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Abstract

We study the nonlinear stability of the (3 + 1)-dimensional Minkowski spacetime as
a solution of the Einstein vacuum equation. Similarly to our previous work on the
stability of cosmological black holes, we construct the solution of the nonlinear initial
value problem using an iteration scheme in which we solve a linearized equation
globally at each step; we use a generalized harmonic gauge and implement constraint
damping to fix the geometry of null infinity. The linear analysis is largely based on
energy and vector field methods originating in work by Klainerman. The weak null
condition of Lindblad and Rodnianski arises naturally as a nilpotent coupling of certain
metric components in a linear model operator at null infinity. Upon compactifying R*
to a manifold with corners, with boundary hypersurfaces corresponding to spacelike,
null, and timelike infinity, we show, using the framework of Melrose’s b-analysis, that
polyhomogeneous initial data produce a polyhomogeneous spacetime metric. Finally,
we relate the Bondi mass to a logarithmic term in the expansion of the metric at null
infinity and prove the Bondi mass loss formula.
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1 Introduction

We prove the nonlinear stability of (3 4 1)-dimensional Minkowski space as a vacuum
solution of Einstein’s field equation and obtain a precise full expansion of the solution,
in a mildly generalized harmonic gauge, in all asymptotic regions, i.e. near spacelike,
null, and timelike infinity. On a conceptual level, we show how some of the meth-
ods we developed for our proofs of black hole stability in cosmological spacetimes
[53,60] apply in this more familiar setting, studied by Christodoulou—Klainerman [27],
Lindblad—Rodnianski [79,80], and many others: this includes the use of an iteration
scheme for the construction of the metric in which we solve a linear equation glob-
ally at each step, keeping track of the precise asymptotic behavior of the iterates by
working on a suitable compactification M of the spacetime, and the implementation
of constraint damping.

The estimates we prove for the linear equations—which arise as linearizations of the
gauge-fixed Einstein equation around metrics which lie in the precise function space
in which we seek the solution—are largely based on energy estimates and a version of
the vector field method [64]. The estimates are rather refined in terms of a splitting of
the symmetric 2-tensor bundle (different metric components behave differently at null
infinity); the vector fields we use are closely related to those in [27,64,79,80]. In our
systematic approach, both the relevant notion of regularity (matching [74]) and the
determination of the precise asymptotic behavior of the solution follow readily from
an inspection of the geometric and algebraic properties of the linearized gauge-fixed
(or ‘reduced’) Einstein equation; correspondingly, once M and the required function
spaces are defined (§§2-3), the proof of stability itself is rather concise (§§4-6).

The weak null condition of Lindblad—Rodnianski [78] manifests itself in our lin-
earization approach as a nilpotent coupling of certain metric components for a linear
model operator at null infinity: the logarithmic growth (relative to the typical decay
rate of 7~! of waves on (3 + 1)-dimensional Minkowski space near null infinity) of
one metric component is rendered harmless due to its coupling (to leading order) only
to a metric component goo which governs the ‘long range’ behavior of outgoing light
cones and which decays faster than »~! by a factor of r~7 for some y > 0 (see the
discussions in §§1.1.2 and 3.3). For the reader already familiar with the weak null con-
dition, we mention here that the better decay of ggo in [80] (corresponding, roughly,
to grr in the reference) is a consequence of the harmonic gauge condition being
satisfied by the nonlinear solution, while in the present paper we have decay of the
(0, 0)-component of every iterate in our iteration scheme since we arrange constraint
damping, which, roughly speaking, ensures that our gauge condition is satisfied to
high accuracy (in the sense of decay) even though we are only solving ‘nongeometric’
(linear) equations. (This makes constraint damping attractive for numerical analysis,
see [46,95] and Remark 1.2 below).

We proceed to state a simple version of our main theorem, before returning to an
in-depth discussion of our approach, the relevant estimates, and the structure of the
Einstein equationin §1.1. Recall that in Einstein’s theory of general relativity, a vacuum
spacetime is described by a 4-manifold M ° which is equipped with a Lorentzian metric
g with signature (4, —, —, —) satisfying the Einstein vacuum equation
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Ric(g) = 0. (1.1)
The simplest solution is the Minkowski spacetime (M°, g) = (R*, &),
5:: d[z—dxz’ R4:Rl‘ X Ri (12)

The far field of an isolated gravitational system (M°, g) with total (ADM) mass m is
usually described by the Schwarzschild metric

s _2m

g~y =(1-")a? - (1- 27'")_161r2 —r’g r> 1L (13)

r

where ¢ denotes the round metric on S?; the Minkowski metric g = gOS differs from

this by terms of size O(mr~"). In the study of weak nonlinear gravity in vacuum (in
particular, black holes are excluded), one then works with metrics g which are smooth
extensions of (a short range perturbation of) g5 to all of R*. Such spacetimes are
asymptotically flat: letting || + |x| — oo in R*, the metric g (in a suitable gauge)
approaches the flat Minkowski metric g in a quantitative fashion.

Suitably interpreted, the field equation (1.1) has the character of a quasilinear wave
equation; in particular, it predicts the existence of gravitational waves, which were
recently observed experimentally [70]. Correspondingly, the evolution and long time
behavior of solutions of (1.1) can be studied from the perspective of the initial value
problem: given a 3-manifold ¥° and symmetric 2-tensors y, k € C*°(X°; S2T*%°),
with y a Riemannian metric, one seeks a vacuum spacetime (M°, g) and an embedding
3° < M° such that

Ric(g) =0 on M°, g|se =—y, Il =k on X°, (1.4)

where 11, denotes the second fundamental form of X°, and where we use the embed-
ding X£° < M° to identify the tensors y, k on X° with (tangential) tensors on the
image of £°in M°. (The minus signin (1.4) is due to our sign convention for Lorentzian
metrics). A fundamental result due to Choquet-Bruhat and Geroch [17,19] states that
necessary and sufficient conditions for the well-posedness of this problem are the
constraint equations for y and k,

Ry + (iry k)* — |k|5 =0, 8,k +dtr, k=0, (1.5)

where R, is the scalar curvature of y, and §,, is the (negative) divergence. Concretely,
if these are satisfied, there exists a maximal globally hyperbolic solution (M°, g)
of (1.4) which is unique up to isometries. By the future development of an initial
data set (X°, y, k), we mean the causal future of X° as a Lorentzian submanifold of
(M°, g). Our main theorem concerns the long time behavior of solutions of (1.4) with
initial data close to those of Minkowski space:

Theorem 1.1 Let by > 0. Suppose that (y, k) are smooth initial data on R3 satisfying
the constraint equations (1.5) which are small in the sense that for some small § > 0,
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Fig. 1 Left: the compact manifold M (solid boundary), containing a compactification ¥ of the initial
surface X°. The boundary hypersurfaces / 0, 7+ and I'" are called spatial infinity, (future) null infinity,
and (future) timelike infinity, respectively. One can think of M as the blow-up of a Penrose diagram at
timelike and spatial infinity. A global compactification would extend across X to the past, with additional
boundary hypersurfaces .# ~ (past null infinity) and I~ (past timelike infinity). Right: for comparison, the
Penrose diagram of Minkowski space

a cutoff x € CSO(R3) identically 1 near 0, andy :== y — (1 — )()(—g,“?1)|{,:()},1 where
Im| < 8, we have

D TRV Nl 4+ Y I PO VY k2 <8, (16)
J<N+1 J<N

where N is some large fixed integer (N = 26 works). Assume moreover that the
weighted L* norms in (1.6) are finite for all j € N.

Then the future development of the data (R3, y, k) is future causally geodesically
complete and decays to the flat (Minkowski) solution. More precisely, there exist a
smooth manifold with corners M with boundary hypersurfaces %, 1°, %, I, and
a diffeomorphism of the interior M° with {t > 0} C R*, as well as an embedding
R3? = ¥° of the Cauchy hypersurface, and a solution g of the initial value problem (1.4)
which is conormal (see below) on M and satisfies |g — g| < (141t + |r|) 1€ for all
€ > 0. See Figure 1. For fixed ADM mass m, the solution g depends continuously on
Y, k, see Remark 6.4.

If the normalized initial data ((r)y, (r)?k) are in addition E-smooth, i.e.
polyhomogeneous at infinity with index set £ (see below), then the solution g is also
polyhomogeneous on M, with index sets given explicitly in terms of &.

More precise versions will be given in Theorem 1.8 and in §6. The condition (1.6)
allows for ¥ to be pointwise of size r1=bo—€ ¢ < 0: since by > 0 is arbitrary, this
means that we allow for the initial data to be Schwarzschildean modulo O (r—1~€) for
any € > 0.

InTheorem 1.1, conormality is a (local) regularity notion on a manifold with corners
M which is equivalent to smoothness in M®, but differs from it near dM: in the model
case M = [0, 00)? x Rg, and with « € R”, a function u € x*L{; (M) is called
conormal relative to the space x*Lp> (M) if

Vi Vyu e x*LEM) VN €N,

I We use polar coordinates on R3 and define —g;f, li=0 := (1 — 2%)_%z’r2 + rzg.
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where each V; is one of the vector fields x;dy,, dy,, 1 <k < p,1 <[ < q. (A typical
example of a conormal function is xP, where B € RP, B > o component-wise). We
say that a distribution u is conormal if it is conormal relative to x* Ly (M) for some
vector & € R? of weights. In the context of Theorem 1.1, the weights are specified in
Theorem 1.8 and Remark 1.9 below; at this point we simply content ourselves with
taking them to be O at each hypersurface.

Before continuing the discussion of Theorem 1.1, we remark that the assumption
that all weighted norms in (1.6) are finite is only needed to conclude the conormality
of g. If one is only interested in controlling a finite number of derivatives of g, we
only need to require the finiteness of finitely many weighted norms (1.6) (as can be
seen by inspecting the Nash—-Moser theorem we use in our nonlinear iteration).

Next, £-smoothness is a refinement of conormality: the assumption of &-
smoothness, i.e. polyhomogeneity with index set £ C C x Ny, means, roughly
speaking, that (r)7 (similarly (r)?k) has a full asymptotic expansion as r — 00
of the form

(7~ Y rlogr) Pen (@), ©=x/lx| €S Fu € CO(E STRY),
(z.k)e€
1.7
with Im z < —bg, where for any fixed C, the number of (z, k) € £ withImz > —C'is
finite. (That is, (r)¥ admits a generalized Taylor expansion into powers of !, except
the powers may be fractional or even complex—that is, oscillatory—and logarithmic
terms may occur. A typical example is that all z are of the form z = —ik, k € N, in
which case (1.7) is an expansion into powers r —¥, with potential logarithmic factors).
The polyhomogeneity of g on the manifold with corners M means that at each of
the hypersurfaces / 0, #t and I'", the metric g admits an expansion similar to (1.7),
with ! replaced by a defining function of the respective boundary hypersurface (for
example .# 1) such that moreover each term in the expansion (which is thus a tensor
on .#1) is itself polyhomogeneous at the other boundaries (that is, at .#+ N 1° and
FTNIT). Werefer the reader to §2.2 for precise definitions, and to Examples 7.2 and
7.3 for the list of index sets for two natural classes of polyhomogeneous initial data.
Christodoulou [24] showed that, generically, one can only expect the metric g,
suitably rescaled to a non-degenerate metric on a compactification of R*, to be of
class 1'% « < 1, due to the presence of logarithmic terms in the expansion of
certain geometric quantities at null infinity; polyhomogeneity of the metric (rather than
smoothness of a conformal multiple down to .# ) is thus the best one can hope for, and
this is what we establish here. (We also prove that the metric is indeed conformal to a
non-degenerate metric of class C La o < min(bg, 1), down to #t; see Remark 8.12).
If the initial data do not have a full polyhomogeneous expansion, but only a partial
expansion (containing only finitely many terms) plus a sufficiently regular remainder
decaying faster than the terms in the expansion, the solution g will itself have a finite
partial expansion at each boundary hypersurface, plus a faster decaying remainder;
we shall not, however, record results of this nature here.
Applying a suitable version of this theorem both towards the future and the past, we
show that the maximal globally hyperbolic development is given by a causally geodesi-
cally complete metric g, with analogous regularity and polyhomogeneity statements
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asin Theorem 1.1, on a suitable manifold with corners whose interior is diffeomorphic
to R* (and contains £°), which now has the additional boundary hypersurfaces .# ~
and I~ ; see Theorem 6.7 and the end of §7.

Like many other approaches to the stability problem (see the references below),
our arguments apply to the Einstein—massless scalar field system Ric(g) = |V¢|2,
Ug¢ = 0, with small initial data for the scalar field in order to obtain global stability.
They also give the stability of the far end of a Schwarzschild black hole spacetime with
any mass m € R, i.e. of the domain of dependence of the complement of a sufficiently
large ball in the initial surface, without smallness assumptions on the data: in this
case, we control the solution up to some finite point along the radiation face .# . See
Remark 6.6.

The compactification M only depends on the ADM mass m of the initial data set;”
for the class of initial data considered here, the mass gives the only long range con-
tribution to the metric that significantly (namely, logarithmically) affects the bending
of light rays: for the Schwarzschild metric (1.3), radially outgoing null-geodesics lie
on the level sets of + — r — 2m log(r — 2m). Concretely, near / Ou s+, M will
be the Penrose compactification of the region {r/r < 2, r > 1} C R* within the
Schwarzschild spacetime, i.e. equipped with the metric g,fl, blown up at spacelike
and future timelike infinity. As in our previous work [53,60] on Einstein’s equation,
we prove Theorem 1.1 using a Newton-type iteration scheme (more precisely: Nash—
Moser) in which we solve a linear equation globally on M at each step. While this
approach brings many advantages (cf. Remark 1.3), a disadvantage of using a Nash—
Moser iteration is the typically rather large number of derivatives needed compared
to other approaches.

