smooth
and nonzero down to I +. In (1.19), derivatives of u along b-vector fields tangent to
the fibers of the radiation face are controlled without a loss in weights, while general
derivatives such as spherical ones lose a factor of ρ1/2I .11 When controlling error terms
later on, we thus need to separate them into terms involving fiber-tangent b-derivatives
and general b-derivatives, and check that the coefficients of the latter have extra decay
in ρI ; see §2.4.

From (1.18), L ∈ ρ−1I Diff2b(M) is equal to the model operator

L0 := 2∂ρI (ρ0∂ρ0 − ρI ∂ρI )

modulo Diff2b(M) (i.e. ignoring second order differential operators, such as /�, which
are sums of atmost twofold products of b-vector fields). The commutation properties of
this model are what allows for higher regularity estimates:12 (ρI times) equation (1.18)
commutes with ρ0∂ρ0 (scaling), ρI ∂ρI (roughly a combination of scaling and boosts),
and spherical vector fields which are independent of ρ0 and ρI .13 In the end, we obtain
u ∈ ρ

a0
0 ρ

aI
I H∞

b when f ∈ ρ
a0
0 ρ

aI−1
I H∞

b .

Lastly, near I+, one can use energy estimate with weight ρ−2aII ρ
−2a++ , a+ < aI

large and negative, multiplying a timelike extension of the above V0; higher regularity
follows by commuting with the scaling vector field ρ+∂ρ+ , where ρ+ is a defining
function of I+, and elliptic regularity for C(ρ+Dρ+)

2 − L , C > 0 large, in I+ away
from I +, which is a consequence of the timelike nature of the scaling vector field
ρ+∂ρ+ in (I+)◦. See Figure 5. Note that it is only at this stage that one uses the
asymptotically Minkowskian nature of the metric in a neighborhood of all of I+;

11 This is to be expected: indeed, letting x := ρ
1/2
I , the rescaled metric x−2(ρ2g) is an edge metric [84],

i.e. a quadratic form in dρ0
ρ0

, dx
x , dθa

x , with θa coordinates on S
2, for which the natural vector fields are

precisely those tangent to the fibers of I+, that is, ρ0∂ρ0 , x∂x = 2ρI ∂ρI , and x∂θa = ρ
1/2
I ∂θa .

12 See the discussion after (1.28) for an even stronger statement.
13 We briefly sketch the argument: denoting the collection of these vector fields—which span Vb(M)

locally—by {Vj }, this gives L(Vj u) = Vj f + [L, Vj ]u with [L, Vj ] ∈ Diff2b (modulo multiples of L
which arise for V = ρI ∂ρI , and which we drop here), which is one order better in the sense of decay than

the a priori expectedmembership in ρ−1I Diff2b due to these commutation properties.Write [L, Vj ] = C jkVk
with C jk ∈ Diff1b and apply the estimate (1.19) to Vj u; then the additional forcing term [L, Vj ]u obeys the
bound

∑
k ‖ρI C jkVku‖ρa00 ρ

aI
I L2b

�
∑

k ‖Vku‖ρa00 ρ
aI−1
I H1

b
, which close to I+ is bounded by a small

constant times the left hand side of (1.19), with Vj u in place of u and summed over j , due to the gain (of

at least 1
2 ) in the weight in ρI .
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Fig. 5 The neighborhood (shaded) of I+ on which we use a global (in I+) weighted energy estimate

when dealing with a more complicated geometry, as e.g. in the study of perturbations
of a Schwarzschild black hole, establishing this part of the background estimate (as
well as the more precise asymptotics at I+ discussed momentarily) becomes a major
difficulty.

Putting everything together, we find that

f ∈ ρ
a0
0 ρ

aI−1
I ρ

a++ H∞
b (M), f ≡ 0 near � �⇒ u ∈ ρ

a0
0 ρ

aI
I ρ

a++ H∞
b (M), (1.20)

for aI < min(a0, 0) and a+ < aI .14

For nonlinear applications, the information (1.20) on u is not sufficient: the decay
rate at I + is limited, and we do not have a good decay rate at I+ either, cf. the
discussion of ρa00 ρ

aI
I following (1.17). Let us thus turn to step 3.2 and analyze Lu = f

for f , vanishing near �, having more decay,

f ∈ Y∞ := ρ
b0
0 ρ

−1+bI
I ρ

b++ H∞
b (M); b+ < bI < b0, bI ∈ (0, 1). (1.21)

The background estimate (1.20) gives u ∈ ρ
b0
0 ρ−εI ρ

a++ H∞
b for all ε > 0. Near I 0∩I +

then, the conormality of u allows for equation (1.18) to be written as

ρI ∂ρI (ρ0∂ρ0 − ρI ∂ρI )u = 1
2 (ρI f + ρI /�u) ∈ ρ

b0
0 ρ

bI
I H∞

b on UI , (1.22)

i.e. L effectively becomes the composition of (linear) transport equations along the
two radial null directions. See Figure 6. Integration of ρ0∂ρ0−ρI ∂ρI is straightforward,
while integrating ρI ∂ρI , which is a regular singular ODE with indicial root 0, implies
that u has a leading order term at I +; one finds that

u = u(0) + ub; u(0) ∈ ρ
b0
0 H∞

b (I +), ub ∈ ρ
b0
0 ρ

bI
I H∞

b (M) near I 0 ∩I +,

which implies the existence of the radiation field.15 The procedure to integrate along
(approximate) characteristics to get sharp decay is frequently employed in the study
of nonlinear waves on (asymptotically) Minkowski spaces, see e.g. [80, §2.2], [74],
and their precursors [71,72].

14 Proving this estimate for large, negative, but nonexplicit a+ is easy, while obtaining an explicit value
of a+ does require explicit straightforward (albeit lengthy) calculations. We accomplish this in §4.3 by
identifying L with the conformal wave operator on static de Sitter space for a suitable choice of ρ.
15 For rapidly decaying f , one can plug this improved information into the right hand side of (1.22),
thereby obtaining an expansion of u into integer powers of ρI and recovering the smoothness of u at I+.
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Fig. 6 The integral curves of the vector fields ∂t +∂r ∼ −ρI ∂ρI and ∂t −∂r ∼ ρ0∂ρ0 −ρI ∂ρI . Integration
along the former gives the leading term at I+, while integration along the latter transports weights (and
polyhomogeneity) from I 0 to I+

At I + ∩ I+, the same argument works, showing that u(0) and ub are bounded by
Cρa++ and CρbII ρ

a++ near I+ (i.e. by t−a+ as t → ∞ with r/t in compact subsets of
[0, 1)). Improving this weight however does not follow from such a simple argument.
Indeed, at I+, the behavior of u is governed by scattering theoretic phenomena: the
asymptotics are determined by scattering resonances of amodel operator at I+, namely
the normal operator of the b-differential operator L at I+, obtained by freezing its
coefficients at I+, see equation (2.2). We thus use the arguments introduced in [107],
see also [58, Theorem 2.21], based on Mellin transform in ρ+, inversion of a ‘spectral
family’ L̂(σ ), which is the conjugation of themodel operator (called ‘normal operator’
in b-parlance) of L at I+ by the Mellin transform in I+, with σ the dual parameter to
ρ+, and contour shifting in the inverse Mellin transform to find the correct asymptotic
behavior at I+: the resonances σ ∈ C, which are the poles of L̂(σ )−1, give rise to a
term ρiσ+ v, v a function on I+, in the asymptotic expansion of u. (See §§5.2 and 7 for
details). The resonances can easily be calculated explicitly in the present context, and
they all satisfy −Im σ ≥ 1 > b+. The upshot is that

f ∈ Y∞ ⇒ u ∈ X∞ := {
χu(0) + ub : u(0) ∈ ρ

b0
0 ρ

b++ H∞
b (I +),

ub ∈ ρ
b0
0 ρ

bI
I ρ

b++ H∞
b (M)

}
, (1.23)

where χ cuts off to a neighborhood of I +.
For later use as a simple model for constraint damping, consider a more general

equation,
Lγ u ≡ ρ−3(�g − 2γ t−1∂t )(ρu) = f , (1.24)

for γ ∈ R; near I + and I 0, this now roughly takes the form

(
2ρ−1I (ρI ∂ρI − γ )(ρ0∂ρ0 − ρI ∂ρI )− /�

)
u = f .

Once the conormality of u is known, integrating the first vector field on the left gives
a leading term ρ

γ

I , which is decaying for γ > 0. (One can show that the background
estimate (1.20) holds for aI < γ , but even an ineffective bound aI � 0 would be good
enough, as the transport ODE argument automatically recovers the optimal bound).

Remark 1.5 Note that for smallγ , the normal operator of Lγ at I+ is close to the normal

operator for γ = 0, hence one would like to conclude that mild decay ρb++ , b+ < 1, at
I+ still holds in this case. This is indeed true, but the argument has a technical twist:
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Lγ does not have smooth coefficients at I + as a differential operator (unlike L in
Friedlander’s argument) due to the presence of derivatives which are not tangential
to S+. However, we still have Lγ ∈ Diff2b(R

4); we thus deduce asymptotics at I+

via normal operator analysis on the blown-down space R4, analogously to [13,14].
See §5.2.

Remark 1.6 The improved decay at I + translates into higher b-regularity of u on
the blown-down space R4, as we will show in Lemma 5.7; in the language of [13,
Proposition 4.4], this corresponds to a shift of the threshold regularity at the radial set
by γ coming from the skew-symmetric part of Lγ .

1.1.2 Non-linearities and null structure

Equipped with this understanding of linear waves, we now discuss steps 2–4 of the
abstract strategy of §1.1. In particular, we will show how the absence of a ‘null
structure’ for a semilinear wave equation well-known to exhibit finite-time blow-
up manifests itself from the global, Newton iteration scheme perspective; we will also
discuss examples of equations that do satisfy a null condition, of the type arising when
studying the linearization of the gauge-fixed Einstein equation.

To begin, recall that if u is conormal on M , then its derivatives along ∂0 := ∂t + ∂r
or size 1 spherical derivatives r−1 /∇ have faster decay by one order atI +, whereas its
‘bad’ derivative along ∂1 := ∂t − ∂r does not gain decay there; indeed, modulo vector
fields with more decay at I +, we calculate near I 0 ∩I + using (1.17)

∂0 = − 1
2ρ0ρI ρI ∂ρI , ∂1 = ρ0(ρ0∂ρ0 − ρI ∂ρI );

note the extra factor of ρI in ∂0. All these derivatives gain an order of decay at I 0,
hence the structure of nonlinearities is relevant mainly at I +; let us thus restrict
the discussion to a neighborhood of I 0 ∩ I +. (Similar considerations apply to a
neighborhood of I+ ∩I +). Consider the nonlinear equation �gu − (∂1u)2 = f , or
rather the closely related equation

P(u) = Lu − ρ−1(∂1u)2 − f , f ∈ Y∞ small, (1.25)

with L given by (1.13); this is well-known to violate the null condition introduced
by Christodoulou [22] and Klainerman [64]. From our compactified perspective, the
issue is the following. For u ∈ X∞, the linearization Lu = L − 2ρ−1(∂1u)∂1 is, to
leading order as a b-operator,

2ρ−1I (ρI ∂ρI − ∂1u)(ρ0∂ρ0 − ρI ∂ρI ),

so the indicial root atI + is shifted from 0 to ∂1u|I + . Therefore, a step Luv = −P(u)
in theNewton iteration scheme (1.9) does not give v ∈ X∞. A Picard iteration, solving
L0v = −P(u)would, due to the leading termofρ−1(∂1u)2 of sizeρ−1I , cause v to have
a logarithmic leading term when integrating the analogue of (1.22). Neither iteration
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scheme closes, and this will remain true for any modification of the space X∞, e.g. if
one allowed elements ofX∞ to have leading terms involving higher powers of log ρI .
In fact, solutions of global versions of this equation blow up in finite time [62].

Assuming initial data to have sufficient decay, the nonlinear system Luc1 = 0,
Lu1 − ρ−1(∂1uc1)2 = 0 on the other hand can be solved easily if we design the
function space X∞ in step 2 to encode a ρ0I leading term for uc1 at I

+, as in (1.23),
and two leading terms, of size log ρI and ρ0I , for u1. Extending this model slightly, let
γ > 0, recall Lγ from (1.24), and consider the system for u = (u0, uc1, u1),

P(u) = (
Lγ u0, Luc1 − ρ−1(∂1u0)2, Lu1 − ρ−1(∂1uc1)2

) = 0; (1.26)

which is a toy model for the nonlinear structure of the gauge-fixed Einstein equation
with constraint damping, aswewill argue in §1.2.Onlyworking in (I +)◦, i.e. ignoring
weights at I 0 and I+ for brevity, the above discussions suggest taking bI ∈ (0, γ ) and
working with the space16

X∞ = {u = (u0, u
c
1, u1) : (u0, uc1 − uc(0)1 , u1 − u(1)1 log ρI − u(0)1 ) ∈ ρ

bI
I H∞

b (M)},
(1.27)

where uc(0)1 , u(1)1 , u(0)1 ∈ C∞((I +)◦) are the leading terms. Then

P : X∞ → Y∞ = { f = ( f0, f
c
1 , f1) : ( f0, f c1 , f1 − ρ−1I f (0)1 ) ∈ ρ

−1+bI
I H∞

b },

where f (0)1 ∈ C∞((I +)◦). The linearization Lu of P around u ∈ X∞ then has as its
model operator at I +

L0
u = 2ρ−1I (ρI ∂ρI − Au)(ρ0∂ρ0 − ρI ∂ρI ), Au =

⎛
⎝
γ 0 0
0 0 0
0 ∂1u

c(0)
1 0

⎞
⎠ , (1.28)

which has a (lower triangular) Jordan block structure, with all blocks either having
positive spectrum (the upper 1× 1 entry) or being nilpotent (the lower 2× 2 block).
Thus, by integrating ρI ∂ρI − Au , we conclude that for Luv = −P(u), we have
v ∈ X∞, thus closing the iteration scheme (1.9). A background estimate as well
as its higher regularity version, which is the prerequisite for L0

u being of any use,
can be proved as before. Error terms arising from commutation with Au have lower
differential order and can thus be controlled inductively; that is, only the commutation
properties of the principal part of L0

u matter for this.

Remark 1.7 A tool for the study of the long time behavior of nonlinear wave equations
on Minkowski space introduced by Hörmander [54] is the asymptotic system, see
also [55, §6.5] and [78]: this arises by making an ansatz u ∼ εr−1U (t − r , ε log r , ω)
for the solution and evaluating the ε2 coefficient,which gives a PDE in 1+1dimensions

16 Here as well as in the previous example, one could of course work with much less precise function
spaces since the full nonlinear system is lower triangular; for the Einstein equation on the other hand, we
will need this kind of precision.
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in the coordinates t − r and � := ε log r which one expects to capture the behavior of
the nonlinear equation near the light cone; if the classical null condition is satisfied, the
PDE is linear, otherwise it it nonlinear. The weak null condition [78] is the assumption
that solutions of the asymptotic system grow at most exponentially in �, and for the
Einstein vacuum equation in harmonic gauge, solutions are polynomial (in fact, linear)
in �. The latter finds its analogue in our framework in the nilpotent structure of the
coupling matrix in (1.28). (However, quasilinear equations with variable long-range
perturbations, see the discussion around (1.35), cannot be treated directly with our
methods, corresponding to the difficulty in assigning a geometric meaning to the
asymptotic system in such situations). For works which establish global existence
of nonlinear equations even when the asymptotic system has merely exponentially
bounded (in �) solutions, we refer to Lindblad [72,73] and Alinhac [6].

1.1.3 Polyhomogeneity

Consider again equation (1.14) near (I 0)◦, now assuming that f is polyhomogeneous.
For simplicity, let f = ρi z0 fz + f̃ , where fz ∈ C∞(∂R4), z ∈ C, and f̃ decays faster

than the leading term, so f̃ ∈ ρ
b0
0 H∞

b with b0 > − Im z. A useful characterization
of the polyhomogeneity of f is that the decay of f improves upon application of the
vector field ρ0Dρ0 − z in the notation (1.15). The solution u satisfies u ∈ ρ

a0
0 H∞

b for
any a0 < − Im z; but u′ := (ρ0Dρ0 − z)u solves17

Lu′ = (ρ0Dρ0 − z) f = (ρ0Dρ0 − z) f̃ ∈ ρ
b0
0 H∞

b ,

so u′ ∈ ρ
b0
0 H∞

b . This is exactly the statement that u has the form u = ρi z0 uz + ũ for

some uz ∈ C∞(∂R4), ũ ∈ ρ
b0
0 H∞

b . If f has a full polyhomogeneous expansion, an
iteration of this argument shows that u has one too, with the same index set.

Near the corner I 0 ∩I + then, one can proceed iteratively as well, picking up the
terms of the expansion atI + one by one, by analyzing the solution of the product of
transport equations in equation (1.22) when the right hand side has a partial polyho-
mogeneous expansion at I +: the point is that ρ0∂ρ0 − ρI ∂ρI transports expansions
from I 0 to I +, ultimately since it annihilates ρi z0 ρ

i z
I . See Lemmas 7.5–7.7.

To obtain the expansion at I+, we argue iteratively again, using the resonance
expansion obtained via normal operator analysis as in the proof of [58, Theorem 2.21].
One needs to invert the normal operator family of L on spaces of functions which are
polyhomogeneous at the boundary ∂ I+, which is easily accomplished by solving away
polyhomogeneous terms formally and using the usual inverse, defined on spaces of
smooth functions, to solve away the remainder; see Lemma 7.8.

1.2 Analysis of Einstein’s equation

For Einstein’s equation, the strategy outlined in §1.1 needs to be supplemented by a
preliminary step, the choice of the nonlinear operator P , which in particular means

17 Commutator terms have improved decay at ρ0 = 0 as before, hence are dropped here for clarity.
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choosing a gauge, i.e. a condition on the solution g of Ric(g) = 0 which breaks the
diffeomorphism invariance; by the latter wemean the fact that for any diffeomorphism
φ of M , φ∗g also solves Ric(φ∗g) = 0. Following DeTurck [36], the presentation by
Graham–Lee [47], and [60], we consider the gauge-fixed Einstein equation

P0(g) = Ric(g)− δ̃∗ϒ(g) = 0, (1.29)

where δ̃∗ is a first order differential operator with the same principal symbol (which is
independent of g) as the symmetric gradient (δ∗gu)μν = 1

2 (uμ;ν + uν;μ); we comment
on the choice of δ̃∗ below. Further, the gauge 1-form is

ϒ(g; gm)μ := (gg−1m δgGggm)μ = gμνg
κλ(�(g)νκλ − �(gm)

ν
κλ), (1.30)

where δg is the adjoint of δ∗g , i.e. the (negative) divergence,Gg = 1− 1
2g trg is the trace

reversal operator, and gm is a fixed background metric; we write ϒ(g) ≡ ϒ(g; gm)
from now on. This is a manifestly coordinate invariant generalization of the wave
coordinate gauge, where one would choose gm = g to be the Minkowski metric on

R
4 and demand that a global coordinate system (xμ) : (M◦, g)→ (R4, g) be a wave

map. (Friedrich describes ϒ(g) = 0 and more general gauge conditions using gauge
source functions, see in particular [41, Equation (3.23)]).

Two fundamental properties of P0(g) are: (1) P0(g) is a quasilinear wave equation,
hence has a well-posed initial value problem; (2) by the second Bianchi identity—the
fact that the Einstein tensor Ein(g) := GgRic(g) is divergence-free—the equation
P0(g) = 0 implies the wave equation

δgGg δ̃
∗ϒ(g) = 0 (1.31)

forϒ(g), which thus vanishes identically provided its Cauchy data are trivial; we call
δgGg δ̃

∗ the gauge propagation operator. Therefore, solving (1.29) with Cauchy data
forwhichϒ(g)has trivialCauchydata is equivalent to solvingEinstein’s equation (1.1)
in the gauge ϒ(g) = 0.

Sincewewish to solve the initial value problem (1.4), we need to choose theCauchy
data for g, i.e. the restrictions g0 and g1 of g and its transversal derivative to the initial
surface�◦ as a Lorentzianmetric on M◦ such that γ is the pullback of g0 to�◦ and k is
the second fundamental form of any metric with Cauchy data (g0, g1); note that k only
depends on up to first derivatives of the ambient metric, hence can indeed be expressed
purely in terms of (g0, g1). These conditions do not determine g0, g1 completely, and
one can arrange in addition thatϒ(g) vanishes at�◦ as a 1-form on M . Provided then
that P0(g) = 0, with these Cauchy data for g, holds near �◦, the constraint equations
at �◦ can be shown to imply that also the transversal derivative of ϒ(g) vanishes at
�◦ (see the proof of Theorem 6.3), and then the argument involving (1.31) applies.

If the initial data in Theorem 1.1 are exactly Schwarzschildean for r ≥ R � 1,
the solution g is equal (i.e. isometric) to the Schwarzschild metric in the domain of
dependence of the region r ≥ R; more generally, for initial data which are equal to
those of mass m Schwarzschild modulo decaying corrections, we expect all outgoing
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null-geodesics to be bent in approximately the sameway as for themetric gSm . Thus, we
should define the manifold M in step 1 so thatI + is null infinity of the Schwarzschild
spacetime. Now, along radial null-geodesics of gSm , the difference t − r∗ is constant,
where

r∗ = r + 2m log(r − 2m) (1.32)

is the tortoise coordinate up to an additive constant, see [109, Equation (6.4.20)].
Correspondingly, we define the compactification m

R4 near t ∼ r∗ such that ρ = r−1
is a boundary defining function, andmv := (t−r∗)/r is smooth up to the boundary;mM
is defined by blowing this up at S+ = {ρ = 0, mv = 0}. (This is smoothly extended
away from t ∼ r∗ to a compactification of all of R

4). Thus, mR4 and the Minkowski
compactification R4 = 0

R4 are canonically identified by continuity fromR
4, but have

slightly different smooth structures; see §2.3 and [14, §7]). The interior of the front
faceI + of the blow-up is diffeomorphic to Rs ×S

2, where s := mv/ρ = t − r∗ is an
affine coordinate along the fibers of the blow-up. We denote defining functions of I 0

(the closure of {ρ = 0, mv < 0} in mM),I +, and I+ (the closure of {ρ = 0, mv > 0}
in mM) by ρ0, ρI , and ρ+, respectively.

It is then natural to fix the background metric gm to be equal to gSm near I 0 ∪I +
and smoothly interpolate with theMinkowski metric near r = 0 (which is nonsingular
there, unlike gSm). We then work with the gauge ϒ(g; gm) = 0, and seek the solution
of

P(h) := ρ−3P0(g) = 0, g = gm + ρh, (1.33)

with h to be determined; the factors ρ are introduced in analogy with the discussion
of the scalar wave equation (1.13).18 Here, ρ is a global boundary defining function
of m

R4; one can e.g. take ρ = r−1 away from the axis r/t = 0, and ρ = t−1
near r/t = 0. Now, due to the quasilinear character of (1.29), the principal part of
Lh := Dh P depends onh: it is givenby 1

2�g . Thus, oneneeds to ensure that throughout
the iteration scheme (1.9), the null-geometry of g is compatible with mM , in the sense
that the long range term of g determining the bending of light rays remains unchanged.
To see what this means concretely, consider a metric perturbation h in (1.33) which
is not growing too fast at I +, say |h| � ρ−εI for ε < 1/2 (that is, |h| � r ε when
t − r∗ remains in a bounded interval); one can then check that, modulo terms with
faster decay at I +,

�g = 2ρ−1I

(
ρI ∂ρI +2ρ0h00(ρ0∂ρ0−ρI ∂ρI )

)
(ρ0∂ρ0−ρI ∂ρI ) near I 0∩I +, (1.34)

which identifies
h00 = h(∂0, ∂0), ∂0 = ∂t + ∂r∗ , (1.35)

as the (only) long range component of h; see the calculation (3.15).19. Indeed, the first
vector field in (1.34) is approximately tangent to outgoing null cones, so for h00 �= 0 at

18 Note that we use gm in two distinct roles: once as a background metric in the gauge condition, and once
as a rough first guess of the solution of the initial value problem which (1) already has the correct long
range behavior at null infinity and (2) is globally close to a solution of the Einstein vacuum equation if m
is small. See also Remark 6.6.
19 In the case that h00 vanishes at I+, the approximate null directions ρI ∂ρI and ρ0∂ρ0 − ρI ∂ρI have
the same form as in the discussion surrounding (1.22), however, due to our choice of compactification mM ,
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I +, outgoing null cones do not tend to (I +)◦. (Rather, if h00 > 0, say, they are less
strongly bent, like in a Schwarzschild spacetime with mass smaller than m). Whether
or not h00 vanishes at I + depends on the choice of gauge. A calculation, see (A.5),
shows that the gauge conditionϒ(g) = 0 implies the constancy of h00 alongI +; but
since h00 is initially 0 due to gm already capturing the long range part of the initial
data, this means that h00|I + = 0 indeed—provided that P(h) = 0 with Cauchy data
satisfying the gauge condition, aswe otherwise cannot conclude the vanishing ofϒ(g).
We remark that ϒ(g) = 0 implies the vanishing of further components of h, namely
r−1h0a ≡ h(∂0, r−1∂θa ) and r−2/gabhab, hab := h(∂θa , ∂θb ), which we collectively
denote by h0; see (3.4) and (3.11), where the notation h0 =: π0h is introduced.

As we are solving approximate (linearized) equations at each step of our Newton-
type iteration scheme in step 4, we thus need an extra mechanism to ensure thatϒ(g),
g = gm + ρh, is decaying sufficiently fast at I + to guarantee the vanishing of h00
at I +. This is where constraint damping comes into play. Roughly speaking, if one
only has an approximate solution of P0(g) ≈ 0, then we still get δgGg δ̃

∗ϒ(g) ≈ 0;
if one chooses δ̃∗ carefully, solutions of this can be made to decay at I + sufficiently
fast so as to imply the vanishing of h00. We shall show that the choice

δ̃∗u = δ∗gmu + 2γ dt
t ⊗s u − γ (ιt−1∇t u)gm, γ > 0,

accomplishes this.20 As a first indication, one can check that 2δgmGgm δ̃
∗ has a structure

similar to (1.24) with γ > 0, for which we had showed the improved decay at I +.
Regarding steps 2 and 3 of our general strategy, the correct function spaces can now

be determined easily (after some tedious algebra): solving L0u = 0, where Lh = Dh P
as usual, one finds that u0 = π0u, so in particular the long range component u00 of
u decays at I +, while the remaining components, denoted uc0, have a size 1 leading
term at I +, just like solutions of the linear scalar wave equation. This follows from
the schematic structure

ρ−1I

(
ρI ∂ρI −

(
γ 0
0 0

))
(ρ0∂ρ0 − ρI ∂ρI )

(
u0
uc0

)

of the model operator at I + in this case. However, for such u then, solutions of
Luu′ = −P(u) have slightly more complicated behavior. Indeed, the model operator
at I + has a schematic structure similar to (1.28), acting on (u′0, (u′)c11, u′11), where
we separate the components of (u′)c0 into two sets, one of which consists of the single
component

u′11 = u(∂1, ∂1), ∂1 = ∂t − ∂r∗ , (1.36)

while (u′)c11 captures the remaining components, which are u01, r−1u1b, and the part
r−2(uab− 1

2 /gab/g
cducd) of the spherical part of u which is trace-free with respect to /g.

Correspondingly, we need to allow u′11 to have a logarithmic leading order term, just

they are now the radial null directions of Schwarzschild with massm. (Integration along these more precise
characteristics was key in Lindblad’s proof of sharper asymptotics in [74])
20 For technical reasons related to the definition of the smooth structure on m

R4, we shall modify t slightly;
see Definition 2.9 and Equation (3.3).
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like the component called u1 in the definition of the function space (1.27). In the next
iteration step, Lu′u′′ = −P(u′), no further adjustments are necessary: the structure of
the model operator atI + is unchanged, hence the asymptotic behavior of u′′ does not
get more complicated.21 We remark that due to our precise control over each iterate,
encoded by membership in X∞, the relevant structure of the model operators and the
regularity of the coefficients of the linearized equations are the same at each iteration
step; in particular, the fact that equation (1.33) is quasilinear rather than semilinear
does not cause any complications beyond the need for constraint damping.

The decoupling of themodel operator atI + into three pieces—one for the decaying
components u0, one for the components uc11 which have possibly nontrivial leading
terms at I +, and one for the logarithmically growing component u11—is the key
structure making our proof of global stability work. The fact that the equation for
the components u0 decouples is not coincidental, as they are governed by the gauge
condition and thus are expected to decouple to leading order in view of the second
Bianchi identity as around (1.31).22 The decoupling of u11 and uc11 on the other hand
is the much more subtle manifestation of the weak null condition, as discussed in
Remark 1.7.

The solution h of (1.33) is a symmetric 2-tensor in M◦; as part of step 1, we still
need to specify the smooth vector bundle on M which h will be a section of. Consider
first theMinkowski metric g on the radial compactification 0

R4. InR
4, g is a quadratic

form, with constant coefficients, in the 1-forms dt and dxi , which extend smoothly to
the boundary as sections of the scattering cotangent bundle scT ∗ 0

R4 first introduced in
[86]; in a collar neighborhood [0, 1)ρ×R

3
X of a point in ∂0R4, the latter is by definition

spanned by the 1-forms dρ
ρ2
, dXi

ρ
, which are smooth and linearly independent sections

of scT ∗ 0
R4 down to the boundary. For instance, near r = 0, we can take ρ = t−1

and X = x/t , in which case dρ
ρ2

= −dt and dXi

ρ
= dxi − Xi dt . Similarly then, gm

will be a smooth section of the second symmetric tensor power S2 scT ∗ m
R4. Since

our nonlinear analysis takes place on the blown-up space mM , we seek h as a section
of the pullback bundle β∗S2 scT ∗ m

R4, where β : mM → m
R4 is the blow-down map.

For brevity, we shall suppress the bundle from the notation here.

Theorem 1.8 Suppose the assumptions of Theorem 1.1 are satisfied, i.e. for some small
m ∈ R and b0 > 0 fixed, the normalized data ρ−10 γ̃ and ρ−20 k ∈ ρ

b0
0 H∞

b (R3) are

small in ρb00 HN+1
b and ρb00 HN

b , respectively. Then there exists a solution g of the initial
value problem (1.4) satisfying the gauge condition ϒ(g) = 0, see (1.30), which on
mM is of the form g = gm + ρh, h ∈ ρ

b0
0 ρ−εI ρ−ε+ H∞

b (mM) for all ε > 0; here ρ is a

boundary defining function of mR4, and ρ0, ρI , and ρ+ are defining functions of I 0,
I +, and I+, respectively.

21 The coupling matrix, called Au in (1.28), is in fact slightly more complicated here, see Lemma 3.8,
necessitating a more careful choice of the weights of the remainder terms of elements of the spaces X∞
and Y∞ at I+, whose precise definitions we give in Definitions 3.1 and 3.3.
22 In practice, it is easier to analyze u0 directly using the structure of the linearized gauge-fixed Einstein
equation, rather than via an (approximate) linearized secondBianchi identity, so this is howwe shall proceed.
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More precisely, nearI + and using the notation introduced after (1.35) and (1.36),
the components h00, r−1h0b, and r−2/gabhab lie in

ρ
b0
0 ρ

bI
I ρ

−ε+ H∞
b (mM) (1.37)

for all bI < min(1, b0) and ε > 0, while h01, r−1h1b, and r−2(hab − 1
2 /gab/g

cdhcd)
have size 1 leading terms at I + plus a remainder in the space (1.37) for all such
bI , ε, and h11 has a logarithmic and a size 1 leading term at I + plus a remainder
in the space (1.37) for all such bI , ε. At I+ on the other hand, h has a size 1 leading
term: there exists h+ ∈ ρ−εI H∞

b (I+) such that h − h+ ∈ ρ−εI ρ
b++ H∞

b (mM) near I+
for any b+ < min(b0, 1).

Remark 1.9 Near mI +, and indeed for r � 1 and t − r∗ ≤ 1
2r , the membership

u ∈ ρ
b0
0 ρ

bI
I ρ

b++ H∞
b (mM) (e.g. u being a metric coefficient of h, and b+ = −ε as

in (1.37)) is equivalent, up to arbitrarily small losses in decay (due to switching from
L2 to L∞ via Sobolev embedding), to

|V1 · · · VNu| � r−bI (1+ (r∗ − t)+)−b0+bI (1+ (t − r∗)+)b++bI

for all N ∈ N0, where each Vj is a rotation vector field in R
3 or one of the vector

fields t∂t + r∗∂r∗ , t∂r∗ + r∗∂t , ∂t , ∂x .

See Theorem 6.3 for the full statement, which in particular allows for the decay
rate b0 of the initial data to be larger and gives the corresponding weight at I 0 for
the solution. The final conclusion follows from resonance considerations, as indicated
before (1.23), and will follow from the arguments used to establish polyhomogeneity
in §7. We discuss continuous dependence on initial data in Remark 6.4. A typical
example of a polyhomogeneous expansion of h arises for initial data which are smooth
functions of 1/r in r � 1: in this case, the leading terms of the expansion of h are
schematically (and not showing the coefficients, which are functions on I +)

h0 ∼ ρI log
≤3 ρI , hc11 ∼ 1+ ρI log

≤4 ρI , h11 ∼ log≤1 ρI + ρI log
≤6 ρI (1.38)

at I +, and h ∼ 1 + ρ+ log≤8 ρ+ at I+; see Example 7.3. Here, log≤k ρI stands for
functions which are sums of products | log ρI |�a�, 0 ≤ � ≤ k, with a� functions on
I +.

While a solution g of Ric(g) = 0 in the gauge ϒ(g) = 0 of course solves equa-
tion (1.29) for any choice of δ̃∗, we argued why a careful choice is crucial to make
our global iteration scheme work. Another perspective is the following: implement-
ing constraint damping allows us to solve the gauge-fixed equation (1.29) for any
sufficiently small Cauchy data; whether or not these data come from an initial data
set satisfying the constraint equations is irrelevant. Only at the end, once one has a
solution of (1.29), do we use the constraint equations and the second Bianchi identity
to deduce ϒ(g) = 0.

In contrast, consider the choice δ̃∗ = δ∗g in (1.29); the linearization of P0(g) around
the Minkowski metric g = g is then equal to 1

2�g , which is 1
2 times the scalar wave
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operator acting component-wise on the components of a symmetric 2-tensor in the
frame dxμ ⊗ dxν + dxν ⊗ dxμ, where x0 = t , xi , i = 1, 2, 3, are the standard
coordinates on R

1+3
t,x . Solving �g(ρh) = 0 with given initial data, which would be

the first step in our iteration scheme for initial data with mass m = 0, does not
imply improved behavior for any components of h, in particular h00; this means that
constraint damping fails for this choice of δ̃∗. Thus, the next iterate g+ ρh in general

has a different long range behavior, and correspondingly 0M is no longer the correct
place for the analysis of the linearized operator in the next iteration step—even though
the final solution of Einstein’s equation is well-behaved on 0M for such initial data.
With constraint damping on the other hand, the linearized equation always produces
behavior consistent with the qualitative properties of the nonlinear solution.

1.3 Bondi mass loss formula

The description of the asymptotic behavior of the metric g = gm+ρh in Theorem 1.8
on the compact manifold mM and in the chosen gauge allows for a precise description
of outgoing light cones close to the radiation faceI +. Work on geometric quantities
atI + started with the seminal works of Bondi–van der Burg–Metzner [10,12], Sachs
[96,97], Newman–Penrose [92], and Penrose [94]; the precise decay properties of the
curvature tensor—in particular ‘peeling estimates’ or their failure—were discussed
in [24,67], see also [35]. (For studies on conditions on initial data which ensure or
prevent smoothness of the metric atI + in suitable coordinates, see [1,30,40,41,108]
and [66, §8.2]).

As remarked before, the logarithmic bending of light cones is controlled by the
ADM mass m, which measures mass on spacelike, asymptotically flat, Cauchy sur-
faces. A more subtle notion is the Bondi mass [12], see also [23], which is a function
of retarded time x1 = t − r∗ that can be defined as follows: let S(u) ⊂ I + denote
the u-level set of x1 at null infinity; S(u) is a 2-sphere, and naturally comes equipped
with the round metric. If Cu denotes the outgoing light cone which limits to S(u) at
null infinity and which asymptotically approaches the radial Schwarzschild light cone
{x1 = u}, one can define a natural area radius r̊ on Cu , equal to the coordinate r plus
lower order correction terms; the Bondi mass MB(u) is then the limit of the Hawking
mass of the 2-sphere {x1 = u, r̊ = R} as R →∞. See §8 for the precise definitions.
A change d

du MB(u) of the Bondi mass reflects a flux of gravitational energy to I +
along Cu . We shall calculate these quantities explicitly and show:

Theorem 1.10 Suppose we are given a metric constructed in Theorem 1.8, and write
h11 = h(1)11 log(r)+O(1) nearI +, where h(1)11 ∈ ρ

b0
0 ρ−ε+ H∞

b (I +) is the logarithmic
leading term. Then the Bondi mass is equal to

MB(u) = m + 1

4π

∫

S(u)

1
2h

(1)
11 d/g. (1.39)

The Bondi mass loss formula takes the form d
du MB(u) = −E(u), where
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E(u) = 1

32π

∫

S(u)
|N |2

/g d/g, Nab = r−2∂1hab|I + ,

is the outgoing energy flux. Finally, MB(−∞) = m and MB(+∞) = 0.

We prove this for all initial data which are small and asymptotically flat in the
sense of (1.6). The Bondi mass was shown to be well-defined (and to satisfy a mass
loss formula) for the weakly decaying initial data used in [16] by Bieri–Chruściel [8]
in the geometric framework of [27], but the question of how to define Bondi–Sachs
coordinates remained open. Our result is the first to accomplish this for a large class
of initial data, and to identify the Bondi mass in a (generalized) wave coordinate
gauge setting. (The C1,min(b0,1)−0 regularity of a conformally rescaled non-degenerate
metric down to I + is a by-product of our analysis) The key to establishing the first
part of Theorem 1.10 is the construction and precise control of the aforementioned
geometric quantities leading to the identification (1.39); the mass loss formula itself
is then equivalent to the vanishing of the leading term of the (1, 1) component of the
gauge-fixed Einstein equation at I +. The vanishing of MB(u) as u → −∞ follows
immediately from the decay properties of h there. On the other hand, the proof that
the total radiated energy

∫
E(u) du equals the initial mass m proceeds by studying

the leading order term h|I+ as the solution of a linear equation on I+ (obtained by
restricting the nonlinear gauge-fixed Einstein equation to I+), with a forcing term
that comes from the failure of our glued background metric gm to satisfy the Einstein
equation and which is thus proportional to m. This equation now is closely related to
the spectral family of exact hyperbolic space at the bottom of the essential spectrum;23

a calculation of the scattering matrix acting on the incoming data given by h(1)11 and
comparing the (0, 0) component of the outgoing data with h00—which vanishes by
construction!—then establishes the desired relationship.

Theorem 1.10 shows that the logarithmic term in the asymptotic expansion of h11
carries physical meaning. Its vanishing forces m = 0, which by the positive mass
theorem means that the spacetime is exact Minkowski space. (The observation that∫
E(u) du ≥ 0 immediately implies the nonnegativity of the ADM mass of the small

initial data under consideration here, which in this case was first proved by Choquet-
Bruhat–Marsden [20]).

Further geometric properties of the vacuum metrics constructed in this paper, such
as the identification of (I +)◦ ⊂ M , resp. (I+)◦, as the set of endpoints of future-
directed null, resp. timelike, geodesics, will be discussed elsewhere.

1.4 Outline of the paper

In §§2 and 3, we set the stage for the analysis (steps 1 and 2): we give the precise
definition of the compactification M = mM on which we will find the solution of (1.4)

23 This linear operator acts on the symmetric scattering 2-tensor bundle restricted to I+; see [50] for the
relation with the hyperbolic Laplacian acting on its intrinsic 2-tensor bundle. The spectral parameter here
is fixed, and the definition of the scattering matrix (incoming data having logarithmic rather than algebraic
growth) is specific to working at the bottom of the spectrum; this is in contrast to the description of the
scattering matrix depending on the spectral parameter as e.g. in [49].
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in §2.1; the relevant function spaces are defined in §2.2, and the relationships between
different compactifications are discussed in §2.3. In §2.4, we prepare the invariant
formulation of estimates such as (1.19); the results there are not needed until §4. In
§3.1, we define the spaces X∞ and Y∞ on M in which we shall find the solution
h in Theorem 1.8, and calculate the mapping properties and model operators of the
(linearized) gauge-fixed Einstein operator in §§3.2 and 3.3, respectively. (The nec-
essary algebra is moved to Appendix A). The key structures (constraint damping,
null structure) critical for our proof will be discussed there as well. We accomplish
part 3.1 of step 3—the proof of a high regularity background estimate with imprecise
weights—by exploiting these structures in §4. The recovery of the precise asymptotic
behavior in §5 finishes step 3.2. Putting this into a Nash–Moser framework allows us
to finish the proof of Theorem 1.8 in §6; the proof of polyhomogeneity, thus of the
last part of Theorem 1.1, is proved in §7. Finally, a finer description of the resulting
asymptotically flat spacetime near null infinity, leading to the proof of Theorem 1.10,
is given in §8.

For the reader only interested in the key parts of the proof, we recommend reading
§§2.1 and 2.2 for the setup, §3.1 for the form of metric perturbations we need to
consider, and §3.2 for an explanation of the main features of the linearized problem;
taking the background estimate, Theorem 4.2 (which uses material from §2.4, and
whose proof roughly follows the steps outlined in §1.1.1), as a black box, the argument
formally concludes in §5. (Getting the actual nonlinear solution in §6 is then routine).

2 Compactification

As explained in §1.2, we shall find the metric g in Theorem 1.8 as a perturbation
of a background metric gm which interpolates between mass m Schwarzschild in a
neighborhood {r � 1, |t | < 2r} of I 0 ∪I and the Minkowski metric elsewhere. In
§2.1, we define such a metric gm as a smooth scattering metric on a suitable partial
compactification m

R4 of R
4 to a manifold with boundary which is closely related to

the radial compactifications of asymptotically Minkowski spaces used in [13,14]. The
ideal boundaries I 0, I +, and I+ are then the boundary hypersurfaces of a manifold
with corners obtained by blowing up m

R4 at the ‘light cone at infinity.’ The spaces of
conormal and polyhomogeneous functions on this manifold are defined in §2.2.

Let us recall the notion of the scattering cotangent bundle scT ∗X over an n-
dimensional manifold X with boundary ∂X . Over the interior X◦, scT ∗X◦X := T ∗X◦X
is the usual cotangent bundle. Near the boundary, let

ρ ≥ 0, y = (y1, . . . , yn−1) ∈ R
n−1 (2.1)

denote local coordinates in which ∂X is given by ρ = 0; then the 1-forms dρ
ρ2
, dy j

ρ

( j = 1, . . . , n− 1) are a smooth local frame of scT ∗X , i.e. smooth scattering 1-forms

are precisely the linear combinations a(ρ, y) dρ
ρ2

+ a j (ρ, y)
dy j

ρ
with a, a j smooth.

(Equivalently, we can use d(1/ρ) and d(y j/ρ) as a smooth local frame). The point is
that, viewed from the perspective of X◦, such 1-forms have a very specific behavior
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as one approaches ∂X . Tensor powers and their symmetric versions Sk scT ∗X , k ∈ N,
are defined in the usual manner; the dual bundle is denoted scT X and called scattering
tangent bundle. In the case that ∂X = Y × Z and X = [0, 1)ρ × ∂X are products,
so T ∗Y ⊂ T ∗X is a well-defined subbundle, then the rescaling ρ−1T ∗Y ⊂ scT ∗X ,
spanned by covectors of the form ρ−1η, η ∈ T ∗Y , is a smooth subbundle.

To give an example, calculations similar to the ones prior to Theorem 1.8 show that
the differentials of the standard coordinates onR

n extend to the radial compactification
Rn as smooth scattering 1-forms; they are in fact a basis of scT ∗Rn , and any metric
on R

n with constant coefficients, such as the Minkowski or Euclidean metric, is a
scattering metric, i.e. an element of C∞(Rn; S2 scT ∗Rn).

The b-cotangent bundle bT ∗X is locally spanned by the 1-forms dρ
ρ
, dy j ( j =

1, . . . , n − 1); its dual is the b-tangent bundle bT X , spanned locally by ρ∂ρ and ∂y j .
The space Vb(X) of b-vector fields on X , consisting of those vector fields V on X
which are tangent to ∂X , is then canonically identified with C∞(X; bT X). A b-metric
is a nondegenerate section of S2 bT X . The space Diffkb(X) of b-differential operators
of degree k consists of finite sums of k-fold products of b-vector fields. Fixing a
collar neighborhood [0, ε)ρ × ∂X and choosing local coordinates y j on ∂X as before,
the normal operator of an operator L ∈ Diffkb(X) given in the coordinates (2.1) by
L =∑

j+|α|≤k a jα(ρ, y)(ρDρ)
j Dα

y is defined by freezing coefficients at ρ = 0,

N (L) :=
∑

j+|α|≤k
a jα(0, y)(ρDρ)

j Dα
y ∈ Diffkb([0,∞)ρ × ∂X). (2.2)

This depends on the choice of collar neighborhood only through the choice of normal
vector field ∂ρ |∂X ; see [85, §4.15] for an invariant description. TheMellin-transformed
normal operator family L̂(σ ), σ ∈ C, is the conjugation of N (L) by the Mellin
transform in ρ; thus, in view of ρ−iσ ρDρ(ρ

iσ ) = σρiσ , one obtains L̂(σ ) by formally
replacing ρDρ by σ :

L̂(σ ) :=
∑

j+|α|≤k
a jα(0, y)σ

j Dα
y .

This is a holomorphic family of elements of Diffk(∂X). Analogous constructions can
be performed for b-operators acting on vector bundles.

2.1 Analytic structure

Fix the massm ∈ R; for now,m does not have to be small. The Schwarzschild metric,
written in polar coordinates on R× R

3, takes the form

gSm = (1− 2m
r )dt

2 − (1− 2m
r )

−1dr2 − r2/g

= (1− 2m
r )ds

2 + 2ds dr − r2/g, (2.3)
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where /g denotes the round metric on S
2, and where we let

s := t − r∗, r∗ := r + 2m log(r − 2m), (2.4)

so dr∗ = r
r−2m dr . Note that level sets of s are radial outgoing null cones. Define

ρ := r−1, v := r−1
(
t − r − χ(t/r)2m log(r − 2m)

)
, (2.5)

where χ(x) ≡ 1, x < 2, and χ(x) ≡ 0, x > 3. Let then

C1 := [0, ε0)ρ × (− 7
4 , 5)v × S

2
ω, (2.6)

where we shrink ε0 > 0 so that t is well-defined and depends smoothly on ρ >

0 and v, via the implicit function theorem applied to (2.5). This will provide the
compactification near the future light cone (and part of spatial infinity). Near future
infinity, we use standard coordinates (t, x) ∈ R× R

3 on R
4; define

ρ′+ = t−1, X = x/|t |, (2.7)

and put
C2 := [0, ε0)ρ′+ × {X ∈ R

3 : |X | < 1
4 }. (2.8)

For ε0 > 0 small enough, we can consider the interiorsC◦
1 ,C

◦
2 as smooth submanifolds

of R
4 using the identifications (2.5) and (2.7). (Note in particular that the smooth

structures agreewith the induced smooth structure ofR4). Let us consider the transition
map betweenC◦

1 andC
◦
2 in more detail: inC◦

1 ∩C◦
2 and for t

−1 small enough, we have
χ(t − r) ≡ 0 and r

t >
1
7 , so the map

(ρ′+, X) �→ (ρ = ρ′+/|X |, v = |X |−1 − 1, ω = X/|X |) (2.9)

extends smoothly (with smooth inverse) to ρ′+ = 0. We then let

R4 := (
R
4 � C1 � C2

)
/ ∼

where ∼ identifies C1 and C2 with subsets of R
4 as above, and the boundary points

of C1 and C2 are identified using the map (2.9). This is thus a smooth manifold with
boundary,24 though both R4 and ∂R4 = (∂C1 � ∂C2)/ ∼ are noncompact. In other
words, R4 is only a compactification of the region v > − 7

4 . See Figure 7.