We do not quite use the wave coordinate gauge as in Lindblad—Rodnianski [79,80],
but rather a wave map gauge with background metric given by the Schwarzschild met-
ric with mass m near 10U .# T, glued smoothly into the Minkowski metric elsewhere;
this is a more natural choice than using the Minkowski metric itself as a background
metric (which would give the standard wave coordinate gauge), as the solution g will
be a short range perturbation of g;f1 there. This gauge, which can be expressed as the
vanishing of a certain 1-form Y (g), fixes the long range part of g and hence the main
part of the null geometry at .# *. In order to ensure the gauge condition to a sufficient
degree of accuracy (i.e. decay) at .# * throughout our iteration scheme, we implement
constraint damping, first introduced in the numerics literature in [46], and crucially
used in [60]. This means that we use the 1-form encoding the gauge condition in a
careful manner when passing from the Einstein equation (1.1) to its ‘reduced’ quasi-
linear hyperbolic form: we can arrange that for each iterate g in our iteration scheme,
the gauge 1-form Y'(gr) vanishes sufficiently fast at .# % so as to fix the long range
part of g. In order to close the iteration scheme and control the nonlinear interactions,
we need to keep precise track of the leading order behavior of the remaining metric
coefficients at .# 7. We discuss this in detail in §1.2.

2 By the positive mass theorem [101,113], we have m > 0, but we will not use this information. In fact,
our analysis of the Bondi mass, summarized in Theorem 1.10 below, implies the positive mass theorem for
the restricted class of data considered in Theorem 1.1.
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Remark 1.2 Fixing the geometry at .# T in this manner, the first step of our iteration
scheme, i.e. solving the linearized gauge-fixed Einstein equation with the given (non-
linear) initial data of size 8, produces a solution with the correct long range behavior
and which is 82 close to the nonlinear solution in the precise function spaces on M in
which we measure the solution. (Subsequent iteration steps give much more accurate
approximations since the convergence of the iteration scheme is exponential). This
suggests that our formulation of the gauge-fixed Einstein equation could allow for
improvements of the accuracy of post-Minkowskian expansions—which are iterates
of a Picard-type iteration scheme as in [80, Equation (1.7)]—used to study gravita-
tional radiation from isolated sources [9].

The global stability of Minkowski space was established, building in particular
on [22,64], in the monumental work of Christodoulou—Klainerman [27] for asymp-
totically Schwarzschildean data (similar to those in (1.6) but with by > %, though
requiring only N = 3 derivatives) and precise control at null infinity, with an alterna-
tive proof using double null foliations by Klainerman—Nicolo [66]; and more recently
in [79,80] using the wave coordinate gauge, for initial data as in Theorem 1.1 (but
requiring only N = 10 derivatives on the initial data). Friedrich [42] (see [43] for the
Einstein—Yang—Mills case) established non-linear stability, using a conformal method,
for a restrictive class (shown to be nonempty in [31]) of initial data, but with precise
information on the asymptotic structure of the spacetime. Bieri [16] studied the prob-
lem for a very general class of data which are merely decaying like () ~!/>7% for some
8 > 0—thus more slowly even than the O(r~!) terms of Schwarzschild—and even
less regularity than Christodoulou—Klainerman; in this case, the ‘correct’ compactifi-
cation on which the metric has a simple description will have to depend on more than
justthe ADM mass (this is clear e.g. for the initial data constructed by Carlotto—Schoen
[33], which are nontrivial only in conic wedges); Bieri and Chrusciel [8,26] construct
a piece of T for the data considered in [16] but without a smallness assumption.
Further works on the stability of Minkowski space for the Einstein equations coupled
to other fields, in the wake of [27,79,80], include those by Speck [99] on (a gener-
alization of) the Einstein—-Maxwell system, Taylor [103], Lindblad—Taylor [81], and
Fajman—Joudioux—Smulevici [38] for both the massless and the massive Einstein—
Vlasov system. We also mention Keir’s very general quasilinear results [63] which in
particular imply the global solvability for small data of the gauge-fixed Einstein equa-
tion in harmonic coordinates (but without constraint damping) even when the gauge
condition is violated, albeit at the expense of losing the precise asymptotic control
at null infinity. The global stability for a minimally coupled massive scalar field was
proved by LeFloch-Ma [75] and Wang [112].

The present paper contains the first proof of full conormality and polyhomogeneity
of small nonlinear perturbations of Minkowski space in 3 4+ 1 dimensions. Lindblad—
Rodnianski also established high conormal regularity, see [80, Equation (1.14)],
though, in the context of the present paper, on the compactification corresponding
to Minkowski rather than on M, and hence with a loss in the decay rates. This was
improved by Lindblad [74] who proved sharp decay for the metric at null infinity
(albeit in a slightly different gauge), and uses them to establish a relationship between
the ADM mass and the total amount of gravitational radiation. The decay in [74]
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corresponds to the leading order decay which we prove at .#*; we improve this by
proving definite decay rates towards the leading order terms at .# *, and we strengthen
the decay rate towards I to ¢t~ in fact, we show decay at a faster rate to an (’)(t_l)
leading order term, see the proof of Theorem 8.14. (Neither improvement requires
polyhomogeneous initial data).

Previously, polyhomogeneity was established in spacetime dimensions > 9 for the
Einstein vacuum and Einstein—-Maxwell equations, for initial data stationary outside of
a compact set, by Chrusciel-Wafo [34]; this relied on earlier work by Chrus$ciel-Leski
[29] on the polyhomogeneity of solutions of hyperboloidal initial value problems?
for a class of semilinear equations, and Loizelet’s proof [76,77] of the electrovacuum
extension (using wave coordinate and Lorenz gauges) of [79]; see also [7]. Lengard
[69] studied hyperboloidal initial value problems and established the propagation of
weighted Sobolev regularity for the Einstein equation, and of polyhomogeneity for
nonlinear model equations. In spacetime dimensions 5 and above, Wang [110,111]
obtained the leading term (i.e. the ‘radiation field’) of ¢ — g at ., and proved
high conormal regularity. Baskin-Wang [15] and Baskin—Sa Barreto [11] defined
radiation fields for linear waves on Schwarzschild as well as for semilinear wave
equations on Minkowski space. For initial data which are exactly Schwarzschildean
outside a compact set and in even spacetime dimensions > 6, a simple conformal
argument, which requires very little information on the structure of the Einstein(—
Maxwell) equation, stability and smoothness of .# T were proved by Choquet-Bruhat—
Chrusciel-Loizelet [18]; see also [3] for a different approach in the vacuum case. The
construction of the required initial data sets as well as questions of their smoothness
and polyhomogeneity were taken up in the hyperboloidal context by Andersson—
Chrusciel-Friedrich [4] and extended in [1,2], see also [28]. Paetz and Chrusciel
[32,93] studied this for characteristic data; we refer to Corvino [31], ChruSciel-Delay
[21], and references therein for the case of asymptotically flat data sets.

The backbone of our proof is a systematic treatment of the stability of Minkowski
space as a problem of proving regularity and asymptotics for a quasilinear (hyperbolic)
equation on a compact, but geometrically complete manifold with corners M. That
is, we employ analysis based on complete vector fields on M and the correspond-
ing natural function spaces, which in this paper are b-vector fields, i.e. vector fields
tangent to d M, and spaces with conormal regularity or (partial) polyhomogeneous
expansions; following Melrose [85,87], this is called b-analysis (‘b’ for ‘boundary’).
The point is that once the smooth structure (the manifold M) and the algebra of dif-
ferential operators appropriate for the problem at hand give a simple background on
which to do analysis;* we will give examples and details in §1.1. In this context, it
is often advantageous to work on a more complicated manifold M if this simplifies

3 This means that the initial data are posed on a spacelike but asymptotically null hypersurface transversal
to St

4 This is akin to how making use of the notion of a smooth manifold allows one to study PDE in an
invariant, coordinate-free manner. Indeed, viewing a global PDE, a priori on a noncompact space, as a
(typically degenerate) PDE on a compactification M (typically a compact manifold with boundary or
corners), one frees oneself from any particular local coordinate expression, and, for instance, gains the
flexibility of being able to work with the local coordinate system (or, more narrowly, a set of boundary
defining functions) appropriate for calculations in the region/asymptotic regime of interest. Moreover, if one
defines function spaces by using only the smooth structure on M (and possibly using some extra data, such
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the algebraic structure of the equation at hand. While this point of view has a long
history in the study of elliptic equations, see e.g. [48,84,85,88,98], its explicit use in
hyperbolic problems is, to a large part, rather recent [13,14,52,58-60,86,89,90,104].
We also point out that fixing the smooth structure on M, one gains the

A (clean) description of polyhomogeneous expansions, in particular at the transi-
tions between different regimes such as near 1N .+ or #+ NI, requires working
on a manifold with corners. More generally, it is often easier to define function spaces
on M° by working uniformly up to d M, and decay rates from the perspective of M°
can be encoded as orders of vanishing at dM (the latter making sense since M is
equipped with a smooth structure).

Working in a compactified setting furthermore makes the structures allowing for
global existence clearly visible in the form of linear model operators defined at the
boundary hypersurfaces. Among the key structures for Theorem 1.1 are the symmetries
of the model operator L° ar .# %, which is essentially the product of two transport
ODEs, as well as constraint damping and a certain null structure, both of which are
simply a certain Jordan block structure of L°, with the null structure corresponding
to a nilpotent Jordan block. At /T, the model operator will be closely related (via a
conformal transformation) to the conformal Klein—Gordon equation on static de Sitter
space, which enables us to determine the asymptotic behavior of g there via resonance
expansions from known results on the asymptotics of conformal waves on de Sitter
space.

A closely related reason for viewing a global problem (i.e. to be solved, at first
glance, on a noncompact set) as a (degenerate) problem on a compact manifold with
boundary or corners is that asymptotic data of the solution become restrictions of
the solution to boundary hypersurfaces: it was for the purpose of giving a simple
and conceptually clean description of the radiation field of scalar, electromagnetic,
or gravitational waves, and also of solutions of the full nonlinear Einstein equation,
that Penrose introduced his compactifications and diagrams. (These restrictions may
solve interesting equations by themselves, as is the case for the Bondi mass loss
formula at .# ™, and in the case of the scattering argument which we will use at
I to prove the vanishing of the final Bondi mass at the future boundary of .#T).
While a compactified perspective is often not strictly necessary for the description of
asymptotic data and relations between them, it is usually conceptually advantageous,
and brings to light the key features of a PDE problem which may be difficult to detect
from the noncompact point of view, cf. the references above. (For example, finding
the linearized version of the weak null structure of Lindblad—Rodnianski does not
require any careful inspection, but simply the calculation of a partial Jordan block
decomposition of a coefficient of a model operator defined at null infinity).

Footnote4 continued
as fibrations of boundary hypersurfaces), it becomes simple to verify whether estimates, done in convenient
local coordinates, do give estimates of the invariantly defined function spaces.

5 As an example, reminiscent of the behavior of linear waves on Minkowski space near null infinity,
consider the space X of smooth functions on [1, c0), which for any N € N can be written as an N-th
degree polynomial in 1/r, without constant term, plus a O (r—) remainder. Passing to the compactification
I, whichis diffeomorphic to a closed interval, with boundary defining functions (r—1) /r for the left endpoint
and x := 1/r for the right endpoint (thus the point x = 0 is a rigorous definition of ‘r = 00’), we simply
have X = xC®(I): smooth functions on I vanishing simply at the right endpoint x = 0.
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We also note that the symmetries and dynamical/geometric features of (asymptot-
ically) Minkowski metrics relevant in each of these regimes are different. Hence, we
find it advantageous to adapt our descriptions of coordinates, operators, and function
spaces to the various asymptotic regimes and symmetries of the problem, rather than
e.g. working throughout with standard (z, x)-coordinates on R*: the latter seem to be
most useful for capturing the (approximate) translation-invariance of wave equations
on (asymptotically) Minkowski spacetimes—which does not play a role in the stabil-
ity proof—while scaling, boosts and rotations, while of course expressible in (¢, x)
coordinates, become very simple on M, simply becoming smooth vector fields on M
with some extra properties, such as tangency to 0 M.

While the manifold M is compact, our analysis of the linear equations (arising from
a linearization of the gauge-fixed Einstein equation) on M lying at the heart of this
paper is not a short-time existence/regularity analysis near the interiors of 7%, resp. I,
but rather a global in space, resp. global in time analysis. (Conformal methods such
as [44] bringing 1° to a finite place have the drawback of imposing very restrictive
regularity conditions on the initial data). At #*, we use a version of Friedlander’s
rescaling [39] of the wave equation, which does give equations with singular (conormal
or polyhomogeneous) coefficients; but since .# * is a null hypersurface, conormality or
polyhomogeneity—which are notions of regularity defined with respect to (b-)vector
fields, which are complete—are essentially transported along the generators of .# +. At
the past and future boundaries of .# 1, i.e. at 1N .#T and #+ N I+, the two pictures
fit together in a simple and natural fashion. We discuss this in detail in §§1.1.1 and
1.1.3.

We reiterate that our goal is to exhibit the conceptual simplicity of our approach,
which we hope will allow for advances in the study of related stability problems which
have a more complicated geometry on the base, i.e. on the level of the spacetime metric,
on the fibers, i.e. for equations on vector bundles, or both. In particular, we are not
interested in optimizing the number of derivatives needed for our arguments based on
Nash—Moser iteration.

Following our general strategy, one can also prove the stability of Minkowski space
in spacetime dimensions n + 1, n > 4, for sufficiently decaying initial data, with the
solution conormal (or polyhomogeneous, if the initial data are such), thus strengthen-
ing Wang’s results [111]. There are a number of simplifications due to the faster decay
of linear waves in R!*": the compactification M of R'*” does not depend on the mass
anymore and can be taken to be the blow-up of the Penrose diagram of Minkowski
space at spacelike and future timelike infinity; we do not need to implement constraint
damping as metric perturbations no longer have a long range term which would change
the geometry of .#*; and we do not need to keep track of the precise behavior (such as
the existence of leading terms at .# T) of the metric perturbation. We shall not discuss
this further here.

1.1 Aspects of the systematic treatment; examples

Consider a nonlinear partial differential equation P (u) = 0, with P encoding bound-
ary or initial data as well, whose global behavior one wishes to understand for high
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regularity data which have small norm; denote by L, := D, P the linearized opera-
tors. In the present problem, P will be the map assigning a metric to the value of the
(gauge-fixed) Einstein operator on it, as well as its pair of initial data. Our strategy,
with references to their implementation for the present problem, is:

1. fix a C* structure, that is, a compact manifold M, with boundary or corners,
on which one expects the solution u to have a simple description (regularity,
asymptotic behavior)—see §2.1 for the definition of the compactification of R*
on which we will work;

2. choose an algebra of differential operators and a scale of function spaces on M,
say X*, V¥, encoding the amount s € R of regularity as well as relevant asymp-
totic behavior, such that for u € X := ﬂbo X¥ small in some X* norm, the
operator L, lies in this algebra and maps X — Y := [,_, )V’ —see §§2.2
and 3.1 for the function spaces we will use: conormal sections of certain vector
bundles together with certain leading order terms at null infinity; and §3.2 for the
verification of the mapping property;

3. show that for such small u, the operator L, has a (right) inverse

(L)~ 1t Y™ — x* (1.8)

on these function spaces—see §§4, 5, discussed below;
4. solve the nonlinear equation using a global iteration scheme, schematically

up = 0;  upp1 = g +vg, v = —(Ly) " (P(up)); u = Jim wy € X%,
—00

(1.9)
See §6.

5. (Optional.) Improve on the regularity of the solution u € X°°, provided the data
has further structure such as polyhomogeneity or better decay properties, by using
the PDE P (u) = 0 directly, or its approximation by linearized model problems in
the spirit of 0 = P(u) ~ Lou + P(0) and a more precise analysis of Lg. See §7,
where we prove the polyhomogeneity for asymptotically Minkowski metrics.

We stress that steps 1 and 2 are nontrivial, as they require significant insights into
the geometric and analytic properties of the PDE in question, and are thus intimately
coupled to step 3; the function spaces in step 2 must be large enough in order to
contain the solution u, but precise (i.e. small) enough so that the nonlinearities and
linear solution operators are well-behaved on them.

Note that if one has arranged 3, then the iteration scheme (1.9) formally closes, i.e.
all iterates uy lie in A*° modulo checking their required smallness in X'*. Checking
the latter, thus making (1.9) rigorous, is however easy in many cases, for example
by using Nash—Moser iteration [51,100], which requires (L,)~" to satisfy so-called
tame estimates; these in turn are usually automatic from the proof of (1.8), which is
often ultimately built out of simple algebraic operations like multiplications and taking
reciprocals of operator coefficients or symbols, and energy estimates, for all of which
tame estimates follow from the classical Moser estimates. The precise bookkeeping,
done e.g. in [59], can be somewhat tedious but is only of minor conceptual importance:
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it only affects the number of derivatives of the data which need to be controlled, i.e.
the number N in (1.6); in this paper, we shall thus be generous in this regard.

As a further guiding principle, which applies in the context of our proof of Theo-
rem 1.1, one can often separate step 3, i.e. the analysis of the equation L, v = f, into
two pieces:

3.1. prove infinite regularity of v but without precise asymptotics—see §4, where we
accomplish this using simple energy estimates;

3.2. improve on the asymptotic behavior of v to show v € X'*°—see §5, where we use
integration along approximate characteristics as well as spectral theory/normal
operator arguments for this purpose.

The point is that a ‘background estimate’ from step 3.1 may render many terms of
L, lower order, thus considerably simplifying the analysis of asymptotics and decay;
see e.g. the discussion around (1.22).

Remark 1.3 Let us compare this strategy to proofs using bootstrap arguments, which
are commonly used for global existence problems for nonlinear evolution equations as
e.g.in[27,80,82]. The choice of bootstrap assumptions is akin to choosing the function
space X'*° (and thus implicitly J*°) in step 2, while the consistency of the bootstrap
assumptions, without obtaining a gain in the constants in the bootstrap, is similar to
proving (1.8). However, note that the bootstrap operates on a solution of the nonlinear
equation, whereas we only consider linear equations; the gain in the bootstrap constants
thus finds its analogue in the fact that one can make the iteration scheme (1.9) rigorous,
e.g. using Nash—Moser iteration, and keep low regularity norms of u#; bounded (and
v decaying with k) throughout the iteration scheme. In the context in particular of
Einstein’s equation, a bootstrap argument has the advantage that the gauge condition is
automatically satisfied as one is dealing with solutions of the nonlinear equation; thus
the issue of constraint damping does not arise, whereas we do have to arrange this. In
return, we gain significant flexibility in the choice of analytic tools for the global study
of the linearized equations (e.g. methods from microlocal analysis, scattering theory),
as used extensively in [60]; bootstrap arguments on the other hand are strongly tied
to the character of P(u) as a (nonlinear) hyperbolic (or parabolic) and differential
operator, or at least to its locality in ‘time’, and it is much less clear how to exploit
global information (e.g. resonances).

Before discussing Einstein’s equation in §1.2, we first describe this strategy for
scalar nonlinear wave equations on Minkowski space. The most significant part of
the work required to implement this strategy is the analysis of the linear operators
called L, above; we thus begin in §1.1.1 by explaining how we obtain estimates for
solutions of linear wave equations on Minkowski space in a manner that will work for
linearizations of the gauge-fixed Einstein equation in §4. In §1.1.2, we then put a few
examples of nonlinear scalar equations into the abstract general framework described
above, including a discussion of polyhomogeneity (step 5 above) in §1.1.3.

1.1.1 Linear waves in Minkowski space

For step 1, we seek a convenient compactification M of R*. The goal, from the PDE
perspective, is for the asymptotic behavior of linear waves on R* to have a simple
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description on M; closely related to this is that the asymptotic behavior of natural
geometric objects such as (null)geodesics should be simple. Consider first ‘null infin-
ity’: a (rescaled) linear wave on R* has a limit as r — oo along any null-geodesic,
e.g. the one defined by t — r = 59, w = wy € S? (using polar coordinates on R?)
for (so, wo) € R x S%. Thus, we want to define M in such a way that a sequence of
points, with r — o0, along such a ray has a unique limit in M; that is, one boundary
hypersurface of M should be equal to (the closure® of) all such limiting points, with a
bijection between (sg, wp) and points in (the interior of) this boundary hypersurface,
and such a boundary hypersurface then deserves the name .# . (The interior of .#
is thus (.#1)° = R x S?). The radiation field is then the restriction of the rescaled
wave, extended from R* to M by continuity, to £ C 9M (or (.#7)° in standard
terminology).

For other asymptotic regimes, there are a number of choices one can make on
Minkowski space: the Penrose diagram, or the conformal embedding of Minkowski
space into the Einstein universe give two (closely related) compactifications of R* in
which future timelike and spacelike geodesic rays have limit points. In order to facili-
tate the generalization to compactifications of asymptotically Minkowskian spacetimes
in §2, we choose to work with a compactification in which the closure of the set of
these limiting points, called future timelike infinity /* and spacelike infinity 7°, are
3-dimensional (rather than 2-dimensional, as in the Penrose compactification); coor-
dinates in their interiors are x /¢ with |x/t| < 1,t~' = 0in (/1)°, and (¢/r, ) with
lt/r] < 1,r~ 1 = 0in (19)°.

At future timelike infinity 7, the asymptotic behavior of waves is governed, quite
generally on suitable asymptotically Minkowski spacetimes, by quantum resonances
[13];7 also, nonlinear interactions are much simpler to deal with than near .# . (This
is a further reason to keep (.# 7)° and (I1)° separate: it keeps the delicate analysis
at #+ separate on M from the more straightforward analysis at /™. The analysis at
10 is even simpler). We also point out that it is a specific feature of exact Minkowski
space that one can ‘blow down’ I; that is, suitably rescaled linear waves are smooth
directly on the Penrose compactification, and the blow-up of timelike infinity i ¥ and
spacelike infinity i in the Penrose diagram, as in Figure 1, is not required; on more
general asymptotically Minkowski spacetimes on the other hand, one needs to resolve
it and iY via real blow-up, obtaining / + and 19, in order to exhibit linear waves as
polyhomogeneous (read: having a simple asymptotic description) functions on the
compactification.

Thus, we begin by defining R#*:

6 We also want to capture the asymptotics of the radiation field itself, leading us to consider the limits
5o — £ 00 of such limiting points.

7 See [13, Theorem 1.1] for the rough theorem. Here, quantum resonances o; € C are poles of the
meromorphic continuation of the resolvent of an asymptotically hyperbolic Laplacian (plus a potential)
arising naturally by Mellin-transforming the wave operator, or rather L as in (1.13), in (t2 - r2)1/2; linear
waves then have expansions into '/ a j (x /1) for suitable distributions @ j, smooth in |x /| < 1. For present
purposes, one can deduce the asymptotic behavior of linear waves equivalently by relating the linear scalar
wave equation to the conformal wave equation on static de Sitter space and the asymptotics of its solutions;
see §5.2. Even so, we shall use spectral theoretic methods to accomplish the latter.
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Definition 1.4 The radial compactification of R* is defined as
RY:=R*U ([0, Dg x S*)/ ~, (1.10)

where ~ identifies (R, w), R > 0, w € S3, with the point R~ lw € R*. The quotient
carries the smooth structure in which the smooth functions are precisely those which
over R* (the interior of R#) are smooth in the usual sense, and which over [0, 1) g x Sg)
are smooth in (R, w) downto R = 0.

The function p := (1 + 24712 c CoRY s a boundary defining function,
ie. 9R* = p~1(0) with dp nondegenerate everywhere on dR*. Letting v = (t —r) /r
away from r = 0, all future null-geodesics tend to St ={p =0, v=0} and we
then define M as the closure of > 0 within the blow-up® [R*; S*] of R* at S (see
Figure 1), i.e. the smooth manifold obtained by declaring polar coordinates around
ST to be smooth down to the origin. We refer to the front face .#* of this blow-up
as null infinity or the radiation face; it has a natural fibration by the fibers of the map
S+t — S, which we call the fibers of the radiation face/null infinity/ #+. (The
interior of a typical fiber is equal to Ry, x {wq} for some fixed wy € S?).

We can equivalently describe M by giving a list of local coordinate patches and
how (pieces of) R* are glued to them. We describe two exemplary coordinate charts
here: the first one is

[0, 1)y X [0, 1), x S2,

and we identify (pg, ps, w) for po, p; > 0 with the point (z, x) € R x R> forr =
po oyt =1, x = py ' o; . Thus,

po=0G—0"" pr=0—-0/r; (1.11)

then 19, resp. .#* is locally given by pg = 0, resp. p; = 0; thus, this chart describes
a neighborhood of 19 N .#7 i.e. the transition from spacelike to null infinity. (For
example, {po = 0, p; = c} for some fixed ¢ € (0, 1) consists of the points ‘at
(spacelike) infinity’ of a spacelike cone in Minkowski space, while {p9 = ¢, p; = 0}
consists of the points ‘at (null) infinity’ of a null cone). See Figure 2.

The second coordinate chart is

[0, 1)z, x [0, 1),, x SZ,

8 The prototypical example of a blow-up is that of the origin in R”": we have [R"; {0}] = [0, 00), X S"_l,
i.e. the origin in R” is resolved, and r = 0 is no longer merely a point, but a full (n — 1)-sphere. The
front face of this blow-up is {r = 0} = $"~1 and the blow-down map is the map (r, w) — ro: itis a
diffeomorphism in r > 0, but at » = 0 collapses an (n — 1)-sphere to a single point (the origin). In the
setting of interest for us, the blow-up [M; X] of an embedded boundary submanifold X C dM is, in a
similar manner, the union (M \ X) U SNT X of the complement of X and the inward pointing spherical
(i.e. the quotient by the R action in the fibers of the) normal bundle of X in M. See the local coordinate
descriptions below, as well as [87, Chapter 5] for a detailed discussion of blow-ups.
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Fig.2 Illustration of the coordinate chart (1.11). Shown are a number of level sets of pg (red dashed lines)
and p; (blue dashed lines) projected onto the (7, r) plane. Indicated on the top right is the (pg, p7, ®)
coordinate system including the boundary hypersurfaces 7 0'and .7+ which are glued onto R

and (pyg, p+, w) for pr, p+ > 0 is identified with (¢, x) for t = ,0;1(,5,_1 + 1),
x = ﬁ;lplla); thus
pr=@—r)r, pyr=@—-r"" (1.12)

(Now {p; = ¢, p+ = 0} for ¢ € (0, 1) consists of the points ‘at (future timelike)
infinity’ of a timelike cone in Minkowski space). When the coordinate system in which
we work is clear, we simply write p; instead of pj.