The scattering cotangent bundle of R4 near the light cone at infinity has a smooth
partial trivialization scT ∗C1

R4 = 〈dr〉 ⊕ 〈d(v/ρ)〉 ⊕ ρ−1T ∗S2, thus if ψ is a smooth
function with ψ(v) ≡ 1 for v < 1 and ψ(v) ≡ 0 for v > 2, then

gm,1 := (1− 2mψ(v)
r )d(v/ρ)2 + 2d(v/ρ) dr − r2/g ∈ C∞(C1; S2 scT ∗C1

R4). (2.10)

24 Different choices of χ produce the same topological space, indeed Cα manifold (α < 1); on the other
hand, the smooth structure at the boundary does depend on χ , but only in the gluing region C1 ∩ C2. All
resulting smooth structures work equally well.
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Fig. 7 The partial

compactification R4 of R
4,

constructed from R
4, C1, and

C2. Also shown is the
hypersurface � from (2.15)

In v > 3 and for ε0 > 0 small enough, we simply have gm,1 = dt2 − dr2 − r2/g,
which is thus equal to

gm,2 := d(1/ρ′+)2 − d(X/ρ′+)2 ∈ C∞(C2; S2 scT ∗C2
R4)

on the overlapC1∩C2. Thus, we can glue gm,1 and gm,2 together to define a Lorentzian
scattering metric g̃m on C1 ∪ C2. We extend g̃m to a global metric:

Definition 2.1 Fix φ ∈ C∞(R4) such that suppφ ⊂ C1 ∪ C2, and so that φ ≡ 1 near
∂R4. With g̃m as above, we then define

gm := φg̃m + (1− φ)(dt2 − dx2) ∈ C∞(R4; S2 scT ∗R4), (2.11)

thus gluing g̃m to the Minkowski metric away from C1 ∪ C2.

By construction, gm is equal to the Minkowski metric in a compact region of R
4

as well as in a closed subcone of the interior of the future light cone, which we glue
together with the Schwarzschild metric near spacelike and null infinity.

Next, denote the light cone at future infinity by

S+ := {ρ = 0, v = 0} ⊂ ∂R4 (2.12)

and let

M ′ := [R4; S+]

denote the blow-up of R4 at S+, see Figure 8. That is, as a set,

M ′ = (
R4 \ S+) � ([−π/2, π/2]σ × S

2
ω

)
,

which can be endowed with the structure of a smooth (noncompact) manifold with
corners by writing it as

M ′ =
((

R4 \ S+) � ([0, 1)ρI × [−π/2, π/2]σ × S
2
ω

))
/ ∼,
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Fig. 8 Left: the partial compactification R4 and its light cone at infinity S+. Right: the blow-up M ′ =
[R4; S+] β−→ R4, with front faceI+ (null infinity) and side faces I 0 (spatial infinity), I+ (future timelike
infinity)

where we identify a point in R4 with coordinates (ρ, v, ω), (ρ, v) �= (0, 0), with the
point (ρI =

√
ρ2 + v2, σ = arctan(v/ρ), ω). The map

β : M ′ → R4, (2.13)

equal to the identity map away from S+, and given by β(ρI , σ, ω) = (ρ =
ρI cos σ, v = ρI sin σ, ω), is called the blow-down map. Note that β is a local dif-
feomorphism away from S+, but is not injective at the front face

ff([R4; S+]) := ρ−1I (0)

of the blow-up. The point of doing this blow-up is that curves tending to S+ but at
different angles σ have distinct limiting points on the front face. Concretely, s =
tan(σ ) = v/ρ = t − r∗ is an affine parameter on the fibers β−1(p), p ∈ S+, of the
blow-down map, so β−1(S+) is the set of all endpoints of future-directed outgoing
radial null-geodesics ofmassm Schwarzschild, and radial null-geodesicswith different
t − r∗ are separated all the way up to β−1(S+). It is thus natural to define:

Definition 2.2 Null infinityI + is defined as the front face of the blowup of S+ ⊂ R4,

I + := ff([R4; S+]).

The side faces of the blow-up are the connected components of the lift of the original
boundary hypersurface ∂R4, i.e. of the closure of the preimage of ∂R4 \ S+ under β.
In the present situation, there are two side faces:

Definition 2.3 The future temporal face is

I+ = β−1
(
(∂C2 ∩ ∂R4) ∪ {v > 0}),

whose image β(I+) is a closed 3-ball with boundary S+. The spatial face (more
precisely: the part of it that we chose to include in the compactification R4) is defined
by

I 0 := β−1
(
∂R4 ∩ {v < 0}).
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Using β, one can pull back natural vector bundles on R4 to M ′; for instance,
the pullback β∗gm , which we simply denote by gm for brevity, is an element of
C∞(M ′;β∗S2 scT ∗R4) (and constant along the fibers of β).

Let ρ0 = r−1 for |v+1| ≤ 3
4 and r > R, R � 1, and extend it to a smooth positive

function on all of R
4. Denote then by tb the smooth function

tb = ρ0(t − 2mχ0(r) log(r − 2m)), (2.14)

defined for |t |/〈r〉 < 1
2 , where χ0 ≡ 0 for r < R and χ0 ≡ 1 for r > 2R; this extends

the function v + 1 smoothly into the interior R
4, and dtb is timelike on

� := t−1b (0). (2.15)

(The main point of this construction is to write the initial hypersurface � in a non-
degenerate way, i.e. as the zero set of a function whose differential does not vanish
anywhere on it). Note that the function ρ0 is, in a neighborhood of �, a boundary
defining function of I 0; below, we shall use different boundary defining functions
adapted to our needs, but keep the same notation. See also Remark 2.6.

We restrict our analysis fromnowon to the following smoothmanifoldwith corners:

Definition 2.4 The compact manifold with corners M is defined by

M := M ′ ∩ ({tb ≥ 0} ∪ {t > 1
3 〈r〉}

)
.

One should think of this as (the compactification of) the causal future of �; and
this is indeed what it is if we endow M◦ with the Minkowski metric.

We regard the boundary � ⊂ M as ‘artificial,’ i.e. incomplete, from the point
of view of b-analysis; recall Figure 1; abusing notation slightly, we shall denote the
part I 0 ∩ M of spatial infinity contained in M again by I 0. We denote by ρ0, ρI ,
and ρ+ ∈ C∞(M) defining functions of I 0, I +, and I+, respectively; we further let
ρ ∈ C∞(M) denote a total boundary defining function, e.g. ρ = ρ0ρIρ+. Defining
functions are well-defined up to multiplication by smooth positive functions. We shall
often make concrete choices to simplify local calculations; by a local defining function
of I 0, say, on some open subsetU ⊂ M we then mean a function ρ0 ∈ C∞(U ) so that
for any K � U , ρ0|K can be extended to a globally defined defining function of I 0.
We remark that ρ0|� ∈ C∞(�) is a defining function of ∂� within �.

Remark 2.5 The causal character (spacelike, null, timelike) of level sets of ρ0, i.e. of
dρ0, depends on the particular choice of ρ0. On the other hand, the vector field ρ0∂ρ0 ,
defined using any local coordinate system, is well-defined as an element of bTI 0M ,
and thus so is its causal character at I 0 with respect to the b-metric ρ2gm : it is the
scaling vector field at infinity, see the discussion after equation (1.13), and spacelike
away from the corner I 0 ∩ I +. Likewise, ρ+∂ρ+ is the scaling vector field at I+,
which is timelike.

Let us relate � to the radial compactification R3 of Euclidean 3-space; recall that
the latter is defined using polar coordinates (r , ω) ∈ (0,∞)× S

2 on R
3 as the closed

3-ball
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R3 := (
R
3 � ([0,∞)ρ0 × S

2)
)
/ ∼, where (r , ω) ∼ (ρ0, ω), ρ0 = r−1, r > 0.

Consider the map ι : R
3  x = (r , ω) �→ (2mχ(r) log(r −2m), x) ∈ �◦ ⊂ Rt ×R

3
x ,

which is the projection along the flow of ∂t . Expressed near ∂R3, i.e. for small ρ0,
this takes the form ι(ρ0, ω) = (ρ, v, ω) for ρ = ρ0 and v = −1; thus, ι extends to a
diffeomorphism

� ∼= R3. (2.16)

Whenever necessary, we shall make the mass parameter m in these constructions
explicit by writing

m
R4, mM ′, mM, m�, mtb,

m I 0, mI +, m I+, mβ, mρ, etc. (2.17)

In particular, 0R4 is the radial compactification of R
4 with the closed subset {|t |−1 =

0, t/r ≤ − 3
4 } of the boundary removed; note here that on their respective domains

of definition, r−1 and |t |−1 are indeed local boundary defining functions of 0
R4.

Moreover, the metric gm for m = 0 is equal to the Minkowski metric g. We shall

explore the relationships between m
R4 etc. for different values of m in §2.3.

Remark 2.6 For m = 0, it is easy to write down global expressions for boundary
defining functions in t ≥ 1

2 |r |, for instance (using notation similar to [74])

0ρ0 = (1+ q−)−1, 0ρI = t−1(1+ q−)(1+ q+), 0ρ+ = (1+ q+)−1, 0ρ = t−1;
(2.18)

here q+ = φ+(t − 〈r〉) and q− = φ+(〈r〉 − t), where φ+(x) is a smooth function,
φ+(x) = x for x ≥ 1, and φ+(x) = 0, x ≤ 0. One can write down similar expressions
for general m by using r∗ instead of r nearI + ∪ I 0, and inserting suitable partitions
of unity to obtain expressions which are globally smooth. While expressions such
as (2.18) offer a quick way to relate bounds by (0ρ0)a0(0ρI )aI (0ρ+)a+ into bounds
in terms of standard coordinates on R

4, they are of course cumbersome to work with
if one used them as parts of local coordinate systems on mM . Furthermore, since we
fixed a smooth structure of mM , boundary defining functions on mM are well-defined
up to multiplication by smooth, positive functions with smooth, positive reciprocals;
therefore, decay rates, such as a0, aI , a+ above, with respect to one particular set of
choices of boundary defining functions of mM are the same as for any other set of
choices on the same manifold mM . The advantage of defining mM is then that one
can work with any convenient choices of (local) boundary defining functions for any
particular local coordinate calculation or estimate for a PDE on mM , and the decay
rates in such an estimate, when expressed in terms of one’s chosen defining functions,
make invariant sense.

Working on m
R4, the following coordinates are convenient for performing calcu-

lations near the light cone at infinity S+:
Definition 2.7 We define the coordinates q = x0 and s = x1 as follows:

q := x0 := t + r∗, s := x1 := t − r∗.
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Their level sets are null hypersurfaces for the mass m Schwarzschild metric. Using
dq = ds + 2dr∗ and (2.4),

scT ∗R4 = 〈dq〉 ⊕ 〈ds〉 ⊕ r T ∗S2 (2.19)

therefore defines a smooth partial trivialization near S+; recall that ρ = r−1 there.
Similarly,

∂0 ≡ ∂x0 = ∂q = 1
2 (∂t + ∂r∗), ∂1 ≡ ∂x1 = ∂s = 1

2 (∂t − ∂r∗)

are smooth scattering vector fields onR4, and togetherwith r−1TS
2, theygive a smooth

partial trivialization of scTR4 near S+.25 Letting xa , a = 2, 3, denote local coordinates
on S

2, we will denote spherical indices by early alphabet Latin letters a, b, c, d, e, and
general indices ranging from 0 to 3 by Greek letters. The components of a section ω
of scT ∗R4 in the splitting (2.19) are denoted with barred indices:

ω0̄ := ω(∂0), ω1̄ := ω(∂1), ωā := ω(ρ∂a) = r−1ω(∂a). (2.20)

Thus, the components of a tensor with respect to this splitting have size comparable
to the components in the coordinate basis of T ∗R4. The splitting (2.19) induces the
splitting

S2 scT ∗R4 = 〈dq2〉 ⊕ 〈2dq ds〉 ⊕ (2dq ⊗s r T
∗
S
2)

⊕ 〈ds2〉 ⊕ (2ds ⊗s r T
∗
S
2)⊕ r2 S2T ∗S2, (2.21)

as well as the dual splittings of the dual bundles scTR4 and S2 scTR4. We will occa-
sionally use the further splitting

S2T ∗S2 = 〈/g〉 ⊕ 〈/g〉⊥. (2.22)

For calculations of geometric quantities associated with the metric, the bundle
splittings induced by the coordinates q, s, x2, x3, i.e.

T ∗R4 = 〈dq〉 ⊕ 〈ds〉 ⊕ T ∗S2,

S2T ∗R4 = 〈dq2〉 ⊕ 〈2dq ds〉 ⊕ (2dq ⊗s T
∗
S
2)

⊕ 〈ds2〉 ⊕ (2ds ⊗s T
∗
S
2)⊕ S2T ∗S2, (2.23)

are more convenient. Components are denoted without bars, that is, for a 1-form ω

and for μ = 0, 1, we have ωμ := ω(∂μ) = ωμ̄, while we let ωa := ω(∂a) = rωā . In
short, we have

ωμ̄ = r−s(μ)ωμ, s(μ1, . . . , μN ) := #{λ : μλ ∈ {2, 3}}, (2.24)

likewise for tensors of higher rank.

25 On the other hand, t−1 is not smooth on m
R4 for m �= 0; see Lemma 2.8 below.
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On the resolved space M , the null derivatives ∂0, ∂1 can be computed as follows:
near I 0 ∩I +, we can take

ρ0 = −ρ/v = (r∗ − t)−1, ρI = −v = (r∗ − t)/r , ρ = ρ0ρI = r−1; (2.25)

then

∂0 = − 1
2ρ0ρI (1− 2mρ)ρI ∂ρI ,

∂1 = ρ0
(
ρ0∂ρ0 − (1− 1

2ρI (1− 2mρ))ρI ∂ρI
)
, (2.26)

and dually
ρ dq = − 2

1−2mρ
( dρ0
ρ0

+ dρI
ρI

)+ ρI
dρ0
ρ0
, ρ ds = ρI

dρ0
ρ0
. (2.27)

A similar calculation near I+ ∩I + yields

∂0 = f0ρ0ρIρ+ · ρI ∂ρI , ∂1 ∈ ρ0ρ+Vb(M), (2.28)

for some f0 ∈ C∞(M), f0 > 0, depending on the choices of boundary defining
functions.

2.2 Function spaces

We first recall the notion of b-Sobolev spaces on R
n,d
+ := [0,∞)dx × R

n−d
y : first, we

set H0
b (R

n,d
+ ) ≡ L2

b(R
n,d
+ ) := L2(R

n,d
+ ; | dx1

x1
. . . dx

d

xd
dy|); for k ∈ N then, Hk

b (R
n,d
+ )

consists of all u ∈ L2
b such that V1 . . . Vju ∈ L2

b for all 0 ≤ j ≤ k, where each V� is
equal to either x p∂x p or ∂yq for some p = 1, . . . , d, q = 1, . . . , n − d. For general
s ∈ R, one defines Hs

b (R
n,d
+ ) by interpolation and duality. One can define b-Sobolev

spaces on compact manifolds with corners by localization and using local coordinate
charts; we give an invariant description momentarily. Note that the logarithmic change
of coordinates t j := − log x j , j = 1, . . . , d, induces an isometric isomorphism
Hs
b (R

n,d
+ ) ∼= Hs(Rn) with the standard Sobolev space on R

n .
Now on M ′, fix any smooth b-density, i.e. in local coordinates as above a smooth

positive multiple of | dx1
x1

. . . dx
d

xd
dy|, then the space L2

b(M
′)with respect to this density

is well-defined; the space L2
b(M) of restrictions of elements u ∈ L2

b(M
′) to M is

similarly well-defined, and since M is compact, any two choices of b-densities on M ′
yield equivalent norms on L2

b(M). More generally, if b0, bI , b+ ∈ R are weights, we
define the weighted L2 space

ρ
b0
0 ρ

bI
I ρ

b++ H0
b (M) ≡ ρ

b0
0 ρ

bI
I ρ

b++ L2
b(M) := {

u : ρ−b00 ρ
−bI
I ρ

−b++ u ∈ L2
b(M)

}
.

The b-Sobolev spaces of order k = 0, 1, 2, . . . are defined using a finite collection of
vector fields V ⊂ Vb(M ′) such that at each point p ∈ M , the collection Vp spans
bTpM , namely
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Hk
b (M) := {u ∈ L2

b(M) : V1 . . . Vju ∈ L2
b(M), 0 ≤ j ≤ k, V� ∈ V };

the norm on this space is the sum of the L2
b(M)-norms of u and its up to k-fold

derivatives along elements of V . One defines ρb00 ρ
bI
I ρ

b++ Hk
b (M) and its norm corre-

spondingly. Note that the vector fields in V are required to be tangent to I 0, I +,
and I+, but not to �; thus, we measure standard Sobolev regularity near �, and b-
(conormal) regularity at I 0,I +, and I+. (Thus, our space Hk

b (M) would be denoted
H̄ k
b (M) in the notation of [56, Appendix B]). Due to the compactness of M , any two

choices of collections V and boundary defining functions ρ0, ρI , ρ+ give rise to the
same b-Sobolev space, up to equivalence of norms. (For instance, any other defining
function ρ′0 of I 0 is related to ρ0 by ρ′0 = aρ0 where 0 < a ∈ C∞(M) (and thus by
compactness of M , C−1 ≤ a ≤ C for some C > 1); the equality of the weighted
spaces defined using ρ0 or ρ′0 is then a consequence of the fact that multiplication by
ab0 , or in fact by any smooth nonzero function on M with smooth reciprocal, is an
isomorphism on Hk

b (M)). The space H∞
b (M) =⋂

k≥1 Hk
b (M) and its weighted ana-

logues have natural Fréchet space structures; we refer to their elements as conormal
functions. We shall also use function spaces with infinitely decaying weights, so for
instance

ρ∞I Hk
b (M) :=

⋂
bI∈R

ρ
bI
I Hk

b (M), (2.29)

as well as spaces of the form

ρ
bI−0
I Hk

b (M) :=
⋂
ε>0

ρ
bI−ε
I Hk

b (M),

similarly for spaces with more weights.
Weighted b-Sobolev spaces of sections of vector bundles on M are defined using

local trivializations. We will in particular use the space

Hk;b0,bI ,b+
b (E) ≡ Hk;b0,bI ,b+

b (M; E) := ρ
b0
0 ρ

bI
I ρ

b++ Hk
b (M; E), (2.30)

with E denoting the trivial bundle C := M × C → M , or E = β∗scT ∗R4, or
E = β∗S2 scT ∗R4. When the bundle E is clear from the context, we will simply write
Hk;b0,bI ,b+
b . When estimating error terms, we will often use the inclusion

C∞(R4) ⊂ C∞(M) ⊂ H∞;−0,−0,−0
b :=

⋂
ε>0

H∞;−ε,−ε,−ε
b .

For the last part of Theorem 1.1, we need to define the notion of polyhomogeneity
(or E-smoothness) and discuss its basic properties; see [84, §2A] and [87, §4.15] for
detailed accounts and proofs. An index set is a discrete subset E ⊂ C×N0 such that

(z, j) ∈ E �⇒ (z, j ′) ∈ E ∀ j ′ ≤ j; (2.31a)

(z�, j�) ∈ E, |z�| + j� →∞ �⇒ Im z� →−∞; (2.31b)
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(z, j) ∈ E �⇒ (z − i, j) ∈ E . (2.31c)

We shall write
Im E < c :⇐⇒ Im z < c ∀ (z, k) ∈ E, (2.32)

likewise for the nonstrict inequality sign. Note that by condition (2.31b), every index
set E has an upper bound Im E < C for some C ; more precisely, if E is an index set
and C ′ ∈ R, then there are only finitely many points (z, k) ∈ E with Im z > C ′.

Let now X denote a compact manifold with boundary ∂X , and let ρ ∈ C∞(X) be a
boundary defining function. The choice of a collar neighborhood [0, 1)ρ × ∂X makes
the vector field ρDρ = 1

i ρ∂ρ well-defined, and any two choices of collars give the
same vector field ρDρ modulo elements of ρVb(X). Let E be an index set. The space
AE

phg(X) then consists of all u ∈ ρ−∞H∞
b (X) =⋃

N∈R
ρN H∞

b (X) for which

∏
(z, j)∈E
Im z≥−N

(ρDρ − z)u ∈ ρN H∞
b (X) for all N ∈ R; (2.33)

equivalently, there exist a(z, j) ∈ C∞(X), (z, j) ∈ E , such that

u −
∑
(z, j)∈E
Im z≥−N

ρi z(log ρ) j a(z, j) ∈ ρN H∞
b (X). (2.34)

(Condition (2.31c) ensures that this is independent of the choice of ρDρ). In particular,
u ∈ ρ− Im E−0H∞

b (X). When no confusion can arise, we write

(a, k) := {(a − in, j) : n ∈ N0, 0 ≤ j ≤ k}, a := (a, 0). (2.35)

For example, A−ia
phg (X) = ρaC∞(X). We also recall the notion of the extended union

of two index sets E1, E2, defined by

E1∪E2 = E1 ∪ E2 ∪ {(z, k) : ∃ (z, j�) ∈ E�, k ≤ j1 + j2 + 1},

so e.g. 0∪0 = (0, 1), as well as their sum

E1 + E2 := {(z, j) : ∃ (z�, j�) ∈ E�, z = z1 + z2, j = j1 + j2};

thus AE1
phg(X) ·AE2

phg(X) ⊂ AE1+E2
phg (X). For j ∈ N and an index set E , we define

jE1 := E1 + · · · + E1,

with j summands.
If X is amanifoldwith corners with embedded boundary hypersurfaces H1, . . . , Hk

to each of which is associated an index set Ei , we define AE1,...,Ek
phg (X) as the space of

all u ∈ ρ−∞H∞
b (X), with ρ ∈ C∞(X) a total boundary defining function, such that
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for each 1 ≤ i ≤ k, there exist weights b j ∈ R, j �= i , such that, with ρi ∈ C∞(X)
denoting a defining function of Hi ,26

∏
(z, j)∈Ei
Im z≥−N

(ρi Dρi − z)u ∈ ρN
i

∏
j �=i

ρ
b j
j H∞

b (X) near Hi .

This is equivalent to u admitting an asymptotic expansion at each Hi as in (2.34),
with each a(z, j) polyhomogeneous with index set E j at each nonempty boundary
hypersurface Hj ∩ Hi of Hi .

We shall also need spaces encoding polyhomogeneous behavior at one hypersurface
but not others; for brevity, we only discuss this in the case of two boundary hypersur-
faces H1, H2: for an index set E and α ∈ R, AE,α

phg,b consists of all u ∈ ρ−∞H∞
b such

that
∏

(z, j)∈Ei
Im z≥−N

(ρ1Dρ1 − z)u ∈ ρN
1 ρ

α
2 H

∞
b near H1, for all N ∈ R;

this is equivalent to u having an expansion at H1 with terms a(z, j) ∈ ρα2 H
∞
b (H2).

We briefly discuss nonlinear properties of b-Sobolev and polyhomogeneous spaces;
for brevity, we work on an n-dimensional compact manifold X with boundary ∂X ,
and leave the statements of the obvious generalizations to the setting of manifolds
with corners to the reader. Thus, if s > n/2, then Hs

b (X) is a Banach algebra, and
more generally u1 · u2 ∈ ρa1+a2Hs

b (X) if u j ∈ ρa j Hs
b (X), j = 1, 2. Regarding

the interaction with polyhomogeneous spaces, if E is an index set, then AE
phg(X) ·

ρaHs
b (X) ⊂ ρa−eHs

b (X) for all a, s ∈ R when e > Im E ; in the case that E =
(a0, 0) ∪ E ′ with Im E ′ < Im a0, we may take e = Im a0. One can also take inverses,
to the effect that u/(1−v) ∈ Hs

b (X) provided u, v ∈ Hs
b (X), s > n/2, and v ≤ C < 1,

which follows readily from the corresponding results on R
n , see e.g. [102, §13.10],

by a logarithmic change of coordinates.
For comparisons with the Minkowski metric, we study the regularity properties of

t−1 on m
R4. Define the index set

Elog := {(−ik, j) : k ∈ N0, 0 ≤ j ≤ k}, E ′log := Elog \ {(0, 0)}. (2.36)

Lemma 2.8 Letting U = {t > 2
3r} ⊂ m

R4, we have

t−1 ∈ ρ ·AElog
phg (U ) ⊂ ρ C∞(U )+ ρ2−0H∞

b (U ) ⊂ ρ1−0H∞
b (U ), (2.37)

and t−1/ρ ∈ C∞(U ∩ ∂R4) is everywhere nonzero.

Definition 2.9 We define ρt ∈ C∞(mR4) to be any boundary defining function satis-
fying ρt/ρ = t−1/ρ at U ∩ ∂mR4.

26 As before, the vector fields ρi Dρi , defined using a collar neighborhood of Hi , are in fact well-defined
modulo ρiVb(X), which is all that matters in this definition.
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By Lemma 2.8, this fixes ρt inU modulo ρ2C∞(mR4); away fromU , ρt is merely
well-defined modulo ρ C∞(mR4).

Proof of Lemma 2.8 Using the notation of §2.1, we have t−1 ∈ C∞(C2). Thus, it
suffices to work inC1∩{v > − 1

2 }, where we can take ρ = r−1; we then need to prove
f := ρt ∈ AElog

phg and f |
∂R4 �= 0 there, which implies the claim about t−1/ρ = 1/ f

as AElog
phg is closed under multiplication. Note that f ∈ C∞(R4), and f > 1

4 . Let

χ̃(x) = χ(x−1) ∈ C∞((0,∞); [0, 1]) in the notation (2.5), so χ̃ (x) ≡ 0, x < 1
3 , and

χ̃(x) ≡ 1, x > 1
2 , then

f = 1+ v − 2mρχ̃( f )
(
log ρ − log(1− 2mρ)

)
. (2.38)

Note that near ρ = 0, f = ρ−1t−1 is the unique positive function satisfying this
equation: indeed, if f ′ is another such function, then | f − f ′| � (ρ log ρ)| f − f ′|.
At ρ = 0, we have f = 1+ v. Thus, let k ≥ 2 be an integer, and consider the map

T : f̃ �→ −2mρ(log ρ − log(1− 2mρ))χ̃(1+ v + f̃ )

on ρ1−δHk
b ([0, εk)ρ × (−1/2, 5)v), where δ ∈ (0, 1) is fixed. Now

‖T ( f̃ )− T ( f̃ ′)‖ρ1−δHk
b
≤ Ck‖ρ log ρ − ρ log(1− 2mρ)‖Hk

b
‖χ̃‖Ck‖ f̃ − f̃ ′‖ρ1−δHk

b
;

choosing εk > 0 sufficiently small, the first norm on the right can be made arbitrarily
small. By the contraction mapping principle, this gives f − 1 − v ∈ ρ1−δH∞

b since
k was arbitrary. We can now improve the remainder term by plugging this into (2.38),
which gives

f − (
1+ v − 2mχ̃(1+ v)

(
ρ log ρ − ρ log(1− 2mρ)

)) ∈ ρ2−δH∞
b ,

so f ∈ AElog
phg +ρ2−δH∞

b . Using that χ ◦ (·)mapsAElog
phg into itself, as follows from the

testing definition (2.33), the desired conclusion follows from an iterative argument. $�

2.3 Relationships between different compactifications

The only difference between the compactifications mR4 for different values ofm is the
manner in which a smooth collar neighborhood of ∂mR4 is glued together with R

4.
Since this difference is small due to the logarithmic correction in (2.5) being only of
size r−1 log r , different compactifications are closely related; see also [14, §7]. Indeed:

Lemma 2.10 The identity map R
4 → R

4 induces a homeomorphism φ : mR4 → 0
R4,

which in fact is a polyhomogeneous diffeomorphism with index set Elog; that is, in
smooth local coordinate systems near ∂mR4 and ∂0R4, the components of both φ and

φ−1 are real-valued functions on [0,∞)× R
3 of class AElog

phg . Moreover, φ induces a

123



2 Page 44 of 146 P. Hintz, A. Vasy

smooth diffeomorphism ∂mR4 ∼= ∂0R4, which restricts to mβ(m I+) ∼= 0β(0 I+), and
also induces a smooth diffeomorphism m I+ ∼= 0 I+.

Proof We have AElog
phg ⊂ C∞ + ρ1−0H∞

b ⊂ C0, so it suffices to prove the polyho-
mogeneity statement. Defining the smooth coordinates ρ and v as in (2.5), and the
corresponding smooth coordinates 0ρ = r−1 and 0v = r−1(t − r) on 0

R4, we then
observe that 0ρ = ρ, while in the notation of equation (2.38), we established that

1+ 0v = f ∈ AElog
phg on m

R4, giving the desired conclusion for φ. For φ−1, we write
v = 0v− r−1χ(t/r)2m log(r − 2m) and note that t/r ∈ C∞(0R4). For the last claim,
we observe that

v = 0v at ∂mR4 (2.39)

under the identificationwith ∂0R4 given byφ. This also shows that the setsmβ(m I+) =
{v ≥ 0} and 0β(0 I+) = {0v ≥ 0} are diffeomorphic. On mM , resp. 0M then, v, resp.
0v, are local defining functions of the boundaries ∂m I+, resp. ∂0 I+, hence by (2.39),
the identification m I+ ∼= 0 I+ in the interior of m I+ indeed extends smoothly to its
boundary. $�

In a similar vein, the scattering (co)tangent bundles can be naturally identified over
the boundary:

Lemma 2.11 The identity map T ∗R4 → T ∗R4 extends by continuity to a continuous
bundle map scT ∗ m

R4 → scT ∗ 0
R4 which restricts to a smooth bundle isomorphism

over the boundary.

Proof Since away from r = 0, 〈d(r−1)〉 and r T ∗S2 are smooth subbundles of
scT ∗ m

R4 for any m, it suffices to show that d(t−1), which is a smooth section
of scT ∗ 0

R4, extends by continuity from R
4 to ∂mR4 and restricts to a smooth

section of scT ∗
∂mR4

m
R4. By Lemma 2.8, we have t = ρ−1 f , f ∈ AElog

phg , so

dt = f d(ρ−1) + ρ−1d f ; but f |
∂mR4 is smooth indeed, while in a local product

neighborhood [0, 1)ρ × R
3
X of a point in ∂mR4, ρ−1d f = (ρ∂ρ f )

dρ
ρ2

+ (∂X f ) dX
ρ

restricts to the smooth scattering 1-form (∂X f ) dX
ρ

on ∂mR4. $�

Let us discuss this on the level of function spaces. Themapφ in Lemma2.10 induces

C∞(mR4) ⊂ AElog
phg (

0
R4) and vice versa. Moreover, it induces an isomorphism

(mρ)αHs
b,loc(

m
R4) ∼= (0ρ)αHs

b,loc(
0
R4), s, α ∈ R, (2.40)

as follows from φ ∈ AElog
phg . The corresponding statement is not quite true on the

blown-up spaces mM , the failure happening at mI +; there, let us use

mρ = 0ρ = r−1; mv = 0v − 2m(0ρ) log((0ρ)−1 − 2m), 0v = r−1(t − r).
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Now, the b-tangent bundle on 0M is spanned near 0I + by spherical derivatives,

0ρ∂0ρ ∈ mρ∂mρ +AE ′log
phg · ∂mv, 0v∂0v ∈

(mv +AE ′log
phg

)
∂mv,

and 0ρ∂0v = mρ∂mv; due to the logarithmic loss at I +, we thus only have

(mρ0)
b0(mρI )

bI (mρ+)b+Hs
b,loc(

mM) ⊂ (0ρ0)
b0(0ρI )

bI−ε(0ρ+)b+Hs
b,loc(

0M)

for all ε > 0, but the inclusion fails for ε = 0. That is, conormal function spaces are
the same on mM and 0M up to an arbitrarily small loss in the weight at I +.

Polyhomogeneous spaces on m
R4 for different values of m are related in a simple

manner: if E ⊂ C × N0 is an index set and Elog is given by (2.36), then φ induces
inclusions

AE
phg(

m
R4) ↪→ AE+Elog

phg (0R4), AE
phg(

0
R4) ↪→ AE+Elog

phg (mR4); (2.41)

this is only nontrivial where the two compactifications differ, i.e. away from r = 0,
i.e. where we can use r−1 as a boundary function for both 0

R4 and m
R4. Considering

a single term r−i z(log r)k f (mv, ω), withω ∈ S
2 and f smooth, in the expansion of an

element of AE
phg(

m
R4), the first inclusion in (2.41) follows from f ◦ φ ∈ AElog

phg (
0
R4),

which in turn can be seen by Taylor expanding f (0v− 2m(0ρ) log((0ρ)−1− 2m), ω)
in the first argument around 0v. The proof of the second inclusion is similar. See [14,
Proposition 7.8] for an alternative argument.

Polyhomogeneity on different spaces mM on the other hand is much less well-
behaved: for instance, a function u ∈ C∞(mM) compactly supported near a point in
(mI +)◦,m > 0, so u ∈ A∅,0,∅

phg (mM), is not polyhomogeneous on 0M : it vanishes near

(0I +)◦ and (0 I+)◦, but is nontrivial at the corner 0I + ∩ 0 I+.

2.4 Bundles and connections near null infinity

In the energy estimate (1.19) for the toy problem (1.18), derivatives of u along vector
fields tangent to the fibers of β : I + → S+ are better controlled than general b-
derivatives. In this section, we introduce analytic structures on the blow-up M of R4

capturing this in an invariant manner.

Definition 2.12 For vector bundles E j → R4, j = 1, 2, let

Mβ∗E1,β∗E2 ⊂ Diff1b(M;β∗E1, β
∗E2)

denote the C∞(M)-module of all first order b-differential operators A which satisfy
the following condition near I +: if E j ∼= U × C

k j , j = 1, 2, is a local trivialization

of E j , withU ⊂ R4 a neighborhood of S+, see (2.12), and we pull these trivializations
back to β∗E j ∼= β−1(U) × C

k j , then A = V + f , where V is a k2 × k1 matrix of
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vector fields Vi j ∈ Vb(M) which are tangent to the fibers of β, and f ∈ C∞(M)k2×k1 .
Let moreover

0Mβ∗E1,β∗E2 ⊂Mβ∗E1,β∗E2

denote the submodule for which f |I + = 0
For a single vector bundle E → R4,wewrite (0)Mβ∗E := (0)Mβ∗E,β∗E .Whenever

the bundle E is clear from the context, we shall simply write (0)M := (0)Mβ∗E . For
k ∈ N, we writeMk ⊂ Diffkb for sums of k-fold products of elements of M.

It is easy to check that the definition of Mβ∗E1,β∗E2 is independent of the choice
of local trivializations; for 0M, this is true as well, since vector fields tangent to the
fibers of β annihilate the matrices for changes of frames of E1 and E2 which lift to be
constant along the fibers of β. We make some elementary observations:

Lemma 2.13 We have:

(1) ρI Diff1b(M;β∗E) ⊂ 0Mβ∗E ⊂Mβ∗E;
(2) if A, B ∈ Mβ∗E , and A has a scalar principal symbol, then [A, B] ∈ Mβ∗E .

Strengthening the assumption to A, B ∈ 0Mβ∗E , we have [A, B] ∈ 0Mβ∗E;
(3) there is a well-defined map

MC  A �→ A ⊗ Id ∈ 0Mβ∗E/ρI C∞(M;End(β∗E)).

Proof (1) and (2) are clear from the definition. The map in (3) is given in a local
trivialization E ∼= U × C

k of E near S+ as A · Idk×k ∈ Diff1b(M)k×k ; the transition
function between two different trivializations is given by C ∈ C∞(U;Ck×k), which
pulls back to M to be constant along the fibers of β; but then C−1(A · Idk×k)C − (A ·
Idk×k) = C−1A(C) ∈ C∞(M;Ck×k), with A acting component-wise, vanishes on
I + by definition ofMC. $�

In local coordinates [0, ε0)ρ0 × [0, ε0)ρI × R
2
x2x3

near I 0 ∩I + as in (1.17), with

R
2 a local coordinate patch on S

2, elements ofMC are linear combinations of ρ0∂ρ0 ,
ρI ∂ρI , andρI ∂xa , a = 2, 3, plus smooth functions.We thus see that (0)MC is generated

over C∞(M) by (ρI )C∞(M) and lifts of elements V ∈ Vb(R4) which vanish at S+
as incomplete vector fields, i.e. V |S+ = 0 ∈ TS+R4. (This should be compared to the
larger space Vb(M), which is generated by lifts of elements V ∈ Vb(R4) which are
merely tangent to S+). Note that by (2.28), we have

ρ−1∂0, ρ−10 ρ−1+ ∂1 ∈ 0MC; (2.42)

for a fixed choice of ρ, the operators ρ−1∂0 and ∂1 acting on sections of any bundle
β∗E are therefore well-defined, modulo ρI C∞ and ρ0ρIρ+C∞ valued in End(β∗E),
respectively.

The modules defined above are closely related to a natural subbundle of bTI +M :
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Definition 2.14 Denote by

βTI +M ⊂ bTI +M

the rank 2 subbundle generated by all V ∈ bTI +M which are tangent to the fibers ofβ,
see (2.13), and let βT M be any smooth rank 2 extension of βTI +M to a neighborhood
of I +. Let then

(βT M)⊥ := {α ∈ bT ∗M : α(V ) = 0 for all V ∈ βT M} ⊂ bT ∗M

denote the annihilator of βT M in bT ∗M .

Near I 0 ∩I +, we can for instance take βT M ⊂ bT M to be the subbundle whose
fibers are spanned by ρI ∂ρI and ρ0∂ρ0 .

Remark 2.15 Another equivalent characterization of M is that the principal symbols
of its elements vanish on (βTI +M)⊥. We also note that for p ∈ I +, there is a natural
isomorphism

(βT M)⊥p ∼= T ∗β(p)S
+. (2.43)

Indeed, given V ∈ bTpM , note that β∗V ∈ bTS+R4 is tangent to S+, hence has
a well-defined image in TpS+; and V ∈ βTpM is precisely the condition that this
image be 0. Thus, the isomorphism (2.43) is obtained by mapping η ∈ T ∗β(p)S+ to
bTpM  V �→ η(β∗V ).

Using this subbundle, we have

MC = C∞(M; βT M + ρI
bT M)+ C∞(M) ⊂ Diff1b(M),

where we write

C∞(M; βT M + ρI
bT M) := C∞(M; βT M)+ ρI C∞(M; bT M). (2.44)

Note here that the sum of the first two spaces on the right is globally well-defined
on M even though we only defined βT M in a neighborhood of I +: this is due
to βT M ⊂ bT M . The general modules Mβ∗E1,β∗E2 have a completely analogous
description obtained by tensoring the bundles with Hom(β∗E1, β

∗E2).
We next prove some lemmas allowing us to phrase energy estimates for bundle-

valued waves invariantly.

Lemma 2.16 Let E → R4 be a vector bundle, and let dE ∈ Diff1(R4; E, T ∗R4 ⊗ E)
be a connection. Then dE induces a b-connection, i.e. a differential operator

dE ∈ Diff1b(M;β∗E, bT ∗M ⊗ β∗E), (2.45)

on β∗E → M. If d̃ E is another connection on E, then, with notation analogous to
(2.44),

d E − d̃ E ∈ C∞(
M; ((βT M)⊥ + ρI

bT ∗M)⊗ End(β∗E)
)
. (2.46)
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Proof Fix a local frame ei of E , then for ui ∈ Ċ∞(M) ⊂ Ċ∞(R4), we have

dE (ui e
i ) = dui ⊗ ei + ui d

Eei .

Now the map ui �→ dui extends to M as the map ui �→ bdui , with bd ∈
Diff1b(M;C, bT ∗M); and f i := dEei ∈ C∞(R4; T ∗R4 ⊗ E) canonically induces
β∗ f i ∈ C∞(M; bT ∗M ⊗ β∗E) by β∗ f i (V ) = f i (β∗V ), V ∈ bT M . Therefore, the
expression dE (ui · β∗ei ) = bdui ⊗ β∗ei + ui · β∗ f i proves (2.45).

Letting f̃ i := d̃ Eei , we have (dE − d̃ E )(ui · β∗ei ) = ui · (β∗ f i − β∗ f̃ i ). But
βTI +M ⊂ ker β∗, so the bundle map dE− d̃ E annihilates βT M atI +, giving (2.46).

$�
Lemma 2.17 In the notation of Lemma 2.16, suppose E is equipped with a fiber metric
〈·, ·〉E , and let

K ∈ C∞(
M; (S2 βT M + ρI S

2 bT M)⊗ End(β∗E)
)
. (2.47)

Moreover, let B ∈ C∞(M;Hom(bT M, bT ∗M)) denote a fiber metric on bT M. Then,
acting on sections of β∗E, we have

(dE )∗BKdE − (d̃ E )∗BK d̃E ∈ ρI Diff
1
b(M;β∗E), (2.48)

where we take adjoints with respect to the fiber metrics on bT M and E, and any fixed
b-density on M. Moreover, if (dE )† denotes the adjoint with respect to another fiber
metric on E, then (dE )†BKdE − (dE )∗BKdE ∈ ρI Diff1b(M;β∗E).

Note that for K as in (2.47) with both the S2 βT M and the S2 bT M summands
positive definite, and adding weights, the pairing 〈(dE )∗BKdEu, u〉 provides the
control on fiber-tangential derivatives of u as in the toy model (1.19), but is weaker by
ρ
1/2
I for general b-derivatives; we will take care of this in Definition 4.1. The space in

(2.48) will be weak enough to be treated as an error term (similar to the Diffb spaces
arising as error terms in Lemma 3.8 below).

Proof of Lemma 2.17 We write the left hand side of (2.48) as

(dE )∗BK (dE − d̃ E )+ (dE − d̃ E )∗BK d̃E ,

with one summand being the adjoint of the other. Now, (dE )∗B ∈ Diff1b(M; bT M ⊗
β∗E, β∗E), while Lemma 2.16 implies

K (dE − d̃ E ) ∈ ρI C∞(M; bT M ⊗ End(β∗E)).

This proves (2.48). (Alternatively, one can analyze the second summand directly,
using that over p ∈ M , 〈(dE − d̃ E )∗(B(V )⊗ e), e′〉E = 〈e, (dE − d̃ E )(V ⊗ e′)〉E for
V ∈ bTpM , e, e′ ∈ Eβ(p)). For the second part, note that the two adjoints are related
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via (dE )† = C−1(dE )∗C for some C ∈ C∞(R4;End(E)), hence d̃ E := (dE )†∗ =
dE + C∗[dE , (C−1)∗] is a connection on E , and therefore

((dE )† − (dE )∗)BKdE = (d̃ E − dE )∗BKdE ∈ ρIDiff
1
b(M;β∗E)

by what we already proved. $�

Lemma 2.18 Equip E → R4 with a fiber metric and fix a b-density on R4. Then for
principally scalar W ∈ 0Mβ∗E , with principal symbol equal to that of the real vector
field W1 ∈ Vb(M), we have W +W ∗ ∈ − divW1 + ρI C∞(M;End(β∗E)).
Proof In a local trivialization on E , we have W = W1 ⊗ 1 + W0, W0 ∈
ρI C∞(M;End(β∗E)), while the fiber inner product k on E is related to the stan-
dard Euclidean fiber inner product k in the trivialization by k(e, e′) = k(C̃e, C̃e′) for
some C̃ smooth on R4, hence fiber constant on M . Denoting adjoints with respect to
k by †, and letting C := C̃∗C̃ , we thus have

W +W ∗ = (
W1 ⊗ 1+ C−1(W †

1 ⊗ 1)C
)+ (W0 +W ∗

0 )

∈ −(divW1)⊗ 1+ C−1[W †
1 ⊗ 1,C] + ρI C∞,

with the second term also lying in ρI C∞ since C is fiber-constant. $�

3 Gauge-fixed Einstein equation

As motivated in §1.2, we work in the wave map gauge with respect to the background
metric gm constructed in §2.1, since we expect the solution g of the initial value
problem (1.4) for the Einstein vacuum equation with initial data asymptotic to mass
m Schwarzschild to be well-behaved on the space mM . The gauge condition reads

ϒ(g; gm)μ := (gg−1m δgGggm)μ = gμνg
κλ(�(g)νκλ − �(gm)

ν
κλ) = 0, (3.1)

where we recall the notation Gg = 1− 1
2g trg , and (δgu)μ = −uμν;ν . For brevity, we

shall write

ϒ(g) ≡ ϒ(g; gm),

when the background metric gm is clear from the context. A simple calculation shows
that if h ∈ H∞;−ε,−ε,−ε

b (mM), ε > 0 small, is a metric perturbation, and g = gm+ρh,
then the gauge condition ϒ(g; gm) = 0 implies that the ∂1-derivatives of the good
components h00, h0b̄, and /tr h := /gabhāb̄ decay towards I +. (See equation (A.5)
for this calculation for h with special structure). A key ingredient of our iteration
scheme is therefore constraint damping, which ensures that the gauge condition, or,
more directly, the improved decay of the good components at I +, is satisfied to
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leading order for each iterate h. We implement constraint damping by considering the
gauge-fixed Einstein operator

P(h) := ρ−3P0(gm + ρh), P0(g) := Ric(g)− δ̃∗ϒ(g; gm), (3.2)

where on 1-forms u

δ̃∗u = δ∗gmu − 2γ dρt
ρt
⊗s u + γ (ι

ρ−1t ∇gm ρt
u)gm (3.3)

is a modification of the symmetric gradient δ∗gm by a 0-th order term; here ρt is fixed
according to Definition 2.9. We discuss the effect of this modification in §3.3, see in
particular (3.26a). From now on, the mass parameter m will be fixed and dropped from
the notation whenever convenient.