To motivate a preliminary choice of function spaces for step 2, recall that the
behavior of solutions of Clgu := —u.,* near # can be studied using the Friedlander
rescaling

L:=pgp. (1.13)

This operator has smooth coefficients down to the interior (.#+)° of null infinity: it
is equal to the conformal wave operator [J olg — %szg, and ng is a smooth, non-
degenerate Lorentzian metric down to (.# 7)°: in local coordinates p = r~! > 0,
xl=t—r eR e S near (F7)°, we have p’g = —2dx'dp — ¢ + p*(dx")%.
Thus, solutions of Lu = 0, with CZ° (R3) initial data, are smooth up to .#* and typ-
ically nonvanishing there. We shall refer to this reasoning as Friedlander’s argument
below. (A more sophisticated version of this observation lies at the heart of Friedrich’s
conformal approach [40] to the study of Einstein’s equation). However, for more gen-
eral initial data, and, more importantly, in many nonlinear settings (see §§1.1.2 and
1.2 below), smoothness will not be the robust notion, and we must settle for less:
conormality at 9 M. Namely, let V, (M) denote the Lie algebra of b-vector fields, i.e.
vector fields tangent to the boundary hypersurfaces of M other than the closure ¥
of the initial surface £° = {¢r = 0}, a function u on M is conormal iff it remains in
a fixed weighted L? space on M upon application of any finite number of b-vector
fields. For M defined above, V(M) is spanned over C°°(M) by translations d; and
d,: as well as the scaling vector field 19; + xdy, boosts 10, + x'9,, and rotation vector
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fields x'9,; —x7d,:.” (Note however that the definition of V},(M) depends only on the
smooth structure of M .10)

Let us now explain how to obtain a background estimate, step 3.1 above, for the
forcing problem Lu = f with trivial initial data. First, we can estimate « in H'! on any
compact subset of R*N{r > 0} by f on another compact set. Then, on a neighborhood
of (1°)° which is diffeomorphic to [0, 1), x (0, 1); x S2, where

po = r_l, Ti=t/r,

with pg a local boundary defining function of 7°, this problem roughly takes the form
(D — (poDpy)* — A)u = f, (1.14)

where we use the standard notation
D=-9, i=+-1. (1.15)

In (1.14), A = Ay = 0 is the Laplacian on S?, and f has suitable decay proper-
ties making its norms in the estimates below finite. This is a wave equation on the
(asymptotically) cylindrical manifold [0, 1), x S?. Let

Up={0=t=<c, po=1}, ce(01).

For any weight ap € R, we can run an energy estimate using the vector field multiplier
Lo 2409 and obtain

”u”ngHbl(UO) S ”f”PgOLg(UO) (116)

for f supported in Up; see Figure 3. Here L% is the L? space with respect to the b-
density dr%ldgl, the weighted L% norm is defined by ||f||pa0L2 = ||p0—00f||L§, and
0 ~b

Hb1 is the space of all u € Lg such that Vu € L% forall V € Vo (M); in Ug, Vo, (M) is
spanned (over C°°(M) by 9z, 000, Y, so we let

leell o g1 gy == Metll o L2 gy + N0etll g0 12

+||:00Dp0u ”ngL%(Uo) + ”WM ”p(‘;o L%(UO) .

9 In the coordinate chart (L.11), Vo (M) is spanned by pgdp, = —td; — 1oy, pydp; = —r(d + 9r), and
rotation vector fields. In the chart (1.12), Vi, (M) is spanned by p7dp, = —7(9; +9y), p+0p, = —13; —10r,
and rotation vector fields. It is then straightforward to check, in either of these two coordinate systems, that
translations, scaling, and boosts are linear combinations, with C>° (M) coefficients, of these vector fields.

10 The smoothness of elements of Vy (M) on the compactification M in particular constrains their growth
as one leaves every compact set of R*. As ‘counterexamples’, one can check that the vector field 3o,
expressed in local coordinates near d M, is singular near any point of dM (though of course it is smooth
on R*1); similarly, the vector field 13, is singular at .#t in the sense that it does not extend, by continuity
from ]R4, to be tangent to .& + asis required from b-vector fields on M; it is, on the other hand, a smooth
b-vector field down to (/2)° and (17)°.
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Fig.3 The domain Ug on which the energy estimate (1.16) holds. Left: as a subset of M. Right: as a subset
of the Penrose compactification

In order to obtain a higher regularity estimate, one can commute any number of b-
vector fields through (1.14); the estimate (1.16) only relies on the principal (wave)
part of L; lower order terms arising as commutators are harmless. Thus, [ € ,000 HE?
(weighted L2 regularity with respect to any finite number of b-vector fields) implies
u € py’ H®, with estimates.

The same conclusion holds for the initial value problem for Lu = 0 with
initial data which near 79 are (U|r=0, Octt|r=0) = (U|s=0, rosut|i=0) = (uog, uy),
uj € ,000 H® (R3) where R3 is the radial compactification of R3, defined analogously
to (1.10), which has boundary defining function pg = r~!. The assumption (1.6) on
the size of initial data is a smallness condition on || (r))7||pgo HvH + 1l <r>2k”pg° B

Re-defining p = r~! near ST, a neighborhood of 1° N .#* is diffeomorphic to
[0, 1)py x [0, 1)), x S?, where (as in (1.11))

po:=—p/v=>0r—-—0"" pri=—v=0—-1)r (1.17)

are boundary defining functions of 7° and .# , respectively. (Thus, a function bounded
by pg’py! decays like =% near (1°)° and like r = near (.# 7)°). The lift of L to
M is smgular as an element of lefz(M ) but with a very precise structure at .# *: the
equation Lu = f is now of the form

(28/)1(/008/)0 - p[ap[) - A)M = f (1.18)

modulo terms with more decay; here, ignoring weights, p;9,, ~ 9; + 9, and pd,, —

P19y, ~ 9; — 0, are the radial null vector fields. Assuming f vanishes far away from
#*, we can run an energy estimate using V = p, 200 07 21 Vo as a multiplier, where
Vo = —cp10p; + pody, is future timelike in M \ Z 1 if we choose ¢ < 1; note that
Vo is tangent to 1° and .#* (and null at .#1); it is necessary to arrange this tangency
for compatibility with our conormal function spaces, but it comes at the expense of
giving control at .# T that is weaker (but more robust, i.e. holds for a larger class of
spacetimes) than the smoothness following from Friedlander’s argument. A simple
calculation, cf. Lemma 4.4, shows that for a; < ag and a; < 0,

12 .
lell oo por 2 + 11€00pg s £19p; o Vull oo jer 2 S o1 fll yoo jor 2 in Uy, (1.19)

see Figure 4, where Lb is the L? space with integration measure d’;o dor |dg|. The
assumptions on the weights are natural: since d; — 9, transports mass from %to 7+,
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Fig.4 The domain U; on which the energy estimate (1.19) holds

we certainly need a; < ag, while a; < 0 is necessary since, in view of the behavior
of linear waves discussed after (1.13), the estimate must apply to # which are smooth
and nonzero down to .#*. In (1.19), derivatives of u along b-vector fields tangent to
the fibers of the radiation face are controlled without a loss in weights, while general
derivatives such as spherical ones lose a factor of ,011/ 211 When controlling error terms
later on, we thus need to separate them into terms involving fiber-tangent b-derivatives
and general b-derivatives, and check that the coefficients of the latter have extra decay
in py; see §2.4.
From (1.18), L € ,01_1 Diffﬁ (M) is equal to the model operator

L° =20, (P09 — P19p;)

modulo Diff%(M ) (i.e. ignoring second order differential operators, such as A, which
are sums of at most twofold products of b-vector fields). The commutation properties of
this model are what allows for higher regularity estimates:'? (p; times) equation (1.18)
commutes with ppd,, (scaling), p;d,, (roughly a combination of scaling and boosts),
and spherical vector fields which are independent of pg and p;.!3 In the end, we obtain
u € py’py" H® when f € pgop?’_lHé’o.

Lastly, near I, one can use energy estimate with weight ,0;2“’ p;2a+’ ay < ajg
large and negative, multiplying a timelike extension of the above Vj; higher regularity
follows by commuting with the scaling vector field p4 0, , where p, is a defining
function of I, and elliptic regularity for C(p4 D, +)2 — L, C > Olarge, in It away
from .# T, which is a consequence of the timelike nature of the scaling vector field
p+9,, in (I1)°. See Figure 5. Note that it is only at this stage that one uses the
asymptotically Minkowskian nature of the metric in a neighborhood of all of IT;

/

11" This is to be expected: indeed, letting x := p; 2, the rescaled metric x_z(ng) is an edge metric [84],

dpy dx de”

i.e. a quadratic form in 00 X X with 6% coordinates on S2, for which the natural vector fields are

precisely those tangent to the fibers of .# %, that is, £09py> X0x = 2p70p;, and xdpa = p}/z dga .
12 See the discussion after (1.28) for an even stronger statement.
13 we briefly sketch the argument: denoting the collection of these vector fields—which span Vy, (M)
locally—by {V;}, this gives L(V;u) = V;f + [L, V;lu with [L, V;] € Diff% (modulo multiples of L
which arise for V. = p;0, 7 and which we drop here), which is one order better in the sense of decay than
the a priori expected membershipin o, ! Diff% due to these commutation properties. Write [L, V;] = C jz Vi
with Cjk S Diffé and apply the estimate (1.19) to Vju; then the additional forcing term [L, Vj]u obeys the
bound CiViu| ag a < Viu _1 , which close to .# T is bounded by a small
ilerCieVial o yor 2 S T Wt o 11 y
constant times the left hand side of (1.19), with Vju in place of u and summed over j, due to the gain (of
at least %) in the weight in pj.
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Fig.5 The neighborhood (shaded) of 7T on which we use a global (in IT) weighted energy estimate

when dealing with a more complicated geometry, as e.g. in the study of perturbations
of a Schwarzschild black hole, establishing this part of the background estimate (as
well as the more precise asymptotics at /T discussed momentarily) becomes a major
difficulty.

Putting everything together, we find that

fe pgop;"*lprg’O(M), f=0near X = u € py’pj’ pi" HO(M), (1.20)
for a;j < min(ap, 0) and a4 < ap.

For nonlinear applications, the information (1.20) on u is not sufficient: the decay
rate at £t is limited, and we do not have a good decay rate at / * either, cf. the
discussion of py” py’ following (1.17). Let us thus turn to step 3.2 and analyze Lu = f
for f, vanishing near X, having more decay,

fey® = pp; "l HE (M) by < by <bo. bye©0.1).  (121)

The background estimate (1.20) givesu € pgo p; € p H® foralle > 0.Near 1°N.7+
then, the conormality of u allows for equation (1.18) to be written as

b
P18, (P0dy — P13 = (o1 f + pr&u) € pi0py HE® on Uy, (1.22)

i.e. L effectively becomes the composition of (linear) transport equations along the
two radial null directions. See Figure 6. Integration of p9d,, — 01 d,, is straightforward,
while integrating p;d,,, which is a regular singular ODE with indicial root 0, implies
that u has a leading order term at .#*; one finds that

u=u® +up; u® e pgoHé’o(f"’), up € pgop?’Hg’o(M) near I°N 7+,

which implies the existence of the radiation field.!> The procedure to integrate along
(approximate) characteristics to get sharp decay is frequently employed in the study
of nonlinear waves on (asymptotically) Minkowski spaces, see e.g. [80, §2.2], [74],
and their precursors [71,72].

14 Proving this estimate for large, negative, but nonexplicit a is easy, while obtaining an explicit value
of a4 does require explicit straightforward (albeit lengthy) calculations. We accomplish this in §4.3 by
identifying L with the conformal wave operator on static de Sitter space for a suitable choice of p.

15 For rapidly decaying f, one can plug this improved information into the right hand side of (1.22),
thereby obtaining an expansion of  into integer powers of p; and recovering the smoothness of u at .# .
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7 pOa/m - PIO,),
g+

0
I _pIaPI

Fig.6 The integral curves of the vector fields d; + 9, ~ —pdp; and d; — 9y ~ pdp, — Py dp; - Integration
along the former gives the leading term at .# T, while integration along the latter transports weights (and
polyhomogeneity) from / Oto st

At #F N It the same argument works, showing that #? and uy, are bounded by
Cpy" and C,o?’ o4t near It (i.e. by t 7%+ as t — oo with /¢ in compact subsets of
[0, 1)). Improving this weight however does not follow from such a simple argument.
Indeed, at I, the behavior of u is governed by scattering theoretic phenomena: the
asymptotics are determined by scattering resonances of a model operator at I+, namely
the normal operator of the b-differential operator L at /™, obtained by freezing its
coefficients at I ™, see equation (2.2). We thus use the arguments introduced in [107],
see also [58, Theorem 2.21], based on Mellin transform in p., inversion of a ‘spectral
family’ Z(o), which is the conjugation of the model operator (called ‘normal operator’
in b-parlance) of L at I by the Mellin transform in I, with o the dual parameter to
P+, and contour shifting in the inverse Mellin transform to find the correct asymptotic
behavior at /™: the resonances o € C, which are the poles of z(a)_l, give rise to a
term ,of v, v a function on I, in the asymptotic expansion of . (See §§5.2 and 7 for
details). The resonances can easily be calculated explicitly in the present context, and
they all satisfy —Imo > 1 > b, . The upshot is that

feV® = uecX® = {Xu(o) +up: u® € pgopf:H,;’o(/Jr),
by by b
up € po p; P4t HYS (M)}, (1.23)
where x cuts off to a neighborhood of .# .
For later use as a simple model for constraint damping, consider a more general

equation,
Lyu=p—> Mg —2y1~'3)(pu) = (1.24)

for y € R;near .# 7 and [ 0 this now roughly takes the form

(207 (0180, — V) (P0dpy — P13p,) — B)u = f.

Once the conormality of u is known, integrating the first vector field on the left gives
a leading term ,0}/, which is decaying for y > 0. (One can show that the background
estimate (1.20) holds fora; < y, but even an ineffective bound a; <« 0 would be good
enough, as the transport ODE argument automatically recovers the optimal bound).

Remark 1.5 Note that for small y, the normal operator of L,, at I * is close to the normal

operator for y = 0, hence one would like to conclude that mild decay ,oi*, by < 1,at
I still holds in this case. This is indeed true, but the argument has a technical twist:
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L, does not have smooth coefficients at .#* as a differential operator (unlike L in
Friedlander’s argument) due to the presence of derivatives which are not tangential

to S*. However, we still have L, e Diff% (@); we thus deduce asymptotics at /™

via normal operator analysis on the blown-down space R4, analogously to [13,14].
See §5.2.

Remark 1.6 The improved decay at .# T translates into higher b-regularity of u on
the blown-down space R*, as we will show in Lemma 5.7; in the language of [13,
Proposition 4.4], this corresponds to a shift of the threshold regularity at the radial set
by y coming from the skew-symmetric part of L,,.

1.1.2 Non-linearities and null structure

Equipped with this understanding of linear waves, we now discuss steps 2—4 of the
abstract strategy of §1.1. In particular, we will show how the absence of a ‘null
structure’ for a semilinear wave equation well-known to exhibit finite-time blow-
up manifests itself from the global, Newton iteration scheme perspective; we will also
discuss examples of equations that do satisfy a null condition, of the type arising when
studying the linearization of the gauge-fixed Einstein equation.

To begin, recall that if u is conormal on M, then its derivatives along dy := 9; + 0,
or size 1 spherical derivatives » ~! ¥ have faster decay by one order at .# *, whereas its
‘bad’ derivative along 9; := 9; — 9, does not gain decay there; indeed, modulo vector
fields with more decay at .# T, we calculate near 1% N .#+ using (1.17)

dyp = _%100101 p[ap,, 0 = 100(1008,00 - 'Olap’);

note the extra factor of p; in 9. All these derivatives gain an order of decay at 1°,
hence the structure of nonlinearities is relevant mainly at .& +: let us thus restrict
the discussion to a neighborhood of 7% N .#*. (Similar considerations apply to a
neighborhood of 7 N .#T). Consider the nonlinear equation Cgu — (d1u)> = £, or
rather the closely related equation

Pu)=Lu—p ')’ —f, feY>® small, (1.25)

with L given by (1.13); this is well-known to violate the null condition introduced
by Christodoulou [22] and Klainerman [64]. From our compactified perspective, the
issue is the following. For u € X'*°, the linearization L, = L — 2,0_1(81u)81 is, to
leading order as a b-operator,

207 (018p, — 811) (03, — PIBp)),

so the indicial root at .# T is shifted from 0 to d;u| s+ . Therefore, astep L,v = — P (1)
in the Newton iteration scheme (1.9) does not give v € A°°. A Picard iteration, solving
Lov = — P (u) would, due to the leading term of,o’l (8;u)? of size pfl ,cause v to have
a logarithmic leading term when integrating the analogue of (1.22). Neither iteration
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scheme closes, and this will remain true for any modification of the space X, e.g. if
one allowed elements of X'*° to have leading terms involving higher powers of log p;.
In fact, solutions of global versions of this equation blow up in finite time [62].

Assuming initial data to have sufficient decay, the nonlinear system Lu{ = 0,
Lu; — ,0_1(8114{1’)2 = 0 on the other hand can be solved easily if we design the
function space X' in step 2 to encode a p? leading term for uf at £, as in (1.23),
and two leading terms, of size log p; and o}, for u. Extending this model slightly, let
y > 0, recall L, from (1.24), and consider the system for u = (uo, u{, uy),

P() = (Lyuo, Luj —p~ ' @uo)*, Lur — p~' @1u5)*) = 0; (1.26)

which is a toy model for the nonlinear structure of the gauge-fixed Einstein equation

with constraint damping, as we will argue in §1.2. Only working in (.# +)°, i.e. ignoring

weights at 79 and I for brevity, the above discussions suggest taking b; € (0, ) and

working with the space!®

X% ={u = (uo, uf, ur): (uo, u§ — ui(o), Uy — MEI)Ingl - uio)) € ,0’1” H{° (M)},
(1.27)

where ui(o), ugl), MEO) € C®((F71)°) are the leading terms. Then

P X® = VX = (f = (fo, f{, )2 (oo [ fi = 07 O € p TP HEeY,

where fl(o) € C®((#£1)°). The linearization L, of P around u € X then has as its
model operator at .# ™

y 0 0
L= 207" P19y = A)Podpy = prdy), Aw=(0 0 0], (128)
03 0

which has a (lower triangular) Jordan block structure, with all blocks either having
positive spectrum (the upper 1 x 1 entry) or being nilpotent (the lower 2 x 2 block).
Thus, by integrating 0;9,, — A,, we conclude that for L,v = —P(u), we have
v € X, thus closing the iteration scheme (1.9). A background estimate as well
as its higher regularity version, which is the prerequisite for Lg being of any use,
can be proved as before. Error terms arising from commutation with A, have lower
differential order and can thus be controlled inductively; that is, only the commutation
properties of the principal part of Lg matter for this.

Remark 1.7 A tool for the study of the long time behavior of nonlinear wave equations
on Minkowski space introduced by Hormander [54] is the asymptotic system, see
also [55, §6.5] and [78]: this arises by making an ansatz u ~ er—! U(t—r,elogr,w)
for the solution and evaluating the €2 coefficient, which gives aPDE in 1+ 1 dimensions

16 Here as well as in the previous example, one could of course work with much less precise function
spaces since the full nonlinear system is lower triangular; for the Einstein equation on the other hand, we
will need this kind of precision.
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in the coordinates ¢t — r and £ := € log r which one expects to capture the behavior of
the nonlinear equation near the light cone; if the classical null condition is satisfied, the
PDE is linear, otherwise it it nonlinear. The weak null condition [78] is the assumption
that solutions of the asymptotic system grow at most exponentially in ¢, and for the
Einstein vacuum equation in harmonic gauge, solutions are polynomial (in fact, linear)
in £. The latter finds its analogue in our framework in the nilpotent structure of the
coupling matrix in (1.28). (However, quasilinear equations with variable long-range
perturbations, see the discussion around (1.35), cannot be treated directly with our
methods, corresponding to the difficulty in assigning a geometric meaning to the
asymptotic system in such situations). For works which establish global existence
of nonlinear equations even when the asymptotic system has merely exponentially
bounded (in £) solutions, we refer to Lindblad [72,73] and Alinhac [6].

1.1.3 Polyhomogeneity

Consider again equation (1.14) near (/°)°, now assuming that f is polyhomogeneous.
For simplicity, let f = ,o(iffZ + f, where f, € C®(dR*), z € C, and fdecays faster
than the leading term, so f € pgo HZ®° with by > —1Im z. A useful characterization
of the polyhomogeneity of f is that the decay of f improves upon application of the
vector field pg D, — z in the notation (1.15). The solution u satisfies u € pgo H® for
any ap < —Imz; butu’ := (poD,, — z)u solves!”

s b
Lu/ = (IOODpo - Z)f = (IOODpo - Z)f € IOOOHt()XDv

sou’ € ,og

% HP®. This is exactly the statement that u has the form u = ,o(i)zu . + u for
some u, € C®(0R*), u € ,og" H°. If f has a full polyhomogeneous expansion, an
iteration of this argument shows that u has one too, with the same index set.

Near the corner /% N .# ™ then, one can proceed iteratively as well, picking up the
terms of the expansion at .# ™ one by one, by analyzing the solution of the product of
transport equations in equation (1.22) when the right hand side has a partial polyho-
mogeneous expansion at .# *: the point is that pod,, — p7d,, transports expansions
from 7° to .# T, ultimately since it annihilates p(if ,0;1. See Lemmas 7.5-7.7.

To obtain the expansion at IT, we argue iteratively again, using the resonance
expansion obtained via normal operator analysis as in the proof of [58, Theorem 2.21].
One needs to invert the normal operator family of L on spaces of functions which are
polyhomogeneous at the boundary 3/, which is easily accomplished by solving away
polyhomogeneous terms formally and using the usual inverse, defined on spaces of
smooth functions, to solve away the remainder; see Lemma 7.8.

1.2 Analysis of Einstein’s equation

For Einstein’s equation, the strategy outlined in §1.1 needs to be supplemented by a
preliminary step, the choice of the nonlinear operator P, which in particular means

17" Commutator terms have improved decay at pg = 0 as before, hence are dropped here for clarity.
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choosing a gauge, i.e. a condition on the solution g of Ric(g) = 0 which breaks the
diffeomorphism invariance; by the latter we mean the fact that for any diffeomorphism
¢ of M, ¢*g also solves Ric(¢p*g) = 0. Following DeTurck [36], the presentation by
Graham-Lee [47], and [60], we consider the gauge-fixed Einstein equation

Py(g) = Ric(g) —8*Y(g) =0, (1.29)

where 8* is a first order differential operator with the same principal symbol (which is
independent of g) as the symmetric gradient (8;,"14) w = %(u w;v iy ,); we comment
on the choice of 8* below. Further, the gauge I-form is

Y(g; gmly = (ggrzl‘ngggm)u = gpwg/d(F(g),‘é)L - F(gm),]é)\)a (1.30)

where §; is the adjoint of 8;, i.e. the (negative) divergence, Gg = 1 — % g trg is the trace
reversal operator, and g, is a fixed background metric; we write Y(g) = Y(g; gm)
from now on. This is a manifestly coordinate invariant generalization of the wave
coordinate gauge, where one would choose g,, = g to be the Minkowski metric on
R* and demand that a global coordinate system (x*): (M°, g) — (R*, g) be a wave
map. (Friedrich describes Y (g) = 0 and more general gauge conditions using gauge
source functions, see in particular [41, Equation (3.23)]).

Two fundamental properties of Py(g) are: (1) Py(g) is a quasilinear wave equation,
hence has a well-posed initial value problem; (2) by the second Bianchi identity—the
fact that the Einstein tensor Ein(g) := G,Ric(g) is divergence-free—the equation
Py(g) = 0 implies the wave equation

8,G¢8*Y(g) =0 (1.31)

for Y'(g), which thus vanishes identically provided its Cauchy data are trivial; we call
3;G gfs'* the gauge propagation operator. Therefore, solving (1.29) with Cauchy data
for which Y (g) has trivial Cauchy data is equivalent to solving Einstein’s equation (1.1)
in the gauge Y'(g) = 0.

Since we wish to solve the initial value problem (1.4), we need to choose the Cauchy
data for g, i.e. the restrictions go and g1 of g and its transversal derivative to the initial
surface X° as a Lorentzian metric on M° such that y is the pullback of g to X° and k is
the second fundamental form of any metric with Cauchy data (gg, g1); note that k only
depends on up to first derivatives of the ambient metric, hence can indeed be expressed
purely in terms of (go, g1). These conditions do not determine gg, g1 completely, and
one can arrange in addition that Y'(g) vanishes at £° as a 1-form on M. Provided then
that Py(g) = 0, with these Cauchy data for g, holds near X°, the constraint equations
at X° can be shown to imply that also the transversal derivative of Y (g) vanishes at
3° (see the proof of Theorem 6.3), and then the argument involving (1.31) applies.

If the initial data in Theorem 1.1 are exactly Schwarzschildean for »r > R > 1,
the solution g is equal (i.e. isometric) to the Schwarzschild metric in the domain of
dependence of the region » > R; more generally, for initial data which are equal to
those of mass m Schwarzschild modulo decaying corrections, we expect all outgoing
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null-geodesics to be bent in approximately the same way as for the metric g,fl. Thus, we
should define the manifold M in step 1 so that .# T is null infinity of the Schwarzschild
spacetime. Now, along radial null-geodesics of g;f,, the difference ¢t — r, is constant,
where

re =1 + 2mlog(r — 2m) (1.32)

is the tortoise coordinate up to an additive constant, see [109, Equation (6.4.20)].

Correspondingly, we define the compactification mR4 near t ~ ry such that p = r~!

is aboundary defining function, and ™ v := (t —r,)/r is smooth up to the boundary; "M
is defined by blowing this up at ST = {p = 0, v = 0}. (This is smoothly extended
away from ¢ ~ r, to a compactification of all of R*). Thus, ”R# and the Minkowski
compactification R4 = "R# are canonically identified by continuity from R*, but have
slightly different smooth structures; see §2.3 and [14, §7]). The interior of the front
face .# T of the blow-up is diffeomorphic to Ry x S%, where s :="v/p =t — ry is an
affine coordinate along the fibers of the blow-up. We denote defining functions of 79
(the closure of {p = 0, ™v < 0}in™M), .# T, and I'" (the closure of {p = 0, v > 0}
in "M) by po, pr, and p, respectively.

It is then natural to fix the background metric g, to be equal to g5 near I Oyt
and smoothly interpolate with the Minkowski metric near » = 0 (which is nonsingular
there, unlike g,fl). We then work with the gauge Y (g; g») = 0, and seek the solution
of

P(h):=p Py(g) =0, g=gm+ph, (1.33)

with & to be determined; the factors p are introduced in analogy with the discussion
of the scalar wave equation (1.13).'® Here, p is a global boundary defining function
of ™R4; one can e.g. take p = r~! away from the axis r/t = 0, and p = ¢!
near r/t = 0. Now, due to the quasilinear character of (1.29), the principal part of
Ly := Dy P depends on h: itis given by %D . Thus, one needs to ensure that throughout
the iteration scheme (1.9), the null-geometry of g is compatible with M, in the sense
that the long range term of g determining the bending of light rays remains unchanged.
To see what this means concretely, consider a metric perturbation /4 in (1.33) which
is not growing too fast at .#*, say |h| < p; € for € < 1/2 (that is, |h| < r€ when
t — ry remains in a bounded interval); one can then check that, modulo terms with
faster decay at .# T,

Og =205 (018, +200h00(008p, — P13p,)) (P08 po — P13p,) mear I°N.7T, (1.34)
which identifies
hoo = h(do, d), 0o = 0 + 9, (1.35)

as the (only) long range component of /; see the calculation (3.15).!%. Indeed, the first
vector field in (1.34) is approximately tangent to outgoing null cones, so for 7o 7~ 0 at

18 Note that we use g, in two distinct roles: once as a background metric in the gauge condition, and once
as a rough first guess of the solution of the initial value problem which (1) already has the correct long
range behavior at null infinity and (2) is globally close to a solution of the Einstein vacuum equation if m
is small. See also Remark 6.6.

19 In the case that hoo vanishes at .# T, the approximate null directions p; dp; and ppdp, — prdp; have
the same form as in the discussion surrounding (1.22), however, due to our choice of compactification "M,
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I+, outgoing null cones do not tend to (& )°. (Rather, if hog > 0, say, they are less
strongly bent, like in a Schwarzschild spacetime with mass smaller than m). Whether
or not kg vanishes at .# = depends on the choice of gauge. A calculation, see (A.5),
shows that the gauge condition Y (g) = 0 implies the constancy of k¢ along .# *; but
since hqy is initially O due to g, already capturing the long range part of the initial
data, this means that hgo| s+ = 0 indeed—provided that P (h) = 0 with Cauchy data
satisfying the gauge condition, as we otherwise cannot conclude the vanishing of T (g).
We remark that Y'(g) = 0 implies the vanishing of further components of /2, namely
r~'hog = h(do, r ' 3pa) and r=2¢ % hyp, hap == h(dga, dg»), which we collectively
denote by hg; see (3.4) and (3.11), where the notation ho =: moh is introduced.