3.1 Form of metric perturbations

One can easily establish the existence of a solution of (1.4) near I 0 \ (I 0 ∩I +) for
normalized initial data (see Theorem 1.8) which lie merely in ρ1/2+00 H∞

b ; this is due
to nonlinear interactions being weak at I 0, which in turn can ultimately be traced back
to the null derivatives (2.28) coming with extra factors of ρ0.27 However, we will use
(and prove) the existence of leading terms of the perturbation h of g = gm + ρh at
I +; as discussed around (1.18), this requires the initial data to be decaying to mass
m Schwarzschild data. At I+ however, weak control, i.e. h ∈ ρ

−1/2+0
+ H∞

b away from
I +, suffices due to the nonlinear interactions being as weak there as they are at I 0.
(The decay of our initial data does imply the existence of a leading term at I+, see §7).
Motivated by this and the discussion of constraint damping above, and recalling the
notation (2.30) and the bundle splittings (2.19) and (2.21), we will seek the solution
h of P(h) = 0 in the function space X k;b0,bI ,b′I ,b+ :

Definition 3.1 Let k ∈ N0 ∪ {∞}, and fix weights28

−1 < b+ < 0 < bI < b′I < min( 12 , b0);

let furtherχ ∈ C∞(M) be identically 1 nearI +, with support in a small neighborhood
ofI + where the bundle splitting (2.19) is defined; different choices of χ will produce
the same function space, as we shall discuss below. The space X k;b0,bI ,b′I ,b+ consists
of all h ∈ Hk;b0,−1,b+

b (M;β∗S2 scT ∗R4) such that

27 This is related to the solvability of semilinear equations with initial data or forcing terms which are
mildly growing at spatial infinity, see [58, Theorem 5.14], where one can take the weight l < −1/2 in
certain circumstances. This is also the level of decay for which Bieri [16] establishes the global stability of
Minkowski space.
28 The imposed upper bound of 1

2 for bI and b′I simplifies the arithmetic in §4 but is otherwise artificial;
the natural bound is bI < b′I < min(1, b0), with the upper bound 1 arising from the expected presence of
lower order terms in expansion of the metric atI+ as well as from the requirement that the function space
be independent of the choice of collar neighborhood of I+.
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χh00, χ /tr h ∈ H
k;b0,b′I ,b+
b (C), χh0b̄ ∈ H

k;b0,b′I ,b+
b (β∗(r T ∗S2)), (3.4)

χh11 = χh(1)11 log ρI + χh(0)11 + h11,b, (3.5)

χ(h01, h1b̄, hāb̄) = χ(h(0)01 , h
(0)
1b̄
, h(0)

āb̄
)+ (h01,b, h1b̄,b, hāb̄,b), (3.6)

where the leading and remainder terms are

h(�)11 , h
(0)
01 , h

(0)
1b̄
, h(0)

āb̄
∈ ρ

b0
0 ρ

b++ Hk
b (I

+),

h01,b, h11,b, h1b̄,b, hāb̄,b ∈ Hk;b0,bI ,b+
b ,

the latter supported on suppχ and valued in the bundles C (for � = 0, 1),
C, β∗(r T ∗S2), and β∗(r2 S2T ∗S2), respectively; we describe the topology on
X k;b0,bI ,b′I ,b+ below. Here, we use a collar neighborhood to extend functions fromI +
to a neighborhood ofI + inM , and to extend the relevant bundles fromI + to smooth
subbundles of β∗S2 scT ∗R4 nearI +; all choices of collar neighborhoods and exten-
sions give the same function space. We shall suppress the parameters b0, bI , b′I , b+
from the notation when they are clear from the context, so

X k := X k;b0,bI ,b′I ,b+ .

Remark 3.2 The partial expansions amount to a statement of partial polyhomogeneity:
for example, the condition on h01 in (3.6) for k = ∞ can be phrased as h01 ∈
Ab0,0,b+

b,phg,b + H∞;b0,bI ,b+
b , and similarly for k < ∞ if one replaces the first summand

by a function space capturing the finite regularity of the leading term at I +. In view
of the existence of at most logarithmically growing leading terms of h ∈ X k at I +,
we automatically have h ∈ Hk;b0,−0,b+

b .

Thus, h ∈ X k decays at I 0, while (3.4) encodes the vanishing of the good com-
ponents at I +; (3.5) and (3.6) assert the existence of leading terms of the remaining
components, in the case of h11 allowing for a logarithmic term;29 at I+ finally, h is
allowed to have mild growth. The existence of leading terms of h ∈ X k;b0,bI ,b′I ,b+ at
I + implies in particular that

ρI ∂ρI hμ̄ν̄ ∈ Hk−1;b0,bI ,b+
b , (μ̄, ν̄) = (0, 1), (1, b̄), (ā, b̄),

ρI ∂ρI h11 ∈ h(1)11 + Hk−1;b0,bI ,b+
b , (ρI ∂ρI )

2h11 ∈ Hk−2;b0,bI ,b+
b , (3.7)

which we will frequently use without further explanation.
For h ∈ X∞;b0,bI ,b′I ,b+ , we describe P(h) using a closely related function space:

29 The slightly faster decay b′I of the good components as compared to the decay bI of the remainder terms
of the other components is needed to handle the logarithmically large size of the coefficients coupling good
components into the others, encoded in the (4, 1) entries of Ah and Bh in Lemma 3.8; see the discussion
following (3.26c).
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Definition 3.3 For k ∈ N0 ∪ {∞} and weights b0, bI , b′I , b+ as above, the function

space Yk;b0,bI ,b′I ,b+ consists of all f ∈ Hk;b0,−2,b+
b (M;β∗S2 scT ∗R4) so that near

I +,

f00, f0b̄, /tr f ∈ H
k;b0,−1+b′I ,b+
b , f01, f1b̄, fāb̄ ∈ Hk;b0,−1+bI ,b+

b ,

f11= f (0)11 ρ
−1
I + f11,b, f (0)11 ∈ ρ

b0
0 ρ

b++ Hk
b (I

+), f11,b ∈ Hk;b0,−1+bI ,b+
b . (3.8)

The shift by −1 in the decay order at I + is due to the linearized gauge-fixed
Einstein equation, or even the linear scalar wave equation, being ρ−1I times a b-
differential operator atI +, cf. (1.18). A calculation will show that for h as above, the
gauge-fixed Einstein operator P(h) defined in (3.2) satisfies P(h) ∈ Y∞;b0,bI ,b′I ,b+ ,
see Lemma 3.5 for a more precise statement. Note here that P(h) is well-defined
(i.e. gm + ρh is a nondegenerate symmetric 2-tensor, making P(h) computable) in a
neighborhood of ∂M due to the decay (in L∞) of g = gm + ρh to gm . In order for
P(h) to be defined globally, we need to assume ρh to be small in L∞.

Fixing a smooth cutoffχ as in Definition 3.1, we can define a norm onYk;b0,b′I ,bI ,b+
using the notation of Definition 3.3 by setting

‖ f ‖Yk;b0,b′I ,bI ,b+ := ‖(χ f00, χ f0b̄, χ /tr f )‖
H

k;b0,−1+b′I ,b+
b

+ ‖(χ f01, χ f1b̄, χ fāb̄)‖Hk;b0,−1+bI ,b+
b

+ ‖χ f (0)11 ‖ρb00 ρ
b++ Hk

b (I
+) + ‖χ( f11 − f (0)11 )‖Hk;b0,−1+bI ,b+

b

+ ‖ f ‖
H

k;b0,−2,b+
b

,

where the choice of ρI -weight in the remainder term is arbitrary (as long as it is fixed
and less than−1). Equipped with this norm, Yk;b0,bI ,b′I ,b+ is a Banach space. A com-
pletely analogous definition gives a norm ‖ · ‖X k;b0,bI ,b′I ,b+ . The spaces X∞;b0,bI ,b′I ,b+

and Y∞;b0,bI ,b′I ,b+ , equipped with the projective limit topologies, are Fréchet spaces.
In particular, using the Sobolev embedding H3

b (M) ↪→ L∞(M) (which uses that

3 > dim(M)/2), we have an embedding X 3 ↪→ ρ
b0
0 ρ−1I ρ

b++ L∞; thus, P(h) is well-
defined globally on M provided h is small in X 3.

It will occasionally be useful to write

X k = X k
phg ⊕ X k

b , Yk = Yk
phg ⊕ Yk

b , (3.9)

whereYk
phg = {χ f (0)11 : f (0)11 ∈ ρ

b0
0 ρ

b++ Hk
b (I

+)} encodes the leading term of elements

of Yk , while Yk
b = { f ∈ Yk : f (0)11 = 0} captures the remainder terms (i.e. with

vanishing leading terms at I +); the spaces X k
phg and X k

b are defined analogously.
In order to exhibit the ‘null structure,’ or upper triangular block structure, of the

linearized gauge-fixed Einstein operator Dh P for h ∈ X atI + in a compact fashion,
we introduce subbundles of the symmetric 2-tensor bundle. We use the following
notation: given a nowhere vanishing section e of a complex vector bundle E → U
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over base manifoldU , we denote by 〈e〉 the line subbundle of E whose fiber of p ∈ U
is given by {λe(x) : λ ∈ C}.
Definition 3.4 Define the subbundles

Kc
11 := 〈2 ds dq〉 ⊕ (2 ds ⊗ r T ∗S2)⊕ 〈r2/g〉⊥, Kc

0 := Kc
11 ⊕ 〈ds2〉,

of S2 scT ∗R4|S+ , which we extend in a smooth but otherwise arbitrary fashion to a
neighborhood of S+ as rank 5, resp. 6, subbundles of S2 scT ∗R4, still denoted by Kc

11
and Kc

0 . Furthermore, define near S+ the subbundles

K0 = 〈dq2〉 ⊕ 〈2dq ⊗ r T ∗S2〉 ⊕ 〈r2/g〉, K11 = 〈ds2〉. (3.10)

The only property of K0 and K11 which we will need is

Kc
0 ⊕ K0 = S2 scT ∗R4, Kc

11 ⊕ K11 = Kc
0 .

Denote by

π0 : S2 scT ∗R4 → S2 scT ∗R4/Kc
0
∼= K0,

π̃11 : Kc
0 → Kc

0/K
c
11
∼= K11 (3.11)

the projections onto the quotient bundles,

πc
0 := 1− π0 : S2 scT ∗R4 → Kc

0 ,

and

π11 := π̃11π
c
0 : S2 scT ∗R4 → K11, πc

11 := (1− π̃11)π
c
0 : S2 scT ∗R4 → Kc

11.

(3.12)
Writing

β∗S2 ≡ β∗S2 scT ∗R4 (3.13)

from now on, the improved decay (3.4) of the good components of h ∈ X k;b0,bI ,b′I ,b+
can then be expressed, using local coordinates (θ2, θ3) on S

2, as

π0h = h00 dq
2 + h0a dq dθ

a + ( /tr h)/gab dθ
a dθb ∈ H

k;b0,b′I ,b+
b (β∗K0),

similarly for (3.8). The refinement Kc
11 ⊂ Kc

0 ,

πc
11h = 2h01 ds dq + 2h0b ds dθ

b + (hab − ( 12 /tr h)/gab) dθ
a dθb

will be used to encode part of the ‘null structure’ of the linearized gauge-fixed Einstein
equation at I +, as discussed in §5; the component

π11h = h11 ds
2

123



2 Page 54 of 146 P. Hintz, A. Vasy

will capture the logarithmically growing (relative to r−1) component at I +.
Consider now a fixed h ∈ X∞ which is small in X 3 so that g := gm + ρh is a

Lorentzian metric on R
4. Working near I +, we recall gm = (1 − 2m

r )dq ds − r2/g
and the barred index notation (2.20), so with ρ = r−1, the coefficients of g in the
product splitting (2.23) are

g00 = r−1h00, g01 = 1
2 + r−1(h01 − m), g0b = h0b̄,

g11 = r−1h11, g1b = h1b̄, gab = −r2/gab + rhāb̄;
(3.14)

the coefficients gμν of the inversemetric g−1 = g−1m −r−1g−1m hg−1m +r−2g−1m hg−1m hg−1m

+ H∞;3+3b0,3−0,3+3b+
b are

g00 ∈ −4r−1h11 + H∞;2+b0,2−0,2+2b+
b ,

g01 ∈ 2+ 4r−1(m − h01)+ H∞;2−0,2−0,2+2b+
b ,

g0b ∈ 2r−2h1b̄ + H∞;3+b0,3−0,3+2b+
b ,

g11 ∈ −4r−1h00 + H
∞;2+b0,2+b′I ,2+2b+
b ,

g1b ∈ 2r−2h0b̄ + H
∞;3+b0,3+b′I ,3+2b+
b ,

gab ∈ −r−2/gab − r−3hāb̄ + H∞;4+2b0,4−0,4+2b+
b ,

(3.15)

where we raise spherical indices using the roundmetric /g, i.e. h0ā = /gabh0b̄ etc. Thus,

gμ̄ν̄ , g
μ̄ν̄ ∈ C∞+H∞;1+b0,1−0,1+b+

b ; gāb̄+/gab, g01−2 ∈ ρ C∞+H∞;1+b0,1−0,1+b+
b .

(3.16)
The calculation of the connection coefficients, components of Riemann and Ricci
curvature, and other geometric quantities associated with the metric g is then straight-
forward; the results of these calculations are given in Appendix A.

3.2 Mapping properties of the gauge-fixed Einstein operator

Let h ∈ X∞ = X∞;b0,bI ,b′I ,b+ . In order to compute the leading terms of the gauge-
fixed Einstein operator P(h) = ρ−3P0(g), g = gm + ρh, see (3.2), we first use the
definition (3.3) of 2(̃δ∗ − δ∗

gSm
) (given explicitly by (A.2) in the case m = 0) and the

observation, from (A.5), thatϒ(g) ∈ H
∞;2+b0,1+b′I ,2+b+
b (note that the explicit terms

given in (A.5) lie in this space in view of (2.28) and the decay of the coefficients of h
in Definition 3.1), to deduce that

2(̃δ∗ − δ∗gm )ϒ(g) ∈ H
∞;3+b0,2+b′I ,3+b+
b . (3.17)

The decay rate at I+ holds globally there—not only near I+ ∩I + where gm = gSm .

To see this, it suffices to show that ϒ(g) ∈ ρ
2+b++ H∞

b near (I+)◦ (since δ̃∗ − δ∗gm ∈
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ρ+Diff1b, cf. (3.3), then maps it into the stated space).30 But this follows from the fact

that there g differs from the smooth scattering metric gm by an element of ρ1+b++ H∞
b

(with values in S2 scT ∗R4). Concretely, choosing local coordinates y1, y2, y3 in ∂R4,
near any point p ∈ (I+)◦, we can introduce coordinates z0 := ρ−1+ , za = ρ−1+ ya

(a = 1, 2, 3), in a neighborhood of p intersected with ρ > 0, and {∂zμ : μ = 0, . . . , 3}
is a frame of scTR4 there; but then, using ∂zμ ∈ ρ+Vb(R4), one sees that �(gm +
ρh)νκλ − �(gm)νκλ is a sum of terms of the form

((gm + ρh)μν−(gm)μν)∂zκ (gm)λσ ∈ ρ
1+b++ H∞

b · ρ+C∞(R4) ⊂ ρ
2+b++ H∞

b (near p),

and (gm+ρh)μν∂zκ (ρhλσ ), which likewise lies in ρ
2+b++ H∞

b near p. (The Christoffel

symbols themselves satisfy �(gm)νκλ ∈ ρ+C∞(R4), �(gm + ρh)νκλ ∈ ρ+C∞(R4) +
ρ
2+b++ H∞

b ).
We can now prove:

Lemma 3.5 For any h ∈ X∞, the tensor P(h) is well-defined near ∂M (in the sense
explained in the paragraph after Definition 3.3), and we have χ P(h) ∈ Y∞ for any
χ ∈ C∞(M) with support sufficiently close (depending on h) to ∂M. We have P(h) ∈
Y∞ provided ‖h‖X 3 is small. More precisely, we have P(h)āb̄ ∈ H

∞;b0,−1+b′I ,b+
b and

P(h)11 ∈ −2ρ−2∂1∂0h11 − 1
4ρ

−1∂1hd̄ē∂1hd̄ē + H∞;b0,−1+bI ,b+
b (3.18)

when ρ = r−1 near I +.

Proof We use the calculations (near I 0 ∪ I +) of δ∗gmϒ(g) in (A.6) and of Ric(g)
in (A.8); in view of the calculation (3.17), it suffices to prove that ρ−3(Ric(g) −
δ∗gmϒ(g)) ∈ Y∞ near ∂M . In a neighborhood of I 0 ∪I +, this follows by subtract-
ing (A.6) from (A.8) and dividing by ρ3 (thus shifting the three orders down by 3);
the expression (3.18) is a particular result of this subtraction.

It remains to justify the decay rate globally at I+, which is a slight extension of
the calculations justifying (3.17) above. We use local coordinates near p ∈ (I+)◦ as
above: firstly, the membership of δ∗gmϒ(g) follows directly from the above arguments.
Secondly, the difference of curvature components R(gm + ρh)μνκλ − R(gm)μνκλ is
a sum of terms of the schematic forms ∂μ(�(gm + ρh)κνλ − �(gm)κνλ) and (�(gm +
ρh)κμν −�(gm)κμν)�(gm + ρh)νκλ, both of which lie in ρ

3+b++ H∞
b by the calculations

above. But by construction, see equations (2.10)–(2.11), gm differs from a flat metric
by a smooth symmetric scattering 2-tensor of class ρ+C∞(R4), which implies that
R(gm)μνκλ ∈ ρ3+C∞(R4) near p. Therefore, the Riemann curvature tensor satisfies

R(gm + ρh) ∈ ρ
3+b++ H∞

b (3.19)

30 Recall that on 0M , we can take t−1 as a local defining function of (I+)◦; on mM , this needs to be
modified by a term of size t−2 log t due to the different smooth structure.
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as a section of scTR4 ⊗ (scT ∗R4)⊗3 near (I+)◦, which a fortiori gives Ric(g) ∈
ρ
3+b++ H∞

b , as desired. (The vanishing of P(h) modulo the faster decaying space

ρ
b0
0 H∞

b near (I 0)◦ requires more structure of gm , namely the Ricci flatness of the
background metric gm). $�

Note that one component of P(h) has a nontrivial leading term atI +; in order for
this to not create logarithmically growing terms in components (other than the (1, 1)
component) of the next iterate of our Newton-type iteration scheme (which would
cause the iteration scheme to not close), one needs to exploit the special structure of
the operator Dh P . See also the discussion around (1.26).

3.3 Leading order structure of the linearized gauge-fixed Einstein operator

For h ∈ X∞;b0,bI ,b′I ,b+ small, write

Lh := Dh P, (3.20)

and let g = gm+ρh. We shall now calculate the structure of Lh ‘at infinity,’ that is, its
leading order terms at I 0,I +, and I+: atI +, we will find that the equation Lhu = f
can be partially decoupled to leading order; this is the key structure for proving global
existence for the nonlinear problem later. Recall from [47] that

DgRic = 1
2�g − δ∗gδgGg +Rg,

Rg(u)μν = (Rg)
κ
μνλuκ

λ + 1
2 (Ric(g)μ

λuλν + Ric(g)ν
λuλμ),

Dgϒ(g)u = −δgGgu − Cg(u)+ Yg(u), (3.21)

where (our notation differs from the one used in [47] by various signs)

Cg(u)κ = gκλC
λ
μνu

μν, Cλ
μν = �(g)λμν − �(gm)

λ
μν; Yg(u)κ = ϒ(g)λuκλ.

Here, index raising and lowering as well as covariant derivatives are defined using the
metric g, and (�gu)μν = −uμν;κ κ . Thus, recalling the definition (3.3) of δ̃∗, we have

Lh = ρ−3
( 1
2�g+ (̃δ∗ − δ∗g)δgGg+ δ̃∗(Cg−Yg)+Rg

)
ρ, g = gm+ρh, (3.22)

which has principal symbol

σ2(Lh) = 1
2Gb := 1

2 (gb)
−1, gb := ρ2g, (3.23)

whereG ∈ C∞(T ∗R4) is the dual metric functionG(ζ ) = |ζ |2G . As a first step towards
understanding the nature of Lh as a b-differential operator on M , we prove:

Lemma 3.6 We have L0 ∈ ρ−1I Diff2b(M;β∗S2) (see (3.13)).
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Proof Since gm is a smooth scattering metric, we see, using local coordinates zμ and
the membership ∂zμ ∈ ρVb(R4) as in the discussion preceding Lemma 3.5 to compute
Christoffel symbols, that

Rgm ∈ ρ2 C∞(R4;End(S2 scT ∗R4)), δgm ∈ ρ Diff1b(R
4; S2 scT ∗R4, scT ∗R4),

and�gm ∈ ρ2 Diff2b(R
4; S2 scT ∗R4). This gives L0 ∈ Diff2b(R

4; S2 scT ∗R4), and thus

the desired conclusion away from I +. Near I +, any element of Diff1b(R
4) lifts to

an element of ρ−1I Diff1b(M); moreover, for V1, V2 ∈ Vb(R4), the product V1V2 lifts
to an element of ρ−1I Diff2b(M) provided at least one of the Vj is tangent to S+. Thus,
expressing �gm in the null frame ∂0, ∂1, ∂a (a = 2, 3), we merely need to check that
the coefficient of ∂21 vanishes at S+; but this coefficient is g11m ≡ 0. $�

As suggested by the toy estimate (1.19) and explained in §2.4, we need to describe
lower order terms of Lh near I + in two stages, one involving the module M from
Definition 2.12, the other being general b-differential operators but with extra decay
at ρI = 0. For illustration and for later use, we calculate the leading terms, i.e. the
‘normal operator,’ of the scalar wave operator:

Lemma 3.7 The scalar wave operator �gb (see (3.23)) satisfies

�gb ∈ −4ρ−2∂0∂1+H
∞;1+b0,−1+b′I ,1+b+
b M2

C
+(C∞+H∞;1+b0,−0,1+b+

b )Diff2b(M).

(3.24)

For the linearized gauge-fixed Einstein operator Lh , the analogous result is:

Lemma 3.8 For h ∈ X∞ small in X 3, we have

Lh = L0
h + L̃h

where, using the notation (3.13) and fixing ρ = r−1 near I +,

L0
h = −ρ−1((2ρ−1∂0 + Ah)∂1 − Bh

)
,

L̃h ∈ H
∞;1+b0,−1+b′I ,1+b+
b M2

β∗S2 + (C∞ + H∞;1+b0,−0,1+b+
b )Diff2b(M;β∗S2);

(3.25)

here ρ−1∂0 and ∂1 are defined using equation (2.42) and Lemma 2.13(3). In the
refinement of the bundle splitting (2.21) by (2.22), Ah and Bh are given by

Ah =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2γ 0 0 0 0 0 0
−2∂1h01 0 0 0 0 0 0

0 0 γ 0 0 0 0
0 0 −2∂1h1ā 0 0 γ + 2∂1h01 1

2∂1h
āb̄

−2∂1h1b̄ 0 γ 0 0 0 0
2γ 0 0 0 0 γ 0

−2∂1hāb̄ 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and

Bh =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
2∂1∂1h01 0 0 0 0 0 0

0 0 0 0 0 0 0
2∂1∂1h11 0 0 0 0 0 0
2∂1∂1h1b̄ 0 0 0 0 0 0

0 0 0 0 0 0 0
2∂1∂1hāb̄ 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The proofs of these lemmas only involve simple calculations and careful book-
keeping; they are given in Appendix B. We thus see that at I +, Lh effectively
becomes a differential operator in the null coordinates x0 = q and x1 = s only,
as spherical derivatives have decaying coefficients; this is to be expected since r−1V ,
V ∈ V(S2) ⊂ Vb(M), is the naturally appearing (scattering) derivative just like ∂0
and ∂1. We point out that a number of terms of Lh which are not of leading order at
I + do contribute to the normal operators at I 0 and I+; this includes in particular the
spherical Laplacian, which is crucial for proving an energy estimate.

For the analysis of the linearized operator Lh , the structure of the leading term
L0
h will be key for obtaining the rough background estimate, Theorem 4.2, as well

as the precise asymptotic behavior at I +, as encoded in the space X∞. To describe
this structure concisely, recall the projection π0 defined in (3.11) projecting a metric
perturbation onto the bundle K0 encoding the components which we expect to be
decaying from the gauge condition; and the projection π11 defined in (3.12) onto the
bundle K11 encoding the (1, 1) component, which we allow to include a logarithmic
term. Thus, in the splitting used in Lemma 3.8, π0 picks out components 1, 3, 6,
π11 picks out component 4, and πc

11 picks out components 2, 5, 7. Suppose now h′
satisfies the asymptotic equation L0

hh
′ = 0. Since π0Ah |Kc

0
= 0 and π0Bh |Kc

0
= 0,

the components π0h′, which we hope to be decaying, satisfy a decoupled equation

(2ρ−1∂0 + ACD)∂1(π0h
′) = 0, ACD :=

⎛
⎝
2γ 0 0
0 γ 0
2γ 0 γ

⎞
⎠ , (3.26a)

where ACD ∈ C∞(M;End(K0)) is the endomorphism induced by π0Ah on
β∗S2/Kc

0
∼= K0. (Thus, this matrix is the expression for Ah,0 in the splitting of

K0 ∼= β∗S2/Kc
0 induced by the splittings (2.21)–(2.22) via the projection π0). Note

that by equation (2.28), ρ−1∂0 is proportional to the dilation vector field −ρI ∂ρI
(which is the asymptotic generator of dilations on outgoing light cones), hence equa-
tion (3.26a) is, schematically, (ρI ∂ρI − ACD)(π0h′) = 0. Choosing γ > 0, the
spectrum of ACD is positive, which will allow us to prove that π0h′ decays at I +,
similarly to the discussion of the model equation (1.24); we will make this precise in
§§4.1 and 5.1.

Next, using that πc
11Ah |K11 = 0 and πc

11Bh |K11 = 0, i.e. the logarithmic component
h11 does not couple into the other nondecaying components, we can obtain an equation
for the nonlogarithmic components πc

11h
′ which only couples to (3.26a), namely

123



Stability of Minkowski space and polyhomogeneity of the metric Page 59 of 146 2

2ρ−1∂0∂1(πc
11h

′) = (−Ac
h,11∂1 + Bc

h,11)(π0h
′),

Ac
h,11 =

⎛
⎝
−2∂1h01 0 0
−2∂1h1b̄ γ 0
−2∂1hāb̄ 0 0

⎞
⎠ Bc

h,11 =
⎛
⎝
2∂1∂1h01 0 0
2∂1∂1h1b̄ 0 0
2∂1∂1hāb̄ 0 0

⎞
⎠ ; (3.26b)

the precise form of Ac
h,11, B

c
h,11, mapping sections of K0 to sections of Kc

11, is irrel-
evant: only their boundedness matters (even mild growth towards I + would be
acceptable). The operator on the left hand side of (3.26b) has the same structure
as the model operator in (1.22); the fact that the forcing term in (3.26b) is decaying
will thus allow us to prove that πc

11h
′ is bounded at I +, consistent with what the

function space X∞ encodes.
Lastly, π11h′ couples to all previous quantities,

2ρ−1∂0∂1(π11h′) = (−Ah,11∂1 + Bh,11)

(
π0h′
πc
11h

′
)
,

Ah,11 =
(
0 −2∂1h1ā γ + 2∂1h01 0 0 1

2∂1h
āb̄
)
,

Bh,11 =
(
2∂1∂1h11 0 0 0 0 0

)
. (3.26c)

The logarithmic growth of the first component of Bh,11 is more than balanced by the
fast decay of the (0, 0)-component of h′ that it acts on.

Remark 3.9 The fact that the logarithmic growth of h11 is rendered harmless due to
its coupling only to the faster decaying π0h′ is the manifestation of the weak null
condition [78] in our framework. Here, the faster decay of π0h′ is accomplished by
means of constraint damping, whereas in [79,80] the faster decay of π0 applied to the
difference of the nonlinear solution and the background (Minkowski) metric follows
from the gauge condition which the nonlinear solution verifies, cf. [80, Corollary 9.7].

More subtly, the ρ
b′I
I decay of h′00 is required at this point to allow for an estimate of

the remainder of h11 withweightρ
bI
I (� ρ

b′I
I log ρI ). The last component of Ah,11, act-

ing on the trace-free spherical part of h′, in general has a nonzero leading term atI +;31
hence, solving the equation (3.26c), schematically ρI ∂ρI (∂1π11h

′) ≈ ∂1hāb̄(∂1h′)āb̄,
requires π11h′ to have a log ρI term.

At the other boundaries I 0 and I+, we only need crude information about Lh for
the purpose of obtaining an energy estimate in §4:

Lemma 3.10 We have Lh − L0 ∈ H∞;1+b0,−1−0,1+b+
b Diff2b(M;β∗S2).

Proof Near (I+)◦, the stated ρ1+b++ decay is a consequence of the calculation of differ-
ences of Christoffel symbols and curvature components as in the proof of Lemma 3.5.
Near I +, we revisit the proof of Lemma 3.8: in the notation of equation (3.25), the
expressions for Ah and Bh give L0

h − L0
0 ∈ H∞;1+b0,−0,1+b+

b Diff1b. Regarding the

31 The discussion of Theorem 1.10 shows that for nontrivial data, this leading term must be nontrivial
somewhere on I+.
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second remainder term in L̃h , we note that the leading order terms, captured by the
Diff2b summand with C∞ coefficients, come from terms of the metric and the Christof-
fel symbols which do not involve h; thus, these are equal to the corresponding terms
of L0. $�

In order to obtain optimal decay results at I+ in §5.2, we shall need the precise
form of the normal operator of Lh , which by Lemma 3.10 is the same as that of
L0. Now, gm is itself merely a perturbation of the Minkowski metric, pulled back
by a diffeomorphism, see (2.10). It is convenient for the normal operator analysis at
I+ in §§5.2 and 7 to relate this to the usual presentation of the Minkowski metric
g = dt2 − dx2 on R

4 in U = {t > 2
3r}:

Lemma 3.11 The metric g lies inAElog
phg (U ; S2 scT ∗ m

R4) for the index set Elog defined
in (2.36), and g − gm ∈ AE ′log

phg (U ; S2 scT ∗ m
R4) ⊂ ρ1−0H∞

b (U ; S2 scT ∗ m
R4).

The failure of smoothness (form �= 0) of g is due to the logarithmic correction, see

(2.5), in the definition of the compactification m
R4. On the radial compactification

0
R4 on the other hand, g is a smooth scattering metric.

Proof of Lemma 3.11 In the region C2 defined in (2.8), gm = g is smooth, see the
discussion after equation (2.10). In the region C1, see equation (2.6), the spatial part
dr2 + r2/g is a smooth symmetric scattering 2-tensor on m

R4. In the region t ≥ 2
3r

and for large r , the claim follows from Lemma 2.8 in that region. $�
Define

L := 1
2�g+ (̃δ∗ − δ∗g)δgGg, (̃δ∗ − δ∗g)u := 2γ t−1 dt⊗s u−γ t−1(ι∇gt u)g, (3.27)

cf. the definition (3.3), which is the linearization Ric(g) − δ̃∗ϒ(g) around g = g,
where ϒ(g) is defined like ϒ(g) in (3.1) with g in place of gm . Using Lemma 3.11,

one finds L ∈ AElog
phg · Diff2b(U ; S2 scT ∗R4). Furthermore,

L − L0 ∈ AE ′log
phg (U ) · Diff2b(U ; S2 scT ∗R4); (3.28)

but ∂v ∈ ρ−1I Vb(M), while derivatives along b-vector fields tangent to S+ lift to
elements of Vb(M); thus,

L − L0 ∈ ρ−1−0I ρ1−0+ H∞
b · Diff2b (near I+ ⊂ M). (3.29)

4 Global background estimate

We prove a global energy estimate for solutions of the linearized equation Lhu = f
with h ∈ X∞, and show that u lies in a weighted conormal space provided f does;
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recall here the definition (3.20) of Lh . The weak asymptotics of u at the boundaries
I 0, I +, and I+ can be improved subsequently using normal operator arguments in
§5. At I +, the estimate loses a weight of ρ1/2I for general b-derivatives, as we will
explain in detail in §4.1. We capture this using the function space H1

I :

Definition 4.1 Let E → R4 be a smooth vector bundle. With Mβ∗E defined in §2.4,
let

H1
β (M;β∗E) := {u ∈ L2

b(M;β∗E) : Mβ∗Eu ⊂ L2
b(M;β∗E)},

H1
I (M;β∗E) := {u ∈ H1

β (M;β∗E) : ρ1/2I Diff1b(M;β∗E)u ⊂ L2
b(M;β∗E)}.

For k ∈ N0 and • = β,I , define

H1,k
•,b (M;β∗E) := {u ∈ L2

b(M;β∗E) : Diffkb(M;β∗E)u ⊂ H1• (M;β∗E)}.

If {A j } ⊂ Mβ∗E is a finite set spanning Mβ∗E over C∞(M), we define norms on
these spaces by

‖u‖H1,k
β,b (M;β∗E) := ‖u‖Hk

b (M;β∗E) +
∑
j

‖A ju‖Hk
b (M;β∗E),

‖u‖H1,k
I ,b(M;β∗E) := ‖u‖H1,k

β,b (M;β∗E) + ‖ρ1/2I u‖Hk+1
b (M;β∗E).

Note that for u ∈ H1
β , we automatically have ρIDiff1b(M)u ⊂ L2

b by

Lemma 2.13(1), so the subspace H1
I ⊂ H1

β encodes a ρ1/2I improvement over this.

Away from I +, the spaces H1,k
β,b and H1,k

I ,b are the same as Hk+1
b .

Fix a vector field
∂ν ∈ Vb(R4) (4.1)

transversal to the Cauchy surface �; we extend the action of ∂ν to sections u of a
vector bundle E using an arbitrary fixed b-connection dE on E , see (2.45), by setting
∂νu := (dEu)(∂ν).

Theorem 4.2 Fix weights b0, b′I , bI , b+ as in Definition 3.1, let γ > b′I in the defini-
tion (3.3) of δ̃∗, and fix a0, aI , a′I ∈ R satisfying

aI < a′I < a0, aI < 0, a′I < aI + b′I .

Then there exists a+ ∈ R such that the following holds for all h ∈ X∞;b0,bI ,b′I ,b+
which are small in X 3: for k ∈ N, u j ∈ ρ

a0
0 Hk− j

b (�), j = 0, 1, and f ∈
Hk−1;a0,aI−1,a+
b (M;β∗S2) with π0 f ∈ H

k−1;a0,a′I−1,a+
b (M;β∗S2), the linear wave

equation
Lhu = f , (u, ∂νu)|� = (u0, u1), (4.2)
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has a unique global solution u satisfying

‖u‖
ρ
a0
0 ρ

aI
I ρ

a++ H1,k−1
I ,b (M;β∗S2) + ‖π0u‖

ρ
a0
0 ρ

a′I
I ρ

a++ H1,k−1
I ,b (M;β∗S2)

≤ C
(
‖u0‖ρa00 Hk

b
+ ‖u1‖ρa00 Hk−1

b
+ ‖ f ‖

H
k−1;a0,aI−1,a+
b

+ ‖π0 f ‖
H

k−1;a0,a′I−1,a+
b

)
.

(4.3)

In particular, if the assumptions on u j and f hold for all k, then

u ∈ H∞;a0,aI ,a+
b , π0u ∈ H

∞;a0,a′I ,a+
b . (4.4)

We refer the reader to Remark 1.9 for a translation of the memberships (4.4) to
pointwise decay estimates. (For obtaining pointwise decay for any fixed number of
derivatives of u, the estimate of (4.3) for sufficiently large k is of course sufficient).

For completeness, we prove a version of such a background estimatewith an explicit
weight a+ in §4.3. As we will see in §5.2, this allows us to give an explicit bound on
the number of derivatives needed to close the nonlinear iteration in §6. A nonexplicit
value of a+ as in Theorem 4.2 is sufficient to prove Theorem 1.1 if one is content
with a nonexplicit value for N .32 We will prove Theorem 4.2 by means of energy
estimates, as outlined in §1.1.1. Microlocal techniques on R4 on the other hand, as
employed in [13], would work well away from the light cone at infinity S+, but since
the coefficients of Lh are singular at S+, it is a delicate question how ‘microlocal’ the
behavior of Lh is at S+, i.e. whether or not and what strengths of singularities could
‘jump’ from one part of the b-cotangent bundle to another at S+; since we do not need
precise microlocal control of Lh for present purposes, we do not study this further.

Since dt is globally timelike for g = gm +ρh provided ρh is small in ρX 3 ⊂ L∞,
existence and uniqueness of a solution u ∈ Hk

loc(M ∩ R
4; S2T ∗R4) are immediate,

together with an estimate for any compact set K � M ∩ R
4,

‖u‖Hk (K ) ≤ CK (‖u0‖ρa00 Hk
b
+ ‖u1‖ρa00 Hk−1

b
+ ‖ f ‖

H
k−1;a0,aI ,a+
b

), (4.5)

where one could equally well replace the norms on the right by standard Sobolev
norms on sufficiently large compact subsets of M ∩ R

4 depending on K , due to the
domain of dependence properties of solutions of (4.2).

Using Lemma 3.10, it is straightforward to prove (4.3) near any compact subset
of (I 0)◦, where H1,k−1

I ,b is the same as Hk
b . Let us define ρ0, ρI , ρ near I 0 as in

equation (2.25). Fix ε > 0, and define for δ, η > 0 small

U := {ρI > ε, ρ0 − ηρI < δ} ⊂ M,

32 One could obtain an explicit value for N even from a nonexplicit weight a+ if one improved the argument
in §6, which proves precise decay rates at I+, to not lose regularity.We expect that this can be accomplished
by microlocal propagation estimates along I+ and radial point estimates at I+ ∩ I+, though we do not
pursue this here.
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Fig. 9 The domain U with its spacelike boundaries U∂
1 , and U∂

2 . We draw I 0 at a 45 degree angle as the

level sets of the chosen boundary defining function ρ0 are approximately null (namely, |dρ0|2G0,b
= 0).

The level sets of ρI are spacelike in ρI > 0, but not uniformly so as ρI → 0

which for ε small is a neighborhood of any fixed compact subset of M ∩ (I 0)◦.
(Since ρI is bounded from above, U can be made to lie in any fixed neighborhood
{ρ0 < δ0} of I 0 provided δ and η are sufficiently small). In view of (3.15), we have
G ∈ 4∂0∂1 − r−2 /G + ρ1−00 H∞

b (U ; S2 scT ∗R4), hence the calculation (2.26) gives

Gb = G0,b + ρ1−00 H∞
b (U ; S2 bT ∗R4), G0,b := 2∂ρI (ρI ∂ρI − ρ0∂ρ0)− /G. (4.6)

Thus, dρI and d(ρ0 − ηρI ) are timelike in U once we fix δ, η > 0 to be sufficiently
small, and thusU is bounded by�∩U and two spacelike hypersurfaces,U ∂

1 = {ρI =
ε} and U ∂

2 = {ρ0 − ηρI = δ} (as well as by U ∩ ∂M at infinity), see Figure 9.

Proposition 4.3 Under the assumptions of Theorem 4.2, we have

‖u‖
ρ
a0
0 Hk

b (U )
≤ C

(‖u0‖ρa00 Hk
b (�∩U ) + ‖u1‖ρa00 Hk−1

b (�∩U ) + ‖ f ‖
ρ
a0
0 Hk−1

b (U )

)
. (4.7)

Proof We give a positive commutator proof of this standard estimate, highlighting
the connection to the more often encountered fashion in which energy estimates are
phrased [37]. Let us work in a trivialization bT ∗R4 ∼= R4 × R

4, and fix the fiber
inner product to be the Euclidean metric in this trivialization. For proving the case
k = 1 of the lemma, we set L := Lh ; it will be convenient however for showing
higher regularity to allow L ∈ Diff2b + ρ1−00 H∞

b Diff2b to be any principally scalar
operator with σb,2(L) = 1

2Gb, acting on C
N -valued functions for some N ∈ N; we

equip C
N with the standard Hermitian inner product. (One may also phrase the proof

invariantly, i.e. not using global bundle trivializations, as we shall do in §§4.1 and 4.2
for conceptual clarity).

We will use a positive commutator argument: let V = −∇ρI ∈ Vb(R4), with
∇ defined with respect to gb; this is future timelike. For � > 0 chosen later, let
w = ρ

−a0
0 e�ρI , and let 1U denote the characteristic function ofU . PutW = 1Uw

2V .
Write L = L2 + L1, where L2 = 1

2�gb ⊗ 110×10, L1 ∈ (C∞ + ρ1−00 H∞
b )Diff1b. We

then calculate the commutator

2 Re〈1Uw f ,1UwVu〉 = 2Re〈Lu,Wu〉 = 〈Au, u〉 + 2Re〈1UwL1u,1UwVu〉
(4.8)
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using the L2
b inner product, where A = [L2,W ]+ (W +W ∗)L2. A simple calculation

gives σb,2(A)(ξ) = KW (ξ, ξ), where

KW := − 1
2 (LWGb + (divgb W )Gb). (4.9)

(The K -current is oftengiven in its covariant form 1
2 (LW gb−(divgb W )gb)). Therefore,

A = d∗KWd, since the principal symbols of both sides agree, hence the differ-
ence is a scalar33 first order b-differential operator which has real coefficients and
is symmetric—thus is in fact of order zero, and since it annihilates constant vectors
in C

N , the difference vanishes. Differentiation of the exponential weight in W upon
evaluating KW will produce the main positive term into which all other terms can
be absorbed. Indeed, the identity L f V Gb = f LV Gb − 2∇ f ⊗s V for V ∈ Vb and
f ∈ C∞ gives

K f V = T (∇ f , V )+ f KV , (4.10)

where

T (X ,Y ) = X ⊗s Y − 1
2gb(X ,Y )Gb

denotes the (abstract) energy-momentum tensor. (The energy-momentum tensor of a
scalar wave u, say, is given by T (X ,Y )(du, du)). Therefore, KW = w2(2�1U K0 +
1U K1 + K2), where

K0 = T (∇ρI , V ), K1 = −2a0T
(∇ρ0
ρ0

, V
)
, K2 = T (∇1U , V ).

Since ∇ρI is past timelike, the main term K0 is negative definite; K2 has support in
∂U \∂M , so∇1U being past timelike atU ∂

1 andU ∂
2 , K2 has the same sign as K0 there.

Lastly, K1 has no definite sign, but can be absorbed into K0 by choosing � > 0 large:
indeed, |T (∇ρ0

ρ0
, V )(ξ, ξ)| ≤ −CT (∇ρI , V ) for some constant C depending only on

K , since gb is a b-metric. Thus, (4.8) gives the estimate

〈1Uw(−2�K0 − K1)du,1Udu〉 ≤ 2(‖1UwVu‖2 + ‖1UwL1u‖2)
+ ‖1Uw f ‖2 + C‖1Uw(du0, u1)‖2. (4.11)

In order to control u itself, consider the ‘commutator’

2 Re〈1Uwu,1UwVu〉 = 2Re〈u,Wu〉 = 〈−1Uw(div V )u,1Uwu〉−〈V (1Uw2)u, u〉,
(4.12)

where V (1Uw2) = 2�1Uw
2(VρI )− 2a01Uw2 Vρ0

ρ0
+ w2V (1U ). In the first, main,

term, VρI = −|dρI |2gb ≤ −c0 < 0 has a strictly negative upper bound onU ; the third

term gives δ-distributions at ∂U with the same sign as this main term at U ∂
1 and U ∂

2
since V is outward pointing there. Choosing � large to absorb the contribution of the
second term, we get

c0�‖1Uwu‖2 ≤ η�‖1Uwu‖2 + Cη�
−1‖1UwVu‖2 + C‖1Uwu0‖2,

33 That is, it is a scalar operator tensored with the identity operator on C
N .
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so fixing η = c0/2, this gives ‖1Uwu‖2 ≤ C�
−2‖1UwVu‖2 + C�‖1Uwu0‖2.

Adding C ′ times this to (4.11) yields

〈1Uw(−2�K0 − K1)du,1Udu〉 + C ′‖1Uwu‖2
≤ (2+ CC ′

�
−2)‖1UwVu‖2 + 2‖1UwL1u‖2

+ C�

(‖1Uw f ‖2 + (C + C ′)‖1Uw(u0, du0, u1)‖2
)
.

Fixing C ′ sufficiently large and then � > 0 large, we can absorb the two first terms
on the right into the first term on the left hand side, using that−�K0 > −2�K0−K1
for large �. This gives (4.7) for k = 1.

We now proceed by induction, assuming (4.7) holds for some value of k for all
operators L of the form considered above. If Lu = f , let X ∈ (Diff1b(R

4))N denote

an N -tuple of b-differential operators which generate Diff1b(R
4) over C∞(R4); writing

[L, X ] = L ′ · X for L ′ an N -tuple of operators in (C∞ + ρ1−00 H∞
b )Diff1b, we then

have (L − L ′)(Xu) = X f . Applying (4.7) to this equation, we obtain the estimate
(4.7) for Lu = f itself with k replaced by k + 1. $�

Given the structure of the operator Lh on the manifold with corners M as described
in §3.3, it is natural to proceed proving the estimate (4.3) in steps: in §4.1, we propagate
the control given by Proposition 4.3 uniformly up to a neighborhood of the past corner
I 0 ∩I + of null infinity and thus into (I +)◦. In §4.2, we prove the energy estimate
uniformly up to I+; the last estimate cannot be localized near the corner I + ∩ I+
since typically limits of future-directed null-geodesic tending toI +∩ I+ pass through
points in I+ far from I +.

4.1 Estimate up to null infinity

Wework near the past corner I 0∩I + of the radiation field; recall the definition of the
boundary defining functions ρ0 and ρI of I 0 and I + from (2.25), and let ρ = r−1.
AtI +, we need to describe Gb more precisely than was needed near (I 0)◦; we make
extensive use of the structures defined in §2.4. Equations (3.15) and (2.26) give

Gb = G0,b + G1,b + G̃b, G1,b := ρ−2g−1m − G0,b ∈ C∞(M; S2 βT M), (4.13)

with G0,b = 2∂ρI (ρI ∂ρI − ρ0∂ρ0) − /G ∈ ρ−1I C∞(M; S2 βT M + ρI S2 bT M) as
before, and

G̃b ∈ ρ
1+b0
0 ρ

−1+b′I
I H∞

b (M; S2 βT M + ρI S
2 bT M).

Dually, equation (2.27) gives

gb ∈ (C∞ + ρ
1+b0
0 ρ

b′I
I H∞

b )(M; S2(βT M)⊥ + ρI S
2 bT ∗M) (4.14)

where the smooth term is ρ2gm = −2ρI dρ0ρ0
( dρ0
ρ0
+ dρI

ρI

)− /g+ρ2I C∞(M; S2 bT ∗M).