As we are solving approximate (linearized) equations at each step of our Newton-
type iteration scheme in step 4, we thus need an extra mechanism to ensure that Y'(g),
g = gu + ph, is decaying sufficiently fast at £ to guarantee the vanishing of Ao
at # . This is where constraint damping comes into play. Roughly speaking, if one
only has an approximate solution of Py(g) ~ 0, then we still get §;G g’g*T(g) ~ 0;
if one chooses 6* carefully, solutions of this can be made to decay at .#+ sufficiently
fast so as to imply the vanishing of hgg. We shall show that the choice

S u=085 u+2ye @ u—y-r19u)gm. v >0,

accomplishes this.?’ As a firstindication, one can check that 28, G, 8* has a structure
similar to (1.24) with > 0, for which we had showed the improved decay at .# .

Regarding steps 2 and 3 of our general strategy, the correct function spaces can now
be determined easily (after some tedious algebra): solving Lou = 0, where Lj, = Dy, P
as usual, one finds that ug = mou, so in particular the long range component uoo of
u decays at .#*, while the remaining components, denoted ug, have a size 1 leading
term at .# T, just like solutions of the linear scalar wave equation. This follows from
the schematic structure

_ 0
Py 1(:018;71 - ()(; 0>>(P03po — P19p;) (Zg)

of the model operator at .# in this case. However, for such u then, solutions of
L,u’ = — P (u) have slightly more complicated behavior. Indeed, the model operator
at .# T has a schematic structure similar to (1.28), acting on (u6, (u’)ﬁl, u/“), where
we separate the components of (u)( into two sets, one of which consists of the single
component

uhyy = u(d,0), 9 =0 — o, (1.36)

while (u'){, captures the remaining components, which are uq;, r~'uyp, and the part
2 Uy — % gab ngucd) of the spherical part of u which is trace-free with respect to ¢.
Correspondingly, we need to allow u, to have a logarithmic leading order term, just

they are now the radial null directions of Schwarzschild with mass m. (Integration along these more precise
characteristics was key in Lindblad’s proof of sharper asymptotics in [74])

20 For technical reasons related to the definition of the smooth structure on ’"@, we shall modify 7 slightly;
see Definition 2.9 and Equation (3.3).
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like the component called u in the definition of the function space (1.27). In the next
iteration step, L, u” = — P (u’), no further adjustments are necessary: the structure of
the model operator at .# is unchanged, hence the asymptotic behavior of u#” does not
get more complicated.”! We remark that due to our precise control over each iterate,
encoded by membership in X'*°, the relevant structure of the model operators and the
regularity of the coefficients of the linearized equations are the same at each iteration
step; in particular, the fact that equation (1.33) is quasilinear rather than semilinear
does not cause any complications beyond the need for constraint damping.

The decoupling of the model operator at .# T into three pieces—one for the decaying
components i, one for the components u{, which have possibly nontrivial leading
terms at .#*, and one for the logarithmically growing component u1;—is the key
structure making our proof of global stability work. The fact that the equation for
the components uo decouples is not coincidental, as they are governed by the gauge
condition and thus are expected to decouple to leading order in view of the second
Bianchi identity as around (1.31).>> The decoupling of u1 and u§, on the other hand
is the much more subtle manifestation of the weak null condition, as discussed in
Remark 1.7.

The solution £ of (1.33) is a symmetric 2-tensor in M°; as part of step 1, we still
need to specify the smooth vector bundle on M which 4 will be a section of. Consider
first the Minkowski metric g on the radial compactification “R4. In R*, g is a quadratic
form, with constant coefficients, in the 1-forms dr and dx’, which extend smoothly to
the boundary as sections of the scattering cotangent bundle ° T* OR# first introduced in
[86]; in a collar neighborhood [0, 1), x ]Rg( of apointin 99R4, the latter is by definition

spanned by the 1-forms i—’;, %, which are smooth and linearly independent sections

of S¢T*OR% down to the boundary. For instancg:, near r = 0, we can take p = 1
and X = x/¢, in which case i—‘z’ = —dt and % = dx' — X' dt. Similarly then, g,,
will be a smooth section of the second symmetric tensor power S ST mR4. Since
our nonlinear analysis takes place on the blown-up space "M, we seek & as a section

of the pullback bundle g*§2 T* mR4, where B: "™ — mR4 is the blow-down map.
For brevity, we shall suppress the bundle from the notation here.

Theorem 1.8 Suppose the assumptions of Theorem 1.1 are satisfied, i.e. for some small
m € R and by > 0 fixed, the normalized data p(;l)7 and pazk € pgo H® (@) are
small in pgo H lfv 1 and pgo Hlfv , respectively. Then there exists a solution g of the initial
value problem (1.4) satisfying the gau%e condition Y(g) = 0, see (1.30), which on
"M is of the form g = g + ph, h € py’p; L H°("M) for all € > 0; here p is a
boundary defining function of mIR_“, and po, p1, and p4 are defining functions of 1 0
I¥, and I, respectively.

21 The coupling matrix, called A, in (1.28), is in fact slightly more complicated here, see Lemma 3.8,
necessitating a more careful choice of the weights of the remainder terms of elements of the spaces X'
and Y at .+, whose precise definitions we give in Definitions 3.1 and 3.3.

22 1 practice, it is easier to analyze u( directly using the structure of the linearized gauge-fixed Einstein
equation, rather than via an (approximate) linearized second Bianchi identity, so this is how we shall proceed.

@ Springer



2 Page28of 146 P.Hintz, A. Vasy

More precisely, near % and using the notation introduced after (1.35) and (1.36),
the components hy, r~Vhop, and r’zg“bhab lie in

p0° Py piC H® ("M) (1.37)

for all by < min(1, bo) and € > 0, while hoy, r~'h1p, and r=>(hap — % gapghea)
have size 1 leading terms at # plus a remainder in the space (1.37) for all such
by, €, and hyy has a logarithmic and a size 1 leading term at ¥ plus a remainder
in the space (1.37) for all such by, €. At I'" on the other hand, h has a size 1 leading
term: there exists h™ € p;  H°(I*) such thath — h € ,ol_e,offr H°("M) near I
for any b+ < min(bg, 1).

Remark 1.9 Near ".# 7, and indeed for r > 1 and t — r, < %r, the membership
u € pgo p?’ ,ofb;’ HZ°("M) (e.g. u being a metric coefficient of &, and by = —e as
in (1.37)) is equivalent, up to arbitrarily small losses in decay (due to switching from
L? to L™ via Sobolev embedding), to

Vi Vvl S0 (L G = D) T (A (1 = ) )P

for all N € Ny, where each V; is a rotation vector field in R3 or one of the vector
fields 10; + 740y, 19y, + 740s, Oy, Ox.

See Theorem 6.3 for the full statement, which in particular allows for the decay
rate by of the initial data to be larger and gives the corresponding weight at 1° for
the solution. The final conclusion follows from resonance considerations, as indicated
before (1.23), and will follow from the arguments used to establish polyhomogeneity
in §7. We discuss continuous dependence on initial data in Remark 6.4. A typical
example of a polyhomogeneous expansion of £ arises for initial data which are smooth
functions of 1/r in r > 1: in this case, the leading terms of the expansion of / are
schematically (and not showing the coefficients, which are functions on .# 1)

ho ~ prlog=> p;, h§, ~ 1+ prlog=*pr, hiy ~log=' p; + prlog=C p; (1.38)

at #*, and h ~ 14 p, log=® p; at I'"; see Example 7.3. Here, log=* p; stands for
functions which are sums of products |log py |Eag, 0 < £ < k, with a; functions on
as

While a solution g of Ric(g) = 0 in the gauge Y (g) = 0 of course solves equa-
tion (1.29) for any choice of 5%, we argued why a careful choice is crucial to make
our global iteration scheme work. Another perspective is the following: implement-
ing constraint damping allows us to solve the gauge-fixed equation (1.29) for any
sufficiently small Cauchy data; whether or not these data come from an initial data
set satisfying the constraint equations is irrelevant. Only at the end, once one has a
solution of (1.29), do we use the constraint equations and the second Bianchi identity
to deduce Y'(g) = 0.

In contrast, consider the choice 3* = 8;}‘ in (1.29); the linearization of Py(g) around

the Minkowski metric g = g is then equal to %Dg, which is % times the scalar wave
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operator acting component-wise on the components of a symmetric 2-tensor in the
frame dx* ® dx” + dx" ® dx*, where x° = 1, x', i = 1,2, 3, are the standard
coordinates on ]R,lf. Solving Uz (ph) = 0 with given initial data, which would be
the first step in our iteration scheme for initial data with mass m = 0, does not
imply improved behavior for any components of %, in particular 4p; this means that
constraint damping fails for this choice of §*. Thus, the next iterate g + ph in general

has a different long range behavior, and correspondingly M is no longer the correct
place for the analysis of the linearized operator in the next iteration step—even though
the final solution of Einstein’s equation is well-behaved on °M for such initial data.
With constraint damping on the other hand, the linearized equation always produces
behavior consistent with the qualitative properties of the nonlinear solution.

1.3 Bondi mass loss formula

The description of the asymptotic behavior of the metric g = g, + ph in Theorem 1.8
on the compact manifold "M and in the chosen gauge allows for a precise description
of outgoing light cones close to the radiation face .# . Work on geometric quantities
at .# T started with the seminal works of Bondi—van der Burg—Metzner [10,12], Sachs
[96,97], Newman—Penrose [92], and Penrose [94]; the precise decay properties of the
curvature tensor—in particular ‘peeling estimates’ or their failure—were discussed
in [24,67], see also [35]. (For studies on conditions on initial data which ensure or
prevent smoothness of the metric at . in suitable coordinates, see [1,30,40,41,108]
and [66, §8.2]).

As remarked before, the logarithmic bending of light cones is controlled by the
ADM mass m, which measures mass on spacelike, asymptotically flat, Cauchy sur-
faces. A more subtle notion is the Bondi mass [12], see also [23], which is a function
of retarded time x! = ¢ — r, that can be defined as follows: let S(u) C .#* denote
the u-level set of x! at null infinity; S(u) is a 2-sphere, and naturally comes equipped
with the round metric. If C,, denotes the outgoing light cone which limits to S(u) at
null infinity and which asymptotically approaches the radial Schwarzschild light cone
{x! = u}, one can define a natural area radius 7 on C,, equal to the coordinate r plus
lower order correction terms; the Bondi mass Mp (1) is then the limit of the Hawking
mass of the 2-sphere {x! = u, # = R} as R — oo. See §8 for the precise definitions.
A change dd—uMB(u) of the Bondi mass reflects a flux of gravitational energy to .7+
along C,. We shall calculate these quantities explicitly and show:

Theorem 1.10 Suppose we are given a metric constructed in Theorem 1.8, and write
hi = h(lll) log(r) +O(1) near I+, where hill) c pgo Py HP* (I ) is the logarithmic
leading term. Then the Bondi mass is equal to

1
Mg @) = m + —f Ih$) dg. (1.39)
47‘[ S(u)
The Bondi mass loss formula takes the form %MB (u) = —E(u), where
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1
E(u) = — NI2dg¢, N =r20h ,
() 307 S(u)| |g 4 ab =T 1hapl| 7+

is the outgoing energy flux. Finally, Mg(—00) = m and Mg (+o0) = 0.

We prove this for all initial data which are small and asymptotically flat in the
sense of (1.6). The Bondi mass was shown to be well-defined (and to satisfy a mass
loss formula) for the weakly decaying initial data used in [16] by Bieri—Chrusciel [8]
in the geometric framework of [27], but the question of how to define Bondi—Sachs
coordinates remained open. Our result is the first to accomplish this for a large class
of initial data, and to identify the Bondi mass in a (generalized) wave coordinate
gauge setting. (The C!-™in(%0. D=0 yeoylarity of a conformally rescaled non-degenerate
metric down to .# T is a by-product of our analysis) The key to establishing the first
part of Theorem 1.10 is the construction and precise control of the aforementioned
geometric quantities leading to the identification (1.39); the mass loss formula itself
is then equivalent to the vanishing of the leading term of the (1, 1) component of the
gauge-fixed Einstein equation at .# . The vanishing of Mg(u) as u — —oo follows
immediately from the decay properties of & there. On the other hand, the proof that
the total radiated energy | E(u)du equals the initial mass m proceeds by studying
the leading order term /|;+ as the solution of a linear equation on I™ (obtained by
restricting the nonlinear gauge-fixed Einstein equation to I7), with a forcing term
that comes from the failure of our glued background metric g, to satisfy the Einstein
equation and which is thus proportional to m. This equation now is closely related to
the spectral family of exact hyperbolic space at the bottom of the essential spectrum;>3
a calculation of the scattering matrix acting on the incoming data given by hgll) and
comparing the (0, 0) component of the outgoing data with hgp—which vanishes by
construction!—then establishes the desired relationship.

Theorem 1.10 shows that the logarithmic term in the asymptotic expansion of %1
carries physical meaning. Its vanishing forces m = 0, which by the positive mass
theorem means that the spacetime is exact Minkowski space. (The observation that
[ E(u)du > 0 immediately implies the nonnegativity of the ADM mass of the small
initial data under consideration here, which in this case was first proved by Choquet-
Bruhat-Marsden [20]).

Further geometric properties of the vacuum metrics constructed in this paper, such
as the identification of (#1)° C M, resp. (I™")°, as the set of endpoints of future-
directed null, resp. timelike, geodesics, will be discussed elsewhere.

1.4 Outline of the paper

In §§2 and 3, we set the stage for the analysis (steps 1 and 2): we give the precise
definition of the compactification M = "M on which we will find the solution of (1.4)

23 This linear operator acts on the symmetric scattering 2-tensor bundle restricted to 7 see [50] for the
relation with the hyperbolic Laplacian acting on its intrinsic 2-tensor bundle. The spectral parameter here
is fixed, and the definition of the scattering matrix (incoming data having logarithmic rather than algebraic
growth) is specific to working at the bottom of the spectrum; this is in contrast to the description of the
scattering matrix depending on the spectral parameter as e.g. in [49].

@ Springer



Stability of Minkowski space and polyhomogeneity of the metric Page310f146 2

in §2.1; the relevant function spaces are defined in §2.2, and the relationships between
different compactifications are discussed in §2.3. In §2.4, we prepare the invariant
formulation of estimates such as (1.19); the results there are not needed until §4. In
§3.1, we define the spaces X'*° and Y* on M in which we shall find the solution
h in Theorem 1.8, and calculate the mapping properties and model operators of the
(linearized) gauge-fixed Einstein operator in §§3.2 and 3.3, respectively. (The nec-
essary algebra is moved to Appendix A). The key structures (constraint damping,
null structure) critical for our proof will be discussed there as well. We accomplish
part 3.1 of step 3—the proof of a high regularity background estimate with imprecise
weights—by exploiting these structures in §4. The recovery of the precise asymptotic
behavior in §5 finishes step 3.2. Putting this into a Nash—Moser framework allows us
to finish the proof of Theorem 1.8 in §6; the proof of polyhomogeneity, thus of the
last part of Theorem 1.1, is proved in §7. Finally, a finer description of the resulting
asymptotically flat spacetime near null infinity, leading to the proof of Theorem 1.10,
is given in §8.

For the reader only interested in the key parts of the proof, we recommend reading
§8§2.1 and 2.2 for the setup, §3.1 for the form of metric perturbations we need to
consider, and §3.2 for an explanation of the main features of the linearized problem;
taking the background estimate, Theorem 4.2 (which uses material from §2.4, and
whose proof roughly follows the steps outlined in §1.1.1), as a black box, the argument
formally concludes in §5. (Getting the actual nonlinear solution in §6 is then routine).

2 Compactification

As explained in §1.2, we shall find the metric g in Theorem 1.8 as a perturbation
of a background metric g,, which interpolates between mass m Schwarzschild in a
neighborhood {r > 1, |t| < 2r}of I 0U .7 and the Minkowski metric elsewhere. In
§2.1, we define such a metric g,, as a smooth scattering metric on a suitable partial
compactification "R* of R* to a manifold with boundary which is closely related to
the radial compactifications of asymptotically Minkowski spaces used in [13,14]. The
ideal boundaries 1°, .#*, and I'* are then the boundary hypersurfaces of a manifold
with corners obtained by blowing up ""IR* at the ‘light cone at infinity.” The spaces of
conormal and polyhomogeneous functions on this manifold are defined in §2.2.

Let us recall the notion of the scattering cotangent bundle S*T*X over an n-
dimensional manifold X with boundary 3 X. Over the interior X°, 7§, X := Ty, X
is the usual cotangent bundle. Near the boundary, let

p>0, y=u' . ...y Her! (2.1
denote local coordinates in which dX is given by p = 0; then the 1-forms Z—é’, ‘%j
(j =1,...,n—1)are a smooth local frame of **7* X, i.e. smooth scattering 1-forms

are precisely the linear combinations a(p, y)il)—’z’ +aj(p, y)% with a, a; smooth.

(Equivalently, we can use d(1/p) and d(y/ /p) as a smooth local frame). The point is
that, viewed from the perspective of X°, such 1-forms have a very specific behavior
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as one approaches 3 X. Tensor powers and their symmetric versions S* *T* X, k € N,
are defined in the usual manner; the dual bundle is denoted °T X and called scattering
tangent bundle. In the case that 0X =Y x Z and X = [0, 1), x 90X are products,
so T*Y C T*X is a well-defined subbundle, then the rescaling p~!T*Y C *T*X,
spanned by covectors of the form p~'n, n € T*Y, is a smooth subbundle.

To give an example, calculations similar to the ones prior to Theorem 1.8 show that
the differentials of the standard coordinates on R” extend to the radial compactification
R” as smooth scattering 1-forms; they are in fact a basis of SCT*@, and any metric
on R” with constant coefficients, such as the Minkowski or Euclidean metric, is a
scattering metric, i.e. an element of C® (R"; §2 ST*R").

The b-cotangent bundle ®T*X is locally spanned by the 1-forms ‘%p, dyl (j =

1,...,n — 1); its dual is the b-tangent bundle brx, spanned locally by pd, and ayj
The space V,(X) of b-vector fields on X, consisting of those vector fields V on X
which are tangent to 9 X, is then canonically identified with C*° (X T X). A b-metric
is a nondegenerate section of S> T X. The space Diff{‘) (X) of b-differential operators
of degree k consists of finite sums of k-fold products of b-vector fields. Fixing a
collar neighborhood [0, €), x 90X and choosing local coordinates yj on 0 X as before,
the normal operator of an operator L € Diff’g(X ) given in the coordinates (2.1) by
L= Zj+|a\§k ajoe(p, y)(pDy)’ D;‘ is defined by freezing coefficients at p = 0,

N(L) := Z ajq (0, y)(pr)ng € Diff]g([o, 00), x 0X). 2.2)
JHlal<k

This depends on the choice of collar neighborhood only through the choice of normal
vector field 9,5 x; see [85, §4 15] for an invariant description. The Mellin-transformed
normal operator family L(a) o € C, is the conjugatlon of N (L) by the Mellin
transform in p; thus, in view of p~ "’pD (p'°) = op'®, one obtains L(U) by formally
replacing pD, by o

Le)= Y aja0.y)o’/DS.
J+la|<k

This is a holomorphic family of elements of Diff*(d X). Analogous constructions can
be performed for b-operators acting on vector bundles.

2.1 Analytic structure

Fix the mass m € R; for now, m does not have to be small. The Schwarzschild metric,
written in polar coordinates on R x R3, takes the form

g,i ={- 27’”)d12 —(1- 27’")’1dr2 B r2g
= (1= 3)ds” +2dsdr —r’g, 2.3)
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where ¢ denotes the round metric on S?, and where we let
Si=1t—ry, Fy:=r+2mlog(r —2m), 2.4)
s0 dry = ;=5-dr. Note that level sets of s are radial outgoing null cones. Define
p = r_l, vi= r_l(t —r — x(t/r)2mlog(r — 2m)), 2.5)
where x(x) =1, x < 2,and x(x) =0, x > 3. Let then
C1:=10,€0)p x (—1,5), x S2, (2.6)

where we shrink €p > 0 so that ¢ is well-defined and depends smoothly on p >
0 and v, via the implicit function theorem applied to (2.5). This will provide the
compactification near the future light cone (and part of spatial infinity). Near future
infinity, we use standard coordinates (¢, x) € R x R3 on R?*; define

ph=1"1 X =x/l, 2.7)

and put
Cr =10, €0),, x {X e R?: |X| < }. (2.8)

For €g > 0small enough, we can consider the interiors C7, C5 as smooth submanifolds
of R* using the identifications (2.5) and (2.7). (Note in particular that the smooth
structures agree with the induced smooth structure of R*). Let us consider the transition
map between C7 and C3 in more detail: in C{ N C3 and for ¢+~! small enough, we have
x(t—r)=0and 7 > %, so the map

P X) > (p=p,/IXI, v=1XI"" =1, ® = X/|X]) (2.9)
extends smoothly (with smooth inverse) to ,o; = (. We then let
RY:= (R*UCIUG)/ ~

where ~ identifies C; and C, with subsets of R* as above, and the boundary points
of C1 and C are identified using the map (2.9). This is thus a smooth manifold with

boundary,?* though both R* and R = (0Cy U dC3)/ ~ are noncompact. In other
words, R? is only a compactification of the region v > _ZT' See Figure 7.

The scattering cotangent bundle of R4 near the light cone at infinity has a smooth
partial trivialization ¢ Ta@ = (dr) ® (d(v/p)) ® p~ ' T*S?, thus if ¥ is a smooth
function with ¥ (v) = 1 for v < 1 and ¥ (v) = 0 for v > 2, then

gm1 = (1 — 24 (v/p)* +2d(v/p) dr — r’g € CP(Cy; S**TE RY). (2.10)

24 Different choices of x produce the same topological space, indeed C% manifold (¢ < 1); on the other
hand, the smooth structure at the boundary does depend on yx, but only in the gluing region C; N Cy. All
resulting smooth structures work equally well.
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Fig.7 The partial
compactification R% of R%,
constructed from ]R4, Cy,and
C5. Also shown is the
hypersurface ¥ from (2.15)

R4

In v > 3 and for €9 > 0 small enough, we simply have g, 1 = dr* — dr? — rzg,
which is thus equal to

gm2 1= d(1/pl)% — d(X/p})* € C®(Ca: S**T¢,RY)

on the overlap C; N Cy. Thus, we can glue g, 1 and g, 2 together to define a Lorentzian
scattering metric g, on C; U Cp. We extend g, to a global metric:

Definition 2.1 Fix ¢ € COO(@) such that supp¢ C Cy U C», and so that ¢ = 1 near
dR*. With g, as above, we then define

gm = Fn + (1 — 9)(dr* — dx?) € CRY; S2XT*RY), (211

thus gluing g, to the Minkowski metric away from C; U Cj.

By construction, g, is equal to the Minkowski metric in a compact region of R*
as well as in a closed subcone of the interior of the future light cone, which we glue
together with the Schwarzschild metric near spacelike and null infinity.

Next, denote the light cone at future infinity by

St:={p=0, v=0} C IR* (2.12)
and let
M = [R% 5]
denote the blow-up of R* at ST, see Figure 8. That is, as a set,
M = R\ ST)u(l-7/2, /2l x SB),

which can be endowed with the structure of a smooth (noncompact) manifold with
corners by writing it as

M = ((@\ SHYU ([0, 1), x [=7/2, 7/2]5 x Si)) / ~,
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I+
ST ST

ORT

Fig. 8 Left: the partial compactification R4 and its light cone at infinity ST. Right: the blow-up M’ =
[R%; 5+1 2 R, with front face #+ (null infinity) and side faces 19 (spatial infinity), I (future timelike
infinity)

where we identify a point in R* with coordinates (p, v, ®), (0, v) # (0, 0), with the
point (p; = v/ p? + v2, o = arctan(v/p), ®). The map

B: M — R4, (2.13)

equal to the identity map away from ST, and given by B(p;,0,0) = (0 =
prcoso, v = pysino, w), is called the blow-down map. Note that g is a local dif-
feomorphism away from S, but is not injective at the front face

(R $T1) := p; ' (0)

of the blow-up. The point of doing this blow-up is that curves tending to ST but at
different angles o have distinct limiting points on the front face. Concretely, s =
tan(o) = v/p = t — ry is an affine parameter on the fibers B~ (p), p € ST, of the
blow-down map, so B~ (S7) is the set of all endpoints of future-directed outgoing
radial null-geodesics of mass m Schwarzschild, and radial null-geodesics with different
t — ry are separated all the way up to B~ (ST). It is thus natural to define:

Definition 2.2 Nullinfinity .# T is defined as the front face of the blowup of ST C R4,
It = f([R%; SH)).

The side faces of the blow-up are the connected components of the lift of the original
boundary hypersurface dR#, i.e. of the closure of the preimage of dR* \ ST under 8.
In the present situation, there are two side faces:

Definition 2.3 The future temporal face is

I = =1((BC2N IR U {v > 0}),

whose image B(/™) is a closed 3-ball with boundary S*. The spatial face (more
precisely: the part of it that we chose to include in the compactification R?) is defined
by

10:= g=1(6R* N {v < 0}).
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Using B, one can pull back natural vector bundles on R* to M’ ; for instance,
the pullback B*g,,, which we simply denote by g,, for brevity, is an element of
C®(M'; B*S? SCT*@) (and constant along the fibers of ).

Let pg = r~! for [lv+1] < % andr > R, R > 1, and extend it to a smooth positive
function on all of R*. Denote then by 1, the smooth function

ty = po(t —2mxo(r) log(r — 2m)), (2.14)

defined for |7|/(r) < %, where xo = 0 forr < R and xo = 1 for r > 2R; this extends
the function v + 1 smoothly into the interior R4, and dty is timelike on

2 =1, ' (0). (2.15)

(The main point of this construction is to write the initial hypersurface ¥ in a non-
degenerate way, i.e. as the zero set of a function whose differential does not vanish
anywhere on it). Note that the function py is, in a neighborhood of X, a boundary
defining function of I°; below, we shall use different boundary defining functions
adapted to our needs, but keep the same notation. See also Remark 2.6.

We restrict our analysis from now on to the following smooth manifold with corners:

Definition 2.4 The compact manifold with corners M is defined by
M =M 0ty =01U{r > 1(r)}).

One should think of this as (the compactification of) the causal future of X; and
this is indeed what it is if we endow M ° with the Minkowski metric.

We regard the boundary ¥ C M as ‘artificial,” i.e. incomplete, from the point
of view of b-analysis; recall Figure 1; abusing notation slightly, we shall denote the
part 19 N M of spatial infinity contained in M again by I°. We denote by po, p1,
and p, € C°(M) defining functions of 1, .#*, and I'", respectively; we further let
p € C*°(M) denote a total boundary defining function, e.g. p = pop;p+. Defining
functions are well-defined up to multiplication by smooth positive functions. We shall
often make concrete choices to simplify local calculations; by a local defining function
of 1°, say, on some open subset U C M we then mean a function py € C*°(U) so that
for any K € U, po|g can be extended to a globally defined defining function of 7°.
We remark that pg|y € C*°(X) is a defining function of 9 X within X.