123



2 Page 66 of 146 P. Hintz, A. Vasy

Fix β ∈ (0, b′I ). For small ε > 0, we define the domain

Uε := {ρI < ε, ρ0 − ρ
β
I < 1} ⊂ M, U 0

ε := Uε ∩ { 12ε < ρI < ε}, (4.15)

see Figure 10. Thus, Uε is bounded by I 0, I +, {ρI = ε}, and U ∂
ε = {ρ0 − ρ

β
I =

1, ρI < ε}. At U ∂
ε , we use (4.6) and (4.13) to compute

|d(ρ0 − ρ
β
I )|2Gb

∈ 2βρ−1+βI (ρ0 + βρ
β
I )+ ρ

2β
I C∞ + ρ1−00 ρ

−1+b′I
I H∞

b , (4.16)

hence U ∂
ε is timelike for small enough ε. As in the proof of Proposition 4.3, the main

term is the K -current of a timelike vector field with suitable weights:

Lemma 4.4 Fix cV ∈ R, let W := ρ
−2a0
0 ρ

−2aI
I V , and V := −(1+ cV )ρI ∂ρI +ρ0∂ρ0 ,

then

KW ∈ ρ
−2a0
0 ρ

−2aI−1
I

(
2aI (ρ0∂ρ0 − ρI ∂ρI )

2 − 2cV (a0 − aI )(ρI ∂ρI )
2

− 1
2

(
1+ 2(a0 − aI )+ cV (1− 2aI )

)
ρI /G

)

+ ρ
−2a0
0 ρ

−2aI
I (C∞ + ρ

1+b0
0 ρ

−1+b′I
I H∞

b )(M; S2 βT M + ρI S
2 bT M). (4.17)

Furthermore,

divgb W ∈ −2ρ−2a00 ρ
−2aI
I

(
1+ 2(a0 − aI )+ cV (1− 2aI )

)

+ ρ
−2a0
0 ρ

−2aI+1
I (C∞ + ρ

1+b0
0 ρ

−1+b′I
I H∞

b ) (4.18)

Here, ρ−1I |V |2gb ∈ 2cV + ρI C∞ + ρ
1+b0
0 ρ

b′I
I H∞

b , so V is timelike for cV > 0.
This calculation also shows that the level sets of ρI are spacelike in Uε . The term
ρI KW (du, du) will provide control of u in ρa00 ρ

aI
I H1

I (modulo control of |u|2 itself,
which we obtain by integration), similarly to (1.19).

Remark 4.5 For easier comparison with energy estimates expressed in standard coor-
dinates on R

4, consider the special casem = 0, so ρ0 = (r− t)−1 and ρI = (r− t)/r ;
then ρ0∂ρ0 = −(r∂r + t∂t ) (scaling) and ρI ∂ρI = −r(∂t + ∂r ) (weighted outgoing
derivative). Thus, the multiplier vector field W in t < r , r > 0, equals

W = r2aI+1(r − t)2(a0−aI )
(
cV ∂r + (cV + r−t

r )∂t
)
.

Proof of Lemma 4.4 Recall that KW = 1
2 (π − 1

2 (trgb π)Gb), π := −LWGb. Since
V ∈ MC, Lemma 2.13(2) shows that π̃ := −LW G̃b, expressed using vector
field commutators, lies in the remainder space in (4.17); using (4.14), this implies

trgb π̃ ∈ ρ
−2a0+1+b0
0 ρ

−2aI+b′I
I H∞

b , so (trgb π̃)Gb also lies in the remainder space.
Similarly, G1,b contributes a (weighted) smooth remainder term to KW . Lastly, for
π0 = −LWGb,0, the term 1

2 (π0− 1
2 (trgb π0)Gb) contributes themain term, i.e. the first
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line of (4.17) after a short calculation, aswell as twomore error terms, one from G̃b, the
other coming from the nonsmooth remainder term in (4.14). The calculation (4.18)
drops out as a by-product of this, and can also be recovered by divgb W = − trgb
KW . $�

In order to get the sharp weights34 for the decaying components π0u of u at I +
in Theorem 4.2, we need to exploit the sign of the leading subprincipal part of Lh at
I +, given by the term involving ρ−1Ah∂1 in Lemma 3.8, in the decoupled equation
for π0u, see (3.26a) for the model. We thus prove:

Lemma 4.6 Define W = ρ
−2a0
0 ρ

−2a′I
I (ρ0∂ρ0 − (1 + cV )ρI ∂ρI ) similarly to previous

lemma. Let γ ∈ R, and fix a0, a′I ∈ R such that a′I < min(γ, a0). Then for small
cV > 0, there exists a constant C > 0 such that

KW − 2γW ⊗s ρ
−1∂1 ≤ −Cρ−2a00 ρ

−2a′I−1
I

(
(ρI ∂ρI )

2 + (ρ0∂ρ0)
2 + ρI /G

)
, (4.19)

in the sense of quadratic forms, in Uε , ε > 0 small.

Proof Using the expression (2.26) for ρ−10 ρ−1I ∂1, we have

ρ
2a0
0 ρ

2a′I+1
I W ⊗s ρ

−1∂1
∈ (ρ0∂ρ0 − ρI ∂ρI )

2 − cV ρI ∂ρI ⊗s (ρ0∂ρ0 − ρI ∂ρI )+ ρI C∞(M; βT M)

We can then calculate the leading term of ρ2a00 ρ
2a′I+1
I times the left hand side of (4.19)

by completing the square:

− 2(γ − a′I )
(
ρ0∂ρ0 − ρI ∂ρI −

γ cV
2(γ − a′I )

ρI ∂ρI

)2

− cV
(
a0 − a′I −

γ 2cV
2(γ − a′I )

)
(ρI ∂ρI )

2

− 1
2

(
1+ 2(a0 − a′I )+ cV (1− 2a′I )

)
ρI /G.

The first term is the negative of a square, and so is the second term if we choose cV > 0
sufficiently small; reducing cV further if necessary, the coefficient of the last term is
negative as well, finishing the proof. $�
Remark 4.7 For the value of cV determined in the proof, we have divgb W ≤
−Cρ−2a00 ρ

−2a′I
I near I + by inspection of the expression (4.18).

Suppose now u solves Lhu = f with initial data (u0, u1) as in (4.2). Note that the
estimates (4.5) and (4.7) provide control of u on U 0

ε for any choice of ε > 0; thus, it
suffices to prove an estimate in Uε for any arbitrary but fixed ε > 0. Let χ ∈ C∞(R)
34 As explained before in the context of the weight at I+, this is not necessary, but easy to accomplish here
without lengthy calculations.
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Fig. 10 The domain Uε and its
subdomain U0

ε where we have a
priori control of u, allowing us
to cut off and study
equation (4.20) instead

be a cutoff, χ(ρI ) ≡ 1 for ρI < ε/4 and χ(ρI ) ≡ 0 for ρI > ε/2, and put ũ := χu,
then ũ solves the forward problem

Lhũ = f̃ := χ f + [Lh, χ ]u (4.20)

in Uε , with ‖ f̃ ‖
ρ
a0
0 ρ

aI−1
I Hk−1

b (Uε )
+ ‖π0 f̃ ‖

ρ
a0
0 ρ

a′I−1
I Hk−1

b (Uε )
controlled by the corre-

sponding norm of f plus the right hand sides of (4.5) and (4.7). (Use Lemma 3.10
to compute the rough form of the commutator term). Note that ũ = χu is the unique
solution of Lhũ = f̃ vanishing in ρI > 1

2ε. See Figure 10.
Thus, the estimate (4.3) of u inUε is a consequence of the following result (dropping

the tilde on ũ and f̃ ):

Proposition 4.8 For weights b0, b′I , bI , a0, a′I , aI , and for h ∈ X∞, small inX 3, as in

Theorem 4.2, and for k ∈ N, let f ∈ ρ
a0
0 ρ

aI−1
I Hk−1

b (Uε),π0 f ∈ ρ
a0
0 ρ

a′I−1
I Hk−1

b (Uε);
suppose f vanishes in ρI >

1
2ε. Let u denote the unique forward solution of Lhu = f .

Then

‖u‖
ρ
a0
0 ρ

aI
I H1,k−1

I ,b (Uε )
+ ‖π0u‖

ρ
a0
0 ρ

a′I
I H1,k−1

I ,b (Uε )

≤ C
(
‖ f ‖

ρ
a0
0 ρ

aI−1
I Hk−1

b (Uε )
+ ‖π0 f ‖

ρ
a0
0 ρ

a′I−1
I Hk−1

b (Uε )

)
. (4.21)

Proof The idea is to exploit the decoupling of the leading terms of Lh at I + given
by Equations (3.26a)–(3.26c): this allows us to prove an energy estimate (for the case
k = 1)

‖π0u‖
ρ
a0
0 ρ

a′I
I H1

I

≤ C
(‖π0 f ‖

ρ
a0
0 ρ

a′I−1
I L2

b

+ ‖πc
0u‖ρa00 ρ

aI−δ
I H1

I

)
, (4.22)

where δ > 0 fixed such that

a′I − b′I < aI − δ, aI < a′I − δ. (4.23)

The estimate (4.22) contains πc
0u as an error term, but with a weaker weight due to the

decay of the coefficients of the error term L̃h—which is dropped in (3.26a). On the
other hand, π0u couples into πc

0u via at most logarithmic terms, hence we can prove
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‖πc
0u‖ρa00 ρ

aI
I H1

I
≤ C

(‖πc
0 f ‖

ρ
a0
0 ρ

aI−1
I L2

b
+ ‖π0u‖ρa00 ρ

aI+δ
I H1

I

)
(4.24)

Close to I +, the last term in the estimate (4.22), resp. (4.24), is controlled by a
small constant times the left hand side of (4.24), resp. (4.22), hence summing the two
estimates yields the full estimate (4.21). The proof of (4.24) and its higher regular-
ity version will itself consist of two steps, corresponding to the weak null structure
expressed by the decoupling of (3.26b) and (3.26c).

All energy estimates will use the vector field

V1 = −(1+ cV )ρI ∂ρI + ρ0∂ρ0

from Lemma 4.4, with cV > 0 chosen according to Lemma 4.6. Denote u0 := π0u,
u11 := π11u, uc11 := πc

11u, and uc0 := πc
0u = u11 + uc11. We expand Lhu = f as

π0Lhπ0u0 = π0 f − π0Lhπ
c
0u

c
0, (4.25a)

πc
11Lhπ

c
11u

c
11 = πc

11 f − πc
11Lhπ0u0 − πc

11Lhπ11u11, (4.25b)

π11Lhπ11u11 = π11 f − π11Lhπ0u0 − π11Lhπ
c
11u

c
11. (4.25c)

Here, we regard β∗K0 → M as a vector bundle in its own right, and u0 as a section of
β∗K0: the inclusion K0 ↪→ S2 scT ∗R4 and the structures on the latter bundle induced
by g or gm play no role; likewise for K11 and Kc

11.
Starting the proof of the estimate (4.22) using equation (4.25a), let us abbreviate

L := π0Lhπ0. By Lemma 3.8 and recalling the definition of ACD from equa-
tion (3.26a), we have

L = L0 + L̃, L0 = −2ρ−2∂0∂1 + L0
1, L0

1 = −ρ−1ACD∂1, (4.26)

with L̃ lying in the same space as L̃h in (3.25) with β∗S2 replaced by β∗K0. Here,
L0
1 denotes a fixed representative in ρ

−1
I · 0Mβ∗K0 , defined by fixing a representative

of ρ−10 ∂1 ∈ 0Mβ∗K0 , see equation (2.42), in the image space of Lemma 2.13(3).

Let w = ρ
−a0
0 ρ

−a′I
I ; let further 1Uε denote the characteristic function of Uε . Fix

V ∈ 0Mβ∗K0 , with scalar principal symbol equal to that of V1. Let

W := 1UεW
◦, W ◦ := w2V .

Fix a positive definite fiber inner product B : bT M → bT ∗M on bT M , a connection
d ∈ Diff1(R4; K0, T ∗R4 ⊗ K0) on K0, and a positive definite fiber metric k0 on K0
with respect to which ACD = A∗CD; note here that ACD is constant on the fibers of
I +, hence indeed descends to an endomorphism of K0|S+ . Let 〈·, ·〉 denote the L2

inner product with respect to k0 and the density |dgb| ∼ | dρ0
ρ0

dρI d/g|; defining the

b-density dμb := ρ−1I |dgb| ∼ | dρ0
ρ0

dρI
ρI

d/g| to define L2
b(M), we then have

〈u, v〉 = 〈ρI u, v〉L2
b
. (4.27)
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We shall evaluate

2 Re〈wLu0,1UεwVu0〉 = 〈Cu0, u0〉,
C := L∗W +W ∗L = [L,W ] + (W +W ∗)L + (L∗ − L)W . (4.28)

Let KW denote the current associatedwith the scalar principal part ofW , see (4.9), now
understood as taking values in the bundle S2 bT M ⊗ End(β∗K0), acting on β∗K0 by
scalar multiplication.While KW provides positivity of C nearI + for suitable weights
by Lemma 4.4—in particular, this would require a′I < 0—wewill show around (4.35)
below how to obtain a better result by exploiting the sign of ACD entering through
(L∗ − L)W .

In the proof of Proposition 4.3, where we worked in a global trivialization, all terms
of W and L other than the top order ones could be treated as error terms; we show
that the same is true here by patching together estimates obtained from calculations in
local coordinates and trivializations. Thus, let {U j } be a covering of a neighborhood
of S+ containing Uε by open sets on which K0 is trivial, and let {χ j }, χ j ∈ C∞c (U j ),
denote a subordinate partition of unity; let χ̃ j ∈ C∞c (U j ), χ̃ j ≡ 1 on suppχ j . Fix
trivializations (K0)|U j

∼= U j × C
4 and the induced trivializations of β∗K0. Write

L = L j,2 + L j,1, W = Wj,1 +Wj,0,

where L j,2 := 1
2�gb acts component-wise as the scalar wave operator and L j,1

is a first order operator, while Wj,1 := 1Uεw
2V1 acts component-wise, and Wj,0 ∈

1Uεw
2ρI C∞(U j ,

βT M),with the extra factor ofρI due to the choice ofV .On (K0)|U j ,
let moreover d j denote the standard connection, given component-wise as the exterior
derivative on functions, and let k j denote the standard Hermitian fiber metric; we
denote adjoints with respect to k j by †. Now,

〈Cu0, u0〉 =
∑

〈C j u0, χ j u0〉, (4.29)

where

C j =
∑
k,�

C j,k�, C j,k� := L∗j,kW j,� +W ∗
j,�L j,k .

The usual calculation in the scalar case, see the discussion around (4.8), gives

C j,21 := L†
j,2Wj,1 +W †

j,1L j,2 = d†j BKWd j ,

so

〈C j,21u0, χ j u0〉 = 〈d∗BKWdu0, χ j u0〉 + 〈(C j,21 − C j,21)u0, χ j u0〉
+ 〈(d†j − d∗j )BKWd ju0, χ j u0〉 + 〈(d∗j BKWd j − d∗BKWd)u0, χ j u0〉. (4.30)
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Summing the first term over j yields

∫

Uε

ρI KW ◦(du0, du0) dμb +
∫

T (ρI∇1Uε ,W
◦)(du0, du0) dμb (4.31)

upon application of the formula (4.10). The first summand—after adding the
term (4.35) below—is negative definite, controlling derivatives of u0 as in (4.22);
the second term gives a contribution of the same sign: we have

T (ρI∇1Uε ,W
◦) = δU ∂

ε
⊗ w2T ∂ ,

with T ∂ ≤ 0 since −∇1Uε and W ◦ are future causal. The remaining terms in (4.30)
are error terms: the second term is equal to

〈Wj,1u0, (L j,2 − L†∗
j,2)χ j u0〉 + 〈L j,2u0, (Wj,1 −W †∗

j,1)χ j u0〉.

Now, k0 and k j are related by k j (·, ·) = k0(Q̃ j ·, Q̃ j ·), with Q̃ j ∈ C∞(U j ;End(K0))

invertible, and then A† = Q−1
j A∗Q j for Q j := Q̃∗

j Q̃ j when A is an operator acting

on sections of K0. Thus, Wj,1 −W †∗
j,1 = [Wj,1, Q∗

j ](Q−1
j )∗. On M , the constancy of

Q j , and hence of Q∗
j , along the fibers of β and V1 ∈ 0M give the extra vanishing

factor ρI in

Wj,1 −W †∗
j,1 = 1Uε ρIw

2q j,1, q j,1 ∈ C∞(β−1(U j );End(β∗K0)),

with q j,1 only depending on Q j . Similarly, L j,2 − L†∗
j,2 = [L j,2, Q∗

j ](Q−1
j )∗; using

Lemma 3.7 and [∂1, Q∗
j ] ∈ ρ C∞, we find (replacing theweight−0 there by−1/2+b′I

for definiteness)

L j,2 − L†∗
j,2 ∈ ρ

1+b0
0 ρ

−1+b′I
I H∞

b (M)Mβ∗K0

+ (C∞ + ρ
1+b0
0 ρ

−1/2+b′I
I H∞

b )Diff1b(U j ;β∗K0). (4.32)

Writing L j,2u0 = Lu0 − L j,1u0 and using the relationship (4.27), we thus get

|〈(C j,21 − C j,21)u0, χ j u0〉|
≤ C‖χ̃ jwV1u0‖L2

b

(‖χ̃ jρ
b′I
I wu0‖H1

β
+ ‖χ̃ jρ

1/2+b′I
I wu0‖H1

b

)

+ C
(‖χ̃ jρIwLu0‖L2

b
+ ‖χ̃ jρIwL j,1u0‖L2

b

)‖χ̃ jρIwu0‖L2
b
, (4.33)

where the norms are taken onUε . Note that in all terms on the right, at least one factor
comes with an extra decaying power of ρI relative to wu0, hence is small compared
towu0 if we localize toUε for small ε > 0, i.e. to a small neighborhood ofI +. Next,
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we combine Lemmas 2.16 and 4.4 in the same fashion as in the proof of Lemma 2.17
to estimate the last two terms of (4.30) by

C
(‖χ̃ jρIwu0‖H1

b
‖χ jwu0‖L2

b

+ (‖χ̃ jρIwT ∂ (du0, du0)
1/2‖L2

b(U
∂
ε )
+ ‖χ̃ jρIwu0‖L2

b(U
∂
ε )
)‖χ jwu0‖L2

b(U
∂
ε )

);
(4.34)

where the second term in the inner parenthesis comes from the pointwise estimate
T ∂ (d ju0, d ju0)1/2 ≤ C(T ∂ (du0, du0)1/2 + |u0|).

The next interesting term in (4.29) is C j,11 + C j,10, specifically the term coming
from the ‘constraint damping part’ L0

1 defined in (4.26). In a local trivialization, L
0
1 =−ρ−1ACD∂1 + L0

1, j , L
0
1, j ∈ C∞(U j ) (using the discussion around (2.42) for this

membership), so we have the pointwise equality

2 Re k0(Wu0, L
0
1χ j u0) = −2Re k0(Wj,1u0, ρ

−1ACD∂1χ j u0)

+ 2Re k0(Wj,0u0, L
0
1χ j u0)+ 2Re k0(Wj,1u0, L

0
1, jχ j u0);

letting

K ′ := −2w2(V1 ⊗s ρ
−1∂1)⊗ ACD

∈ ρ
−2a0
0 ρ

−2a′I−1
I C∞(

Uε; (S2 βT M + ρI S
2 bT M)⊗ End(β∗K0)

)
,

the first term integrates to
∫
ρI K ′(d ju0, d jχ j u0) dμb, which equals

∫
ρI K

′(du0, dχ j u0) dμb (4.35)

plus error terms of the same kind as in the second line of (4.30). The extra factor of ρI
in Wj,0 and L0

1, j (as compared to Wj,1 and L0
1) allows the remaining two terms to be

estimated in a fashion similar to (4.33). The remaining contributions to C j,11 + C j,10
are error terms coming from L̃ in (4.26) and can be estimated as in (4.33).

Lastly, the terms of (4.29) involving C j,20 can be rewritten and estimated as follows:

∣∣2Re〈(L − L j,1)u0,Wj,0χ j u0〉 + 〈Wj,0u0, [L j,2, χ j ]u0〉
∣∣

≤ 2
(‖ρIwLu0‖L2

b
+ ‖χ̃ jρIwL j,1u0‖L2

b

)‖χ jρIwu0‖L2
b

+ ‖χ̃ jρIwu0‖L2
b

(‖χ̃ jρ
b′I
I wu0‖H1

β
+ ‖χ̃ jρ

1/2+b′I
I wu0‖H1

b

);

the norms are taken on Uε , and we use that [L j,2, χ j ] lies in the same space as
(4.32). We note that by Lemma 3.8, the terms involving L j,1 here and in (4.33) can
be estimated by

‖χ̃ jρIwL j,1u0‖L2
b
≤ C

(‖χ̄ jρ
b′I
I wu0‖H1

β
+ ‖χ̄ jρ

1/2+b′I
I wu0‖H1

b

)
,
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where χ̄ j ∈ C∞c (U j ) is identically 1 on supp χ̃ j .
This finishes the evaluation of (4.28); we now turn to the estimate of wu0 itself

by wVu. As in the proof of Proposition 4.3, this follows from integration along V .
Concretely, we consider a ‘commutator’ as in (4.12), that is,

2 Re〈1UεwVu0, ρ
−1
I wu0〉 = −〈ρ−1I divgb(1Uεw

2V1)u0, u0〉 + E, (4.36)

where |E | ≤ C‖wu0‖L2
b
‖ρIwu0‖L2

b
by Lemma 2.18. Using the negativity of the

divergence near I + due to Lemma 4.4 and Remark 4.7, and that V1 is outward
pointing at U ∂

ε , so V1(1Uε ) is a negative δ-distribution at U
∂
ε , we get

‖wu0‖L2
b(Uε )

+ ‖wu0‖L2
b(U

∂
ε )
≤ C‖wVu0‖L2

b(Uε )
; (4.37)

recall here that u0 vanishes in ρI > ε
2 , hence there is no a priori control term on

the right. Subtracting this estimate from (4.28) (the latter having main terms which
are negative definite in du0), the main terms are the left hand side of (4.37) and∫
Uε
ρI (K ′+KW ◦)(du0, du0) dμb from (4.31) and (4.35). By Lemma 4.6, they control

‖wu0‖H1
I (Uε )

: the error terms in Uε can be absorbed into this, while those at U ∂
ε

in (4.34) can be absorbed into the second terms of (4.31) and (4.37), due to the extra
decaying weights on at least one of the factors in each of those error terms as discussed
after (4.33). Thus, we have proved

‖u0‖
ρ
a0
0 ρ

a′I
I H1

I

≤ C
(‖π0 f ‖

ρ
a0
0 ρ

a′I−1
I L2

b

+ ‖π0Lhπ
c
0u

c
0‖

ρ
a0
0 ρ

a′I−1
I L2

b

)
, (4.38)

valid for a′I < min(a0, γ ). Since Lh is principally scalar, π0Lhπ
c
0 is a first order

operator, and by Lemma 3.8, we have

π0Lhπ
c
0 ∈ ρ1−00 ρ

−1+b′I
I Mβ∗K0 + (C∞ + ρ1−00 ρ−0I H∞

b )Diff1b(M;β∗K0); (4.39)

since a′I < aI +b′I < aI + 1
2 , the second term in (4.38) is bounded by ‖uc0‖ρa00 ρ

aI−δ
I H1

I
for sufficiently small δ > 0 (by the assumptions on theweights in Theorem 4.2), which
establishes the estimate (4.22).

The proof of the estimate (4.24) proceeds along completely analogous lines, using
theweightw = ρ

−a0
0 ρ

−aI
I and positive commutator estimates for the equations (4.25b)

and (4.25c). Themain difference is thatπ11Lhπ11 andπc
11Lhπ

c
11 have no leading order

subprincipal terms like π0Lhπ0 does, hence we need aI < min(a0, 0) for Kw2V to
have a sign—this is the case a′I = aI , γ = 0 in the notation of Lemma 4.6. In order to
estimate the coupling terms on the right hand side of (4.25b), we use Lemma 3.8, so

πc
11Lhπ0 ∈ (ρ−1I C∞ + ρ1−00 ρ−1−0I H∞

b )M+ (C∞ + ρ1−00 ρ−0I H∞
b )Diff1b,

πc
11Lhπ11 ∈ ρ1−00 ρ

−1+b′I
I M+ (C∞ + ρ1−00 ρ−0I )Diff1b, (4.40)
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which gives

‖uc11‖ρa00 ρ
aI
I H1

I
≤ C

(‖πc
11 f ‖ρa00 ρ

aI−1
I L2

b
+ ‖u0‖ρa00 ρ

aI+δ
I H1

I
+ ‖u11‖ρa00 ρ

aI−δ
I H1

I

);
(4.41)

for our choice (4.23) of δ, the second term is bounded by a small constant times the
left hand side of (4.22). For analyzing the equation (4.25c) for u11, we observe that
π11Lhπ0 lies in the space (4.40), while

π11Lhπ
c
11 ∈

(
ρ
1+b0
0 ρ−1I H∞

b (I + ∩Uε)+ ρ1−00 ρ
−1+bI
I H∞

b

)M
+(C∞ + ρ1−00 ρ−0I H∞

b )Diff1b,

where we exploit that hāb̄ has a leading term at I +. Thus,

‖u11‖ρa00 ρ
aI
I H1

I
≤ C ′(‖π11 f ‖

ρ
a0
0 ρ

aI−1
I L2

b
+ ‖u0‖ρa00 ρ

aI−δ
I H1

I
+ ‖uc11‖ρa00 ρ

aI
I H1

I

)
.

(4.42)
In order to obtain the estimate (4.24), we add (4.41) and a small multiple, η, of (4.42),
so that ηC ′ < 1 and uc11 can be absorbed into the left hand side of (4.41); note that the
u11 term in (4.41) is arbitrarily small compared to the left hand side of (4.42) when
we localize sufficiently closely toI +. As explained at the beginning of the proof, this
establishes the desired estimate (4.21) for k = 1.

To prove (4.21) for k ≥ 2, we proceed by induction on the level of the hierar-
chy (4.25a)–(4.25c) and the corresponding estimates (4.22), (4.41), and (4.42). The
key structures for obtaining higher regularity are the symmetries of the normal oper-
ators of π0Lhπ0 etc. at I +. Namely, −2ρ−2∂0∂1 ∈ ∂ρI (ρ0∂ρ0 − ρI ∂ρI ) + Diff2b
commutes (modulo Diff2b) with ρ0∂ρ0 , while for the vector field ρI ∂ρI generating
dilations along approximate (namely, Schwarzschildean) light cones, we have

[−2ρ−2∂0∂1, ρI ∂ρI ] ∈ −2ρ−2∂0∂1 + Diff2b.

Commutation with spherical vector fields is more subtle: we need to define rotation
‘vector fields’ somewhat carefully. We only define these on β∗K0, the definition for
the other bundles being analogous. Using the product splitting Rq × Rs × S

2 of R
4

near S+, denote by {�1,i : i = 1, 2, 3} ⊂ V(S2) ↪→ Vb(M) a spanning set of the
space of vector fields on S

2, e.g. rotation vector fields, though the concrete choice or
their (finite) number are irrelevant; we can then define elements�i ∈ Diff1b(M;β∗K0)

with scalar principal symbols equal to those of �1,i such that

[ρ−1∂0,�i ], [ρ−10 ∂1,�i ] ∈ ρIDiff
1
b(M;β∗K0), (4.43)

where ρ−1∂0, ρ−10 ∂1 denote elements in 0Mβ∗K0 . (Note that the ρI C∞ indeterminacy
of ρ−1∂0, ρ−10 ∂1 does not affect (4.43)). Here, it is crucial that we fix ρ0 and ρ to be
given by (2.25) and thus rotationally invariant: �i,1ρ0 = 0, so [�i , ρ0] ∈ ρI C∞;
we also have [�i , ρI ] ∈ ρI C∞ independently of choices. Regarding (4.43) then, we
automatically have membership in Diff1b by principal symbol considerations; to get
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the additional vanishing at ρI is then exactly the statement that the normal operators of
ρ−1∂0, resp. ρ−10 ∂1, and�i commute. For ρ−1∂0, whose normal operator is− 1

2ρI ∂ρI ,
this is automatic, while for ρ−10 ∂1, we merely need to arrange [ρ0∂ρ0 ,�i ] = 0 atI +,
which holds if we define �i in the decomposition (3.10) by �1,i ⊕ /∇�1,i ⊕�1,i . We
therefore obtain

[ − 2ρ−2∂0∂1,�i ], [L0,�i ] ∈ Diff2b,

with L0 given in (4.26), which improves over the a priori membership in ρ−1I Diff2b. Let
us now assume that for the solution of equation (4.25a), we have already established
the estimate

‖u0‖
ρ
a0
0 ρ

a′I
I H1,k−1

I ,b

≤ C
(‖π0 f ‖

ρ
a0
0 ρ

a′I−1
I Hk−1

b

+ ‖πc
0u‖ρa00 ρ

aI−δ
I H1,k−1

I ,b

)
. (4.44)

We use {G j } := {ρ0∂ρ0 , ρI ∂ρI , �1, �2, �3, 1}, which spans Diff1b(M;β∗K0) over
C∞(M), as a set of commutators. Writing L = π0Lhπ0, we then have

LG ju0 = f j + [L,G j ]u0, f j := G jπ0 f − G jπ0Lhπ
c
0u

c
0. (4.45)

We estimate the first term by

‖ f j‖
ρ
a0
0 ρ

a′I−1
I Hk−1

b

≤ C
(‖π0 f ‖

ρ
a0
0 ρ

a′I−1
I Hk

b

+ ‖πc
0u‖ρa00 ρ

aI−δ
I H1,k

I ,b

)
.

For the second, delicate, term, we use the above discussion to see that

[L,G j ] ∈ c j L + ρ1−00 ρ
−1+b′I
I M ◦ Diff1b + (C∞ + ρ1−00 ρ−0I )Diff2b (4.46)

with c j = 1 if G j = ρI ∂ρI , and c j = 0 otherwise. Thus, [L,G j ] = c j L + C�
j G�

with C�
j ∈ ρ1−00 ρ

−1+b′I
I M+ (C∞ + ρ1−00 ρ−0I )Diff1b, and therefore

‖[L,G j ]u0‖
ρ
a0
0 ρ

a′I−1
I Hk−1

b

≤ c j‖Lu0‖
ρ
a0
0 ρ

a′I−1
I Hk−1

b

+ C
∑
�

‖G�u0‖
ρ
a0
0 ρ

aI−δ−δ′
I H1,k−1

I ,b

(4.47)
for δ′ > 0 small; recall that our choice (4.23) of δ leaves some extra room. Now,
applying (4.44) to G ju0 in equation (4.45) and summing over j , we can absorb the
term (4.47) into the left hand side of the estimate due to the weaker weight. This
establishes (4.44) for k replaced by k + 1. The higher regularity analogues of the
estimates (4.41) and (4.42) are proved in the same manner; as before, this then yields
the estimate (4.21) for all k. $�

This proposition remains valid near any compact subset ofI + \ I+: the proof only
required localization near I +. At this point, we therefore have quantitative control
of the solution of the initial value problem for Lhu = f in any compact subset of
M \ I+.
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4.2 Estimate near timelike infinity

Near the corner I+ ∩I +, fix the local defining functions

ρI := v = (t − r∗)/r , ρ̊+ := (t − r∗)−1 (4.48)

of I + and I+, and let ρ := ρI ρ̊+ = r−1; these only differ from the expressions for
the defining functions ρI and ρ0 used in §4.1 by a sign. We thus have Gb = ρ−2G =
G0,b + G1,b + G̃b for

G0,b = −2∂ρI (ρI ∂ρI − ρ̊+∂ρ̊+)− /G ∈ ρ−1I C∞(M; S2 βT M + ρI S
2 bT M) (4.49)

and G1,b ∈ C∞(M; S2 βT M), G̃b ∈ ρ
−1+b′I
I ρ

1+b++ H∞
b (M; S2 βT M + ρI S2 bT M),

while

gb ∈ (C∞ + ρ
b′I
I ρ

1+b++ H∞
b )(M; S2(βT M)⊥ + ρI S

2 bT ∗M)

with smooth term given by ρ2gm = 2ρI
dρ̊+
ρ̊+ (

dρ̊+
ρ̊+ + dρI

ρI
)+ ρ2I C∞(M; S2 bT ∗M). In

order to be able to work near all of I+, we first prove:

Lemma 4.9 There exists a defining function ρ+ ∈ C∞(M) of I+ such that dρ+/ρ+
is past timelike near I+ for the dual b-metric ρ−2g−1m . Moreover, if C > 0 is fixed,
then for any h ∈ X∞ with ‖h‖X 3 < C and for any ε > 0, there exists δ > 0 such
that dρ+/ρ+ is past timelike with |dρ+/ρ+|2Gb

> 0 in {ρI ≥ ε, ρ+ ≤ δ} for the dual
b-metric Gb = ρ−2g−1, g = gm + ρh.

Proof For the second claim, note that in ρI ≥ ε > 0, we have Gb − ρ−2g−1m ∈
ρ
1+b++ L∞ with norm controlled by ‖h‖X 3 , so

|dρ+/ρ+|2Gb
∈ |dρ+/ρ+|2

ρ−2g−1m
+ ρ

1+b++ H∞
b (4.50)

is indeed positive near ρ+ = 0. To prove the first claim, we compute on Minkowski
space | f −10 d f0|2 ≡ 1, f0 = t/(t2 − r2) in t > r , computed with respect to the
dual metric of t−2(dt2 − dr2).35 Similarly, in r/t > 1

4 , and t > r∗ large, we have
| f −1∗ d f∗|2ρ−2gm > 0 for f∗ = t/(t2−r2∗ ): this is a simple calculationwhere gm = gSm is
the Schwarzschild metric, and follows in general by an estimate similar to (4.50) since
gm differs from gSm by a scattering metric of class ρ1−0H∞

b in r/t < 3
4 . Moreover, f∗

is (apart from minor smoothness issues, which we address momentarily) a defining
function of I+ near I +. But f0 − f∗ ∈ ρ2−0H∞

b for r/t ∈ ( 14 ,
3
4 ), hence f ′ :=

χ f∗ + (1 − χ) f0 has |( f ′)−1d f ′|2
ρ−2gm > 0 near I+, where χ = χ(r/t) is smooth

and identically 0, resp. 1, in r/t < 1
4 , resp. r/t >

3
4 . Fixing any defining function ρ

′+
of I+, Lemma 2.8 implies f ′ ∈ ρ′+ C∞(M)+ (ρ′+)2−0H∞

b (M) (with the nonsmooth

35 See also the related calculations and geometric explanations around Equation (4.64).
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summand supported away from I + by construction), so we may take ρ+ ∈ C∞(M)

to be any defining function of I+ such that f ′ − ρ+ ∈ (ρ′+)2−0H∞
b . $�

For the remainder of this section, ρ+ will denote this particular defining function.
Near I+ ∩I +, we need to modify ρ+ in the spirit of (4.16) in order to get a timelike
(but not quite smooth) boundary defining function. Thus, fix β ∈ (0, b′I ) and some

small η > 0, and let pβ ∈ ρ
β
I C∞(U ) be a nonnegative function in a neighborhood U

of I+ such that pβ ≡ ηβ in ρI ≥ 2η, pβ(ρI ) = ρ
β
I in ρI ≤ 1

2η, and 0 ≤ p′β ≤ βρ
β−1
I ;

let then
ρ̃+ := ρ+(1+ pβ) ∈ ρ+(1+ ρ

β
I ) C∞(M). (4.51)

It is easy to see that ρ̃a++ Hk
b (M) = ρ

a++ Hk
b (M), likewise for weighted HI and HI ,b

spaces.

Lemma 4.10 Fix C > 0. Then there exist η, δ > 0 such that for all h ∈ X∞ with
‖h‖X 3 < C, we have |dρ̃+/ρ̃+|2Gb

> 0 in ρ+ ≤ δ.

Proof We compute the Gb-norms

∣∣∣dρ̃+
ρ̃+

∣∣∣
2 =

∣∣∣dρ+
ρ+

∣∣∣
2 + ρI p′β

1+ pβ

(
2
〈dρ+
ρ+

,
dρI
ρI

〉
+ ρI p′β

1+ pβ

∣∣∣dρI
ρI

∣∣∣
2)
. (4.52)

In ρI < 2η and thus nearI +, we first note that ρ+ = f ρ̊+ with f > 0 smooth; since
d f / f thus vanishes at I + ∩ I+ as a b-1-form, we have

2
〈dρ+
ρ+

,
dρI
ρI

〉
∈ (2+ ρI C∞ + ρ+ C∞)ρ−1I + ρ

−1+b′I
I ρ

1+b++ H∞
b ,

thus the second summand of (4.52) is� ρ
−1+β
I in ρI ≤ 1

2η and ρ+ small. The first and

third terms on the other hand are dominated by this, as they are bounded by ρ
−1+b′I
I

and ρ−1+2βI , respectively. In 1
2η < ρI < 2η and ρ+ small, the parenthesis in (4.52) is

positive, the second summand being bounded by ρ−1+βI ; the prefactor being positive
due to p′β ≥ 0, the claimed positivity thus follows from Lemma 4.9. $�

We also note that ρ+∂ρ+ , which is well-defined as a b-vector field at I+ and equals
the scaling vector field in (I+)◦, is past timelike in (I+)◦. Let

U = {ρ̃+ < δ} ⊂ M

denote the neighborhood of I+ ⊂ M on which we will formulate our energy estimate.
Near I +, we need to exploit the weak null structure as in §4.1; thus, let

χ ∈ C∞c ([0,∞)ρI ), χ ≡ 1 near ρI = 0, (4.53)

denote a smooth function on U localizing in a neighborhood of I + where the pro-
jections π0 etc. are defined, see the discussion around Definition 3.4.
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Proposition 4.11 Forweights b′I , bI , b+, a′I , aI as in Theorem4.2, there exists a+ ∈ R

such that for all h ∈ X∞ which are small in X 3, the following holds: Let f ∈
ρ
aI−1
I ρ

a++ Hk−1
b (U ), χπ0 f ∈ ρ

a′I−1
I ρ

a++ Hk−1
b (U ), and suppose f vanishes in ρ̃+ >

1
2δ. Let u denote the unique forward solution of Lhu = f . Then

‖u‖
ρ
aI
I ρ

a++ H1,k−1
I ,b (U ) + ‖χπ0u‖

ρ
a′I
I ρ

a++ H1,k−1
I ,b (U )

≤ C
(
‖ f ‖

ρ
aI−1
I ρ

a++ Hk−1
b (U )

+ ‖χπ0 f ‖
ρ
a′I−1
I ρ

a++ Hk−1
b (U )

)
. (4.54)

Proof We first consider k = 1. Near ∂ I+, we will make use of the vector field V ′
0 =

(1− cV )ρI ∂ρI − ρ̊+∂ρ̊+ , cV > 0 small, analogously to Lemma 4.4; away from ∂ I+,
the vector field V ′′

0 := −∇ρ+/ρ+ is future timelike. Fix a0+ ≤ − 1
2 and consider the

vector field VI := ρ
−2aI
I ρ̊

−2a0++ V ′
0, then

KVI ∈ ρ
−2aI−1
I ρ̊

−2a0++
(
2cV (a

0+ − aI )(ρI ∂ρI )
2 + 2aI (ρI ∂ρI − ρ̊+∂ρ̊+)

2

+ ( 1
2 (1− cV )+ a0+ − aI + cV aI

)
ρI /G

)

+ ρ
−2aI
I ρ

−2a0++ (C∞ + ρ
−1+b′I
I ρ

1+b++ )(M; S2 βT M + ρI S
2 bT M)

is� −ρ−2aI−1I ρ
−2a0++ as a quadratic form, anddivgb VI � −ρ−2aII ρ

−2a0++ .Analogously

to Lemma 4.6, if V ′
I = ρ

−2a′I
I ρ̊

−2a0++ V ′
0, then KV ′

I
−2γ V ′

I ⊗s ρ
−1∂1 is negative definite

near ∂ I+ for cV > 0 sufficiently small.
To explain the idea for obtaining a global (near I+) negative commutator, consider

the timelike vector fieldW0 := χVI + (1−χ)ρ
−2a0++ V ′′

0 , and letW = ρ̃
−2a1++ W0; then

formula (4.10) gives

KW = ρ̃
−2a1++ KW0 + 2a1+ρ̃

−2a1++ T (W0,−∇ρ̃+
ρ̃+ ). (4.55)

Letting

a+ := a0+ + a1+,

the first term gives control in ρaII ρ
a++ H1

I nearI + in a positive commutator argument.

On the other hand, its size is bounded by a fixed constant times ρ−2a++ in ρI ≥ ε > 0;

but there, T (W0,− dρ̃+
ρ̃+ ) � ρ

−2a0++ in the sense of quadratic forms on bT ∗M since W0

and −dρ̃+/ρ̃+ are both future timelike. Therefore, choosing a1+ large and negative,
we obtain

KW ≤ −Cρ−2aI−1I ρ
−2a++ K ′

W ,
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where K ′
W is positive definite on bT ∗M in ρI ≥ ε > 0, while near I +, we have

K ′
W = K1 + ρI K2, with K1, resp. K2, positive definite on bT ∗M , resp. (βT M)⊥.

This gives global (near I+) control in ρaII ρ
a++ H1

I .
We now apply this discussion to the situation at hand. For brevity, let us use the

same symbol to denote a b-vector field in 0M and an arbitrary but fixed representative
in 0Mβ∗E according to Lemma 2.13(3), similarly for b-vector fields with weights

(such as VI and V ′
I ); the bundle E → R4 will be clear from the context. For a1+ ∈ R

chosen later, consider then the operator W acting on sections of β∗S2,

W := ρ̃
−2a1++ W0, W0 := χ

(
π0V

′
Iπ0 + πc

11VIπ
c
11+ ηπ11VIπ11

)+ (1− χ)ρ
−2a0++ V ′′

0 ,

(4.56)
where η > 0 will be taken small, as in the discussion after (4.42). (Since u vanishes
in ρ+ > 1

2δ, we do not need to include a cutoff term here). ‘Integrating’ along W via
a commutator calculation for 2 Re〈Wu, ρ−1I u〉 as in (4.36) gives control on u in the
function space appearing in (4.7) in terms of Wu. The evaluation of the commutator
2 Re〈Lhu,Wu〉 = 〈Cu, u〉, C = [Lh,W ] + (W + W ∗)Lh + (L∗h − Lh)W , then
combines the three separate calculations for the equations (4.25a)–(4.25c) into one:
nearI +, one writes Lh in block form according to the bundle decomposition β∗S2 =
K0⊕Kc

11⊕K11,with the diagonal elementsπ0Lhπ0 etc. giving rise to themain termsof
the commutator, while the off-diagonal terms can be estimated usingCauchy–Schwarz
and absorbed into the main terms due to the weak null structure, as explained in detail
in the proof of Proposition 4.8. Away fromI +, all error terms can be absorbed in the
main term, corresponding to the second term in (4.55) upon choosing a1+ < 0 negative
enough. This proves the proposition for k = 1.

Suppose now we have proved (4.54) for some k ≥ 1. First, the b-operator Lh

automatically commutes with ρ+∂ρ+ to leading order at I+; concretely, Lemma 3.8
gives

[Lh, ρ+∂ρ+] ∈ ρ
−1+b′I
I ρ

1+b++ M2
β∗S2 + (ρ+ C∞ + ρ−0I ρ

1+b++ H∞
b )Diff2b.

Here, by an abuse of notation, ρ+∂ρ+ ∈ 0Mβ∗S2 is defined by first extending the
vector field ρ+∂ρ+ ∈ C∞(I+, bTI+M) to an element of 0MC, and then taking a
representative of the image space in Lemma 2.13(3); for this particular vector field,
such a representative is in fact well-defined modulo ρIρ+ C∞(M;End(β∗S2)), the
extra vanishing at ρ+ being due to the special (b-normal) nature of ρ+∂ρ+ .

Therefore, commuting ρ+∂ρ+ through the equation Lhu = f , we have the estimate

‖ρ+∂ρ+u‖ρaII ρ
a++ H1,k−1

I ,b
+ ‖χπ0ρ+∂ρ+u‖

ρ
a′I
I ρ

a++ H1,k−1
I ,b

≤ C
(
‖ f ‖

ρ
aI−1
I ρ

a++ Hk
b
+ ‖χπ0 f ‖

ρ
a′I−1
I ρ

a++ Hk
b

+ ‖u‖
ρ
aI−δ
I ρ

a+−(1+b+)+ H1,k
I ,b

)
(4.57)

by the inductive hypothesis, where we used aI − δ > a′I − b′I for δ > 0 small to
bound the forcing term [Lh, ρ+∂ρ+]u by the third term on the right; see the related
discussion around (4.39).
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Second, the timelike character of ρ+∂ρ+ at (I+)◦ for ε > 0 implies that
C(ρ+Dρ+)

2 − Lh is elliptic in ρI ≥ ε for large C (depending on ε); therefore,
letting χ j ∈ C∞c (U \I +), j = 1, 2, denote cutoffs with χ1 ≡ 1 on supp(1− χ) and
χ2 ≡ 1 on suppχ1, we have an elliptic estimate away from I +,

‖χ1u‖ρa++ Hk+1
b

≤ C
(‖χ2ρ+∂ρ+u‖ρa++ Hk

b
+ ‖χ2u‖ρa++ Hk

b
+ ‖χ2 f ‖ρa++ Hk−1

b

)
, (4.58)

for u supported in ρ+ ≤ 1
2δ. Near I

+ on the other hand, we have the symmetries
of null infinity at our disposal, encoded by the operators ρI ∂ρI and the spherical
derivatives � j , see the discussion around (4.43). Let χ̃ ∈ C∞(U ) be identically 1
on suppχ , and supported close to I +. Defining the set of (cut-off) commutators
{χG j } := {χρI ∂ρI , χ�1, χ�2, χ�3} which together with ρ+∂ρ+ spans Vb(M)

near I +, and recalling the commutation relations (4.46), we find

‖χG ju‖ρaII ρ
a++ H1,k−1

I ,b
+ ‖χπ0G ju‖

ρ
a′I
I ρ

a++ H1,k−1
I ,b

≤ C
(
‖ f ‖

ρ
aI−1
I ρ

a++ Hk
b
+ ‖χπ0 f ‖

ρ
a′I−1
I ρ

a++ Hk
b

+
∑
�

‖χ̃G�u‖ρaI−δI ρ
a++ H1,k−1

I ,b
+ ‖χ̃ρ+∂ρ+u‖ρaI−δI ρ

a++ H1,k−1
I ,b

)
. (4.59)

But for any η > 0, we have the estimate

‖χ̃G�u‖ρaI−δI ρ
a++ H1,k−1

I ,b
≤ η‖χG�u‖ρaII ρ

a++ H1,k−1
I ,b

+ Cη‖χ1u‖ρa++ Hk+1
b

,

and the second term can in turn be estimated using (4.58). Summing the estimate (4.59)
over j and fixing η > 0 sufficiently small, we can thus absorb the terms involving
χ̃G�u into the left hand side, getting control by the norm of f , plus a control term
C‖ρ+∂ρ+u‖ρa++ Hk

b
. Adding to this estimate 2C times (4.57), this control term can be

absorbed in the left hand side of (4.57). This gives control of u as in the left hand side
of (4.54) with k replaced by k+1, but with an extra term on the right coming from the
last term in (4.57); however, this term has a weaker weight at I+, ρa+−(1−b+)+ � ρ

a++ ,
hence can be absorbed. This gives (4.54) for k replaced by k + 1. $�

Combining the estimate (4.5) in compact subsets of M◦ with Proposition 4.3 near
(I 0)◦, Proposition 4.8 near I + \ (I + ∩ I+), and Proposition 4.11 near I+ proves
Theorem 4.2.

4.3 Explicit weights for the background estimate

We sketch the calculations needed to obtain explicit values for the weights in the
background estimate. More precisely, we prove the following slight modification of
Theorem 4.2:
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Theorem 4.12 Let a+ = − 3
2 . There exists an ε > 0 such that for aI < āI < a′I <

min(0, a0) with |aI |, |a′I |, |āI |, bI , b′I < γ < ε subject to the conditions in Defini-

tion 3.1, as well for h ∈ X∞;b0,bI ,b′I ,b+ with ‖h‖X 3 < ε, the unique global solution
of the linear wave equation

Lhu = f , (u, ∂νu)|� = (u0, u1)

satisfies the estimate

‖u‖
ρ
a0
0 ρ

aI
I ρ

a++ H1,k−1
I ,b

+ ‖πc
11u‖ρa00 ρ

āI
I ρ

a++ H1,k−1
I ,b

+ ‖π0u‖
ρ
a0
0 ρ

a′I
I ρ

a++ H1,k−1
I ,b

≤ C
(
‖u0‖ρa00 Hk

b
+ ‖u1‖ρa00 Hk−1

b

+ ‖ f ‖
H

k−1;a0,aI−1,a+
b

+ ‖πc
11 f ‖Hk−1;a0,āI−1,a+

b
+ ‖π0 f ‖

H
k−1;a0,a′I−1,a+
b

)
. (4.60)

Proof The usage of an intermediate weight āI ∈ (aI , a′I ) allows for a small but use-
ful modification of the argument following (4.42): namely, in the notation of that
proof, we are presently estimating u11 with weight ρaII , while the term uc11 coupling

into the equation for u11 via π11Lhπ
c
11 is estimated with weight ρāII � ρ

aI
I , hence

automatically comes with a small prefactor if we work in a sufficiently small neigh-
borhood ofI +. Correspondingly, in the proof of Proposition 4.11, we would replace
the third inner summand in (4.56) by π11V̄Iπ11, with V̄I = ρ

−2āI
I ρ̊

−2a0++ V ′
0 in order to

obtain (4.60) (with a+ � 0 not explicit at this point yet).
The only part of the proof of Theorem 4.2 in which we did not get explicit control

on the weights is the energy estimate near I+. In order to obtain the explicit weights
there, we note that for γ = 0, h = 0, and Schwarzschild mass m = 0, we simply
have 2Lh = �g , the wave operator of the Minkowski metric g = dt2 − dx2, which

acts component-wise on S2T ∗R4 in the trivialization given by coordinate differentials.
Recalling from (2.17) that 0M denotes the manifold with corners constructed in §2.1
form = 0, we shall prove that the solution of the scalar wave equation t3�gt−1u = f ,

with f ∈ ρ
aI−1
I ρ

a++ L2
b supported in ρ+ < 1, satisfies the estimate

‖u‖
ρ
aI
I ρ

a++ H1
I

� ‖ f ‖
ρ
aI−1
I ρ

a++ L2
b

(4.61)

for a+ = − 3
2 and aI < 0 small, using a vector field multiplier argument; here,

ρI = 0ρI and ρ+ = 0ρ+. But then, if the weights aI , a′I , āI etc. are very close to one
another, the nonscalar commutant used in (4.56), modified as above, is very close to
being principally scalar away fromI +; correspondingly, a slight modification of our
arguments below for the Minkowski case (4.61) yield the estimate (4.60) for k = 1.
Higher b-regularity follows as in the proof of Proposition 4.11.

In order to prove the estimate (4.61), we introduce explicit coordinates near the
temporal face I+ ⊂ M within the blow-up of compactified Minkowski space. First of
all, the calculations in A.3 imply

123



2 Page 82 of 146 P. Hintz, A. Vasy

Fig. 11 Left: part of the conformal embedding ofMinkowski space into theEinstein universe (E, dt2−g
S3 ),

E = R×S
3. Right: conformal embedding of de Sitter space into E , and the backward light cone of a point

q on its conformal boundary, whose interior is the domain of the upper half space model (4.63) of de Sitter
space, which near q is equal to the static model of de Sitter space near its future timelike infinity, q. The
coordinates (τ̂ , x̂) are regular near q = (τ̂ = 0, x̂ = 0)

t3�gt
−1 = �gdS − 2, (4.62)

where
gdS = t−2(dt2 − dx2) (4.63)

is the de Sitter metric; notice though that we are interested in t � 1. Thus, consider
the isometry

(t, x) �→ (τ̂ , x̂) = 1

t2 − r2
(t, x) ∈ [0,∞)τ̂ × R

3
x̂ (4.64)

of gdS, defined in t > r = |x |: it maps I+ to (0, 0) andI + to {τ̂ = |x̂ |}, see Figure 11.
(The map (4.64) is the change of coordinates between the upper half space models
of de Sitter space associated with q on the one hand and its antipodal point on the
future conformal boundary of de Sitter space on the other hand; see [61, §6.1] for the
relevant formulas).

Define the blow-up M ′ := [[0,∞)τ̂ × R
3
x̂ , {(0, 0)}

]
at the image of I+. Then the

lift of {τ̂ ≤ |x̂ |} to M ′ is canonically identified with a neighborhood of I+ ⊂ M .
Concretely,

(ρ+, Z) := (τ̂ , x̂/τ̂ ) = (
t/(t2 − r2), x/t

) ∈ [0,∞)× R
3

gives coordinates on M ′, in which U := [0, 1)ρ+ × {|Z | ≤ 1} is identified with a
collar neighborhood of I+ ⊂ M so that

gdS = τ̂−2(d τ̂ 2 − dx̂2) = (1− |Z |2)dρ
2+

ρ2+
− 2Z dZ

dρ+
ρ+

− dZ2. (4.65)

Furthermore, ρI := 1− |Z |2 = 1− r2/t2 is a defining function of I + in U . Let us
write R := |Z |. Instead of the vector field Vloc = (1 − cV )ρI ∂ρI − ρ+∂ρ+ , which is
defined locally near I + and was used in the proof of Proposition 4.11, we use the
global vector field
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V0 = −(1+ R2)ρ+∂ρ+ − (1− cV )(1− R2)R∂R

which is equal to Vloc near I +, up to an overall scalar and modulo ρIVb + ρ+Vb;
moreover, V0 is timelike in U \ I + for small cV ≥ 0. Considering the commu-
tant/vector field multiplier W := ρ

−2aI
I ρ

−2a++ V0 with a+ = − 3
2 and aI < 0 small,

the expression for the K -current KW is somewhat lengthy, so we merely list its main
features in 0 ≤ R ≤ 1, writing ρ2aI+1I ρ

2a++ KW =: K1 + /K /G, with K1 a section of
S2〈ρ+∂ρ+ , ∂R〉 (considered a 2× 2 matrix in this frame) and /K a scalar:

– tr K1|cV=0 = −2(1− R4− aI R2(4+ R2)) < 0, which persists for small cV > 0;
– det K1|cV=0 = −4aI (1+ aI )R2(1− R2) ≥ 0 and

(∂cV det K1)|cV=0 = −16a2I (R2 − 1
1+4aI )(R

2 + 3
3+4aI ) > 0,

so det K1 > 0 for small cV > 0;
– /K |cV=0 = −2(1+ aI R2) < 0, which persists for small cV > 0;

– ρ
2aI
I ρ

2a++ divgdS W |cV=0 = 6− (2− 4aI )R2 > 0.

Thus, fixing cV > 0 to be small, the main term arising in the evaluation of the
commutator−2Re〈(�gdS−2)u,Wu〉 is ∫U −KW (du, du)+4(divgdS W )|u|2 dρ+

ρ+ dZ ,

which thus gives the desired control on u in H1
I , except |u|2 itself is only controlled

in ρaII ρ
a+−1/2+ L2

b due to the weaker weight of divgdS W at I +; control in ρaII ρ
a++ L2

b
is obtained by integrating ρ+∂ρ+u ∈ ρ

aI
I ρ

a++ L2
b from ρ+ = 1. This yields (4.61). $�

5 Newton iteration

Fix b0, bI , b′I , b+ and γ as in Theorem 4.2. Recall that we want to solve the symmetric
2-tensor-valued wave equation

P(h) = 0, (h, ∂νh)|� = (h0, h1)

for initial data (h0, h1), h j ∈ ρ
b0
0 H∞

b (�), small in a suitable high regularity norm,

and we hope to find a solution h ∈ X∞;b0,bI ,b′I ,b+ . Following the strategy, outlined in
§1, of solving a linearized equation at each step of an iteration scheme, we consider,
formally, the iteration scheme with initialization

L0h
(0) = 0, (h(0), ∂νh

(0))|� = (h0, h1),

and iterative step h(N+1) = h(N ) + u(N+1), where

Lh(N )u
(N+1) = −P(h(N )), (h(N+1), ∂νh(N+1))|� = 0.

Assume that h(N ) ∈ X∞ has small X 3 norm. In order for this iteration scheme to
close, we need to show that h(N+1) ∈ X∞. Since P(h(N )) ∈ Y∞ by Lemma 3.5, this
means that we need to prove:
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Theorem 5.1 Forweights as above, there exists ε > 0 such that for h ∈ X∞;b0,bI ,b′I ,b+
with ‖h‖X 3 < ε, the following holds: if f ∈ Y∞;b0,bI ,b′I ,b+ and h0, h1 ∈ ρ

b0
0 H∞

b (�),
then the solution of the initial value problem

Lhu = f , (u, ∂νu)|� = (u0, u1),

satisfies u ∈ X∞;b0,bI ,b′I ,b+ .

Remark 5.2 We recall that membership, of a scalar function u for simplicity, in
ρ
b0
0 H∞

b (R3) is equivalent (up to an arbitrarily loss in decay) to pointwise estimates
|V1 · · · VNu| � 〈r〉−b0 where the Vi are translation, rotation, or scaling vector fields
on R

3. The membership h ∈ X∞;b0,bI ,b′I ,b+ means pointwise decay of various com-
ponents of h towards leading order terms at I + or to zero; see Definition 3.1 and
Remark 1.9.

According to Theorem 4.2, we have the background estimate

u ∈ H∞;b0,−0,a+
b (M;β∗S2), π0u ∈ H

∞;b0,b′I−0,a+
b (M;β∗S2), (5.1)

for suitable a+. We shall improve this to u ∈ X∞;b0,bI ,b′I ,b+ using normal operator
analysis in several steps, which were outlined around (1.22): using the leading order
form (3.25) of Lh , or rather its decoupled versions (3.26a)–(3.26c), we obtain the
precise behavior of u near I + \ (I + ∩ I+) in §5.1 by simple ODE analysis; the
correct weight at I+ but losing some precision atI + near its future boundary in §5.2
by normal operator analysis and a contour shifting argument; and finally the precise
behavior near I +, uniformly up to I + ∩ I+, again by ODE analysis in §5.3.

For later use, we record the mapping properties of P and its linearization on the
polyhomogeneous and conormal parts of X∞—recall (3.9).

Lemma 5.3 Let h ∈ X∞;b0,bI ,b′I ,b+ , with ‖h‖X 3 small; write h = hphg + hb, hphg ∈
X∞
phg, hb ∈ X∞

b . Then: (1) P(hphg) ∈ Y∞, (2) L0
h : X∞

phg → Y∞, (3) L0
h, L̃h : X∞

b →
Y∞
b , (4) L̃h : X∞

phg → Y∞
b .

The point is that the behavior (2)–(3) of the leading term L0
h and simple informa-

tion (1) on the nonlinear operator automatically imply precise mapping properties (4)
of the error term L̃h which are not encoded in (3.25).

Proof of Lemma 5.3 Part (1) follows from Lemma 3.5. One obtains (2) by inspection
of (3.25); note that L0

h is onlywell-definedmodulo terms in (C∞+ρ1+b00 ρ−0I ρ
1+b++ H∞

b )

Diff1b which always map X∞
phg → Y∞. Likewise, the first part of (3) follows

from (3.25); the fact that the ‘good components’ (encoded by the bundle K0) have a
better weight b′I than the weight bI of the remaining components (in Kc

0) is again due
to the structure of L0

h discussed after Lemma 3.8. The second part of (3) is clear, since
this concerns the remainder operator L̃h , whose coefficients are decaying relative to
ρ−1I Diff2b, acting on X∞

b , which consists of tensors decaying at I +.
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Finally, to prove (4),we takeuphg ∈ X∞
phg andwrite L̃huphg = Dh P(uphg)−L0

huphg.
The second term lies in Y∞ by (2), while the first term equals

d

ds
P(hphg + suphg + hb)

∣∣
s=0

= d

ds

(
P(hphg + suphg)+

∫ 1

0
L0
hphg+suphg+thb(hb)+ L̃hphg+suphg+thb(hb) dt

)∣∣∣∣
s=0

;

but each of the three terms in parentheses depends smoothly on s as an element of Y∞
by (1), (2), and (3), respectively. $�

5.1 Asymptotics near I0 ∩ I +

With conormal regularity of u at our disposal, all but the leading order terms of Lh

can be regarded as error terms at I +: from (5.1) and Lemma 3.8, we get

L0
hu ∈ Y∞;b0,bI ,b′I ,b+ + H

∞;b0,−1+b′I−0,a+
b .

Let us now work in a neighborhood U ⊂ M of I 0 ∩I + and drop the weight at I+
from the notation. To improve the asymptotics of uc11 := πc

11u, we use part (3.26b) of
the constraint damping/weak null structure hierarchy as well as b′I > bI : this gives

2ρ−2∂0∂1uc11 ∈ ρ
b0
0 ρ

bI−1
I H∞

b .

Using the local defining functions ρ0 and ρI from (2.25) and multiplying by ρI , this
becomes

ρI ∂ρI (ρ0∂ρ0 − ρI ∂ρI )u
c
11 ∈ ρ

b0
0 ρ

bI
I H∞

b . (5.2)

We can integrate the second vector field from ρI ≥ ε, where uc11 ∈ ρ
b0
0 H∞

b , obtaining

ρI ∂ρI u
c
11 ∈ ρ

b0
0 ρ

bI
I H∞

b ; this uses bI < b0 (see Lemma 7.7 for details). Integrating out

ρI ∂ρI (see Lemma 7.6) shows that uc11 is the sumof a leading term in ρb00 H∞
b (I +∩U )

and a remainder inρb00 ρ
bI
I H∞

b (U ). This then couples into the equation for u11 = π11u,
corresponding to part (3.26c) of the hierarchy:

ρI ∂ρI (ρ0∂ρ0 − ρI ∂ρI )u11 ∈ ρIπ11 f − 1
2 (∂1h

āb̄)∂1(u
c
11)āb̄ + ρ

b0
0 ρ

bI
I H∞

b . (5.3)

The first two summands lie in ρb00 H∞
b (I + ∩U )+ρ

b0
0 ρ

bI
I H∞

b ; integrating this along

ρI ∂ρI generates the logarithmic leading term of u11. Thus, u11 = u(1)11 log ρI + u(0)11 +
u11,b with u

( j)
11 ∈ ρ

b0
0 H∞

b (I + ∩U ) and u11,b ∈ ρ
b0
0 ρ

bI
I H∞

b , as desired.
It remains to improve u0 = π0u. Write u = uphg + ub, where uphg ∈ X∞

phg and

ub ∈ ρ
b0
0 ρ

bI
I H∞

b according to what we have already established; note that the space
X∞
phg is independent of the choice of bI , b

′
I ∈ (0, 1). Then
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π0L
0
hπ0u0 = π0 f − π0 L̃h(π0u0)− π0 L̃h(π

c
0ub)− π0 L̃h(π

c
0uphg) ∈ ρ

b0
0 ρ

b′I−1
I H∞

b :

for the first summand, this follows from f ∈ Y∞;b0,bI ,b′I ,b+ , for the second summand

from u0 ∈ ρ
b0
0 ρ

b′I−0
I H∞

b and the decay of the coefficients of L̃h , similarly for the third
summand; and for the fourth summand, we use Lemma 5.3(4). Using the notation of
part (3.26a) of the hierarchy, this means

(ρI ∂ρI − ACD)(ρ0∂ρ0 − ρI ∂ρI )u0 ∈ ρ
b0
0 ρ

b′I
I H∞

b .

Since we are taking γ > b′I , all eigenvalues of ACD are > b′I , so integration of

ρI ∂ρI − ACD and then of ρ0∂ρ0 − ρI ∂ρI (using b′I < b0) gives u0 ∈ ρ
b0
0 ρ

b′I
I H∞

b . We

have thus shown that u ∈ X∞;b0,bI ,b′I ,b+ near I 0 ∩I +; in fact, this holds away from
I+.

5.2 Asymptotics at the temporal face

Wework near I+ now and drop the weight at I 0 from the notation. Recall from (3.27)
the gauge-damped operator L on Minkowski space; by Lemma 3.10 and (3.29), we
have

Lh − L ∈ ρ−1−0I ρ
1+b++ H∞

b (M) · Diff2b(M;β∗S2). (5.4)

We shall deduce the asymptotic behavior of u at I+ from a study of the operator L
(and its resonances) on a partial radial compactification N of R

4—without blowing
up the latter at the light cone at future infinity. Before making this precise, we study
L in detail as a b-operator on N . Let

τ = t−1, X = x/t;

these are smooth coordinates on the radial compactification

N := [0,∞)τ × R
3
X

of R
4 in t > 0, see Figure 12. We have dX = tdx , tδe = δX , tδ∗e = δ∗X , and

t∂t = −τ∂τ − X∂X . Thus, if we trivialize S2 scT ∗ 0
R4 using coordinate differentials,

the explicit expression of L given in §A.3 shows that L is a dilation-invariant element
of Diff2b(N ;C10), i.e. L = N (L), recalling the definition (2.2) of the normal operator.

Note that Lh (and even L0) has singular coefficients at ∂ I+ ⊂ mM due to
the gauge/constraint damping term: the singular terms come from −ρ−1Ah∂1 in
Lemma 3.8. Likewise, L , on the blow-up of N at the light cone {τ = 0, |X | = 1} at
infinity, has coefficients with ρ−1I singularities, which would complicate the normal
operator analysis at the temporal face 0i+, the lift of

B := {τ = 0, |X | ≤ 1},
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Fig. 12 Illustration of the compactification N near its boundary at infinity ∂N = {τ = 0}. Shown are future
timelike infinity B = 0β(0 I+), its boundary ∂B = S+, and, for illustration, the light cone |x | = t (dashed)

On the other hand, L does have smooth coefficients on the un-blown-up space N , and
we recall its well-understood b- and normal operator analysis at ∂N momentarily. The
discussion of the relation between the blown-up and the un-blown-up picture starts
with Lemma 5.7 below.

Conjugating L by the Mellin-transform in τ , thus formally replacing τ∂τ by
iσ , gives the Mellin-transformed normal operator family L̂(σ ) ∈ Diff2(∂N ;C10),
depending holomorphically on σ ∈ C; the principal symbol of L̂ is independent of σ .

We already control u in Theorem 5.1 away from I+ ⊂ M , so only need to study
u (and how L relates to it) near m I+, whose image under the blow-down map mβ on
mM is identified with B, see Lemma 2.10. For s ∈ R, we then define the function
space Ḣ s(B;C10) as the space of all v ∈ Hs

loc(∂N ;C10) which are supported in B.
(We are using the notation of [56, Appendix B]). Let

Xs := {u ∈ Ḣ s(B;C10) : L̂(0)u ∈ Ḣ s−1(B;C10)}, Ys := Ḣ s(B;C10).

Semiclassical Sobolev spaces are defined by Ḣ s
h = Ḣ s with h-dependent norm

‖u‖Ḣ s
h
= ‖〈hD〉su‖L2 on ∂N ∼= R

3
X . Let further M ⊂ Diff1(∂N ;C10) denote the

C∞(∂N )-module of first order operators with principal symbol vanishing on N∗∂B,
and fix a finite set {A j } ⊂M of generators.36 For k ∈ N0, we then define

Ḣ s,k(B;C10) = {u ∈ Ḣ s : A j1 · · · A j�u ∈ Ḣ s, 0 ≤ � ≤ k}

and the semiclassical analogue Ḣ s,k
h = Ḣ s,k with norm

‖u‖2
Ḣ s,k
h
= ‖u‖2

Ḣ s
h
+

∑
0≤�≤k

‖(hA j1) · · · (hA j� )u‖2Ḣ s
h
.

Lemma 5.4 Let C > 0, and fix s < 1
2 − C. Then L̂(σ ) : Xs → Ys−1 is an analytic

family of Fredholm operators in {σ ∈ C : Im σ > −C}, with meromorphic inverse
satisfying

‖L̂(σ )−1 f ‖Ḣ s,k
〈σ 〉−1

≤ C ′
k〈σ 〉−1‖ f ‖Ḣ s−1,k

〈σ 〉−1
, | Im σ | ≤ C, |Re σ | � 1,

for any k ∈ N0.

36 Near ∂B, and omitting the bundle C
10, one can take as generators the vector fields (|X | − 1)X∂X ,

X j ∂Xi − Xi ∂X j .
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Proof For k = 0, this is almost the same statement as proved in [107, §5], see also [13]
and the summary of the presently relevant results in [14, §6]; adding higher module
regularity, i.e. k ≥ 1, follows by a standard argument, commuting (compositions of)
a well-chosen spanning set ofM through the equation L̂(σ )u = f ; see [13, Proof of
Proposition 4.4] and the discussion prior to [58, Theorem 5.4] for details in the closely
related b-setting (i.e. prior to conjugation by the Mellin transform). We shall thus be
brief.

The only two differences between the references and the present situation are: (1)
L̂(σ ) is an operator acting on a vector bundle; (2) we are working with supported
function spaces in B, i.e. future timelike infinity, rather than globally on the boundary
of the radial compactification of Minkowski space. Since L̂(σ ) is principally scalar,
(1) only affects the threshold regularity at the radial set N∗∂B. For γ = 0, L is simply
a conjugation of 1

2 times the scalar wave operator, acting diagonally on C
10, and in

this case the threshold regularity is given as s < 1
2+ Im σ in [14, §6], which is implied

by our assumption s < 1
2 − C . For small γ > 0 (depending on the choice of s), this

assumption is still sufficient. A straightforward calculation (which we omit) shows
that the eigenvalues of σ1(t3(̃δ∗ − δ∗g)δgGgt−1)|N∗∂B are ≥ 0, hence the threshold

regularity is s < 1
2 + Im σ for any γ ≥ 0. (This is closely related to the fact that the

components of the solution of Lu = f ∈ C∞c (R4) do not grow atI +; see Lemma 5.7
below for the relation between growth/decay on M and regularity on R4).

In order to deal with (2), it is convenient to first study L̂(σ ) acting on supported
distributions on a larger ball Bd := {|X | ≤ 1+d}. The only slightly delicate part of the
argument establishing the Fredholm property of L̂(σ ) acting between Ḣ s(B2;C10)-
type spaces is the adjoint estimate: we need to show that L̂(σ )∗ satisfies an estimate

‖u‖H̄1−s (B◦2 ) � ‖L̂(σ )∗u‖H̄−s (B◦2 ) + ‖u‖H̄ s0 (B◦2 ) (5.5)

for some s0 < 1 − s; here H̄ s(B◦2 ) denotes extendible distributions, i.e. restrictions
of Hs

loc sections on ∂N to B◦2 . This estimate however is straightforward to obtain
by combining elliptic, real principal type, and radial point estimates in B1, as in the
references, with energy estimates for L̂(σ )∗ which is awave operator (on the principal
symbol level) in B2 \ B1/2, see e.g. [114, §3.2] where our L̂(σ )∗ is denoted P . High
energy estimates for L̂(σ ) on Ḣ s(B2)-type spaces follow by similar arguments (using
[107, Proposition 3.8] for the energy estimate).

Suppose now L̂(σ )u = f ∈ Ḣ s−1(B) with u ∈ Ḣ s(B2). Then energy estimates in
B2\B imply supp u ⊂ B. This and the Fredholm property of L̂ on B2 yield the desired
Fredholm property of L̂ : Xs → Ys−1 (specifically, the finite codimensionality of the
range). Similarly, the high energy estimates on B2 imply those on B, finishing the
proof. $�
Lemma 5.5 For small γ ≥ 0, all resonances σ ∈ C of L satisfy Im σ < 0.

Remark 5.6 One can in fact compute the divisor of L , i.e. the set of (z, k) ∈ C × N0
such that L̂(σ )−1 has a pole of order ≥ k + 1 at σ = z, quite explicitly for any γ : it is
contained in−i∪−2i∪− i(1+γ )∪− i(1+2γ ), using the shorthand notation (2.35).

123



Stability of Minkowski space and polyhomogeneity of the metric Page 89 of 146 2

Fig. 13 The neighborhood U of I+ ⊂ M as well as its image in R4 under the blow-down map β

Proof of Lemma 5.5 For γ = 0, and in the trivialization of S2T ∗R4 by coordinate
differentials, L acts, up to conjugation and rescaling, component-wise as the scalar
wave operator on Minkowski space, for which the divisor is known to be −i , see [13,
§10.1]. For small γ , L is a small perturbation of this, and the lemma follows. (See
also [107, §2.7]). $�

Since by Eq. (3.28), L0 − L ∈ ρ1−0H∞
b Diff2b(

m
R4), the normal operators as b-

differential operators on m
R4 are the same, N (L0) = N (L), hence the above results

hold for N (L0) in place of L .
We next relate the relevant function spaces on mM , mR4. We only need to consider

supported distributions nearmi+ ⊂ mM .We dropm from the notation. Ifρ+ ∈ C∞(M)

denotes a defining function of I+ such that ρ+ > 2 at I 0, let

U := {ρ+ ≤ 1} ⊂ M .

Let Mb ⊂ Diff1b(R
4) be the C∞(R4)-module of b-differential operators with b-

principal symbol vanishing on bN∗S+,37 and define Hs,k
b,loc(R

4) to consist of all u ∈
Hs
b,loc(R

4) forwhich A1 · · · A�u ∈ Hs
b,loc(R

4) for all 0 ≤ � ≤ k, A j ∈Mb. Supported

distributions on a compact set V ⊂ R4 are denoted Ḣ s,k
b (V ).

Lemma 5.7 For a+ ∈ R, d > − 1
2 , and k ∈ N0, the map β|U\∂M : U \ ∂M ∼=−→

β(U ) \ ∂R4 induces a continuous inclusion

ρ
a++d−1/2
I ρ

a++ Ḣ k+d
b (U ) ↪→ ρa+ Ḣd,k

b (β(U )), (5.6)

and conversely
ρa+ Ḣd,k

b (β(U )) ↪→ ρ
a++d−1/2
I ρ

a++ Ḣ k
b (U ). (5.7)

Thus, given the condition on supports, b-regularity near S+ is, apart from losses
in module regularity, the same as decay at I +. See Figure 13. A version of the
inclusion (5.7) is (implicitly) a key ingredient of [14], see in particular §9.2 there.

Proof of Lemma 5.7 First consider (5.6). Dividing by ρa+ = ρ
a+
I ρ

a++ , it suffices to
prove this for a+ = 0. Furthermore, elements ofMb lift to b-differential operators on

37 The b-conormal bundle bN∗S+ ⊂ bT ∗
S+R4 is the annihilator of the space of b-vector fields tangent to

S+. In the coordinates (2.6), Mb is spanned by ρ∂ρ , ρ∂v , v∂v , and spherical vector fields.
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M ; in fact, Diff1b(M) is generated, over C∞(M), by the lift ofMb to M . Therefore, it
suffices to consider the case k = 0 and prove

ρ
d−1/2
I Ḣ d

b (U ) ↪→ Ḣd
b (β(U )), d > − 1

2 . (5.8)

For d = 0, this is a consequence of the fact that ρI times a b-density on M pushes
forward to a b-density on R4, cf. (4.27). Next, note that Vb(R4) lifts to ρ−1I Vb(M) and
thus maps ραI H

s
b,loc(M) → ρα−1I Hs−1

b,loc(M); the Leibniz rule thus reduces the case
d ∈ N to the already established case d = 0. For general d ≥ 0, (5.8) follows by
interpolation; we discuss d ∈ (− 1

2 , 0] below.
For (5.7), we again only need to consider a+ = 0, k = 0, and prove

Ḣd
b (β(U )) ↪→ ρ

d−1/2
I L2

b(U ) ∼= ρdI L
2
b(β(U )). (5.9)

For d = 0, this is clear; for d = 1, integrating the 1-dimensional Hardy inequality,
‖x−1u‖L2(R+) � ‖u′‖L2(R+), u ∈ C∞c (R+), in fact gives Ḣ1

b (β(U )) ↪→ xL2
b(β(U )),

where x is a defining function for β(∂U ) within R4. In particular, β∗x ∈ C∞(M)

vanishes at I + and is hence a bounded multiple of ρI , from which (5.9) follows.
For general d ∈ N, we use the following generalization of the Hardy inequality: for
u ∈ C∞c (R+),

‖x−du‖L2 =
∥∥∥∥
∫ 1

0

∫ s2

0
· · ·

∫ sd

0
u(d)(t x) dt dtd · · · dt2 dx

∥∥∥∥
L2

≤
∫ 1

0

∫ s2

0
· · ·

∫ sd

0
‖u(d)(t ·)‖L2 dt dtd · · · dt2 dx

= 22dd!
(2d)! ‖u

(d)‖L2 .

For real d ≥ 0, (5.9) again follows by interpolation.
For d ∈ (− 1

2 , 0], we dualize (5.8) with respect to L2
b(β(U )) and thus need to

show H̄ e
b (β(U )) ↪→ ρ

e−1/2
I H̄ e

b (U ), e = −d ∈ [0, 1/2). But this follows from (5.7),
as in this regularity range, supported and extendible Sobolev spaces are naturally
isomorphic [102, §4.5]. Similarly, (5.9) for d ∈ (− 1

2 , 0] follows from (5.8) for d ∈
[0, 12 ) by dualization. $�

Returning to the proof of Theorem 5.1, we have already proved (1 − χ)u ∈ X∞
where χ = χ(ρ+) is identically 1 for ρ+ ≤ 1

2 and vanishes for ρ+ ≥ 1. Consider
χu ∈ ρ−0I ρ

a++ Ḣ∞
b (U ), a+ < b+, which satisfies

Lhχu = f1 := χ f + [Lh, χ ]u ∈ ρ−1−0I ρ
b++ Ḣ∞

b (U ),

where we use that [Lh, χ ]u is supported away from I+. Let

a′+ = min(a+ + 1+ b+, b+) < 0,
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and fix d ∈ (− 1
2 ,− 1

2 − a′+), then Lh − N (L0) ∈ ρ−1−0I ρ
1+b++ H∞

b (M) · Diff2b(M)

(see Lemma 3.10) and Lemma 5.7 yield

N (L0)χu =: f2 ∈ ρ−1−0I ρ
a′++ Ḣ∞

b (U ) ↪→ ρa
′+ Ḣd,∞

b (β(U )). (5.10)

Shrinking U if necessary, we may assume that t > 1+ r∗ in U . It then suffices to use
dilation-invariant operators on m

R4 to measure module regularity at mS+. Indeed, for
m = 0 and thus r∗ = r (the discussion for general m being similar), recall that with
R = |X |, ω = X/|X |, we can take τ∂τ , (1− R)∂R , ∂ω, and τ∂R as generators ofMb;
but τ∂R = c(1− R)∂R with c = τ/(1− R) ∈ [0, 1] bounded. Write (5.10) using the
Mellin transform in τ as

χu = 1

2π

∫

Im σ=−α
τ iσ L̂(σ )−1 f̂2(σ ) dσ,

initially for α = −a+; then f̂2(σ ) is holomorphic in Im σ > −a′+ with values in
Ḣd,∞(B;C10), and in fact extends by continuity to

f̂2(σ ) ∈ L2
(
{Im σ = −a′+}; 〈σ 〉−d−N Ḣd,N

〈σ 〉−1(B;C10)
)

(∀ N ). (5.11)

By Lemmas 5.4 and 5.5, L̂(σ )−1 f̂2(σ ) is thus holomorphic in Im σ > −a′+ as well,
with values in Ḣd+1,∞, extending by continuity to the space in (5.11) with d replaced

byd+1; thereforeχu ∈ ρa
′+ Ḣd+1,∞

b (β(U )), soχu ∈ ρ−0I ρ
a′++ Ḣ∞

b (U )byLemma5.7,
as we may choose d arbitrarily close to − 1

2 − a′+. This improves the weight of u at

I+ by a′+ − a+; iterating the argument gives χu ∈ ρ−0I ρ
b++ Ḣ∞

b (U ).

5.3 Asymptotics nearI + ∩ I+

It remains to show that the precise asymptotics at I + which we established away
from I+ in §5.1 extend all the way up to I+, with the weight ρb++ at I+. This is
completely parallel to the arguments in §5.1: working near I+, we now have L0

hu ∈
Y∞;b0,bI ,b′I ,b+ +H

∞;b0,−1+b′I−0,b+
b , so with coordinates ρI , ρ+ as in (4.48) (dropping

the superscript ‘◦’),

ρI ∂ρI (ρ+∂ρ+ − ρI ∂ρI )u
c
11 ∈ ρ

bI
I ρ

b++ H∞
b ;

now, in ρ+ > 0 (and away from I 0), uc11 has a leading term atI +, plus a remainder in

ρ
bI
I H∞

b , while in ρI > 0, uc11 = πc
11u lies in ρb++ H∞

b . Using Lemma 7.6 to integrate
the above equation for uc11, we conclude that uc11 is the sum of a leading term in

ρ
b0
0 ρ

b++ H∞
b (I +) and a remainder in ρb00 ρ

bI
I ρ

b++ H∞
b , as desired. Similarly, we obtain

the desired asymptotic behavior, uniformly up to I+, of u11 and then of u0. Therefore,
u ∈ X∞;b0,bI ,b′I ,b+ , completing the proof of Theorem 5.1.
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6 Proof of global stability

We now make Theorem 5.1 quantitative by keeping track of the number of derivatives
used and proving tame estimates, the crucial ingredient in Nash–Moser iteration. Fix
the mass m; for weights b0, bI , b′I , b+ as in Definitions 3.1 and 3.3, let

Bk := X k;b0,bI ,b′I ,b+; Bk := Yk;b0,bI ,b′I ,b+ ⊕ Dk;b0 ,
Dk;b0 := ρ

b0
0 Hk+1

b (�)⊕ ρ
b0
0 Hk

b (�).

Let us write | · |s , resp. ‖ · ‖s , for the norm on Bs , resp. Bs . Put

B∞ =
⋂
k∈N

Bk, B∞ =
⋂
k∈N

Bk .

Werecall Saint-Raymond’s version [100] of theNash–Moser inverse function theorem:

Theorem 6.1 (See [100]). Let φ : B∞ → B∞ be a C2 map, and assume that there
exist d ∈ N, ε > 0, and constants C1,C2, (Cs)s≥d such that for any h, u, v ∈ B∞
with |h|3d < ε,

‖φ(h)‖s ≤ Cs(1+ |h|s+d) ∀ s ≥ d, (6.1a)

‖φ′(h)u‖2d ≤ C1|u|3d , (6.1b)

‖φ′′(h)(u, v)‖2d ≤ C2|u|3d |v|3d . (6.1c)

Moreover, assume that for such h, there exists an operator ψ(h) : B∞ → B∞ satis-
fying φ′(h)ψ(h) f = f and the tame estimate

|ψ(h) f |s ≤ Cs(‖ f ‖s+d + |h|s+d‖ f ‖2d), ∀ s ≥ d, f ∈ B∞. (6.2)

Then if ‖φ(0)‖2d < c, where c > 0 is a constant depending on ε and Cs for s ≤ D,
where D = 16d2 + 43d + 24, there exists h ∈ B∞, |h|3d < ε, such that φ(h) = 0.

This uses a family of smoothing operators (Sθ )θ>1 : B∞ → B∞ satisfying the
estimates

|Sθ v|s ≤ Cs,tθ
s−t |v|t , s ≥ t; |v − Sθ v|s ≤ Cs,tθ

s−t |v|t , s ≤ t . (6.3)

Acting on standard Sobolev spaces Hs(Rn), the existence of such a family is proved
in [100, Appendix], and the extension to weighted b-Sobolev spaces on manifolds
with corners is straightforward: the arguments on manifolds with boundary given
in [60, §11.2] generalize directly to the corner setting. For the spaces Bs = X s at
hand then, one writes h ∈ B∞ as χ1h + (1 − χ1)h, with χ j ∈ C∞(M), j = 0, 1, 2,
identically 1 in a small neighborhood of I +, and χ j+1 ≡ 1 on suppχ j . We smooth

out (1− χ1)h ∈ ρ
b0
0 ρ∞I ρ

b++ H∞
b (M) (see (2.29) for the notation ρ∞I ) as usual and cut

the result off using (1− χ0); since we are working away from I +, the weight of ρI
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plays no role here. (The proof of [59, Lemma 5.9] shows that cutting off the smoothing
of (1− χ1)h away from its support does not affect the estimates (6.3)). Near I + on
the other hand, we have χ1h = (χ1hα), where we denote by hα the components of h
in the bundle splitting (2.21). The decaying components (3.4) as well as the remainder
terms hα,b in (3.5)–(3.6) can then be smoothed out and cut off using χ2. To smooth
out the leading terms, fix a collar neighborhood of I +; considering for example
χ1h01 = χ0h

(0)
01 + χ1h01,b, see (3.6), we smooth out h(0)01 in the weighted b-Sobolev

space ρb00 ρ
b++ H∞

b (I +), extend the result to the collar neighborhood, and cut off using
χ0; similarly for the other components of h.

Given initial data (h0, h1) ∈ D∞, we want to apply Theorem 6.1 to the map

φ(h) = (
P(h), (h, ∂νh)|� − (h0, h1)

)
, (6.4)

with P given in (3.2). Note that the smallness of φ(0) in particular requires P(0) =
ρ−3Ric(gm) to be small. Now, P(0) is nonzero only in the region where we interpolate
between the mass m Schwarzschild metric and the Minkowski metric (both of which
are Ricci-flat!), i.e. on supp dψ ∪ supp dφ in the notation of (2.10)–(2.11); thus in fact
P(0) ∈ A∅,∅,0

phg . It is then easy to see that ‖P(0)‖Yk ≤ Ckm for all k ∈ N, which is the
reason why we need to assume the ADMmass m to be small to get global solvability.

For h ∈ X∞ with |h|3 small, the tensor

g = gm + ρh

is Lorentzian (by Sobolev embedding) and hence φ(h) is defined; since P is a second
order (nonlinear) differential operator with coefficients which are polynomials in g−1
and up to 2 derivatives of g, and since h �→ (h, ∂νh)|� is continuous as a map
X k → Dk−3/2 for k ≥ 2, the estimate (6.1a) follows for d = 3. The estimate (6.1b)
also holds for d = 3 and |h|3d < ε small, since the first component of φ′(h)u,
namely Lhu, is a second order linear differential operator acting on u, with coefficients
involving at most 2 derivatives of h; similarly for (6.1c).

The existence of the right inverseψ(u) : B∞ → B∞ is the content of Theorem 5.1;
we merely need to determine a value for d such that the tame estimate (6.2) holds.
(As stressed in the introduction, the mere existence of such a d is clear, since the
estimates on ψ(u) are obtained using energy methods, integration along approximate
characteristics, and inversion of a linear, smooth coefficient, model operator in §4,
§§5.1 and 5.3, and §5.2, respectively). Consider the first term on the right in (6.2): we
need to quantify the loss of derivatives of the solution v of Lhu = f , (u, ∂νu)|� =
(u0, u1), relative to the regularity k ≥ 0 of ( f , (u0, u1)) ∈ Bk .

Now, dropping the H1
I regularity part of Theorem 4.2, we obtain u ∈

ρ
b0
0 ρ

aI
I ρ

a++ Hk
b , π0u ∈ ρ

b0
0 ρ

a′I
I ρ

a++ Hk
b . The arguments near I 0 ∩ I + in §5.1 first

express uc11 as the solution of a transport equation (5.2), with the right hand side
involving up to two derivatives of u; since integration of this equation does not regain
full b-derivatives, the leading terms (and the remainder term) of uc11 lie in Hk−2

b ,
with the correct weight b0 at I 0 (and bI at I +); next, this couples into the transport
equation (5.3) for u11, again with up to 2 derivatives of u, so integrating this yields
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leading and remainder terms of u11 in Hk−4
b ; and similarly then u0 ∈ ρ

b0
0 ρ

b′I
I Hk−6

b
near I 0 ∩I +.

On the other hand, improving the b-weight at I+ by 1+ b+, which we may take to
be arbitrarily close to 1 by taking b+ < 0 close to 0, uses the rewriting (5.10), which
due to the second order nature of Lh − N (L0) involves an error term (subsumed into
f2 there) with 2 derivatives on u. Passing to the blow-down using Lemma 5.7 loses
at most 1 module derivative; inverting N (L0) gains 1 b-derivative (which is used to
recover the ρ−0I bound at I +), but no module derivatives, so passing back to the
blow-up, we have lost at most 3 b-derivatives. Thus, improving the weight at I+ from
a+ to b+ ≈ 0 loses at most d+ := 1+ 3)a+* derivatives relative to Hk

b .
These two pieces of information are combined nearI +∩ I+ in §5.3, where we lose

at most 6 derivatives, just as in the discussion near I 0∩I +, relative to the less regular
of the two spaces Hk−6

b and Hk−d+
b from above; we thus take d = 6+max(6, d+). If

we use the explicit background estimate, Theorem 4.12, so a+ = 3
2 , this gives d+ = 7

and therefore

d = 13.

For this value of d, one may then verify the tame estimate (6.2) by going through the
proofs of Theorems 4.2 and 5.1 and proving tame estimates by exploiting Moser esti-
mates; this is analogous to the manner in which the microlocal estimates for smooth
coefficient operators in [107, §2], [58, §2.1] were extended to estimates for rough coef-
ficient operators in [52, §§3–6], which were subsequently sharpened to tame estimates
in [59, §§3–4]. In the present setting, obtaining tame estimates is much simpler than
in the references, as the estimates in §§4–5 are based on standard energy estimates, so
one can appeal directly to the Moser estimates; or, in view of the fact that our energy
estimates can be proved using positive commutators (and are indeed phrased this way
here), which also underlie the tame estimates in these references, the arguments given
there (using vector fields instead of microlocal commutants) apply here as well. We
omit the details, but we do point out that it is key that the proofs as stated only use
pointwise control of up to 1 derivative of h (via causality considerations and defor-
mation tensors, see e.g. the calculation (4.16) and Lemma 4.6) in order to obtain the
main positive terms in the commutator arguments; thus, control of |h|4 suffices in this
sense, that is, the constant in (4.3) for k = 1 only depends on |h|4. The proofs of
higher b-regularity use commutation arguments, which do not affect the principal part
of Lh , as well as ellipticity considerations around (4.58) which only require pointwise
control of h itself; correspondingly, at no point do we need to use the smallness of any
higher regularity norms of h. (See the end of [55, §6.4] for a related discussion).

Next, we deal with a small technical complication stemming from the fact that for
m �= 0, the closure of {t = 0}, on which in Theorem 1.1 we compare the initial data
with those of the Schwarzschild metric in its standard form, inside of m

R4 is not a
smooth hypersurface when m �= 0, the issue being smoothness at ∂mR4; furthermore,
our discussion of linear Cauchy problems used m� �= {t = 0} as the Cauchy surface.
We resolve this issue by solving the initial value problem for a short amount of time
in the radial compactification 0

R4, with initial surface {t = 0} (whose closure is
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smooth in 0
R4), pushing the local solution forward to m

R4, and then solving globally
from there. Recall the function tb from (2.14), and the notation (2.17). (Thus, 0tb is a
rescaling of t , and 0� = {0tb = 0}).
Lemma 6.2 Fix N large, and let b0 > 0, ε > 0. Suppose γ, k ∈ C∞(R3; S2T ∗R3)

are vacuum initial data on R
3, that is, solutions of the constraint equations (1.5), such

that for some m ∈ R,

γ̃ := γ − χ(r)
(
(1− 2m

r )
−1dr2 + r2/g

) ∈ ρ
1+b0
0 H∞

b (R3; S2 scT ∗R3) (6.5)

and k ∈ ρ
2+b0
0 H∞

b (R3; S2 scT ∗R3) satisfy

|m| + ‖γ̃ ‖
ρ
1+b0
0 HN+1

b
+ ‖k‖

ρ
2+b0
0 HN

b
< δ, (6.6)

where δ > 0 is a sufficiently small constant; hereχ = χ(r) is a cutoff,χ ≡ 0 for r < 1,
χ ≡ 1 for r > 2. Then, identifying R3 ∼= 0� ⊂ 0M via R

3  x �→ (0, x) ∈ R
4, there

exists a solution g of the Einstein vacuum equation Ric(g) = 0 in the neighborhood

U := {|0tb| < 1
4 }, (6.7)

attaining the data (γ, k) at 0� (that is, (1.4) holds) and satisfying the gauge condition
ϒ(g; gm) = 0; moreover, g = gm + ρh, where h ∈ ρ

b0
0 H∞

b (U ; S2 scT ∗ 0
R4) has

norm ‖h‖
ρ
b0
0 HN+1

b (U )
< ε.

Proof Note that the metric gm is smooth on U ⊂ 0
R4, as near I 0 it is given by the

Schwarzschild metric gSm , see (1.3). Using the product decomposition R
4 = Rt ×R

3
x ,

we define a Lorentzian signature metric over the interior (0�)◦ = {t = 0} by

g0 := (1− χ(r) 2mr )dt
2 − γ ∈ C∞((0�)◦; S2T ∗R4), (6.8)

whose pullback to 0� is equal to −γ . We next find g1 ∈ C∞(0�; S2T ∗R4) such that
k = IIg0+tg1 ; denoting by N = (1 − χ(r) 2mr )

−1/2∂t the future unit normal, this is
equivalent, by polarization, to

g0((∇g0+tg1
X − ∇g0

X )X , N ) = k(X , X) ∀ X ∈ T (0�)◦;

Here, we view g0 as a stationary metric near t = 0, which due to its symmetry under
time reversal t �→ −t has vanishing second fundamental form: g0(∇g0

X X , N ) ≡ 0. A
calculation in normal coordinates for g0 shows that this is uniquely solved by

g1(X , X) = −2(Nt)−1k(X , X) = −2(1− χ(r) 2mr )
1/2k(X , X). (6.9)

It remains to specify g1(N , ·) and g1(N , N ), which involves the gauge condition at
t = 0; that is, for all V ∈ T{t=0}R4, we require
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−ϒ(g0; gm)(V ) =
(
ϒ(g0 + tg1; gm)−ϒ(g0; gm)

)
(V )

= (Gg0g1)(V ,∇g0 t) = (1− χ(r) 2mr )
−1/2(Gg0g1)(V , N ). (6.10)

ForV ∈ T (0�)◦, this determines (Gg0g1)(V , N ) = g1(V , N ). Lastly, if E1, E2, E3 ∈
T (0�)◦ completes N to an orthonormal basis, this also determines (Gg0g1)(N , N ) =
1
2 (g1(N , N )+

∑
j g1(E j , E j )) and thus g1(N , N ).

The assumption on γ gives

h0 := ρ−10 (g0 − gm) ∈ ρ
b0
0 H∞

b (0�; S2 scT ∗0�
0
R4). (6.11)

We claim that likewise

h1 := ρ−20 g1 ∈ ρ
b0
0 H∞

b (0�; S2 scT ∗0�
0
R4). (6.12)

We introduce the extra factor of ρ−10 since ρ−10 ∂t is a smooth b-vector field on 0
R4

near 0� and transversal to it; that is, in (4.1), we can take

∂ν = ρ−10 ∂t .

Now the restriction of h1 to S2 scT 0� lies inρb00 H∞
b , as follows from (6.9). (Recall that

scT 0� is spanned by coordinate vector fields on R
3). To prove (6.12), it thus suffices

to prove thatϒ(g0; gm)(V ) ∈ ρ
2+b0
0 H∞

b for V equal to ∂t or a coordinate vector field
on R

3; this however follows from (6.11) and the local coordinate expression (3.1) of
ϒ , as such a vector field V is equal to ρ0 times a b-vector field on 0

R4.
This construction preserves smallness, i.e. we have ‖h0‖

ρ
b0
0 HN+1

b
+ ‖h1‖

ρ
b0
0 HN

b
<

Cδ for some constant C . We can then solve the quasilinear wave equation P(h) = 0
in the neighborhood U of 0�, e.g. using Nash–Moser iteration as explained above.
(Since we are not solving up to I + where our arguments in §5 lose derivatives, one
can use a simpler iteration scheme here, see [102, §16.1]). The constraint equations
then imply that ∂νϒ(gm +ρh; gm) = 0 at 0�, see [60, §2.1]; sinceϒ solves the wave
equation (1.31), we have ϒ ≡ 0. $�

To extend this to a global solution, we recall from Lemma 2.10 and the isomor-
phism (2.40) that h pushes forward to an element of ρb00 H∞

b (U ′), U ′ := {|mtb| < 1
8 },

and satisfies a bound ‖h‖
ρ
b0
0 HN+1

b (U ′) < Cε, with C a constant depending only on m.

We can thus use (h0, h1) = (h, ∂νh)|m� as Cauchy data for the equation P(h) = 0.
Note that the gauge conditionϒ(g) = 0, g = gm +ρh, holds identically near m�; by
uniqueness of solutions of P(h) = 0 with Cauchy data (h0, h1), a global solution h
will automatically satisfy ϒ(g) ≡ 0, as this holds near m�, and then globally by the
argument given around equation (1.31).

Theorem 6.3 Fix N large, b0 > 0, ε > 0, and 0 < η < min( 12 , b0). Then if m ∈ R

and h0, h1 ∈ ρ
b0
0 H∞

b (m�) satisfy

|m| + ‖h0‖
ρ
b0
0 HN+1

b
+ ‖h1‖

ρ
b0
0 HN

b
< δ,
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where δ > 0 is a small constant, then there exists a global solution h of

P(h) = 0, (h, ∂νh)|m� = (h0, h1), (6.13)

that is,

Ric(g)− δ̃∗ϒ(g) = 0, g = gm + ρh,

which satisfies h ∈ X∞;b0,bI ,b′I ,b+ for all weights bI < b′I < min(1, b0) and b+ < 0,
and so that moreover ‖h‖X 6;b0,η,η/2,−η < ε. If in addition ϒ(gm + ρh; gm) = 0,
∂νϒ(gm + ρh; gm) = 0 at m�, then g solves

Ric(g) = 0

in the gauge ϒ(g) = 0.

As explained above, data for which the assumption in the second part of the theorem
holds arise from an application of Lemma 6.2. This assumption is equivalent to the
statement that the Riemannian metric and second fundamental form of m� induced
by a metric gm+ρh with (h, ∂νh)|m� = (h0, h1) satisfy the constraint equations, and
that the gauge conditionϒ(h; gm) = 0 holds pointwise at m�. These are assumptions
only involving the data (h0, h1); the vanishing of ∂νϒ(h)|m� for the solution h of
P(h) = 0 with these data follows as in the proof of Lemma 6.2.

Proof of Theorem 6.3 This follows, with bI < b′I < min( 12 , b0) at first, for N =
2d = 26, from Theorem 6.1 applied to the map in (6.4). The constant δ > 0
depends in particular on the constants Cs in (6.1a) for s ≤ D = 3287; that is,
δ = δ(‖h0‖

ρ
b0
0 HD+1

b
+ ‖h1‖

ρ
b0
0 HD

b
). Repeating the arguments in §§5.1 and 5.3 once

more shows that one can take bI < b′I < min(1, b0); see also the proof of Theorem 7.1
below.

We remark that h is in fact small in X 3d = X 39, but if one is interested in the size
of up to two derivatives (e.g. curvature) of h, control of its X 6 norm is sufficient by
Sobolev embedding. $�
Remark 6.4 In other words, using the notation of the proof and d ≥ 13, N = 2d,
D = 16d2 + 43d + 24 = 3287, and fixing m and b0, we can solve the initial value
problem (6.13) for data in the space D :=⋃

C D(C), where

D(C) :=
{
(h0, h1) : h0, h1 ∈ ρ

b0
0 H∞

b (m�), |m|
+ ‖h0‖

ρ
b0
0 HN+1

b
+ ‖h1‖

ρ
b0
0 HN

b
< δ(C),

‖h0‖
ρ
b0
0 HD+1

b
+ ‖h1‖

ρ
b0
0 HD

b
< C

}
.

An inspection of the proof of Theorem 6.1 in [100] shows that limC→0 δ(C) > 0, so
D in particular contains all conormal data (h0, h1) for which |m| + ‖h0‖

ρ
b0
0 HD+1

b
+
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‖h1‖
ρ
b0
0 HD

b
< δ0, where δ0 > 0 is a universal constant (i.e. depending only on m and

b0).Moreover, one also has a continuity statement: for any choice ofweights bI , b′I , b+
as in Theorem 6.3, the solution h ∈ X 3d;b0,bI ,b′I ,b+ of (6.13) depends continuously
on (h0, h1) ∈ D , the latter being equipped with the ρb00 HD+1

b ⊕ ρ
b0
0 HD

b topology.38

Indeed, to obtain continuity at the Minkowski solution, note that the map φ in (6.4)
depends parametrically on the data (h0, h1) ∈ D , but the constants appearing in the
estimates in [100] can be taken to be uniform when (h0, h1) varies in D(C) with C
fixed. Continuity at other solutions is similarly automatic, but the base point of the
Nash–Moser iteration (called u0 in [100, Lemma 1]) should then be given by the
solution one is perturbing around.

The solution h of (6.13) in fact has a leading term at I+, as will follow from the
arguments in §7, see the discussion around (7.16); this precise information was not
needed to close the iteration scheme, hence we did not encode it in the spaces X s .

The conclusion in the form given in Theorem 1.1 can be obtained by combining
Lemma 6.2 and Theorem 6.3: using the coordinate tb on mM ′, the initial surface 0�

in Minkowski space is given by tb = −2mρ0χ(r) log(r − 2m). A diffeomorphism of
m

R4 which near m� is not smooth but rather polyhomogeneous with index set Elog,
andwhich is the identity away from m�, can be used tomap {tb ≥ −2mρ0χ(r) log(r−
2m)} ⊂ mM ′ to mM = {tb ≥ 0}; pushing the solution g obtained from Lemma 6.2 and
Theorem 6.3, which is defined on t ≥ 0, forward using this diffeomorphism produces
the solution g as in Theorem 1.1. (The gauge condition satisfied by g is the wave
map condition with respect to the background metric which is the pushforward of
gm). We omit the proofs of future causal geodesic completeness of (M, g), as one can
essentially copy the arguments of Lindblad–Rodnianski [79, §16].

Remark 6.5 By Sobolev embedding, h obeys the pointwise bound

|h| ≤ Cη(1+ t + r)−1+η(1+ (r∗ − t)+)b0 ∀ η > 0 (6.14)

and is small for fixed η > 0 if δ = δ(η) > 0 in the theorem is sufficiently small; here,
we measure the size of h using any fixed Riemannian inner product on the fibers of
β∗S2, equivalently, by measuring

∑
i j |h(Zi , Z j )|, where {Zi } = {∂t , ∂x1 , ∂x2 , ∂x3}

are coordinate vector fields. The bound (6.14) also holds for all covariant derivatives
of h along b-vector fields on mM . In particular, by Lemma 3.11, |g − g| ≤ Cη(1 +
t + r)−1+η, η > 0. The Riemann curvature tensor also decays to 0 as t + r → ∞,
with the decay rate depending on the component: this follows from an inspection of
the expressions in §A.2. Note however that the components in the frame (2.23) have
no geometric meaning away fromI +. Geometric and more precise decay statements
were obtained by Klainerman–Nicolò [66].

Remark 6.6 If the ADM mass m of the initial data is large, there does not exist a
metric with the mass m Schwarzschild behavior near I + but Minkowski-like far

38 Hamilton [51] shows that the data-to-solution map is in fact a tame smooth map D∞;b0  (h0, h1) �→
h ∈ X∞;b0,bI ,b′I ,b+ (defined in the neighborhood D of the origin of D∞;b0 ).
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from I 0 ∪ I + which is sufficiently close to being Ricci flat for an application of
a small data nonlinear iteration scheme like Nash–Moser: this follows from work
of Christodoulou [25], Klainerman–Rodnianski and Luk [65,68], An–Luk [5], and
(for the noncharacteristic problem) Li–Yu [83]. On the other hand, for arbitrary m,
but without the smallness condition (1.6) on the data, one does obtain small data
by restricting to the complement of a sufficiently large ball. Working on a suitable
submanifold of mM , defined near I 0 ∩ I + by ρ0 < ε + ρ

β
I for β ∈ (0, b0) and

ε > 0 sufficiently small, cf. (4.15), our method of proof then ensures the existence of
a vacuum solution on this submanifold; in particular, the solution includes a piece of
null infinity.

We can also solve towards the past: Lemma 6.2 produces a solution g of Einstein’s
equation in the gauge ϒ(g; gm) = 0 in a full neighborhood of {t = 0}, and we can
then use the time-reversed analogue of Theorem 6.3 for solving backwards in time,
obtaining a global solution g on R

4. Note here that by construction, the background
metric gm is invariant under the time reversal map ι : t �→ −t on R

4, hence the gauge
conditions of the future and past solutions match. To describe the behavior of g on a
compact space, as illustrated in Figure 1, let us denote by mR4 the compactification
defined like m

R4 in §2.1 but with t replaced by −t everywhere. Thus, ι induces
diffeomorphisms m

R4 ∼= mR4; denote by S− the image of S+. The identity map on
R
4 induces an identification of the interiors of m

R4 and mR4 which extends to be

polyhomogeneous of class AElog
phg on the maximal domain of existence by a simple

variant of Lemma 2.10. We then define the compact topological space m
mR4 to be the

union of mR4 and mR4 quotiented out by this identification; this is thus a manifold of

classAElog
phg , and in fact of class C∞ away from ∂mR4 ∩ ∂mR4, hence in particular near

S± as well as near mβ(m I+) and its image under ι. Define the blown-up space

m
mM := [mmR4; S+, S−],

i.e. blow up both S+ and S−; these are closed and disjoint submanifolds, hence the
order of blow-up does not matter. Then m

mM is a polyhomogeneous manifold, covered

by the two smooth manifolds mM ′ and mM ′ := [mR4; S−], and with interior naturally
diffeomorphic to R

4
t,x . We denote its boundary hypersurfaces by I ± and i± in the

obvious manner, see Figure 1, and I 0 is the closure of the remaining part of the
boundary. In view of the isomorphism (2.40), weighted b-Sobolev spaces on m

mM are
well-defined. For future use, we also note that polyhomogeneity at I 0 with index set
E0 is well-defined provided

E0 + Elog = E0, (6.15)

as follows from (2.41); note that given any index set E0
0 , the index set E0 := E0

0 + Elog
satisfies (6.15) (and is the smallest such index setwhich containsE0

0 ) sinceElog+Elog =
Elog.

It is useful to describe m
mM as the union of three (overlapping) smooth manifolds,

namely mM , mM := ιmM , and the set U defined in (6.7). We can then define the
function space
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X∞;b0,bI ,b′I ,b+
global

to consist of all distributions on R
4 which lie in ρb00 H∞

b on U , and such that their

restriction as well as the restriction of their pullback by ι to mM lie in X∞;b0,bI ,b′I ,b+ .

Theorem 6.7 Given initial data γ, k as in Lemma 6.2, there exists a global solution
g of the Einstein vacuum equation Ric(g) = 0, attaining the data γ, k at {t = 0}
and satisfying the gauge condition ϒ(g), which is of the form g = gm + ρh with

h ∈ X∞;b0,bI ,b′I ,b+
global for all bI < b′I < b0 and b+ < 0.

7 Polyhomogeneity

We state and prove a precise version of the polyhomogeneity statement, made in
Theorem 1.1, about the solution of the initial value problem which we constructed in
§6. We use the short hand notations (2.32) and (2.35).

Theorem 7.1 Let b0 > 0, and let E0
0 ⊂ C × N0 be an index set with Im E0

0 < −b0.
Suppose γ, k ∈ C∞(R3; S2T ∗R3) are initial data such that m ∈ R, γ̃ , defined in (6.5),
and k satisfy the smallness condition (6.6), for N large and δ > 0 small.39 Assume
moreover that the initial data are polyhomogeneous (namely, E0

0 -smooth):

ρ−10 γ̃ , ρ−20 k ∈ AE0
0

phg(R
3; S2 scT ∗R3). (7.1)

Let h denote the global solution of Ric(g) = 0, g = gm + ρh, in M, satisfying the
gauge condition ϒ(g; gm) = 0. Then h is polyhomogeneous on M. More precisely, h
is E-smooth, E = (E0, EI , E+):

h ∈ AE0,EI ,E+
phg ,

with the refinements πc
11h ∈ AE0,ĒI ,E+

phg and π0h ∈ AE0,E ′I ,E+
phg near I +, where the

index sets are the smallest ones satisfying40

E0 ⊃ E0
0 + E ′log, E0 ⊃ j(E0 − i)+ i ∀ j ∈ N (7.2a)

at I 0, with E ′log defined in (2.36), while at I +,

E ′I ⊃ E0∪(2EI − i) (7.2b)

ĒI ⊃ 0 ∪ (E0∪
(
(ĒI + E ′I ) ∪ (2EI − i)

))
, (7.2c)

EI ⊃ 0∪E0∪
(
(EI + E ′I ) ∪ (2ĒI )

)
, (7.2d)

39 We can take N = 26 as in (the proof of) Theorem 6.3.
40 We shall prove that such index sets indeed exist.
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EI ⊃ j(EI − i)+ i ∀ j ∈ N, (7.2e)

and finally at I+,

E+ ⊃ (−i∪0) ∪ (
(E+ − i)∪ − i∪(EI \ {(0, 1)})

)
. (7.2f)

At I 0, we only need to capture the index set arising from nonlinear terms in Ein-
stein’s equation since the background metric gm solves ρ−3Ric(gm) = 0 identically
near I 0; the addition of the index set Elog arises when pushing the solution near

{t = 0} ⊂ 0
R4 forward to mM ; see (6.15). We point out that the index sets we

obtain are very likely to be nonoptimal due to our rather coarse analysis of nonlinear
interactions.

Example 7.2 For data which are Schwarzschildean modulo Schwartz functions, i.e.
E0
0 = ∅, the above gives E0 = ∅ and

EI =
⋃
j∈N0

(−i j, 3 j + 1), ĒI = 0 ∪ E ′I , E ′I =
⋃
j∈N

(−i j, 3 j − 1),

E+ =
⋃
j∈N0

(−i j, 32 j( j + 3)
)
.

Recalling the notation log≤k introduced around (1.38), this gives, schematically, lead-
ing termsπ11h ∼ log≤1 ρI+ρI log≤4 ρI ,πc

11h ∼ 1+ρI log≤2 ρI ,π0h ∼ ρI log≤2 ρI
at I + (near the interior of which one can take ρI = r−1), and h ∼ 1+ ρ+ log≤6 ρ+
at I+ (near the interior of which one can take ρ+ = t−1).

Example 7.3 Consider E0
0 = −i : this corresponds to initial data which have a full

Taylor expansion in 1/r at infinity, beginning with O(r−2) perturbations of the
Schwarzschild metric. In this case, we get many additional logarithmic terms from
E0 = E0

0 + Elog =⋃
j∈N

(−i j, j − 1), namely

EI =
⋃
j∈N0

(−i j, 12 j(3 j + 7)+ 1
)
, ĒI = 0 ∪

⋃
j∈N

(−i j, 12 j(3 j + 5)
)
,

E ′I =
⋃
j∈N

(−i j, 12 j(3 j + 3)
)
, E+ =

⋃
j∈N0

(−i j, 12 j( j2 + 5 j + 10)
)
,

so π11h ∼ log≤1 ρI + ρI log≤6 ρI , πc
11h ∼ 1 + ρI log≤4 ρI , π0h ∼ ρI log≤3 ρI at

I +, and h ∼ 1+ ρ+ log≤8 ρ+ at I+.

Remark 7.4 Let us consider the index set E0
0 = −i again. As indicated above, the

addition of E ′log in (7.2a) is only due to an inconvenient choice of initial surface

which produces logarithmic terms when passing from 0
R4 (which the initial surface

in Theorem 7.1 is a smooth submanifold of) to m
R4. If instead one is given the ADM

mass m and initial data (γ, k) on m�, with (γ, k) close to the data induced by gm
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on m� (measured in ρb00 HN
b (

m�; S2 scT ∗ m�) for suitable N ), then the index set at
I 0 can be defined as in (7.2a) but without E ′log. Correspondingly, the index sets at the
other boundary faces have fewer logarithms:

EI =
⋃
j∈N0

(−i j, 5 j + 1
)
, ĒI = 0 ∪

⋃
j∈N

(−i j, 5 j − 1
)
,

E ′I =
⋃
j∈N

(−i j, 5 j − 2
)
, E+ =

⋃
j∈N0

(−i j, 12 j(5 j + 11)
)
,

so π11h ∼ log≤1 ρI + ρI log≤6 ρI , πc
11h ∼ 1 + ρI log≤4 ρI , π0h ∼ ρI log≤3 ρI at

I +, and h ∼ 1 + ρ+ log≤8 ρ+ at I+. (The exponents in subsequent terms of the
expansion are smaller than in Example 7.3).

The proof of Theorem 7.1 is straightforward but requires some bookkeeping: we
will peel off the polyhomogeneous expansion at the various boundary faces iteratively,
writing the nonlinear equation P(h) = 0 as a linear equation plus error terms with
better decay, much like in §5. As a preparation, we prove a few lemmas for ODEs
which were already used in §5:

Lemma 7.5 Let X := [0,∞)ρ , u ∈ ρ−∞H∞
b (X), supp u ⊂ [0, 1], and f := ρDρu.

Then:

(1) f ∈ ρaH∞
b (X), a < 0⇒ u ∈ ρaH∞

b (X);
(2) f ∈ ρaH∞

b (X), a > 0⇒ u ∈ A0
phg(X)+ ρaH∞

b (X);

(3) f ∈ AE
phg(X), E any index set⇒ u ∈ AE∪0

phg (X); if (0, 0) /∈ E , then u ∈ AE∪0
phg (X).

Proof This follows immediately from the characterization of b-Sobolev and polyho-
mogeneous spaces using theMellin transform [87, §4].Alternatively, one can explicitly
construct the unique solution of ρDρu = f with support in ρ ≤ 1: part (1) follows

easily from u = −i ∫ 1
ρ

f dρ
ρ
, while for part (2), u = −i ∫ 1

0 f dρ
ρ
+ i

∫ ρ
0 f dρ

ρ
gives

the decomposition into constant and remainder term. The appearance of the extended
union in (3) is due to the fact that while ρDρu = ρi z(log ρ)k , k ∈ N0, is solved to
leading order by u = 1

z ρ
i z(log ρ)k for z �= 0, we need an extra logarithmic term for

z = 0, as ρDρ(
1

k+1 (log ρ)
k+1a) = −i(log ρ)ka plus lower order terms. $�

Adding more dimensions is straightforward:

Lemma 7.6 Let X = [0,∞)ρ1 × [0,∞)ρ2 × R
n
ω, U = {ρ1 < 1, ρ2 < 1} ⊂ X,

ρ = ρ1ρ2, and let E1, E2 denote two index sets. Suppose u ∈ ρ−∞H∞
b (X) has

support in U, and let f := ρ1Dρ1u. Then:

(1) f ∈ ρ
a1
1 ρ

a2
2 H∞

b (X), a1 �= 0⇒ u ∈ A0,a2
phg,b(X)+ ρ

a1
1 ρ

a2
2 H∞

b (X);

(2) f ∈ Aa1,E2
b,phg(X), a1 �= 0⇒ u ∈ A0,E2

phg (X)+Aa1,E2
b,phg(X);

(3) f ∈ AE1,E2
phg (X)⇒ u ∈ AE1∪0,E2

phg (X); if (0, 0) /∈ E2, then u ∈ AE1∪0,E2
phg (X).
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Fig. 14 Illustration of
Lemma 7.7 which describes
solutions of the transport
equation along the vector field
−ρ1∂ρ1 + ρ2∂ρ2 ; one integral
curve of this vector field is
shown here

Lemma 7.7 In the notation of Lemma 7.6, with u ∈ ρ−∞H∞
b (X) supported in ρ1 ≤ 1,

let f := (ρ1Dρ1 − ρ2Dρ2)u. Let χ = χ(ρ1, ρ2) ∈ C∞c ([0, 1)2) denote a localizer,
identically 1 in a neighborhood of the corner ρ1 = ρ2 = 0. See Figure 14. Then:

(1) f ∈ ρ
b1
1 ρ

b2
2 H∞

b (X), b2 > b1 ⇒ χu ∈ ρ
b1
1 ρ

b2
2 H∞

b (X);

(2) f ∈ Ab1,E2
b,phg(X), Im z �= −b1 whenever (z, 0) ∈ E2 ⇒ χu ∈ AE2,E2

phg (X) +
Ab1,E2

b,phg(X);

(3) f ∈ AE1,E2
phg (X)⇒ χu ∈ AE1∪E2,E2

phg (X).

Proof We drop the R
n
ω factor from the notation for brevity. For (1), write u(ρ1, ρ2) =

−i ∫ 1
ρ1

f (t−1ρ1, tρ2) dt
t and f = ρ

b1
1 ρ

b2
2 f̃ , f̃ ∈ H∞

b , then for 0 < ε < b2 − b1

‖χu‖2
ρ
b1
1 ρ

b2
2 L2

b

≤
∫ 1

0

∫ 1

0

∣∣∣∣
∫ 1

ρ1

tb2−b1 f̃ (t−1ρ1, tρ2)
dt

t

∣∣∣∣
2 dρ1
ρ1

dρ2
ρ2

≤
∫ 1

0

(∫ 1

ρ1

tb2−b1
(∫ 1

0
| f̃ (t−1ρ1, x2)| dx2

x2

)1/2 dt
t

)2 dρ1
ρ1

≤
(∫ 1

0
t2(b2−b1−ε) dt

t

)
·
∫ 1

0

∫ 1

0

∫ 1

0
t2ε | f̃ (x1, x2)|2 dx2

x2

dt

t

dx1
x1

≤ C‖ f ‖
ρ
b1
1 ρ

b2
2 L2

b
,

as desired; higher b-regularity follows by commuting ρ j Dρ j through the equation for
u.41

For the proof of (2), it suffices to consider a single term

fk = ρi z2 (log ρ2)
kak(ρ1), (7.3)

with ak ∈ ρ
b1
1 H∞

b (H1) supported in ρ1 ≤ 1. Let uk = ρi z2 (log ρ2)
kbk(ρ1), where

bk = bk(ρ1) solves
(ρ1Dρ1 − z)bk = ak (7.4)

41 A more conceptual proof, which does not rely on explicit integration of the vector field, uses a positive

commutator argument with the commutant a = χ1(ρ1)χ2(ρ2)ρ
−b1
1 ρ

−b2
2 , χ j ∈ C∞c ([0,∞)), χ j (ρ) ≡ 1

near 0, and χ ′j ≤ 0, i.e. the evaluation of 2 Im〈(ρ1Dρ1 − ρ2Dρ2 )u, a
2u〉L2b , in two different ways: once

by using the equation satisfied by u, and once by integrating by parts and using that (ρ1∂ρ1 − ρ2∂ρ2 )a has
a constant sign on supp a ∩ supp u. See (4.12) for a similar argument.
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and is supported in ρ1 ≤ 1, then the error term

fk−1 := (ρ1Dρ1 − ρ2Dρ2)uk − fk =
(
(ρ1Dρ1 − z)− (ρ2Dρ2 − z)

)
uk − fk

= ρi z2 (log ρ2)
k−1ak−1(ρ1), ak−1 := ikbk,

is one power of log ρ2 better than fk . Rewriting equation (7.4) as ρ1Dρ1(ρ
−i z
1 bk) =

ρ−i z1 ak ∈ ρ
b1+Im z
1 H∞

b (H1), we can use Lemma 7.5 to obtain bk ∈ Az
phg(H1) +

ρ
b1
1 H∞

b (H1); therefore uk ∈ Az,(z,k)
phg (X) + Ab1,(z,k)

b,phg (X). Proceeding iteratively, we
next solve (ρ1Dρ1 − ρ2Dρ2)uk−1 = fk−1 to leading order, etc., reducing k by 1 at
each step, and picking up one extra power of log ρ1 at each stage by Lemma 7.5(3)
(conjugated by ρi z). We obtain u =∑k

j=0 u j ∈ A(z,k),(z,k)
phg (X)+Ab1,(z,k)

b,phg (X).
The proof of (3) proceeds in the same manner: if fk is of the form (7.3), now

with ak ∈ AE1
phg(H1), then bk ∈ AE1∪z

phg (H1), so uk ∈ AE1∪z,(z,k)
phg (X) and fk−1 ∈

AE1∪z,(z,k−1)
phg (X). Iterating as before gives u ∈ AE1∪(z,k),(z,k)

phg (X). $�
Proof of Theorem 7.1 Weshall first prove that if theCauchydata (h0, h1) in the notation
of Theorem 6.3 are polyhomogeneous at ∂m�,

h0, h1 ∈ AE0
phg(

m�), (7.5)

then the conclusion of Theorem 7.1 holds. Now, by Theorem 6.3, we have h ∈
X∞;b0,bI ,b′I ,b+ for all bI < b′I < b0 and b+ < 0. Note that since the gauge con-
ditionϒ(g) = 0 is satisfied identically, h solves Ric(g)− δ̃∗ϒ(g) = 0 for any choice
of δ̃∗; this will be useful as it will allow us to work with simpler normal operator
models.

For now, consider h as a solution of P(h) = 0 for γ > b′I as in Theorem 4.2. We
write

0 = P(h) = p0 +
∫ 1

0
Lth(h) dt, p0 := P(0) ∈ A∅,∅,0

phg . (7.6)

(In fact, supp p0∩(I 0∪I +) = ∅ since gm is the Schwarzschildmetric near I 0∩I +).
Let us first work near I 0, away from I+. Suppose that for some c ≥ b0, we already

have h ∈ AE0,−0
phg,b + ρc0ρ

−0
I H∞

b , π0h ∈ AE0,b′I−0
phg,b + ρc0ρ

b′I−0
I H∞

b , with the exponents

referring to the behavior at I 0 and I +, respectively. Then

L0h = −p0 +
∫ 1

0
(L0 − Lth)(h) dt; (7.7)

we have L0 − Lth ∈ (AE0−i,−1−0
phg,b + ρc+10 ρ−1−0I H∞

b )Diff2b by an inspection of the
proof of Lemma 3.8, and it respects the improved behavior of π0h, so we find

L0h ∈ A2E0−i,−1−0
phg,b

+ρc+10 ρ−1−0I H∞
b , π0L0h ∈ A2E0−i,−1+b′I−0

phg,b + ρc+10 ρ
−1+b′I−0
I H∞

b .
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Denote by E1 := {(z, j) ∈ E0 : Im z ≥ −c} the (finite) set of exponents already
captured, and let E2 := {(z, j) ∈ E0 : − c − 1 ≤ Im z < −c}. Let

R j :=
∏

(z,k)∈E j

(ρ0Dρ0 − z), R = R2 ◦ R1.

Let N (L0) ∈ ρ−1I Diff2b(M) denote the normal operator of L0 at I 0, i.e. freezing the
coefficients of L0 at ρ0 = 0 for a fixed choice of a collar neighborhood [0, ε)ρ0 × I 0

of I 0; thus N (L0) commutes with ρ0∂ρ0 , and L0 − N (L0) ∈ ρ0ρ
−1
I Diff2b. Then

Rh ∈ ρc0ρ
−0
I H∞

b solves the equation N (L0)(Rh) = f , where

f := −R(L0 − N (L0))h + RL0h ∈ ρc+10 ρ−1−0I H∞
b , π0 f ∈ ρc+10 ρ

−1+b′I−0
I H∞

b ,

due to 2E0 − i ⊂ E0; the Cauchy data of Rh lie in ρc+10 H∞
b due to the polyhomo-

geneity of h0 and h1. The background estimate near I 0 being sharp with regards to
the weight at I 0, see Propositions 4.3 and 4.8, this gives Rh ∈ ρc+10 ρ−0I H∞

b , π0Rh ∈
ρc+10 ρ

b′I−0
I H∞

b . Thus, h ∈ AE0,−0
phg,b +ρc+10 ρ−0I H∞

b ,π0h ∈ AE0,b′I−0
phg,b +ρc+10 ρ

b′I−0
I H∞

b .
Iterating this gives

h ∈ AE0,−0
phg,b , π0h ∈ AE0,b′I−0

phg,b near I 0. (7.8)

Following the structure of the argument in §5, we next prove the polyhomogeneity
atI + \ (I + ∩ I+) using Lemmas 7.6 and 7.7. We now take γ = 0 in the definition
of P and its linearization. Thus, let us work near I 0∩I +, and assume that we already
have

π0h ∈ AE0,E ′I
phg +AE0,c′I−0

phg,b , πc
11h ∈ AE0,ĒI

phg +AE0,cI−0
phg,b , π11h ∈ AE0,EI

phg +AE0,cI−0
phg,b ,

(7.9)
for some 0 ≤ cI < c′I ≤ cI + 1. Using (7.6) and the structure of Lth = L0

th + L̃ th ,
we find

πc
11L

0
0π

c
11h = −πc

11 p0 −
∫ 1

0

(
πc
11 L̃ thπ

c
11h + πc

11Lthπ0h + πc
11Lthπ11h

)
dt . (7.10)

The proof of Lemma 3.8, condition (7.2e), and the fact that EI ⊃ ĒI ⊃ E ′I ⊃ EI − i
give

L̃ th ∈ (C∞ +AE0−i,EI
phg +AE0−i,cI−0

phg,b )Diff2b,

πc
11L

0
thπ0 ∈ ρ−1I (C∞ +AE0−i,ĒI

phg +AE0−i,cI−0
phg,b )Diff1b, (7.11)

and πc
11L

0
thπ11 = 0. Multiplying (7.10) by ρI , grouping function spaces in the order

of the summands in the integrand above, and simplifying using 2E0 − i ⊂ E0 and
0 ⊂ EI , this gives

ρI ∂ρI (ρ0∂ρ0 − ρI ∂ρI )π
c
11h ∈ AE0,EI+ĒI−i

phg +AE0,ĒI+E ′I
phg +AE0,2EI−i

phg +AE0,c′I−0
phg,b ;
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the first space is contained in the second. In view of condition (7.2c) (note that the
index sets in parentheses there lie in Im z < 0), we obtain

πc
11h ∈ AE0,ĒI

phg +AE0,c′I−0
phg,b , (7.12)

which improves on the a priori weight of the remainder term at I +. Next,

π11L
0
0π11h = −π11 p0 −

∫ 1

0

(
π11 L̃ thπ11h + π11Lthπ0h + π11Lthπ

c
11h

)
dt .

Lemma 3.8 and the membership (7.12) imply

π11L
0
thπ0 ∈ ρ−1I (C∞ +AE0−i,EI

phg +AE0−i,cI−0
phg,b )Diff1b,

π11L
0
thπ

c
11 ∈ ρ−1I (AE0−i,ĒI

phg +AE0−i,c′I−0
phg,b )Diff1b,

with ρI times the latter having a leading order term atI +, cf. the discussion of (5.3);
together with (7.11) and (7.12), and using ĒI ⊂ EI , one finds

ρI ∂ρI (ρ0∂ρ0 − ρI ∂ρI )π11h ∈ AE0,2EI−i
phg +AE0,EI+E ′I

phg +AE0,2ĒI
phg +AE0,c′I−0

phg,b ,

with the first space again contained in the second. Condition (7.2d) then gives

π11h ∈ AE0,EI
phg +AE0,c′I−0

phg,b . (7.13)

Lastly then, we can improve on the asymptotics of π0h at I + by writing

π0L
0
0π0h = −π0 p0 −

∫ 1

0

(
π0 L̃ thπ0h + π0Lthπ

c
11h + π0Lthπ11h

)
dt;

now π0L0
thπ

c
11 = 0 = π0L0

thπ11 and E ′I ⊂ ĒI ⊂ EI , so, since γ = 0,

ρI ∂ρI (ρ0∂ρ0 − ρI ∂ρI )π0h ∈ AE0,2EI−i
phg +AE0,c′I+1−0

phg,b ;

but condition (7.2b) and Lemma 7.7 imply

ρI ∂ρIπ0h ∈ AE0,E ′I
phg +AE0,c′I+1−0

phg,b ;

an application of Lemma 7.6 gives the same membership for π0h, since we already
know that π0h has no leading term atI +. This establishes (7.9) for (cI , c′I ) replaced
by (c′I , c′I +1), and we can iterate the procedure to establish the full polyhomogeneity
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away from I+. Near I + ∩ I+, the arguments are completely analogous, except we
only have conormal regularity ρb++ H∞

b at I+. Thus,

π0h ∈ AE0,E ′I ,b+
phg,phg,b, πc

11h ∈ AE0,ĒI ,b+
phg,phg,b, π11h ∈ AE0,EI ,b+

phg,phg,b.

Next, we use this information to obtain an expansion at I+, similarly to the argu-
ments around (5.10). We shall use the linearization L0, still defined using γ = 0, and
its normal operator at I+ ⊂ M—instead of its normal operator at the boundary of R4,
which obviates the need to relate (partially) polyhomogeneous function spaces on R4

and M . Namely, fix a collar neighborhood

U := [0, 1)ρ+ × I+, I+ = {Z ∈ R
3 : |Z | ≤ 1},

of I+ inM , and denote byVb,−(U ) ⊂ V(U ) the Lie subalgebra of vector fields tangent
to I+ but with no condition at I +. Then for γ = 0, we have L0 ∈ Diff2b,−(U ) (the
algebra generated by Vb,−), acting on sections of β∗S2|U : by Lemma 3.8, L̃0 ∈
Diff2b(M) ↪→ Diff2b,−(M) certainly has smooth coefficients, and the same is true for

L0
0 = −2ρ−2∂0∂1 = ∂ρI (ρI ∂ρI − ρ+∂ρ+)+ Diff2b(M), ρI = 1− |Z |2. Furthermore,

by Lemmas 2.10 and 3.10 as well as equation (3.29), the normal operator N (L0) of L0
at I+ can be identified with N (L), so that in fact N (L0) = �gdS−2, defined using the
expressions (4.62) and (4.65), acting component-wise on the fibers of the trivial bundle
R
10, where we use Lemma 2.11 to identify β∗S2|I+ ∼= 0β∗(S2 scT ∗0 R4)|0 I+ ∼= R

10

by means of coordinate differentials. By [107, §4] and the module regularity proved
in [57],

L̂0(σ )
−1 : H̄ s−1,k(I+)→ H̄ s,k(I+) (7.14)

is meromorphic for σ ∈ C with s > 1
2 − Im σ , where the bar refers to extendibility

at ∂ I+ = {|Z | = 1}, while the parameter k ∈ N0 measures the amount of regularity
under the C∞(I+)-module Diff1b(I

+); that is, H̄ s,k(I+) consists of Hs functions on
I+ which remain in Hs under application of any operator in Diffkb(I

+). (This is
analogous to Lemma 5.4, except in the present de Sitter setting we work on high
regularity spaces rather than the low regularity spaces in the Minkowski setting, see
[107, §5]). Strictly speaking, the references only apply to the operator obtained from
L0 by smooth extension across ∂ I+ to an operator on a slightly larger space than I+;
but (7.14) follows simply by using extension and restriction operators, and the choice
of extensions is irrelevant since L̂0(σ ) is principally a wave operator beyond ∂ I+.

The divisor R of L0, see Remark 5.6, is then

R = −i; (7.15)

indeed, using the relation between asymptotics onglobal deSitter space and resonances
on static de Sitter space as in [60, Appendix C], this follows from [106, Theorem 1.1]
for n = 4, λ = 2, with the logarithmic terms absent: the indicial roots are 1 and 2, see
[106, Lemma 4.13], and in the notation of (4.65), the difference of�gdS and its indicial
operator −(τ̂ ∂τ̂ )2 + 3τ̂ ∂τ̂ is τ̂ 2�x̂ , thus vanishes quadratically in τ̂ as a b-operator
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on [0,∞)τ̂ × R
3
x̂ . Hence, for the formal solution u = τ̂ v− + τ̂ 2v+ constructed in

[106, Lemma 4.13], the Taylor series of v± only contain even powers of τ̂ ; 1 − 2N0
and 2 − 2N0 being disjoint, there are no integer coincidences which would cause
logarithmic terms.

Now, consider again (7.7): if χ = χ(ρ+) denotes a localizer near I+, identically 1
near I+ and vanishing near I 0, we have

L0(χh) = −χ p0 + [L0, χ ]h +
∫ 1

0
χ(L0 − Lth)(h) dt . (7.16)

We have χ p0 ∈ A∅,0
phg, with the exponents now referring to the behavior at I + and

I+, respectively. Suppose we already have

π0h ∈ AE ′I ,E+
phg +AE ′I ,c+

phg,b , π
c
11h ∈ AĒI ,E+

phg +AĒI ,c+
phg,b , π11h ∈ AEI ,E+

phg +AEI ,c+
phg,b . (7.17)

Using that E+ − i is closed under nonlinear operations, i.e. j(E+ − i) + i ⊂ E+,
j ∈ N, we find L0 − Lth ∈ AE+−i

phg + ρ
c++1+ H∞

b near (I+)◦; see also Lemma 3.10.
Using the structure of Lth near I + ∩ I+ from Lemma 3.8 as above, and noting that
supp[L0, χ ]h ⊂ supp dχ is disjoint from I+, we deduce that

L0(χh) ∈ A∅,0
phg +AẼI+i,∅

phg +AẼI+i,2E+−i
phg +AẼI+i,c++1

phg,b , ẼI := EI \ {(0, 1)},

where the weight of the remainder term is as stated since all (z, k) ∈ E+ except for
(0, 0) have Im z < 0. (Here ẼI ⊃ ĒI + i ⊃ E ′I + i allows for a nonlogarithmic
leading term at I +, capturing the worst component of elements of the space Y∞ in
Definition 3.3, and moreover captures all nonlinear terms of (7.16)). Replacing L0 by

N (L0) causes another error term, (L0 − N (L0))(χh) ∈ AẼI+i,E+−i
phg + AẼI+i,c++1

phg,b ,
so

N (L0)(χh) ∈ A∅,0
phg +AẼI+i,E+−i

phg +AẼI+i,c++1
phg,b .

Mellin transforming in ρ+ at Im σ = −b+, inverting L̂0(σ ) on AẼI+i
phg (I+) using

Lemma 7.8 below, taking the inverse Mellin transform, and shifting the contour to
Im σ = −c+ − 1, we obtain

χh ∈ A0,R∪0
phg +A0∪ẼI ,(R∪ẼI )∪(E+−i)

phg +A0∪ẼI ,c++1
phg,b .

The index set at I+ is contained in E+ by condition (7.2f), so this improves over (7.17)
by the weight 1 in the remainder term; the index sets at I + on the other hand are
automatically the ones stated (but now with the improvement at I+), as the presence
of a nonzero term in the expansion of π11h, say, atI + corresponding to some element
in (0∪ẼI )\EI , would contradict our a priori knowledge (7.17). Iterating this gives the
polyhomogeneity at I+, as claimed.

123



Stability of Minkowski space and polyhomogeneity of the metric Page 109 of 146 2

Next, let us show that the smallest sets satisfying conditions (7.2a)–(7.2f) are indeed
index sets: we need to verify condition (2.31b). For E0, this is clear since, letting
Ẽ0
0 := E0

0 + E ′log,

E0 = Ẽ0
0 ∪

⋃
j∈N

j(Ẽ0
0 − i)+ i

and Im Ẽ0
0 < 0; note that this gives Im E0 < 0. At I +, we take E ′I =

⋃
k∈N

E ′I ,k ,
likewise for ĒI and EI , where we recursively define E ′I ,0 = ĒI ,0 = EI ,0 = ∅ and

E ′I ,k+1 = E0∪(2EI ,k − i), (7.18a)

ĒI ,k+1 = 0 ∪ (E0∪
(
(ĒI ,k + E ′I ,k) ∪ (2EI ,k − i)

))
, (7.18b)

EI ,k+1 =
(
0∪E0∪

(
(EI ,k + E ′I ,k) ∪ (2ĒI ,k)

)) ∪
⋃
j∈N

(
j(EI ,k − i)+ i

)
. (7.18c)

It easy to see by induction that

Im E ′I ,k, Im
(ĒI ,k\(0, 0)

)
, Im

(EI ,k\(0, 1)
) ≤ −c, c := min(1,− sup Im E0) > 0,

for all k. Therefore, to compute the index sets in any fixed half space Im z > −N ,
it suffices to restrict to j ≤ N + 1 in (7.18c), which implies that the truncated sets
E ′I ,k;N := E ′I ,k ∩ {Im z > −N } etc. are finite for all k; we must show that E ′I ,k;N etc.
are independent of k for sufficiently large k (depending on N ). Note then:

– E ′I ,k+1;N only depends on EI ,k;(N−1)/2;
– ĒI ,k+1;N only depends on EI ,k;(N−1)/2, ĒI ,k;N−c, and E ′I ,k;N ;
– EI ,k+1;N only depends on EI ,k;N−c, EI ,k;(N−1)/2, ĒI ,k;N , and E ′I ,k;N .

Combining these, one finds that, a fortiori, E ′I ,k+1;N , ĒI ,k+1;N , and EI ,k+1;N only

depend on the sets E ′I ,k−�;N−c, ĒI ,k−�;N−c, EI ,k−�;max(N−c,(N−1)/2), � = 0, 1, 2.
Therefore, for N > 0, E ′I ,k;N etc. are independent of k for k > 3N/c, as desired.
An analogous argument implies that E+ is an index set as well.

Finally, we show that the polyhomogeneity of the initial data γ and k in the sense
of (7.1) implies that the solution in the neighborhood U , see (6.7), of {t = 0} con-
structed in Lemma 6.2 is indeed polyhomogeneous at I 0 ∩ U with index set E0; this
however follows from the same arguments used to prove (7.8) (and we can in fact

ignore the weight at I +). In fact, working on 0
R4, we have h ∈ AE ′0

phg(U ) where

E ′0 =
⋃

j∈N0

(
j(E0

0 − i) + i
)
does not include the extra logarithmic terms from Elog;

this relies on the observation that the gauged Cauchy data constructed in the proof

of Lemma 6.2, see (6.11)–(6.12), lie in AE ′0
phg(

0�), which follows from an inspection

of the proof. Upon pushing the local solution h in U forward to m
R4, we incur the

logarithmic terms encoded in the index set Elog, see (6.15); this proves (7.5). $�
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To complete the proof,we need to study the action of L̂0(σ )
−1 on polyhomogeneous

spaces. Let E be an index set, and let c ∈ R be such that Im z < −c for all (z, 0) ∈ E ;
then AE+i

phg (I
+) ⊂ ρc−1I H∞

b (I+) ⊂ H̄−1/2+c−0,∞(I+).

Lemma 7.8 The operator L̂0(σ )
−1 in (7.14) extends from Im σ > −c as a meromor-

phic operator family L̂0(σ )
−1 : AE+i

phg (I
+) → A0∪E

phg (I
+) with divisor contained in

R∪E .
Proof Given f ∈ ρ−1I AE

phg(I
+), we shall explicitly construct a formal solution uphg

of L̂0(σ )uphg = f at ∂ I+, which we then correct using the inverse (7.14) acting on
Ċ∞(I+). The construction uses that

L̂0(σ ) = −DρI (ρI DρI − σ)+ Diff2b(I
+), (7.19)

which follows from the form (4.49) of the dual metric of ρ−2gm . Thus, consider
(z, k) ∈ E , f0 ∈ C∞(∂ I+) = C∞(S2), and suppose f = ρi z−1I (log ρI )k fk ∈
ρ−1I A(z,k)

phg (I+) near ρI = 0. If z �= 0, we then have

L̂0(σ )
(−z−1(z − σ)−1ρi zI (log ρI )

k fk
)− fphg

= (z − σ)−1ρi z−1I (log ρI )
k−1 fk−1 + (z − σ)−1 f ′

for some fk−1 ∈ C∞(∂ I+), and with f ′ ∈ ρ−1I A(z,k)−i
phg (I+) holomorphic in σ . We

can iteratively solve away the first term, obtaining u j ∈ C∞(∂ I+) such that

L̂0(σ )

( k∑
j=0

(z − σ)− j−1ρi zI (log ρI )
k− j u j

)
− f =

k∑
j=0

(z − σ)− j−1 f ′j ,

where f ′j ∈ ρ−1I A(z,k− j)−i
phg (I+) is holomorphic in σ and has improved asymptotics

at ∂ I+. If on the other hand z = 0, f = ρ−1I (log ρI )k fk ∈ ρ−1I A(0,k)
phg (I+), we need

an extra log ρI term: there exist u j ∈ C∞(∂ I+) such that

L̂0(σ )

( k∑
j=0

σ− j−1(log ρI )k+1− j u j

)
− f

=
k∑
j=0

σ− j−1 f ′j , f ′j ∈ ρ−1I A(0,k+1− j)−i
phg (I+).

(Note that there is no term on the left with (log ρI )0). In general, given f ∈
ρ−1I AE

phg(I
+), we can use these arguments and asymptotic summation to construct,

locally in σ , a family uphg ∈ A0∪E
phg (I

+), dependingmeromorphically on σ with divisor
contained in E , such that
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L̂0(σ )uphg − f =: f ′ ∈ A∅
phg(I

+) = Ċ∞(I+)

is meromorphic with divisor contained in E ; applying L̂0(σ )
−1 to this gives an element

of C∞(I+) = A0
phg(I

+), and

u := L̂0(σ )
−1 f = uphg − L̂0(σ )

−1 f ′

solves L̂0(σ )u = f , with divisor contained inR∪E due to the second term. $�
The global solution g = gm + ρh constructed on the space m

mM in Theorem 6.7
is polyhomogeneous as well; the only place where this is not immediate is I 0, where
however polyhomogeneity is well-defined under the assumption (6.15) on the index
set E0, which is already satisfied for the set E0 constructed in Theorem 7.1. Thus, the
index sets of h at I−, I −, I 0, I +, and I+ are E+, EI , E0, EI , and E+, respectively,
likewise for the refined asymptotics of πc

11h and π0h near I ±.

8 Bondi mass and themass loss formula

We shall first use a different characterization of the Bondi mass than the one outlined
in §1.3: the Bondi mass can be calculated from the leading lower order terms of the
metric g in a so-called Bondi–Sachs coordinate system in §8.2; in order to define
these coordinates, we first need to study a special class of null-geodesics in §8.1,
namely those which asymptotically look like outgoing radial null-geodesics in the
Schwarzschild spacetime. For simplicity, we work with the infinite regularity solu-
tions of Theorem 1.8, and we only control the Bondi–Sachs coordinates in a small
neighborhood of (I +)◦, as this is all that is needed for deriving the mass loss formula.
More precise estimates, including up to I + ∩ I+, of this coordinate system, and a
precise description of future-directed null-geodesics and other aspects of the geometry
near (null) infinity will be discussed elsewhere.

8.1 Asymptotically radial null-geodesics

Suppose g = gm + ρh, h ∈ X∞;b0,bI ,b′I ,b+ , solves Ric(g) = 0 in the gauge
ϒ(g; gm) = 0, where the weights are as in Definition 3.1; by an inspection of the
expressions in §A.2, the gauge condition implies improved decay of certain (sums
and derivatives of) components of the metric perturbation h, for instance, ϒ(g)0 = 0
implies

�00
0 ∈ mr−2 + H∞;2+b0,2+bI ,2+b+

b . (8.1)

We wish to study null-geodesics near (I +)◦. Introducing coordinates vμ on TR
4 by

writing tangent vectors as vμ∂xμ , the geodesic vector field H ∈ V(TR
4) takes the

form

H = vμ∂xμ + �
μ
κλv

κvλ∂vμ.

123



2 Page 112 of 146 P. Hintz, A. Vasy

As usual, we will use x0 = t + r∗, x1 = t − r∗, and local coordinates x2, x3 on S
2.

Consider first the case that h = 0, so g is the Schwarzschild spacetime near I +.
Radial null-geodesics then have constant x1 and xb, b = 2, 3, while v0(s) = ẋ0(s)
satisfies the ODE v̇0 = −mr(s)−2(v0)2, so ẍ0 = −mr−2(ẋ0)2. We then use:

Lemma 8.1 We have r = r∗ − 2m log r∗ +O(r−1∗ log r∗), and r∗ = 1
2 (x

0 − x1).

Proof Let r0(r∗) ≡ r∗ and

rk+1(r∗) = r∗ − 2m log(rk(r∗)− 2m) = r∗ − 2m log(rk)− 2m log(1− 2mr−1k ),

then |rk+1 − rk | ≤ Cr−1∗ |rk − rk−1|, k ≥ 1, and the fact that |r1 − r0| = O(log r∗)
show that r − r1 = O(r−1∗ log r∗), hence evaluation of r1 gives the result. $�

Often, we will only need the consequence that

r = 1
2 x

0 +O(log x0) (8.2)

for bounded x1, suggesting the approximation ẍ0 = −4m(x0)−2(ẋ0)2 for the geodesic
equation. Solving this by Picard iteration with initial guess x00 (s) ≡ s gives

x01 (s) = s + 4m log s, ẋ01 (s) = 1+ 4ms−1,

and subsequent iterations give O(s−1 log s), resp. O(s−2 log s), corrections to x01 (s),
resp. ẋ01 (s). Let us generalize such radial null-geodesics:

Proposition 8.2 Fix a point p ∈ (I +)◦ with coordinates xi (p) =: x̄ i . Then there
exists a future-directed null-geodesic γ : [0,∞) → M, γ (s) = (xμ(s)) such that
γ (s)→ p in M and xa(s)− x̄a = o(s−1) as s →∞.

Proof We will normalize γ by requiring that x0(s) ∼ s + 4m log s, and we shall seek
γ : [s0,∞)→ M for s0 > 0 large. For weights α0, α1, /α > 0, to be specified in (8.10)
below, we will solve the geodesic equation on the level of the velocity vμ = ẋμ using
a suitable Picard iteration scheme on the Banach space

X := {
v = (vμ) : [s0,∞)→ R

4 : ṽ0 ∈ s−1−α0C0, v1 ∈ s−1−α1C0, va ∈ s−1−/αC0},
(8.3)

where we use the notation

ṽ0(s) := v0(s)− (1+ 4ms−1),

and where C0 ≡ C0([s0,∞)) is equipped with the sup norm; as the norm on X , we
then take the maximum of the weighted C0 norms of ṽ0 and vi , i = 1, 2, 3. For v ∈ X ,
we define its integral x = I (v), ẋμ(s) = vμ(s), by

x0(s) := s + 4m log s −
∫ ∞

s
ṽ0(u) du,
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xi (s) := x̄ i −
∫ ∞

s
vi (u) du, i = 1, 2, 3. (8.4)

As the first iterate, we take

ṽ00(s), v
i
0(s) ≡ 0, x0 := I (v0);

note that ‖v0‖X = 0. For k ≥ 0, vk ∈ X , ‖vk‖X ≤ 1, and xk = I (vk), let then

v
μ
k+1(s) := v

μ
k (∞)+

∫ ∞

s
�
μ
κλ|xk (u)vκk (u)vλk (u) du, xk+1 := I (vk+1). (8.5)

Note that for some fixed constant C > 0,

|x0k (s)−s−4m log s| ≤ Cs−α0 , |x1k (s)− x̄1| ≤ Cs−α1 , |xik(s)− x̄ i | ≤ Cs−/α, (8.6)

which in particular allows us to estimate theChristoffel symbols appearing in (8.5). For
μ = 0, writing rk(s) = r(xk(s)), and using the improved decay of various Christoffel
symbols due to the gauge condition ϒ(g) = 0, we have

ṽ0k+1(s) = − 4ms−1 +
∫ ∞

s
mrk(u)

−2 du +
∫ ∞

s
Os0(u

−2−bI ) du

+
∫ ∞

s
Os0(u

−2 log u · 1 · u−1−α1)+Os0(u
−1 · 1 · u−1−/α)

+Os0(u
−1 log u · u−2−α1)+Os0(u

−1 log u · u−1−α1 · u−1−/α)
+Os0(u · u−2−2/α) du, (8.7)

with the integrals on the first line coming from terms with (κ, λ) = (0, 0) and
using (8.1), while the remaining terms come from (κ, λ) = (0, 1), (0, b), (1, 1), (1, b),
(a, b), in this order, using that v0k = O(1), v1k = O(s−1−α1), and vak = O(s−1−/α). As
for the notation, the constants implicit in the Os0 notation depend only on s0 and are
nonincreasing with s0, as they come from the size of the Christoffel symbols along
xk(s), which satisfies (8.6). By (8.2) and (8.6), we have

∫ ∞

s
mrk(u)

−2 du =
∫ ∞

s
4m(u−2 +O(u−3 log u)) du = 4ms−1 +O(s−2 log s).

Therefore, we have

|̃v0k+1(s)| �s0 s
−1−bI + s−2−α1 log s + s−1−/α + s−2/α,

which, for fixed α0 < bI , is bounded by 1
10 s

−1−α0 for large s0, provided α0 <

min(/α, 1+ α1, 2/α − 1); in particular, this requires /α > 1
2 .
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We obtain estimates on vik+1(s), i = 1, 2, 3, in a similar manner. Namely,

v1k+1(s) =
∫ ∞

s
Os0(u

−2−b′I · 12)+Os0(u
−2 · 1 · u−1−α1)+Os0(u

−1−b′I · 1 · u−1−/α)
+Os0(u

−1 · u−2−2α1)+Os0(u
−1 · u−1−α1 · u−1−/α)

+Os0(u · u−2−2/α) du (8.8)

satisfies |v1k+1(s)| �s0 s−1−b′I + s−2/α , hence |v1k+1(s)| < 1
10 s

−1−α1 provided the
weights satisfy α1 < min(b′I , 2/α − 1), and provided we increase s0, if necessary.

Lastly, using the precise form of the leading term of �c
0b,

vak+1(s) =
∫ ∞

s
Os0(u

−3−b′I )+Os0(u
−3 · 1 · u−1−α1)

+ (
u−1 · 1 · u−1−/α +Os0(u

−2 · 1 · u−1−/α))

+Os0(u
−2 · u−2−2α1)+Os0(u

−1 · u−1−α1 · u−1−/α)
+Os0(1 · u−2−2/α) du. (8.9)

Integrating the first term in the second line gives a term bounded from above by

∣∣− 1
1+/α s

−1−/α∣∣ < 2
3 s
−1−/α (/α > 1

2 ),

so we get |vak+1(s)| < ( 23 + 1
10 )s

−1−/α provided /α < 1+ b′I (which is consistent with
/α > 1

2 ). Thus, the iteration (8.5) maps the unit ball in X into itself, provided we fix
weights

α0 ∈ (0, bI ), α1 ∈ (0, b′I ), /α ∈ ( 12 , 1+ b′I ), (8.10)

and choose s0 large; recall here that 0 < bI < b′I < 1. Moreover, taking s0 larger
if necessary, vk �→ vk+1 is a contraction; such an estimate is only nonobvious for
the difference of quadratic terms in (8.5) involving the component v0; however, the
corresponding terms come with a small prefactor due to the smallness of the relevant
Christoffel symbols.

Let now v := limk→∞ vk ∈ X denote the limiting curve in TR
4, and integrate it

by setting γ := I (v). Then v satisfies the integral equation (8.5) with vk and vk+1
replaced by v, so v is C1, hence γ is a C2 geodesic. In particular, |v(s)|2g(s) is constant,
hence equal to its limit as s →∞, which is

O(s−1−b′I · 12)+O(1 · 1 · s−1−α1)+O(s−b′I · 1 · s−1−/α)
+O(s−1 log s · s−2−2α1)+O(1 · s−1−α1 · s−1−/α)+O(s2 · s−2−2/α)

= o(1), s →∞.

This proves that γ is a null-geodesic with the desired properties. $�
Note that γ is the unique null-geodesic, up to translation of the affine parameter,

tending to p and such that γ̇ ∈ X . (Indeed, for any such γ , the velocity γ̇ has small
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norm in a space defined like X but with weights decreased by a small amount and for
s0 large enough. The uniqueness then follows from the fixed point theorem).

Definition 8.3 For p ∈ (I +)◦, denote by γp(s) the maximal null-geodesic such that
v = γ̇p and x = γp satisfy equation (8.4) and v ∈ X , with X given in (8.3). We call
γp a radial null-geodesic.

We record the following stronger regularity property of the geodesics γp:

Lemma 8.4 In the notation of Proposition 8.2, let γp(s) = (xμ(s)) denote a radial
null-geodesic; then we have

x̃0(s) ∈ S−α0([s0,∞)), x̃1(s) ∈ S−α1([s0,∞)), x̃a(s) ∈ S−/α([s0,∞)),

for all weights α0 < bI , α1 < b′I , /α < 1+b′I , where x̃0(s) := x0(s)− (s+4m log s),
x̃ i (s) := xi (s)− x̄ i , and where Sm([s0,∞)) denotes symbols of order m, i.e. functions
u ∈ C∞([s0,∞)) such that for any k ∈ N0, |u(k)(s)| ≤ Ck〈s〉m−k .
Proof Certainly xμ(s) is smooth as a geodesic in a spacetime with smooth metric
tensor. The symbolic estimates for ∂ks x̃

μ(s) for k = 0, 1 follow immediately from the
construction of γp in the proof of Proposition 8.2; for k = 2, they follow from the
proof as well, specifically, from the decay of the integrands in (8.7)–(8.9). Assuming
that for some k ≥ 1 we have |∂ j

s x̃0(s)| � 〈s〉α0− j , 0 ≤ j ≤ k+1, with α0 as in (8.10),
likewise for x̃ i , i = 1, 2, 3, we have

∂ks (∂
2
s x̃

0) = ∂ks ẍ
0 − ∂k+2s (s + 4m log s) = ∂ks ẍ

0 + ∂ks (4ms−2),

and ∂ks ẍ
0 = −∂ks (�0

μν ẋ
μ ẋν).Note that x0(s) = O(s), ∂s x0(s) = O(1), and ∂ j

s x0(s) =
O(s−1− j ) for 2 ≤ j ≤ k + 1. Expanding the derivatives using the Leibniz and chain
rules thus gives the following types of terms: for (μ, ν) = (0, 0) and all derivatives
falling on the Christoffel symbol,

(∂ks �
0
00)(ẋ

0)2 = ∂ks (4ms−2 +O(s−2−bI ))(1+O(s−1 log s))
= ∂ks (4ms−2)+O(s−k−2−bI )

by the inductive hypothesis and the b-regularity of the remainder term in �0
00; the

remaining (μ, ν) = (0, 0) terms are, with �1 + �2 + �3 = k and �2 > 0,

(∂�1s �0
00)(∂

�2
s ẋ0)(∂�3s ẋ0) = O(s−2−�1 · s−1−�2 · s−�3) = O(s−k−3).

Estimating the terms with (μ, ν) �= (0, 0) does not require special care: derivatives
falling on ẋμ are estimated using the inductive hypothesis (thus every derivative gives
an extra power of decay in s); a derivative falling on �0

μν on the other hand either
produces (∂0�0

μν)ẋ
0, which gains an order of decay due to the Christoffel symbol

(recall that ∂0 is a b-derivative which vanishes at I +), or (∂i�0
μν)ẋ

i , which gains

123



2 Page 116 of 146 P. Hintz, A. Vasy

Fig. 15 The outgoing light cone
Cx̄1 limiting to the sphere

S(x̄1) ⊂ (I+)◦. Also shown
are a number of radial
null-geodesics

an order of decay due to ẋ i = O(s−1). Thus, the bound ∂ks (∂
2
s x̃

0) = O(s−k−2−α0)
follows from the same arithmetic of weights as used after (8.7).

The arguments for the other components x̃ i are completely analogous, and in fact
simpler as no terms need to be handled separately. This finishes the inductive step,
and thus the proof of the lemma. $�

We further note that for any compact subset K � (I +)◦, there exists a uni-
form value s0 ∈ R such that the null-geodesics γp, p ∈ K , are defined on [s0,∞);
since moreover γp arises, via γp = I (γ̇p) as in (8.4), from the Banach fixed
point theorem for a smooth (in p) contraction, Lemma 8.4 holds smoothly in the
parameter p, that is, making the dependence on p explicit as a subscript, we have
x̃0p(s) ∈ C∞(K ; S−α0([s0,∞))) etc.

Consider now the union of radial null-geodesics tending to the points of particular
S
2 sections of I +. Concretely, for fixed x̄1 ∈ R, denote

S(x̄1) := {p ∈ I + : x1(p) = x̄1}, Cx̄1 :=
⋃

p∈S(x̄1)
γp((s0,∞)), (8.11)

where s0 is chosen sufficiently large, which will always be assumed from now on.
See Figure 15. Thus, on the Schwarzschild spacetime, Cx̄1 is the part of the null
hypersurface x1 = x̄1 on which x0 � s0.

Lemma 8.5 For x̄1 ∈ R, the set Cx̄1 is a smooth null hypersurface nearI
+. Moreover,

if I 1 � R is a precompact open interval, then there exists a function u such that

u − x1 =: ũ ∈ ρ
b′I−0
I H∞

b (M); Cx̄1 = {u = x̄1}, x̄1 ∈ I 1. (8.12)

Proof With coordinates xa , a = 2, 3, on S
2, write γ (x̄1; s, x̄2, x̄3) := γ(x̄1,x̄2,x̄3)(s).

First, we shall prove that there exists a coordinate change of Rx0 × R
2
x2,x3

,

�(x̄1; x0, x2, x3) = (x0 − 4m log x0 + �̃0, x2 + �̃2, x3 + �̃3) =: (�0,�2,�3),

(8.13)
depending parametrically on x̄1 ∈ I 1, and with �̃0 ∈ S−α0 , �̃a ∈ S−/α for weights as
in (8.10) (with the symbolic behavior in x0), such that the map

δ(x0, x̄1, x2, x3) := γ (x̄1;�(x̄1; x0, x2, x3))
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satisfies xi ◦ δ = xi , i = 0, 2, 3. To do this, recall that, putting γ μ := xμ ◦γ , we have
γ 0−(s+4m log s) =: γ̃ 0 ∈ S−α0 , γ 1− x̄1 =: γ̃ 1 ∈ S−α1 , and γ a− x̄a =: γ̃ a ∈ S−/α ,
so after some simplifications, our task becomes choosing �̃i such that

�̃0 = 4m log
(
1− 4m(x0)−1(log x0 + �̃0)

)− γ̃ 0(x̄1;�), �̃a = −γ̃ a(x̄1;�);
(8.14)

this can be solved, first with �̃0 ∈ (x0)−α0C0 etc. using the fixed point theorem, and
then in symbol spaces using the smoothness of �̃0 (which follows from the implicit
function theorem) and an iterative argument.

Let us drop x0, x2, x3 from the notation. The desired function u is then defined
implicitly by u◦δ = x̄1.Writing x1(δ(x̄1)) =: x̄1+ f , where f ∈ S−α1 byLemma8.4,
we see that δ is one to one for large x0, as x̄1 + f (x̄1) = ȳ1 + f (ȳ1) implies
0 ≥ |x̄1 − ȳ1| − C(x0)−α1 |x̄1 − ȳ1|, so x̄1 = ȳ1 if x0 is large. Writing u = x̄1 + ũ,
we thus need to solve

(x̄1 + ũ)+ f (x̄1 + ũ) = x̄1 ⇐⇒ ũ = − f (x̄1 + ũ),

which by another application of the fixed point theorem has a solution ũ ∈ S−α1 .
Lastly, note that the vector fields ∂xi , i = 2, 3, 4, and x0∂x0 span Vb(M) near (I +)◦
in view of ρI = 1/x0, hence S−α1 ⊂ ρ

α1−0
I H∞

b near (I +)◦. Since we can take α1
arbitrarily close to b′I by (8.10), the existence of u and smoothness of Cx̄1 follows.

It remains to prove thatCx̄1 is a null hypersurface. To this end, we sketch a different
way of constructing Cx̄1 : let x̄

0 > 0, and consider the 2-sphere Sx̄1 x̄0 = {x0 =
x̄0, x1 = x̄1}. For sufficiently large x̄0, Sx̄1 x̄0 is spacelike; hence, for any p ∈ Sx̄1 x̄0 ,
there are precisely 4 rays of lightlike directions in (TpSx̄1 x̄0)

⊥, and there exists a
unique v(p) ∈ (TpSx̄1 x̄0)

⊥ which is future lightlike and outgoing (i.e. dr(v(p)) > 0),
and for which v(p)0 = 1 + 2m

r(p) . By writing out the condition g(v(p), ∂a) = 0
using the form (3.14) of g, one obtains an expression for v(p)a in terms of a small
multiple of v(p)1 and certain metric coefficients, while using |v(p)|2g = 0 (and using
the nonvanishing of g01) gives an expression for v(p)1 in terms of a small multiple of
v(p)a , plus certain metric coefficients. Solving this simple system, one finds that the
components of v(p) satisfy v(p)1 = O(r−1−b′I ) and v(p)a = O(r−2−b′I ); they are
thus small when measured in the norm of X (restricted to a single point) in (8.3), cf.
the upper bounds on the weights in (8.10).

A small modification of the fixed point argument in the proof of Proposition 8.2
shows that we can solve the geodesic equation with initial data v(p) in the backwards
direction up to a fixed value of x0, say x0 = C � 1; denote the union of these null-
geodesic segments emanating from points on Sx̄1 x̄0 byCx̄1 x̄0 . Letting x̄

0 →∞, it then
follows that Cx̄1 x̄0 converges over every compact subset of R

4 ∩ {x0 > C} to Cx̄1 in
the C1 topology. By construction, every Cx̄1 x̄0 is a null hypersurface; thus, its C1 limit
Cx̄1 is a null hypersurface as well. $�

The function u is uniquely defined by (8.12); thus, Lemma 8.5 shows the existence
of a neighborhood

(I +)◦ ⊂ U+ ⊂ M (8.15)
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and a function u ∈ x1 + ρ
b′I−0
I H∞

b,loc(U
+) such that Cx̄1 ∩ U+ = {u = x̄1} for all

x̄1 ∈ R.

Remark 8.6 The weight in (8.12) is consistent with the choice of the domain (4.15)
whose boundary component U ∂

ε is spacelike, see (4.16).

Since |∇u|2 ≡ 0 by construction, the vector field ∇u consists of null-generators of
its level sets Cu ; more precisely, we have ∇∇u∇u = 0, so restricted to the image of a
radial null-geodesic γp ⊂ Cu , we have (∇u)|γp(s) = cpγ̇p(s) for some constant cp.

Taking the inner productwith ∂1 and using the form (3.14) of g yields 1+O(s−b′I+0) =
cp(

1
2 +O(s−1)), so letting s →∞ gives cp = 2 and thus

(∇u)|γp(s) = 2γ̇p(s).

We can then extract more information using r = 1
2 s + O(log s) and g01 = 1

2 +
2s−1(h01−m)+O(s−2 log s): Lemma 8.4 then gives 2〈γ̇p(s), ∂1〉 = 1+ 4s−1h01+
O(s−1−α0), so

∂1ũ − 2r−1h01 ∈ ρ
1+bI−0
I H∞

b . (8.16)

8.2 Bondi–Sachs coordinates; proof of themass loss formula

The function u has nonvanishing differential everywhere on Cx̄1 when x0 is large; we
will use it one coordinate of a Bondi–Sachs coordinate system (u, r̊ , x̊2, x̊3), where
the coordinates r̊ and x̊a , a = 2, 3, are geometrically defined and constructed below;
with respect to such a coordinate system, the metric takes the form

g = guu du
2 + 2gur̊ du dr̊ − r̊2qab(dx̊

a − Ũ a du)(dx̊b − Ũ b du)

for some guu , gur̊ , qab, and Ũ a , and quantities of geometric or physical interest such
as the Bondi mass and the gravitational energy flux can be calculated in terms of
certain lower order terms of these metric coefficients [12,91]. We begin by defining r̊ .
Introduce a projection π : U+ → S

2 by

π(γ(x̄1,θ)(s)) := θ, θ ∈ S
2,

which is well-defined due to Lemma 8.5; in fact, in the notation of its proof, using
local coordinates xa , a = 2, 3, on S

2, we have

π(x0, x1, x2, x3) = (�a(x1 + ũ; x0, x2, x3))a=2,3, (8.17)

which in particular gives

π(x0, x1, x2, x3)− (x2, x3) ∈ S−/α. (8.18)

The map π defines a fibration of everyCu ; these fibrations have natural sections, as we
proceed to explain invariantly. Let N := ker π∗ denote the subbundle (smooth in M◦)
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consisting of vectors tangent to the fibers of π : this is the bundle of null generators of
the null hypersurfaces Cu , and therefore N ⊥ TCu . This implies that the spacetime
metric g restricts to an element

[g] ∈ S2(TCu/N )
∗.

On the other hand, the pull-back π∗/g induces a Riemannian metric [π∗/g] on TCu/N ,
i.e. an isomorphism TCu/N → (TCu/N )∗, hence [π∗/g]−1[g] ∈ End(TCu/N ) is
well-defined. We then define the area radius r̊ by the formula

r̊4 := det
([π∗/g]−1[g]), r̊ > 0.

Lemma 8.7 We have r̊ − r ∈ ρ
b′I−0
I H∞

b and ∂0r̊ = 1
2 − mr−1 + ρ

1+b′I−0
I H∞

b near
(I +)◦.

Proof It suffices to prove the first claim. We start by finding representatives in TCu

of a basis of TCu/N by considering the vector fields

Va = fa∂1 + ∂a, a = 2, 3, (8.19)

with fa to be determined. Working over the image of a fixed geodesic γp : [s0,∞)→
M , we use γ̇p = (1+O(s−1))∂0 +O(s−1−α1)∂1 +∑

c O(s−1−/α)∂c and the form of
g to calculate

g(γ̇p, Va) = ( 12 +O(s−1))(1+O(s−1)) fa +O(s1−/α);

demanding this to vanish determines fa = O(s1−/α). Since /α < 1 + b′I is arbitrary,
we conclude that

g(Va, Vb) = −r2/gab + rhāb̄ +O(r−b′I+0), (8.20)

while the observation (8.18) implies that π∗(Va) ∈ ∂a + Cb
a∂b, C

b
a = O(s−/α), hence

(π∗/g)(Va, Vb) = /gab +O(s−1−b′I+0). (8.21)

Therefore,

r̊4 = r4 det
(
1− r−1(/gbchāb̄)a,c=2,3 +O(s−1−b′I+0))

= r4(1− r−1 /tr h +O(s−1−b′I+0)),

which is equal to r4(1 +O(s−1−b′I+0)) due to the decay of /tr h at I + coming from
the membership h ∈ X∞;b0,bI ,b′I ,b+ , i.e. ultimately from the gauge condition. Taking
fourth roots, carrying symbolic behavior in s through the argument, and noting that
these calculations depend smoothly on the parameter p ∈ (I +)◦ completes the proof.

$�
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Corollary 8.8 Define the punctured neighborhood U̇+ := U+\(I +)◦ of (I +)◦,
see (8.15). Then if U+ is a sufficiently small neighborhood, (u, r̊ , π) : U̇+ →
R× R× S

2 is a coordinate system on U̇+.

Proof This follows from Lemma 8.7 and the asymptotics of u and π in (8.12)
and (8.18). $�

Choosing local coordinates xa on S
2 and letting x̊a := xa ◦π = xa+ρ1+b′I−0I H∞

b ,
we can introduce the Bondi–Sachs coordinates

(u, r̊ , x̊2, x̊3) (8.22)

on U ; the metric g and its dual G = g−1 simplify in this coordinate system since, by
construction,

G(du, du) ≡ 0, G(du, dx̊a) = (∇u)(x̊a) ≡ 0. (8.23)

Furthermore, using (8.16) and Lemma 8.7,

G(du, dr̊) = 1+ ρ
1+b′I−0
I H∞

b ,

G(dx̊a, dx̊b) = −r̊−2/gab − r̊−3hāb̄ + ρ
3+b′I−0
I H∞

b , (8.24)

where the leading term in the first expression comes from g01(∂1u)(∂0r̊). In order to
calculate G(dr̊ , dr̊) to the same level of precision, we need to sharpen Lemma 8.7.

Lemma 8.9 Near (I +)◦, we have

∂1r̊ = − 1
2 +

(
m + 1

2 (h11 − 2h01)+ r∂0h11 − 1
4
/∇a /∇bh

āb̄)r−1 + ρ
1+bI−0
I H∞

b .

Note that in (8.20), we already control g(Va, Vb) modulo terms more than two
orders beyond the leading term, which suffices for present purposes. On the other
hand, the remainder term in (8.21) is not precise enough.

Proof of Lemma 8.9 Put A := [π∗/g]−1[r−2g] ∈ End(TCu/N ), so (r̊/r)4 = det A,

andLemma8.7gives Ab
a = δba−r−1hā b̄+ρ1+b

′
I−0

I H∞
b and (det A)−1 ∈ ρ

1+b′I−0
I H∞

b .
Suppose now that

∂1(det A) = r−2μ+ o(r−2), (8.25)

then ∂1((r̊ − r)/r) = 1
4 (det A)

−3/4∂1(det A) = 1
4r

−2μ + o(r−2), so expanding the
left hand side as r−1(∂1r̊ + 1

2 − mr−1)+ o(r−2) implies that

∂1r̊ = − 1
2 + r−1(m + 1

4μ)+ o(r−1) (8.26)

Our calculations will imply that the o(r−1) remainder is of size O(r−1−bI+0), but
we shall stick to o(r−1) etc. for brevity. Trivializing TCu/N locally using the frame
{Va : a = 2, 3}, with Va defined in (8.19), A becomes a 2× 2 matrix-valued function.
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We can thus use the formula ∂1(det A) = (det A) tr(A−1∂1A), so it suffices to deter-
mine the function μ in tr(A−1∂1A) = r−2μ+ o(r−2). One contribution comes from
differentiating [r−2g], which by (8.20) and ϒ(g)1 = 0 yields

tr([r−2g]−1∂1[r−2g]) = (−/gab − r−1hāb̄ +O(r−2+0))(∂1(r−1hāb̄)+O(r−2−b′I+0))
= −r−1∂1 /tr h − r−2hāb̄∂1hāb̄ + o(r−2)

= 2r−2(h11 − 2h01)− 2r−2 /∇dh1
d̄ + 4r−1∂0h11 + o(r−2).

(8.27)

The remaining contribution to tr(A−1∂1A) is−tr([π∗/g]−1∂1[π∗/g]) (using the cyclic-
ity of the trace). Let us work near a point z0 ∈ R

4, and suppose x2, x3 are normal
coordinates on S

2 centered at the point π(z0). Then

(
∂1(π

∗
/g)(Va, Vb)

)|z0 = ∂1
(
(/gcd ◦ π)(π∗Va)c(π∗Vb)d

)|z0
= /gcd |π(z0)(∂1(π∗Va)c)(π∗Vb)d+/gcd |π(z0)(π∗Va)c(∂1(π∗Vb)d).

Now (π∗Va)c = δca+O(r−1−b′I+0), whose derivative along ∂1 is of sizeO(r−1−b′I+0),
so

∂1(π
∗
/g)(Va, Vb) = /gbc∂1(π∗Va)c + /gac∂1(π∗Vb)c + o(r−2) at z0. (8.28)

Let us first calculate the contribution to this coming from the term ∂a in Va . By (8.17)
and recalling the form of the map� from (8.13) as well as its defining relation (8.14),
we have

∂1(π∗∂a)b = ∂1∂a�̃
b(x1 + ũ; x0, x2, x3)

= −∂1∂a γ̃ b(x1 + ũ; x0 − 4m log x0 + �̃0, x2 + �̃2, x3 + �̃3); (8.29)

now γ̃ b, its xc-derivatives (c = 2, 3), and �̃b are of sizeO((x0)−1−b′I+0), so dropping
�̃2 and �̃3 gives an o(r−2) error; likewise, ∂x0 γ̃ b = O(r−2−b′I+0), so replacing the
second argument by x0 gives another o(r−2) error.

To analyze this further, we need to digress: consider the 1-parameter family
w(s; ε) := γ(x1+ε,x2,x3)(s) of null-geodesics, with x2, x3 fixed, and let

Y (s) := ∂εw(s; 0) ≡ ∂1γ(x1,x2,x3)(s)

denote the Jacobi field along γ (s) := w(s; 0). The asymptotics proved in Proposi-
tion 8.2 give the a priori information

Y (s) = O(s−bI+0)∂0 + (1+O(s−b′I+0))∂1 +
∑
c

O(s−1−b′I+0)∂c,

∂sY (s) = O(s−1−bI+0)∂0 +O(s−1−b′I+0)∂1 +
∑
c

O(s−2−b′I+0)∂c. (8.30)
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We shall determine the component Y (s)b by solving the Jacobi equation

(∇γ̇∇γ̇ Y (s)+ R(Y , γ̇ )γ̇
)b = 0. (8.31)

Heuristically, it suffices to calculate this modulo o(s−4) errors, as the second integral
of such error terms (integrating from infinity) is o(s−2); we will verify this heuristic
in the course of our calculations. Using γ̇ 0 = 1+O(s−1), γ̇ 1 = O(s−1−b′I+0), γ̇ c =
O(s−2−b′I+0), the a priori information (8.30), and the expressions for the curvature
tensor in (A.7), one finds

(R(Y , γ̇ )γ̇ )b = Rb
λμνγ̇

λYμγ̇ ν = −Rb
001(γ̇

0)2Y 1 − Rb
00a(γ̇

0)2Ya + o(s−4).

Now, using the gauge conditionϒ(g)0 = 0 and the expressions forChristoffel symbols
given in (A.3), one finds that in fact Rb

00a = o(s−3), rendering the second term size
o(s−4). Let us calculate Rb

001 = ∂0�
b
01− ∂1�

b
00+�

μ
01�

b
0μ−�

μ
00�

b
μ1 more accurately

than in (A.7). In the third term, the only contribution which is not o(r−4) comes from
μ = 2, 3, giving− 1

4r
−3∂1h0b̄+ 1

4r
−4 /∇bh01; the fourth term is o(r−4). For the second

term, we use

�b
00 = g0b�000 + g1b�100 + gab�a00 = o(s−4)+ o(s−4)− (r−2∂0h0b̄ − 1

2r
−3 /∇bh00),

exploitingϒ(g)0 = 0. In view of the leading order vanishing of h0b̄ and h00 atI +, we
have ∂1�b

00 = −r−2∂0(∂1h0b̄)+ 1
2r

−3 /∇b∂1h00+o(s−4); now ∂1h0b̄ can be rewritten,
usingϒ(g)b = 0, in termsofh01,hb̄c̄, andh1b̄; since these have (size 1) leading terms at
I +, subsequent differentiation along ∂0 only produces nontrivial terms (i.e. not of size
o(r−4)) when acting on the r -weights. On the other hand, ∂1h00 = −r−1h01+o(r−1)
fromϒ(g)0 = 0. Arguing similarly for the computation of ∂0�b

01, one ultimately finds
that all nontrivial terms cancel, so

Rb
001 = o(r−4).

Thus, the curvature term of the Jacobi equation (8.31) is of size o(s−4) simply. Regard-
ing thefirst termof (8.31), the information (8.30) and abrief calculationgive (∇γ̇ Y )0 =
O(s−1−bI+0), (∇γ̇ Y )1 = O(s−1−b′I+0), and, using r−1 = 2s−1 +O(s−2 log s),

(∇γ̇ Y )b = ∂sY
b + �b

μλγ̇
μY λ

= ∂sY
b + s−1Yb − 2s−3 /∇dh

b̄d̄ + 4s−3h1b̄ + o(s−3),

with nontrivial contributions only from (μ, λ) = (0, 1), (0, c). In particular, ∇γ̇ Y
satisfies the same rough asymptotics as ∂sY in (8.30). Since differentiation of hb̄d̄ and
h1b̄ along γ̇ gains a weight s1+bI due to these components having a leading term, this
and (8.31) imply

o(s−4) = (∇γ̇∇γ̇ Y )b = ∂s(∇γ̇ Y )b + s−1(∇γ̇ Y )b + o(s−4)
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= ∂2s Y
b + 2s−1∂sY b + 4s−4 /∇dh

b̄d̄ − 8s−4h1b̄ + o(s−4)
= s−2

(
∂s(s

2∂sY
b)− 2μ̃s−2 + o(s−2)

)
,

where

μ̃ = lim
s→∞(4h1

b̄ − 2 /∇dh
b̄d̄)

is the value of this combination of metric coefficients at γ (∞) ∈ I +. Since
lims→∞ s2∂sY b = 0 due to (8.30), we find ∂sY b = −2μ̃s−3 + o(s−3) and thus

Yb = μ̃s−2 + o(s−2) (8.32)

since lims→∞ Yb = 0.
Returning to the expression (8.29), dropping ũ gives an O(r−2−b′I+0) error term

by Lemma 8.5; we thus conclude that

∂1(π∗∂a)b=−∂1∂aγ b(x1; x0, x2, x3)+o(r−2)=
(− /∇ah1

b̄+ 1
2
/∇a /∇dh

b̄d̄)r−2+o(r−2).
(8.33)

We have another term in (8.28) coming from the term fa∂1 in Va ; but fa and its
derivative along x1 being of size O(r−b′I+0) (see the proof of Lemma 8.7), it suf-
fices to show that (π∗∂1)c = O(r−2) in order to conclude that ∂1(π∗( fa∂1))c =
o(r−2) is a lower order term. But we can simplify (π∗∂1)c|(x0,x1,x2,x3) = ∂1�

c =
−∂1γ̃ c(x1; x0, x2, x3) + o(r−2) = O(r−2) (using (8.32)) in the same manner as we
simplified (8.29).

Finally then, plugging (8.33) into (8.28), and adding the result to (8.27) yields (8.25)
for

μ = 2(h11 − 2h01)+ 4r∂0h11 − /∇a /∇bh
āb̄,

which by (8.26) proves the lemma. $�
We can also compute ∂1 x̊b = ∂1π

b modulo o(r−2), as this is given by the
component Yb of the Jacobi vector field of the proof of Lemma 8.9, so ∂1 x̊b =
(h1b̄ − 1

2
/∇dhb̄d̄)r−2 + o(r−2). In summary, we have shown that

du = o(r−1)dx0 + (
1+ 2r−1h01 + o(r−1)

)
dx1 +

∑
c
o(1)dxc,

dr̊ = ( 1
2 − mr−1 + o(r−1)

)
dx0

+ (− 1
2 + (m + 1

2 (h11 − 2h01)+ r∂0h11 − 1
4
/∇a /∇bh

āb̄)r−1 + o(r−1)
)
dx1

+
∑

c
o(1)dxc,

dx̊a = o(r−2)dx0 + (
(h1

ā − 1
2
/∇dh

ād̄)r−2 + o(r−2)
)
dx1 + dxa +

∑
c
o(r−1)dxc,

(8.34)
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where the remainders are in fact more precise: o(r−k) can be replaced by ρk+bI−0I H∞
b

near (I +)◦, so a fortiori by O(r−k−bI+0). We can now supplement (8.23)–(8.24) by

G(dr̊ , dr̊) = −1+ 2mr−1 + 2∂0h11 − 1
2r

−1 /∇a /∇bh
āb̄ + ρ

1+bI−0
I H∞

b ,

G(dr̊ , dx̊b) = (h1
b̄ − 1

2
/∇dh

b̄d̄)r−2 + ρ
2+b′I−0
I H∞

b . (8.35)

(Note that in the first line, the logarithmically divergent terms h11 from g00(∂0r̊)2 and
g11(∂1r̊)2 cancel). Let us summarize the calculations (8.23)–(8.24) and (8.35):

Proposition 8.10 In the Bondi–Sachs coordinates (8.22), the dual metric G = g−1 is

G = 2(1+ o(r̊−1))∂u∂r̊ −
(
1− 2mr̊−1 − 2∂0h11 + 1

2 r̊
−1 /∇a /∇bh

āb̄ + o(r̊−1)
)
∂2r̊

− r̊−2(/gab + r̊−1hāb̄ + o(r̊−1))
(
∂x̊a + (Uar̊

−2 + o(r̊−2))∂r̊
)

(
∂x̊b + (Ubr̊

−2 + o(r̊−2))∂r̊
)
,

where Ua = − 1
2h1ā + 1

4
/∇chāc̄. The metric g itself takes the form

g = (
1− 2mr̊−1 − 2∂0h11 + 1

2 r̊
−1 /∇a /∇bh

āb̄ + o(r̊−1)
)
du2 + 2(1+ o(r̊−1))du dr̊

− r̊2(/gab − r̊−1hāb̄ + o(r̊−1))
(
dx̊a − (Uar̊−2 + o(r̊−2))du

)
(
dx̊b − (Ubr̊−2 + o(r̊−2))du

)
.

The o(r̊−k) remainders can be replaced by ρk+bI−0I H∞
b = O(r−k−bI+0) near (I +)◦.

Furthermore, the coordinate vector fields satisfy

∂u =
(
1− (h11 + 2r∂0h11 − 1

2
/∇a /∇bh

āb̄)r−1 + o(r−1)
)
∂0

+ (1− 2h01r
−1 + o(r−1))∂1 +

(
(−h1

ā + 1
2
/∇bh

āb̄)r−2 + o(r−2)
)
∂a,

∂r̊ = (2+ 4mr−1 + o(r−1))∂0 + o(r−1)∂1 +
∑

c
o(r−2)∂c,

∂x̊a = o(1)∂0 + o(1)∂1 + ∂a +
∑

c
o(r−1)∂c. (8.36)

Proof The statement (8.36) on the dual basis of (8.34) follows by matrix inversion. $�
Remark 8.11 For comparison, theBondi–Sachs coordinates on Schwarzschild are sim-
ply u = x1, r̊ = r , and spherical coordinates x̊a = xa , and the metric takes the form

(gSm)
−1 = 2∂u∂r̊ − (1− 2mr̊−1)∂2r̊ − r̊−2 /G,

gSm = (1− 2mr̊−1)du2 + 2du dr̊ − r̊2/g.

Remark 8.12 Near (I +)◦ and relative to the smooth structure on M , the conformally
rescaled metric r−2g is singular as an incomplete metric at I +: indeed, r2∂0 is

a nonzero multiple of ∂ρI by (2.26), and r2g(r2∂0, r2∂0) = rh00 = O(ρ−1+b
′
I

I ).
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On the other hand, changing the smooth structure of M near (I +)◦ by declar-
ing (r̊−1, u, x̊2, x̊3) to be a smooth coordinate system, so ρ̊I := r̊−1 is a defining
function of I +, we have r̊−2g ∈ C1,bI−0. Indeed, ∂ρ̊I = −r̊2∂r̊ is null, while

(r̊−2g)(∂ρ̊I , ∂u) = 1+O(ρ̊1+bI−0I ) is C1,bI−0, and the remaining metric coefficients
have at least this amount of regularity. Since by Theorem 6.3 one can take bI arbitrarily
close to min(b0, 1), this gives

r̊−2g ∈ C1,α ∀α < min(b0, 1), (8.37)

relative to the new smooth structure. As mentioned in §1.3, smoothness properties
of conformal compactifications have been widely discussed, in particular from the
point of view of asymptotic simplicity [94] and the decay properties of the curva-
ture tensor [24,67]; see also [45] for further references. Whether or not there exists a
compactification with smooth (or at least highly regular)I +, meaning that the confor-
mally rescaled metric extends smoothly and nondegenerately acrossI +, is a delicate
issue as it depends very sensitively on the precise choice of the conformal factor and
the smooth structure near I + and requires the identification of at least two ‘incom-
mensurable’ geometric quantities.42 The observation (8.37) shows that this cannot
happen prior to the next-to-leading order terms in the expansion of g atI +. Work by
Christodoulou [24] on the other hand (see also [35, §1.5.3]) strongly suggests that the
conformal compactification is generically at most of class C1,α .

Therefore, themass aspect, see [91, Equation (37)], is− 1
2 times the r̊−1 coefficient

of the du2 component,

MA(p) = m + (r∂0h11 − 1
4
/∇a /∇bh

āb̄)|p, p ∈ (I +)◦, (8.38)

and the Bondi mass MB(u) := 1
4π

∫
S(u) MA d/g is

MB(u) = m + 1

4π

∫

S(u)
r∂0h11 d/g, u ∈ R, (8.39)

where we exploited that the divergence in the expression (8.38) integrates to zero.

Remark 8.13 Recall that near (I +)◦, h11 can bewritten as h(1)11 log ρI+h(0)11 +ρbII H∞
b ,

with h( j)11 ∈ C∞((I +)◦), j = 0, 1, so r∂0h11|I + = − 1
2h

(1)
11 picks out the logarithmic

term.

Theorem 8.14 The Bondi mass (8.39) satisfies the mass loss formula

d

du
MB(u) = − 1

32π

∫

S(u)
|N |2

/g d/g, Nab := ∂uhāb̄|I + . (8.40)

Moreover, MB(−∞) = m is the ADM mass of the initial data, while MB(+∞) = 0.

42 An example would be given by two metric components which have nonzero leading terms of size ρI
and ρI log ρI , respectively, though we reiterate that this depends on the choice of ρI , i.e. of the smooth
structure.
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Proof The formula (8.40) is an immediate consequence of Lemma 3.5, and
MB(−∞) = m follows from the fact that r∂0h11 ∈ ρ

b0
0 ρ

b++ H∞
b (I +) decays to 0

as ρ0 → 0.
Let us fix the boundary defining function ρ to be equal to r−1 near I +, and fix

ρI and ρ+ near I+ so that ρIρ+ = ρ. In order to prove MB(+∞) = 0, we analyze
the equation satisfied by h+ := h|I+ . The existence of this leading term was proved
in §7 starting with equation (7.16) (in which we do not use constraint damping); that
is, restricting that equation to I+ and using the Mellin-transformed normal operators
L̂0(0) = L̂(0) ∈ ρ−1I Diff2b(I

+) at frequency 0 (so this is the action of L0 on 2-tensors
smooth down to I+ followed by restriction to I+), we have

L̂(0)h+ = −P(0)|I+ = −ρ−3Ric(gm)|I+ . (8.41)

Moreover, h+11 has a logarithmic leading order term h+� log ρI ,

h+ − h+� log ρI (dx
1)2 ∈ C∞(I+)+ ρ

bI
I H∞

b (I+) ⊂ H̄1/2+bI−0(I+), (8.42)

where h+� = (ρI ∂ρI h11)|∂ I+ = (−2r∂0h11)∂ I+ , so by Lemma 3.5

h+� (θ) =
1

4

∫

β−1(θ)
|N |2 dx1, θ ∈ ∂ I+.

Since L̂(0) is injective on H̄1/2+0(I+), the tensor h+ on I+ is uniquely determined by
equation (8.41) and the ‘boundary condition’ (8.42). The strategy is to evaluate h+00|∂ I+
in two ways: one the one hand, this quantity vanishes identically by construction of
the metric h in our DeTurck gauge; on the other hand, we will show that solving (8.41)
directly yields the relation

1

4π

∫

∂ I+
h+00|∂ I+ d/g = 1

2m − 1
4c, c := 1

4π

∫

∂ I+
h+� d/g, (8.43)

which thus gives the desired conclusion. For the proof of (8.43), let us split h+ =
h′ + h′′, where

h′ ∈ C∞(I+; S2 scT ∗I+R4), h′′ ∈ h+� log ρI (dx
1)2 + H̄1/2+0(I+; S2 scT ∗I+R4)

(8.44)
are the unique solutions with these properties solving the equations

L̂(0)h′ = −P(0)|I+ , (8.45)

L̂(0)h′′ = 0; (8.46)

the first equation is uniquely solvable in this regularity class due to P(0) ∈ C∞c ((I+)◦).
We first solve (8.46) with the boundary condition (8.44), to the extent that we can
determine h′′00. This can be viewed as a calculation of (a part of) the ‘scattering matrix’
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of the operator L̂(0) on I+,43 which can be done explicitly: writing points in I+ using
spherical coordinates as Z = Rω ∈ R

3, R = r/t ∈ [0, 1], ω ∈ S
2, we have

−2L̂(0) = R−2DRR
2(1− R2)DR + R−2 /�ω + 2,

acting component-wise on the coordinate trivialization of scT ∗R4; see (4.62) and
(4.65). Since L̂(0) is SO(3)-invariant, it suffices to calculate u00|∂ I+ for the solution
of L̂(0)u = 0 for which u − c log ρI (dx1)2 ∈ H̄1/2+0(I+); recall that c was defined
in (8.43). Now at I+,

(dx1)2 = dt2 − 2 Zi

|Z | dt dxi + Zi Z j

|Z |2 dxi dx j , (8.47)

where we write xi for the Euclidean coordinates on R
3; observe then that if Y� ∈

C∞(S2), /�Y� = �(�+1)Y�, denotes a spherical harmonic, then L̂(0)
(
u�(R)Y�(ω)

) =
0 holds for

u0 = R−1 log
( 1−R
1+R

)
, u1 = R−2 log

( 1−R
1+R

)+ 2R−1, u2 = 3−R2

2R3 log
( 1−R
1+R

)+ 3R−2;
(8.48)

Taylor expanding at R = 0, one sees that R−�u� is a smooth function of R2, hence
u�Y� is smooth there; moreover, u� satisfies the boundary condition u� − log ρI =
O(1), ρI = 1 − R, at R = 1. (In fact, u� is the unique solution with these two
properties). Using (8.47), we find h′′ = c · (u0 dt2 − 2u1 dt dr + u2 dr2

)
, so writing

dt = (dx0 + dx1)/2, dr = Zi

|Z |dxi , and r = (dx0 − dx1)/2 near ∂ I+ within I+, this
gives

h′′00|∂ I+ = c · ( 14u0 − 1
2u1 + 1

4u2
)∣∣

R=1 = − 1
4c. (8.49)

In order to solve (8.45), note first that the map h ∈ C∞(I+) �→ ρ−3Ric(g+ρh)|I+
is linear in h,44 hence writing gm =: g + ρh, we have

P(0)|I+ = ρ−3(Ric(g + ρh)− Ric(g))|I+ = L̂(0)h − ρ−3δ∗gδgGgρh;

for later use, we note that in a neighborhood of ∂ I+ in I+,

h = −2mρ−1r−1(dt2 + dr2) = −m((dx0)2 + (dx1)2). (8.50)

This suggests writing ρh′ as the sum of −ρh (to solve away the first term) and a pure
gauge term, so we make the ansatz

h′ = −h + ρ−1δ∗gω + h̃′, (8.51)

43 Trivializing the 2-tensor bundle using coordinate differentials on R
4, a conjugated version of L̂(0) acts

component-wise as the Laplacian of exact hyperbolic space with spectral parameter at the bottom of the
spectrum; see Equations (4.1), (6.11), and (6.13) in [61].
44 This reflects the fact that the normal operator of the linearization of the Einstein equation around a
metric of the form g + ρh only depends on the leading order part of the metric at I+, i.e. on g; see also
Lemma 3.10.
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where ω ∈ C∞((I+)◦; scT ∗I+R4) solves45

ρ−2δgGgδ
∗
gω = ϑ := ρ−2δgGg(ρh) ∈ C∞(I+; scT ∗I+R4), (8.52)

and h̃′ is a solution of L̂(0)̃h′ = 0 which we will use to solve away any singular terms.
We compute ϑ to leading order at ∂ I+ by using r2δgr−1dt2 = 0 and r2δgr−1dr2 =
dr , so

ϑ = −2m dr = −m dx0 + m dx1 + ρI C∞(I+).

Write ρ−2δgGgδ
∗
g = ρDρ−1, where D = ρ−3δgGgδ

∗
gρ is 1

2 times the wave operator
on 1-forms on Minkowski space, re-weighted to a b-operator as usual; then equa-
tion (8.52) becomes

D̂(i)(ρ−1I ω) = ρ−1I ϑ. (8.53)

Now ρ−1I ϑ ∈ H̄−1/2−0,∞(I+), while D̂(i)−1 : H̄ s−1,∞(I+) → H̄ s,∞(I+) for
s > − 1

2 , cf. (7.14). Therefore, the solution satisfies ω ∈ ρI H̄1/2−0,∞(I+) ⊂
ρ1−0I H∞

b (I+) (by Sobolev embedding for functions of the single variable ρI ), which
using the expression (A.1) implies that ω does not contribute to h′00|∂ I+ , namely
(ρ−1δ∗gω)00|∂ I+ = (ρ−1∂0ω0)|∂ I+ = 0, where we used that ρ−1∂0 is a multiple of

the b-vector field ρI ∂ρI at ∂ I
+.

A careful inspection of the solution of (8.53) shows that ρ−1δ∗gω is not smooth.

Indeed, in the bundle splitting (2.19),we have D ∈ −2ρ−2∂0∂1+Diff2b(
0M), as follows

from the same calculations as (B.13), so using the expression (7.19) for σ = i , we
have D̂(i) ∈ ∂ρI (ρI ∂ρI +1)+Diff2b(I

+), which implies that46 ω = ρI log ρI ϑ |∂ I+ +
H̄5/2−0,∞(I+); therefore

(ρ−1δ∗gω)|I+ =
(−dx0 dx1 + (dx1)2

)
m log ρI + H̄3/2−0,∞(I+).

Therefore, while we do have L̂(0)(−h + ρ−1δ∗gω) = −P(0), we need to correct the

2-tensor on the left by adding the unique solution h̃′ of

L̂(0)̃h′ = 0, h̃′ ∈ (
dx0 dx1 − (dx1)2

)
m log ρI + H̄1/2+0(I+)

in order for h′ in (8.51) to have regularity above H̄1/2(I+), which, as remarked before,
implies that it is the unique smooth solution of (8.45), as desired. Arguing similarly

as around (8.47)–(8.48) and noting that dx0 dx1 = dt2 − dr2 = dt2 − Zi Z j

|Z |2 dxi dx j ,

45 We abuse notation by using the same expression for a b-operator on R4 and its Mellin-transformed
normal operator at 0 frequency. Note that for a b-differential operator A, the operator Â(0) is independent
of the choice of boundary defining function (unlike Â(σ ) for σ �= 0); see also [105, p. 762].
46 Using the arguments employed in the proof of Lemma 7.8, we in fact have ρ−1I ω ∈ log ρI C∞(I+)+
C∞(I+), as follows by constructing a formal solution at ρI = 0, starting with the stated leading order
term, and solving away the remaining smooth error using D̂(i)−1.
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the solution is given by h̃′ = m(u0 dt2 − u2 dr2)−m(u0 dt2 − 2u1 dt dr + u2 dr2).
This gives

h̃′00|∂ I+ = 1
4m(u0 − u2)|∂ I+ − m · (− 1

4 ) = − 1
2m.

In view of (8.50), we conclude that

h′00|∂ I+ = −h00|∂ I+ + h̃′00|∂ I+ = 1
2m.

Adding this to (8.49) establishes the relation (8.43), and proves MB(+∞) = 0. $�
Remark 8.15 The construction of Bondi–Sachs coordinates is local near (I +)◦ and
as such did not rely on h being small. (The proof of Proposition 8.2 used the smallness
of certain Christoffel symbols in a weighted C0 space, but this is automatic for any
fixed h ∈ X∞ if one relaxes the weights at I + by a little and works in a sufficiently
small neighborhood of I +). Likewise, the proof of Theorem 8.14 did not require h
to be small. Therefore, we in fact conclude that any (large) solution of the Einstein
vacuum equation of the form g = gm + ρh (with m possibly large), h ∈ X∞—which
requires it to decay to the Minkowski solution at I+—satisfies the conclusions of
Theorem 8.14.

Let us connect this to the alternative definition of the Bondi mass and the mass
loss formula used in §1.3, which has a more geometric flavor [23]. To describe this,
consider an outgoing null cone Cu and let

Su,r̊ := Cu ∩ {r = r̊}

denote the 2-sphere of constant area radius (which is a particular choice of transversal
of Cu). Let L ∈ (TCu)

⊥ be a future-directed null normal vector field, i.e. a smooth
positive multiple of ∇u; then the null second fundamental form is

χL(X ,Y ) := g(∇X L,Y ), X ,Y ∈ T Su,r̊ .

Note that χaL = aχL for any function a. There exists a unique future-directed null
vector field

L ∈ (T Su,r̊ )
⊥ such that g(L, L) = 2. (8.54)

Define TCu := T Su,r̊⊕〈L〉, which is the tangent space (at Su,r̊ ) of a null hypersurface
Cu which is the congruence of null-geodesics with initial condition on Su,r̊ and initial
velocity L . (L and Cu , resp. L and Cu , are often called ‘outgoing’ and ‘ingoing,’
respectively). The conjugate null second fundamental form is then

χ L(X ,Y ) := g(∇X L,Y ) = −g(∇XY , L), X ,Y ∈ T Su,r̊ ,

with the second expression showing that this depends only on L at Su,r̊ . Letting
g̊ := g|Su,r̊ denote the induced metric, the trace-free parts of χ and χ are

χ̂L := χL − 1
2 g̊ trg̊(χL), χ̂

L
:= χ L − 1

2 g̊ trg̊(χ L).
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Rescaling L to aL , we must rescale L to a−1L , so the product tr χL tr χL is well-
defined, and we may drop the subscripts on χ and χ . The Hawking mass of Su,r̊ is
defined as

MH(u, r̊) := r̊

2

(
1+ 1

16π

∫

S(u,r̊)
tr χ tr χ dS

)
, (8.55)

where dS is the induced surface measure. For a 1-form, let us write its components ω
in Bondi–Sachs coordinates as ωu , ωr̊ , ωå , a = 2, 3, similarly for higher rank tensors.

Lemma 8.16 We have |MH(u, r̊)− MB(u)| � r̊−bI+0, hence

lim
r̊→∞

MH(u, r̊) = MB(u).

Proof We work in Bondi–Sachs coordinates, so T Su,r̊ = 〈∂x̊2 , ∂x̊3〉, and

g̊åb̊ = −r̊2/gab + r̊ hāb̄ + o(r̊), (g̊−1)åb̊ = −r̊−2/gab − r̊−3hāb̄ + o(r̊−3).

Let us take L = ∂r̊ and write χ ≡ χL , then χåb̊ is the Christoffel symbol of the first
kind, �b̊år̊ = g(∇∂x̊a ∂r̊ , ∂x̊b ). By Proposition 8.10, g(∂x̊a , ∂r̊ a ) ≡ 0, therefore

χåb̊ = 1
2∂r̊ gåb̊ = −r̊ /gab + 1

2hāb̄ + o(1), (8.56)

which due to /tr h = o(1) gives

tr χ = 2r̊−1 + o(r̊−2), χ̂åb̊ = − 1
2hāb̄ + o(1). (8.57)

Next, a simple calculation shows that the unique future-directed null vector field L
defined in (8.54) is given by

L = (2+ o(r̊−1))∂u −
(
1− 2mr̊−1 − 2∂0h11 + 1

2 r̊
−1 /∇a /∇bh

āb̄ + o(r̊−1)
)
∂r̊

+ (
(−h1

ā + 1
2
/∇bh

āb̄)r̊−2 + o(r̊−2)
)
∂å .

(The spherical component is determined by g(L, ∂c̊) = 0, c = 2, 3, the ∂u compo-
nent by g(L, L) = 2, and the ∂r̊ component by g(L, L) = 0). Working in normal
coordinates on S

2, using �uåb̊ = − 1
2 r̊∂uhāb̄ − 1

4 (
/∇ah1b̄ + /∇bh1ā) + 1

8 (
/∇a /∇chb̄

c̄ +
/∇b /∇chā c̄) + o(1), �r̊ åb̊ = r̊ /gab − 1

2hāb̄ + o(1), and �c̊åb̊ = o(r̊2), the components
of χ := χ L are

χ åb̊ = −�
μåb̊ L

μ = (r̊ − 2m − 2r̊∂0h11 + 1
2
/∇c /∇dh

c̄d̄)/gab + r̊∂uhāb̄

− 1
2hāb̄ + 1

2 (
/∇ah1b̄ + /∇bh1ā)− 1

4 (
/∇a /∇chb̄

c̄ + /∇b /∇chā
c̄)+ o(1), (8.58)

which gives

tr χ = −2r̊−1 + (4m + 4r̊∂0h11 − 1
2
/∇a /∇bh

āb̄ − /∇ah1
ā)r̊−2 + o(r̊−2),
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χ̂
åb̊
= r̊∂uhāb̄ + ( 14

/∇c /∇dh
c̄d̄ − 1

2
/∇ch1

c̄)/gab + 1
2hāb̄

+ 1
2 (
/∇ah1b̄ + /∇bh1ā)− 1

4 (
/∇a /∇chb̄

c̄ + /∇b /∇chā
c̄)+ o(1). (8.59)

Finally, the surfacemeasure on Su,r̊ is | det g̊|1/2|dx̊a d x̊b| = (r̊2/gab+o(r̊))|dx̊a d x̊b|,
hence the Hawking mass is MH(u, r̊) = m + 1

4π

∫
S(u) r̊∂0h11 d/g + o(1) = MB(u)+

o(1). (As usual, the o(1) remainder is really symbolic as r̊ → 0, namely of class
S−bI+0). $�

With L and L defined as in the proof of the lemma, consider the conjugate null
vectors aL and a−1L . By (8.57) and (8.59), there exists a unique a = 1 + O(r̊−1)
such that

tr χaL + tr χa−1L = a−1(a2 tr χ + tr χ) = 0; (8.60)

thus χ̂
a−1L = r̊∂uhāb̄ + O(1) = χ̂ + O(1), hence to leading order, the normaliza-

tion (8.60) does not change χ̂ . We can now calculate the outgoing energy flux through
Su,r̊ ,

E(u, r̊) = 1

32π

∫

S(u,r̊)
|χ̂ |2 dS = 1

32π

∫

S(u)
|N |2

/g dS + o(1),

with Nab = ∂uhāb̄ is as in Theorem 8.14.47 Clearly, E has a limit E(u) =
limr̊→∞ E(u, r̊) at null infinity, and the Bondi mass loss formula (8.40) then takes the
equivalent form

d

du
MB(u) = −E(u).
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Appendix A. Connection coefficients, curvature components, and nat-
ural operators

We list the results of calculations used in the main body of the paper: geometric
quantities and relevant differential operators for the exact Schwarzschild metric in
§A.1, its perturbations (as considered in §3.1) near null infinity in §A.2, and near the
temporal face of the Minkowski metric in §A.3.

47 Using (8.59), we could compute a as well as E(u, r̊) to one more order, exhibiting a r̊−1 term plus a
o(r̊−1) remainder for both.
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A.1. Schwarzschild

In the notation of §2.1, in particular around (2.23), the Schwarzschild metric

g ≡ gSm = (1− 2m
r )dq ds − r2/g

and the dual metric g−1 have components

g00 = 0, g01 = 1
2 (1− 2m

r ), g0b = 0, g11 = 0, g1b = 0, gab = −r2/gab,
g00 = 0, g01 = 2r

r−2m , g0b = 0, g11 = 0, g1b = 0, gab = −r−2/gab.

The only nonzero Christoffel symbols in this frame are �cab = −r2 /�cab, �c
ab = /�c

ab,
and

�100 = 1
2mr−3(r − 2m), �c0b = − 1

2 (r − 2m)/gbc, �011 = − 1
2mr−3(r − 2m),

�c1b = 1
2 (r − 2m)/gbc, �0ab = 1

2 (r − 2m)/gab, �1ab = − 1
2 (r − 2m)/gab,

�0
00 = mr−2, �c

0b = 1
2r

−1(1− 2m
r )δ

c
b, �

1
11 = −mr−2,

�c
1b = − 1

2r
−1(1− 2m

r )δ
c
b, �

0
ab = −r /gab, �1

ab = r /gab.

The only nonzero components of the Riemann curvature tensor (up to reordering the
last two indices) are Ra

bcd = 2mr−1(δac /gbd − δad /gbc) and

R0
001 = −mr−3(1− 2m

r ), R
0
b0d = −mr−1/gbd , R1

101 = mr−3(1− 2m
r ),

R1
b1d = −mr−1/gbd , Ra

01d = − 1
2mr−3(1− 2m

r )δ
a
d , R

a
10d = − 1

2mr−3(1− 2m
r )δ

a
d .

With respect to the rescaled bundle splittings (2.19) and (2.21), we have

gSm = (0, 12 (1− 2m
r ), 0, 0, 0,−/g)T , trgSm = (0, 4r

r−2m , 0, 0, 0,− /tr),

further

GgSm
=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 0 0 0 ( 14 − m

2r ) /tr
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

0 2r /g
r−2m 0 0 0 G/g

⎞
⎟⎟⎟⎟⎟⎟⎠
, δ∗gSm =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂0 − m
r2

0 0
1
2∂1

1
2∂0 0

1
2r

−1/d 0 1
2∂0 − r−1( 14 − m

2r )

0 ∂1 + m
r2

0
0 1

2r
−1/d 1

2∂1 + r−1( 14 − m
2r )

r−1/g −r−1/g r−1/δ∗

⎞
⎟⎟⎟⎟⎟⎟⎠
.

(A.1)
We also record dt = ( 12 ,

1
2 , 0)

T , ∇gSm t = r
r−2m (1, 1, 0), and, paralleling the defi-

nition of δ̃∗ from (3.3), we have, near S+,

− 2γ
d(t−1)
t−1

⊗s (·)+ γ (ιt∇gm (t−1)(·))gm
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= γ t−1

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0
1
2

1
2 0

0 0 1
2

0 1 0
0 0 1

2
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
− γ t−1

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0
1
2

1
2 0

0 0 0
0 0 0
0 0 0

− r
r−2m /g − r

r−2m /g 0

⎞
⎟⎟⎟⎟⎟⎟⎠
. (A.2)

A.2. Perturbations of Schwarzschild near the light cone

We consider a metric g = gm + ρh = gSm + r−1h, with the perturbation h ∈
X∞;b0,bI ,b′I ,b+ lying in the function space of Definition 3.1, and continue using the
splittings (2.23) of (S2)T ∗R4; however, we express the components of h using the
rescaled splitting (2.21) as in (2.24), since for h ∈ X∞ all components hμ̄ν̄ lie in the

same space H∞;b0,−ε,b+
b ; more precisely, they satisfy (3.4)–(3.6). The components

gμν and gμν were already computed, see (3.14) and (3.15). Recall also the observa-
tion (3.7) and the memberships (2.28). We shall write b − 0 for weights which can
be taken to be b − ε for any ε > 0; any two choices of ε are equivalent due to the
assumption that all components of h have leading terms (possibly with a factor log ρI
for h11) atI +. The only part of the analysis that relies on the precise structure of the
gauge-fixed Einstein equation is the analysis at I +, so in the calculations below, the
weight at I + is the most important one. We compute:

�000 ∈ H
∞;2+b0,2+b′I ,2+b+
b ,

�100 ∈ 1
2r

−2(m − h01)− 1
2r

−1∂1h00 + H∞;2+b0,2+bI ,2+b+
b ,

�c00 ∈ H
∞;1+b0,1+b′I ,1+b+
b ,

�001 ∈ 1
2r

−1∂1h00 + H
∞;2+b0,2+b′I ,2+b+
b ,

�101 ∈ 1
2r

−1∂0h11 − 1
4r

−2h11 + H∞;3+b0,3−0,3+b+
b ,

�c01 ∈ 1
2∂1h0c̄ − 1

2r
−1∂ch01 + H∞;1+b0,1+bI ,1+b+

b ,

�00b ∈ H
∞;1+b0,1+b′I ,1+b+
b ,

�10b ∈ 1
2r

−1∂bh01 − 1
2∂1h0b̄ + H∞;1+b0,1+bI ,1+b+

b ,

�c0b ∈ − 1
2 (r − 2m)/gbc + 1

4hb̄c̄ + H∞;b0,bI ,b+
b ,

�011 ∈ 1
2r

−2(h01 − m)+ r−1∂1h01 − 1
2r

−1∂0h11 + 1
4r

−2h11 + H∞;3−0,3−0,3+b+
b ,

�111 ∈ 1
2r

−1∂1h11 + 1
4r

−2h11 + H∞;3+b0,3−0,3+b+
b ,

�c11 = ∂1h1c̄ − 1
2r

−1∂ch11,

�01b ∈ 1
2∂1h0b̄ + 1

2r
−1∂bh01 + H∞;1+b0,1+bI ,1+b+

b ,

�11b = 1
2r

−1∂bh11,

�c1b ∈ 1
2 (r − 2m)/gbc + 1

2r∂1hb̄c̄ − 1
4hb̄c̄ + 1

2 (∂bh1c̄ − ∂ch1b̄)+ H∞;1+b0,1−0,1+b+
b ,
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�0ab ∈ 1
2 (r − 2m)/gab − 1

4hāb̄ + H∞;b0,bI ,b+
b ,

�1ab ∈ − 1
2 (r − 2m)/gab − 1

2r∂1hāb̄ + 1
2 (∂ah1b̄ + ∂bh1ā)+ 1

4hāb̄ + H∞;1+b0,1−0,1+b+
b ,

�cab = −r2 /�cab + 1
2r(∂ahb̄c̄ + ∂bhāc̄ − ∂chāb̄).

The Christoffel symbols of the second kind are therefore

�0
00 ∈ r−2(m − h01)− r−1∂1h00 + H∞;2+b0,2+bI ,2+b+

b ,

�1
00 ∈ H

∞;2+b0,2+b′I ,2+b+
b ,

�c
00 ∈ H

∞;3+b0,3+b′I ,3+b+
b ,

�0
01 ∈ r−1∂0h11 − 1

2r
−2h11 + H

∞;3+b0,2+b′I−0,3+2b+
b ,

�1
01 ∈ r−1∂1h00 + H

∞;2+b0,2+b′I ,2+b+
b ,

�c
01 ∈ − 1

2r
−2∂1h0 c̄ + 1

2r
−3 /∇ch01 + H∞;3+b0,3+bI ,3+b+

b ,

�0
0b ∈ −∂1h0b̄ + r−1∂bh01 − r−1h1b̄ + H∞;1+b0,1+bI ,1+b+

b ,

�1
0b ∈ H

∞;1+b0,1+b′I ,1+b+
b ,

�c
0b ∈ 1

2r
−1(1− 2m

r )δ
c
b + 1

4r
−2hb̄

c̄ + H∞;2+b0,2+bI ,2+b+
b ,

�0
11 ∈ r−1∂1h11 + 1

2r
−2h11 + 2r−2(m − h01)∂1h11

− 4r−2h11∂1h01 + 2r−2h1d̄∂1h1d̄ + H∞;3+b0,3−0,3+2b+
b ,

�1
11 ∈ r−2(h01 − m)+ 2r−1∂1h01 − r−1∂0h11

+ 1
2r

−2h11 + 4r−2(m − h01)∂1h01 + H
∞;3−0,2+b′I−0,3+2b+
b ,

�c
11 ∈ −r−2∂1h1c̄ + 1

2r
−3 /∇ch11 + 2r−3h1c̄∂1h01

− r−3hc̄d̄∂1h1d̄ + H
∞;4+b0,3+b′I−0,4+2b+
b ,

�0
1b ∈ r−1∂bh11 + r−1h1b̄ + r−1h1d̄∂1hb̄d̄ + H

∞;2+b0,1+b′I−0,2+2b+
b ,

�1
1b ∈ ∂1h0b̄ + r−1∂bh01 + H∞;1+b0,1+bI ,1+b+

b ,

�c
1b ∈ − 1

2r
−1(1− 2m

r )δ
c
b − 1

2r
−1∂1hb̄

c̄ − 1
4r

−2hb̄
c̄

+ 1
2r

−2
/gcd(∂dh1b̄ − ∂bh1d̄)− 1

2r
−2hc̄d̄∂1hb̄d̄ + H

∞;3+b0,2+b′I ,3+2b+
b ,

�0
ab ∈ (−r + 2h01 − 2h11)/gab − (r + 2m − 2h01)∂1hāb̄

+ ( /∇ah1b̄ + /∇bh1ā)+ 1
2hāb̄ + H∞;1−0,1−0,1+2b+

b ,

�1
ab ∈ (r − 2h01)/gab − 1

2hāb̄ + H∞;b0,bI ,b+
b ,

�c
ab ∈ /�c

ab + r−1h1c̄/gab − 1
2r

−1( /∇ahb̄
c̄ + /∇bhā

c̄ − /∇chāb̄)+ H
∞;1+b0,1+b′I ,1+b+
b .

(A.3)
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We can then calculate ϒ(g)ν = gκλ(�(g)νκλ − �(gm)νκλ), see (3.1), to wit

ϒ(g)0 ∈ r−1∂1 /tr h + 2r−2(h11 − 2h01)− 2r−2 /∇dh1
d̄

+ 4r−1∂0h11 + r−2hd̄ē∂1hd̄ē + H
∞;2+b0,2+b′I−0,2+b+
b ,

ϒ(g)1 ∈ 4r−1∂1h00 + 4r−2h01 + H∞;2+b0,2+bI ,2+b+
b ,

ϒ(g)c ∈ −2r−2∂1h0 c̄ + 2r−3 /∇ch01 + r−3 /∇dh
c̄d̄ − 2r−3h1c̄ + H∞;3+b0,3+bI ,3+b+

b ,

(A.4)

and therefore

ϒ(g)0 ∈ 2r−1∂1h00 + 2r−2h01 + H∞;2+b0,2+bI ,2+b+
b ,

ϒ(g)1 ∈ 1
2r

−1∂1 /tr h + r−2(h11 − 2h01)− r−2 /∇dh1
d̄

+ 2r−1∂0h11 + 1
2r

−2hd̄ē∂1hd̄ē + H
∞;2+b0,2+b′I−0,2+b+
b ,

ϒ(g)c ∈ 2∂1h0c̄ − 2r−1∂ch01 − r−1 /∇dhc̄d̄ + 2r−1h1c̄ + H∞;1+b0,1+bI ,1+b+
b .

(A.5)

Using (A.1), this gives

(δ∗gmϒ(g))00 ∈ H
∞;3+b0,2+b′I ,3+b+
b ,

(δ∗gmϒ(g))01 ∈ r−1∂1∂1h00 + r−2∂1h01 + H
∞;3+b0,2+b′I ,3+b+
b ,

(δ∗gmϒ(g))0b̄ ∈ H
∞;3+b0,2+b′I ,3+b+
b ,

(δ∗gmϒ(g))11 ∈ 1
2 r

−1∂1∂1 /tr h + 2r−1∂1∂0h11 − r−2∂1 /∇dh1
d̄ + 1

2 r
−2hd̄ē∂1∂1hd̄ē

+ r−2(∂1h11 − 2∂1h01)+ 1
2 r

−2∂1hd̄ē∂1hd̄ē + H
∞;3+b0,2+b′I−0,3+b+
b ,

(δ∗gmϒ(g))1b̄ ∈ r−1∂1∂1h0b̄ − r−2∂b∂1h01 − 1
2 r

−2 /∇d∂1hb̄d̄ + r−2∂1h1b̄ + H
∞;3+b0,2+b′I ,3+b+
b ,

(δ∗gmϒ(g))āb̄ ∈ H
∞;3+b0,2+b′I ,3+b+
b . (A.6)

Next, we calculate the curvature components; as explained in §5, we shall need
to know the components Ricμ̄ν̄ modulo terms decaying faster than ρ3+b00 , ρ2+bII , and

ρ
3+b++ at I 0, I +, and I+, respectively, in order to control each step in our iteration

scheme. At I 0, the leading contribution to the curvature components will come from
the Schwarzschild part of g; cf. the calculations in §A.1. Thus, we compute

R0
001 ∈ −mr−3 + r−1∂1∂1h00 + r−2∂1h01 + H∞;3+b0,2+bI ,3+b+

b ,

R0
00d ∈ H

∞;2+b0,1+b′I ,2+b+
b ,

R0
01d ∈ −∂1∂1h0d̄ + r−1∂d∂1h01 − r−1∂1h1d̄ + H∞;2+b0,1+bI ,2+b+

b ,

R0
0cd ∈ H

∞;1+b0,b′I ,1+b+
b ,
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R0
101 ∈ H∞;3+b0,2+bI ,3+b+

b ,

R0
10d ∈ H

∞;2+b0,1+b′I ,2+b+
b ,

R0
11d ∈ r−1h1ē∂1∂1hd̄ē + H

∞;2+b0,1+b′I ,2+b+
b ,

R0
1cd ∈ H∞;1+b0,1−0,1+b+

b ,

R0
b01 ∈ ∂1∂1h0b̄ − r−1∂b∂1h01 + r−1∂1h1b̄ + H∞;2+b0,1+bI ,2+b+

b ,

R0
b0d ∈ −mr−1/gbd + H

∞;1+b0,b′I ,1+b+
b ,

R0
b1d ∈ −(r + 2m − 2h01)∂1∂1hb̄d̄ + (2∂1h01 − ∂1h11)/gbd

+ ∂1(∂bh1d̄ + ∂dh1b̄)+ 2∂1h01∂1hb̄d̄ − 1
2∂1hb̄ē∂1hd̄

ē + H∞;1+b0,1−0,1+b+
b ,

R0
bcd ∈ r∂1( /∇dhb̄c̄ − /∇chb̄d̄)+ H

∞;b0,−1+b′I ,b+
b ,

R1
001 ∈ H

∞;3+b0,2+b′I ,3+b+
b ,

R1
00d ∈ H

∞;2+b0,2+b′I ,2+b+
b ,

R1
01d ∈ H

∞;2+b0,1+b′I ,2+b+
b ,

R1
0cd ∈ H

∞;1+b0,1+b′I ,1+b+
b ,

R1
101 ∈ mr−3 − r−1∂1∂1h00 − r−2∂1h01 + H

∞;3+b0,2+b′I ,3+b+
b ,

R1
10d ∈ H

∞;2+b0,1+b′I ,2+b+
b ,

R1
11d ∈ ∂1∂1h0d̄ − r−1∂1∂dh01 + r−1∂1h1d̄ + H∞;2+b0,1+bI ,2+b+

b ,

R1
1cd ∈ H

∞;1+b0,b′I ,1+b+
b ,

R1
b01 ∈ H

∞;2+b0,1+b′I ,2+b+
b ,

R1
b0d ∈ H

∞;1+b0,b′I ,1+b+
b ,

R1
b1d ∈ −mr−1/gbd + H

∞;1+b0,b′I ,1+b+
b ,

R1
bcd ∈ H

∞;b0,−1+b′I ,b+
b ,

Ra
001 ∈ H

∞;4+b0,3+b′I ,4+b+
b ,

Ra
00d ∈ H

∞;3+b0,2+b′I ,3+b+
b ,

Ra
01d ∈ − 1

2mr−3δad + H
∞;3+b0,2+b′I ,3+b+
b ,

Ra
0cd ∈ H

∞;2+b0,1+b′I ,2+b+
b ,

Ra
101 ∈ 1

2r
−2∂1∂1h0ā − 1

2r
−3 /∇a∂1h01 + 1

2r
−3∂1h1ā + H∞;4+b0,3+bI ,4+b+

b ,

Ra
10d ∈ − 1

2mr−3δad + H∞;3+b0,2+bI ,3+b+
b ,

Ra
11d ∈ − 1

2r
−1∂1∂1hd̄

ā + 1
2r

−2∂1( /∇ah1d̄ + /∇dh1
ā)− 1

2r
−2hāē∂1∂1hd̄ē

+ r−2(∂1h01 − 1
2∂1h11)δ

a
d + r−2∂1h01∂1hd̄

ā
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− 1
4r

−2∂1hāē∂1hd̄ē + H
∞;3+b0,2+b′I ,3+b+
b ,

Ra
1cd ∈ 1

2r
−1∂1( /∇dhc̄

ā − /∇chd̄
ā)+ H

∞;2+b0,1+b′I ,2+b+
b ,

Ra
b01 ∈ H∞;3+b0,2+bI ,3+b+

b ,

Ra
b0d ∈ H

∞;2+b0,1+b′I ,2+b+
b ,

Ra
b1d ∈ 1

2r
−1∂1( /∇ahb̄d̄ − /∇bhd̄

ā)+ H
∞;2+b0,1+b′I ,2+b+
b ,

Ra
bcd ∈ 2mr−1(δak /gbd − δad /gbc)

+ 1
2 (∂1hb̄c̄δ

a
d − ∂1hb̄d̄δ

a
k + ∂1hd̄

ā
/gbc − ∂1hc̄

ā
/gbd)+ H∞;1+b0,1−0,1+b+

b ,

(A.7)

and the Ricci tensor

Ric(g)00 ∈ H
∞;3+b0,2+b′I ,3+b+
b ,

Ric(g)01 ∈ r−1∂1∂1h00 + r−2∂1h01 + H∞;3+b0,2+bI ,3+b+
b ,

Ric(g)0b̄ ∈ H
∞;3+b0,2+b′I ,3+b+
b ,

Ric(g)11 ∈ 1
2r

−1∂1∂1 /tr h − r−2∂1 /∇dh1d̄ + 1
2r

−2hd̄ē∂1∂1hd̄ē
+ r−2(∂1h11 − 2∂1h01)+ 1

4r
−2∂1hd̄ē∂1hd̄ē + H∞;3+b0,2+bI ,3+b+

b ,

Ric(g)1b̄ ∈ r−1∂1∂1h0b̄ − r−2∂1∂bh01 − 1
2r

−2∂1 /∇dhb̄
d̄ + r−2∂1h1b̄

+ H∞;3+b0,2+bI ,3+b+
b ,

Ric(g)āb̄ ∈ H
∞;3+b0,2+b′I ,3+b+
b . (A.8)

A.3 Perturbations of Minkowski space near the temporal face

We work on R
4 = Rt × R

3
x , equipped with the Minkowski metric g = dt2 − dx2,

and consider the linearization of P0(g) := Ric(g)− δ̃∗ϒ(g),

(̃δ∗ − δ∗g)u := 2γ t−1 dt ⊗s u − γ t−1(ι∇gt u)g, ϒ(g) = gg−1δgGgg,

around g = g; concretely, let L := ρ−3DgP0ρ, where ρ := t−1 is a boundary

defining function of 0R4 in t > εr , ε > 0. We have

L = t3
( 1
2�g + (̃δ∗ − δ∗g)δgGg

)
t−1.

Splitting

T ∗R4 = 〈dt〉 ⊕ T ∗R3, S2T ∗R4 = 〈dt2〉 ⊕ (2dt ⊗s T
∗
R
3)⊕ S2T ∗R3, (A.9)
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and writing e = dx2 for the Euclidean metric on R
3, we have g = (1, 0,−e)T ,

trg = (1, 0,− tre),

δ̃∗ − δ∗g = t−1
⎛
⎝
γ 0
0 γ

γ e 0

⎞
⎠ , Gg =

⎛
⎝

1
2 0 1

2 tre
0 1 0
1
2e 0 1− 1

2e tre

⎞
⎠ , δg =

(−∂t −δe 0
0 −∂t −δe

)
.

Moreover, �g is diagonal using the standard trivialization of T ∗R3, and the scalar

wave operator is t3�gt−1 = −(t∂t − 3
2 )

2 − t2�x + 1
4 , hence

L = 1
2

(−(t∂t − 3
2 )

2 − t2�x + 1
4

)

−
⎛
⎝

1
2γ (t∂t − 1) γ tδe

1
2γ (t∂t − 1) tre

− 1
2γ tdx γ (t∂t − 1) γ t(δe + 1

2dx tre)
1
2γ (t∂t − 1)e γ teδe

1
2γ (t∂t − 1)e tre

⎞
⎠ .

Appendix B. Proofs of Lemmas 3.7 and 3.8

We perform the necessary calculations using the results in §A.2.

Proof of Lemma 3.7 We use the invariance properties of the conformal wave operator
(i.e. the conformal Laplacian in Lorentzian signature),

A := ρ−3(�g − 1
6 Rg)ρ = �gb − 1

6 Rgb , gb = ρ2g.

Here, the scalar curvature satisfies ρ−2Rg ∈ H
∞;1+b0,−1+b′I ,1+b+
b ; indeed, in view

of (A.8), and using in addition the memberships (2.28) of the operators ∂0, ∂1 (and
spherical vector fields, which lie in Vb(M)) as well as the memberships of the met-
ric coefficients of h as encoded in Definition 3.1, one concludes that ρ−2Ric(g) ∈
H
∞;1+b0,−1+b′I ,1+b+
b ; since the metric coefficients of g−1 are bounded and conormal,

the rescaled scalar curvature ρ−2Rg = trg(ρ−2Ric(g)) lies in the same space.
We next write the wave operator as

�gu = −r−s(μ,ν)gμ̄ν̄∂μ∂νu + r−s(κ)gμ̄ν̄�κ̄μ̄ν̄∂κ .

In the first term,whenμ = 0, the termswith ν �= 1 contribute H∞;3+b0,3−0,3+b+
b Diff2b,

while ν = 1 gives −4∂0∂1 + (ρ2 + H∞;3+b0,2−0,3+b+
b )Diff2b. For μ = 1, ν = 1

produces a term in H
∞;3+b0,1+b′I ,3+b+
b M2 due to the decay of h00 at I +, while ν

spherical gives an element of H∞;3+b0,2−0,3+b+
b Diff2b. Lastly, μ and ν both spherical

give (ρ2C∞+H∞;3+b0,3−0,3+b+
b )Diff2b. For the second summand, recall (B.12), while

for κ �= 1, gμ̄ν̄�κ̄μ̄ν̄ ∈ ρC∞ + H∞;2+b0,1−0,2+b+
b by (B.8). Thus, �g ≡ −4∂0∂1 −

2r−1∂1 modulo a term lying in ρ2 times the error space in (3.24). Since �gb =
A − A(1), the claim follows. $�
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Proof of Lemma 3.8 We consider each of the terms in (3.22) separately. The contribu-
tion from

(ρ−3Rgρu)μ̄ν̄ = ρ−2(Rg)
κ̄
μ̄ν̄λ̄g

λ̄σ̄uκ̄ σ̄ + 1
2ρ

−2gλ̄σ̄ (Ric(g)μ̄λ̄uσ̄ ν̄ + Ric(g)ν̄λ̄uσ̄ μ̄)

to terms of size at least ρ−1I at I + comes from those components of Rg and Ric(g)
of size at least ρI . The only such components of Rg are

R0
b̄1d̄ ∈ −r−1∂1∂1hb̄d̄ + H∞;3+b0,2−0,3+b+

b ,

Rā
11d̄ ∈ − 1

2r
−1∂1∂1hd̄

ā + H∞;3+b0,2−0,3+b+
b ,

while all other components lie in H
∞;3−0,1+b′I ,3+b+
b ; the decay order at I 0 is due to

the contributions from the asymptotic Schwarzschild metric, as e.g. in R0
001. On the

other hand, (A.8) shows that Ric(g) ∈ H
∞;3+b0,1+b′I ,3+b+
b . Using the form (3.15) of

g−1, this gives

ρ−2Rg ∈

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1

2ρ
−1∂1∂1hāb̄

0 0 ρ−1∂1∂1hā b̄ 0 0 0 0
0 0 0 0 0 0 0

2ρ−1∂1∂1hāb̄ 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ ρ C∞ + H
∞;1+b0,−1+b′I ,1+b+
b . (B.1)

Next, we have (Ygu)κ̄ = ϒ(g)λ̄uκ̄ λ̄, with ϒ(g)
λ̄ ∈ H

∞;2+b0,1+b′I ,2+b+
b by (A.4).

Now, equation (3.3) implies

δ̃∗ − δ∗gm ∈ ρ C∞(M;Hom(β∗ scT ∗R4, β∗S2)), (B.2)

so the expression for δ̃∗ obtained from (A.1) and the inclusions (2.42) show that

δ̃∗ ∈ ρ0ρ+Mβ∗ scT ∗R4,β∗S2 + ρ Diff1b(M;β∗ scT ∗R4, β∗S2), (B.3)

and therefore

ρ−3δ̃∗Ygρ ∈ H
∞;1+b0,−1+b′I ,1+b+
b M+ H

∞;1+b0,b′I ,1+b+
b Diff1b. (B.4)

Next, the only parts of Cg which will contribute leading terms to (3.22) come

from those components C λ̄
μ̄ν̄ which are of size at least ρI at I +; these are, modulo
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H∞;2+b0,2−0,2+b+
b ,

C0
11 ≡ r−1∂1h11, C1

11 ≡ 2r−1∂1h01, Cc̄
11 ≡ −r−1∂1h1c̄,

Cc̄
1b̄
≡ − 1

2r
−1∂1hb̄

c̄, C0
āb̄
≡ −r−1∂1hāb̄,

(B.5)

while all other components of C λ̄
μ̄ν̄ lie in H

∞;2+b0,1+b′I ,2+b+
b . Therefore, writing sec-

tions of β∗ scT ∗R4 in terms of the splitting (2.19), we have

Cg ∈
⎛
⎝
4r−1∂1h01 0 0 0 0 0 0
2r−1∂1h11 0 0 0 0 0 − 1

2r
−1∂1hāb̄

4r−1∂1h1b̄ 0 −2r−1∂1hb̄ā 0 0 0 0

⎞
⎠+ H

∞;2+b0,1+b′I ,2+b+
b ,

and then (A.1), (B.2), and (B.3) give

ρ−3δ̃∗Cgρ ∈ ρ−1∂1 ◦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
2∂1h01 0 0 0 0 0 0

0 0 0 0 0 0 0
2∂1h11 0 0 0 0 0 − 1

2∂1h
āb̄

2∂1h1b̄ 0 −∂1hb̄ā 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ H
∞;1+b0,−1+b′I ,1+b+
b M+ H∞;1+b0,−0,1+b+

b Diff1b; (B.6)

the only terms of δ̃∗ which contribute leading terms to this operator are the ∂1 deriva-
tives in δ∗gm .

For the second summand in (3.22), we note that Ggm ∈ C∞(R4,End(S2 scT ∗R4)),

while equation (3.16) gives Gg ∈ Ggm + H∞;1+b0,1−0,1+b+
b (β∗S2). Further, using

the notation (2.24) and setting �κ̄μ̄ν̄ := rs(κ)−s(μ,ν)�κμν , we have

(δgu)μ̄ = −r−s(μ,ν,λ)gν̄λ̄∂λ(rs(μ,ν)uμ̄ν̄ )+ gν̄λ̄(�κ̄
μ̄λ̄
uκ̄ ν̄ + �κ̄

ν̄λ̄
uμ̄κ̄ ); (B.7)

now r−s(λ)∂λ ∈ ρ Vb(M) unless λ = 1, and moreover

�κ̄μ̄ν̄ ∈ ρ C∞ + H∞;2+b0,1−0,2+b+
b (B.8)

for all indices, and g01 − 2 ∈ ρ C∞ + H∞;1+b0,1−0,1+b+
b , hence only the terms with

g01∂1 survive to leading order:

δg ∈
⎛
⎝
−2∂1 0 0 0 0 0 0
0 −2∂1 0 0 0 0 0
0 0 −2∂1 0 0 0 0

⎞
⎠+ (ρ C∞ + H∞;2+b0,1−0,2+b+

b )Diff1b.
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Now ((δ∗g − δ∗gm )u)μ̄ν̄ = −C κ̄
μ̄ν̄uκ̄ can be calculated using (B.5); hence, we can now

use the expressions (A.1) and (A.2) for Ggm and δ̃∗ − δ∗gm to evaluate δ̃∗ − δ∗g =
(̃δ∗ − δ∗gm )− (δ∗g − δ∗gm ) and thus obtain

ρ−3(̃δ∗ − δ∗g)δgGgρ ∈ −ρ−1∂1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2γ 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 γ 0 0 0 0

2∂1h11 0 −2∂1h1ā 0 0 γ + 2∂1h01 0
0 0 γ − ∂1hā b̄ 0 0 0 0
2γ 0 0 0 0 γ 0

−2∂1hāb̄ 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ (C∞ + H1+b0,−0,1+b+
b )Diff1b. (B.9)

Finally, we determine the leading terms of

(�gu)μ̄ν̄ = −r−s(μ,ν,κ,λ)gκ̄ λ̄∂λ(rs(μ,ν,κ)uμ̄ν̄;κ̄ )
+ gκ̄ λ̄(�σ̄

μ̄λ̄
uσ̄ ν̄;κ̄ + �σ̄

ν̄λ̄
uμ̄σ̄ ;κ̄ + �σ̄

κ̄λ̄
uμ̄ν̄;σ̄ ). (B.10)

Consider uμ̄ν̄;κ̄ = r−s(μ,ν,κ)∂κ(rs(μ,ν)uμ̄ν̄ ) − �λ̄μ̄κ̄uλ̄ν̄ − �λ̄κ̄ν̄uμ̄λ̄. For κ = 0,
all Christoffel symbols except those with μ, λ both spherical (second summand)

or ν, λ both spherical (third summand) lie in ρ2 C∞ + H
∞;2+b0,1+b′I ,2+b+
b , while

�c̄
0b̄
∈ 1

2r
−1δcb+ρ2 C∞+H∞;2+b0,2−0,2+b+

b ; the contributions of the latter cancel the

leading part of the term coming from differentiating the weight r−s(μ,ν)∂0(rs(μ,ν)) =
1
2 s(μ, ν)r

−1 + r−2C∞. For κ �= 0, we use the rough estimate (B.8), and obtain

uμ̄ν̄;0 ∈ ∂0uμ̄ν̄ + (ρ2 C∞ + H
∞;2+b0,1+b′I ,2+b+
b )u

⊂ (ρ C∞ + H
∞;2+b0,1+b′I ,2+b+
b )Diff1bu,

uμ̄ν̄;1 ∈ ∂1uμ̄ν̄ + (ρ C∞ + H∞;2+b0,1−0,2+b+
b )u,

uμ̄ν̄;c̄ ∈ (ρ C∞ + H∞;2+b0,1−0,2+b+
b )Diff1b u. (B.11)

In the second line of (B.10) then, the only relevant terms (namely, with coefficients not
decaying faster than ρI ) are those with u differentiated along ∂1 and the corresponding
prefactor being of size at least ρI ; using

gκ̄ λ̄�1
κ̄ λ̄
∈ −2r−1 + ρ2 C∞ + H

∞;2+b0,1+b′I ,2+b+
b , (B.12)

this leaves us with

g10�σ̄μ̄0uσ̄ ν̄;1 + g10�σ̄ν̄0uμ̄σ̄ ;1 + gκ̄ λ̄�1
κ̄ λ̄
uμ̄ν̄;1 + (ρ2 C∞ + H∞;3+b0,2−0,3+b+

b )Diff1bu

⊂ (s(μ, ν)− 2)r−1∂1uμ̄ν̄
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+ H
3+b0,1+b′I ,3+b+
b Mu + (ρ2 C∞ + H∞;3+b0,2−0,3+b+

b )Diff1bu.

Turning to the first line of (B.10), for λ = 0, indices κ �= 1 contribute terms of the
form H∞;3+b0,3−0,3+b+

b Diff2bu due to (B.11) and the decay of gκ̄ λ̄, while κ = 1 gives

a term −2r−s(μ,ν)∂0rs(μ,ν)∂1uμ̄ν̄ + (ρ2 C∞ + H∞;3+b0,2−0,3+b+
b )Diff2bu. For λ = 1,

the term with κ = 0 is equal to −2∂1∂0uμ̄ν̄ + (ρ2 C∞ + H∞;3+b0,2−0,3+b+
b )Diff2bu;

κ = 1 produces (due to the decay of the long range component h00)

−r−s(μ,ν)g11∂1(rs(μ,ν)uμ̄ν̄;1) ∈ H
∞;3+b0,1+b′I ,3+b+
b M2u

and spherical κ give H∞;3+b0,2−0,3+b+
b Diff2bu. Lastly, if λ is a spherical index and

κ = 0, 1, we get a term in H∞;3+b0,2−0,3+b+
b Diff2bu, while for spherical κ , we use

(3.16) to deduce that the nontrivial spherical components of g−1 give a term in (ρ2C∞+
H∞;3+b0,2−0,3+b+
b )Diff2bu. Putting everything together, and conjugating by weights,

we obtain

ρ−3�gρ ∈ −4ρ−2∂0∂1 + H
1+b0,−1+b′I ,1+b+
b M2 + (C∞ + H∞;1+b0,−0,1+b+

b )Diff2b.
(B.13)

(Note that due to the discussion after (2.42), the first term here is well-defined modulo
Diff1b(M;β∗S2)). Together with the expressions (B.1), (B.4), (B.6), and (B.9), this
proves the lemma. $�
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