Remark 2.5 The causal character (spacelike, null, timelike) of level sets of py, i.e. of
d pg, depends on the particular choice of pg. On the other hand, the vector field pd,,,
defined using any local coordinate system, is well-defined as an element of T} M,
and thus so is its causal character at /% with respect to the b-metric p2g,,: it is the
scaling vector field at infinity, see the discussion after equation (1.13), and spacelike
away from the corner 10 N .7+ Likewise, p+0,, is the scaling vector field at I,
which is timelike.

Let us relate ¥ to the radial compactification R3 of Euclidean 3-space; recall that
the latter is defined using polar coordinates (r, ) € (0, 00) x S? on R3 as the closed
3-ball
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R3 = (R U ([0, 00)py x §))/ ~, where (r, ®) ~ (po, ), po=r"", r > 0.

Consider themap t: R3 3 x = (r, ) = 2my (r)log(r —2m), x) € £° C R, x R3,
which is the projection along the flow of 9;. Expressed near aR3, i.e. for small 005
this takes the form ((pg, ) = (p, v, w) for p = pg and v = —1; thus, ¢ extends to a
diffeomorphism

Y =~ R3. (2.16)

Whenever necessary, we shall make the mass parameter m in these constructions
explicit by writing

mR_4’ mM/’ mypomy;, mtb’ mIO’ my—}—’ mI+’ mﬂ’ mp’ etc. (2.17)

—1
| —

In particular, OR? is the radial compactification of R* with the closed subset {|¢
0, t/r < —%} of the boundary removed; note here that on their respective domains

of definition, »~! and |¢|~! are indeed local boundary defining functions of OR4,
Moreover, the metric g, for m = 0 is equal to the Minkowski metric g ‘We shall

explore the relationships between mR4 etc. for different values of m in §2.3.

Remark 2.6 For m = 0, it is easy to write down global expressions for boundary
defining functions in ¢ > %|r|, for instance (using notation similar to [74])

Yp0=(+g)7". “pr=1""0+q)0+qy). "oy =U+qp7" Co=17"

(2.18)
here ¢4 = ¢4+(t — (r)) and g— = ¢+ ((r) — t), where ¢ (x) is a smooth function,
¢+ (x) =xforx > 1,and ¢4 (x) = 0, x < 0. One can write down similar expressions
for general m by using r, instead of r near .#+ U I°, and inserting suitable partitions
of unity to obtain expressions which are globally smooth. While expressions such
as (2.18) offer a quick way to relate bounds by (°p0)®(°p;)? (°p, )%+ into bounds
in terms of standard coordinates on R*, they are of course cumbersome to work with
if one used them as parts of local coordinate systems on M. Furthermore, since we
fixed a smooth structure of "*M, boundary defining functions on M are well-defined
up to multiplication by smooth, positive functions with smooth, positive reciprocals;
therefore, decay rates, such as ag, ay, a; above, with respect to one particular set of
choices of boundary defining functions of "M are the same as for any other set of
choices on the same manifold M. The advantage of defining "M is then that one
can work with any convenient choices of (local) boundary defining functions for any
particular local coordinate calculation or estimate for a PDE on M, and the decay
rates in such an estimate, when expressed in terms of one’s chosen defining functions,
make invariant sense.

Working on mR4, the following coordinates are convenient for performing calcu-
lations near the light cone at infinity ST:

Definition 2.7 We define the coordinates ¢ = x” and s = x! as follows:

1

q::xO::t—i—r*, SI=X =1 —Ty.
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Their level sets are null hypersurfaces for the mass m Schwarzschild metric. Using
dg =ds + 2dr, and (2.4),

CT*RY = (dq) @ (ds) ® r T*S? (2.19)

therefore defines a smooth partial trivialization near ST recall that p = r~! there.
Similarly,

B=00=0 =10 +3,), 0 =0 =20 =5 —d,)

are smooth scattering vector fields on R4, and together with 7~ T'S?, they give a smooth
partial trivialization of % TR? near §.25 Letting x4, a = 2, 3, denote local coordinates
on S%, we will denote spherical indices by early alphabet Latin letters a, b, ¢, d, e, and
general indices ranging from O to 3 by Greek letters. The components of a section @
of S*T*R% in the splitting (2.19) are denoted with barred indices:

wy = w(dy), i :=w(d), wz:=w(pd,) = rila)(aa). (2.20)
Thus, the components of a tensor with respect to this splitting have size comparable
to the components in the coordinate basis of T*R*. The splitting (2.19) induces the
splitting
S2CT*RA = (dg?) @ (2dq ds) & (2dq ®, r T*S?)
® (ds?) ® (2ds ®, r T*S?) & r? S>T*S?, (2.21)

as well as the dual splittings of the dual bundles 5 TR* and 52 °TR*. We will occa-
sionally use the further splitting

SPTS? = (g @ (9 (2.22)
For calculations of geometric quantities associated with the metric, the bundle
splittings induced by the coordinates ¢, s, x2, %3 ie.
T*R* = (dq) @ (ds) & T*S?,
S’T*R* = (dg?) ® (2dq ds) ® 2dg ®; T*S?)
® (ds?) ® (2ds @ T*S?) & S>T*S?, (2.23)
are more convenient. Components are denoted without bars, that is, for a 1-form w

and for u = 0, 1, we have o, := w(9,) = wj, while we let w, := w(d;) = rwg. In
short, we have

wp =1 W, sy, ..., pwy) = #h w € 2,3}, (2.24)

likewise for tensors of higher rank.

25 On the other hand, +~1is not smooth on m@ for m # 0; see Lemma 2.8 below.
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On the resolved space M, the null derivatives dp, d; can be computed as follows:
near 19N #%, we can take

po=—p/v="(ri =), pr=—v=(re—0)/r, p=popr=r""; (2.25)

then
30 = =5 pop1(1 = 2mp)pid,,
01 = po(p0dpy — (1 = 3p1(1 = 2mp))prdp, ), (2.26)
and dually
d d d
pdq = —1%— (22 + 92L) 4 p 40 s = p o0, (2.27)

A similar calculation near I N .# 7 yields

do = fopoprp+ - prdp;, 01 € pop+ Vo (M), (2.28)

for some fy € C*°(M), fo > 0, depending on the choices of boundary defining
functions.

2.2 Function spaces

We first recall the notion of b-Sobolev spaces on R'j_’d =[O0, oo)ff X R’yl_d: first, we
set HOR™Y") = L2R:Y) = L2RYY, |%’ ...%ddyb; for k € N then, HX(R:?)
consists of all u € L% such that V... Vju € L% for all 0 < j < k, where each V; is
equal to either x”9yp or dy¢ for some p =1,...,d,q =1,...,n — d. For general
s € R, one defines H (R’i’d) by interpolation and duality. One can define b-Sobolev
spaces on compact manifolds with corners by localization and using local coordinate
charts; we give an invariant description momentarily. Note that the logarithmic change
of coordinates 1/ := —long ,J = 1,...,d, induces an isometric isomorphism
Hy (R’jr’d) = H*®(R") with the standard Sobolev space on R".

Now on M’, fix any smooth b-density, i.e. in local coordinates as above a smooth
positive multiple of | dxill e %dd y|, then the space L%(M ") with respect to this density
is well-defined; the space L%(M ) of restrictions of elements u € L%(M/ ) to M is
similarly well-defined, and since M is compact, any two choices of b-densities on M’
yield equivalent norms on L%(M ). More generally, if by, by, by € R are weights, we
define the weighted L? space

by by b by by b —by —b; —b
po’of! P HY (M) = pg° of! pi Lg(M) = {u: py o7 pi" u € Ly(MD).

The b-Sobolev spaces of order k = 0, 1, 2, ... are defined using a finite collection of
vector fields ¥ C V,(M') such that at each point p € M, the collection ¥}, spans
prM , namely

@ Springer



2 Page40of 146 P.Hintz, A. Vasy

HEM) :={u e LiM): Vi...Viue LiM), 0<j <k, Voe ¥}

the norm on this space is the sum of the L%(M )-norms of u and its up to k-fold
derivatives along elements of 7. One defines pgo pf’ pfbﬁ H,f (M) and its norm corre-
spondingly. Note that the vector fields in ¥ are required to be tangent to 1%, .7+,
and 71, but not to ¥; thus, we measure standard Sobolev regularity near X, and b-
(conormal) regularity at / 0 7% and I't. (Thus, our space Ht’f (M) would be denoted
I-—I]f (M) in the notation of [56, Appendix B]). Due to the compactness of M, any two
choices of collections ¥ and boundary defining functions pg, p;, p+ give rise to the
same b-Sobolev space, up to equivalence of norms. (For instance, any other defining
function ,06 of 17 is related to po by ,06 = apg where 0 < a € C*°(M) (and thus by
compactness of M, C -1 < 4 < C for some C > 1); the equality of the weighted
spaces defined using po or p, is then a consequence of the fact that multiplication by
a®, or in fact by any smooth nonzero function on M with smooth reciprocal, is an
isomorphism on Htf (M)). The space H°(M) = (>4 Hé‘(M ) and its weighted ana-
logues have natural Fréchet space structures; we refer to their elements as conormal
functions. We shall also use function spaces with infinitely decaying weights, so for
instance

P HEM) = (1) py! HE(M), (2.29)

breR

as well as spaces of the form

b;—0 by —
oy THEWM) = () o) HE(M),

e>0

similarly for spaces with more weights.
Weighted b-Sobolev spaces of sections of vector bundles on M are defined using
local trivializations. We will in particular use the space

kibo,br,

1! kibo.by, by

b b by b

H(E) = H,™"""H (M5 E) = pg o)’ py Hy (M E), (230)

with E denoting the trivial bundle C := M x C — M, or E = ﬁ*SCT*@, or

E = B*S%T*R4. When the bundle E is clear from the context, we will simply write

Hé‘ bo.br 'b+. When estimating error terms, we will often use the inclusion
CO®Y) € C¥(M) € H® 000 = (M B e

e>0

For the last part of Theorem 1.1, we need to define the notion of polyhomogeneity
(or £-smoothness) and discuss its basic properties; see [84, §2A] and [87, §4.15] for
detailed accounts and proofs. An index set is a discrete subset £ C C x Ny such that

(. )eE = (. jHeEVj <) (2.31a)
(ze, jo) € &, lzel + je — 00 = Imzy - —00; (2.31b)
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(z,j) €€ = (z—1i,j) €&. 2.31¢)

We shall write
Imé <c <= Imz<c V(z,k) €€, (2.32)

likewise for the nonstrict inequality sign. Note that by condition (2.31b), every index
set £ has an upper bound Im £ < C for some C; more precisely, if £ is an index set
and C’ € R, then there are only finitely many points (z, k) € £ withImz > C’.

Let now X denote a compact manifold with boundary d X, and let p € C*°(X) be a
boundary defining function. The choice of a collar neighborhood [0, 1), x 9.X makes
the vector field pD, = %pap well-defined, and any two choices of collars give the
same vector field p D, modulo elements of pV},(X). Let £ be an index set. The space
Aghg (X) then consists of all u € p~* H*(X) = Uper pNHlfO(X) for which

]—[ (oD, — )u € pV HZ(X) forall N € R; (2.33)

(z.))e€
Imz>—-N

equivalently, there exist a(;, j) € C*(X), (z, j) € &, such that

u— Y pQogp)ac.j € p H®(X). (2.34)

(z.))e€
Imz>—N

(Condition (2.31c) ensures that this is independent of the choice of p D). In particular,
ue ,O_Im‘g_OHl;’o (X). When no confusion can arise, we write

(a,k) ={(a—in,j):neNy, 0<j <k}, a:=(a,0). (2.35)

For example, A;hig (X) = p?C°°(X). We also recall the notion of the extended union
of two index sets &1, &, defined by

EUE =6EUE U2 k)3 (2, jo) €&, k< i+ p+1},
so e.g. 0UO = (0, 1), as well as their sum
v+ & =1z, )): e, jo) €& z=21+22, ] = j1 + jaks
thus A%! (X) CAS (X) C A8 +52(X) For j € N and an index set £, we define
phg phg phg ) J ’

JEi=E1+ -+ &,

with j summands.

If X is a manifold with corners with embedded boundary hypersurfaces Hy, ..., Hy
to each of which is associated an index set &;, we define Agﬁ’g""s" (X) as the space of
allu € p~Hy®(X), with p € C*°(X) a total boundary defining function, such that
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for each 1 < i < k, there exist weights b; € R, j # i, such that, with p; € C*°(X)
denoting a defining function of H;,%°

1_[ (piDy; —2)u € ,oiN 1_[ p?’ HP°(X) near H;.
(z.))€E; J#i
Imz>—N
This is equivalent to # admitting an asymptotic expansion at each H; as in (2.34),
with each a(;, ;) polyhomogeneous with index set £; at each nonempty boundary
hypersurface H; N H; of H;.

We shall also need spaces encoding polyhomogeneous behavior at one hypersurface
but not others; for brevity, we only discuss this in the case of two boundary hypersur-
faces Hy, Hy: for an index set £ and o € R, Agﬁg’b consists of all u € p~° Hg* such
that

1—[ (p1Dp, — 2)u € p pYHY® near Hy, forall N € R;

(z,))€&;
Imz>—N

this is equivalent to u having an expansion at Hy with terms a; ;) € p5 H{°(Ha).

We briefly discuss nonlinear properties of b-Sobolev and polyhomogeneous spaces;
for brevity, we work on an n-dimensional compact manifold X with boundary 9 X,
and leave the statements of the obvious generalizations to the setting of manifolds
with corners to the reader. Thus, if s > n/2, then Hg (X) is a Banach algebra, and
more generally uy - uy € p“'*‘”Hg(X) ifu; e pYHj(X), j = 1,2. Regarding
the interaction with polyhomogeneous spaces, if £ is an index set, then Aghg(X ) -
P HS(X) C p* °Hy(X) for all a,s € R when e > Im¢&; in the case that £ =
(ap, 0) U & withIm &’ < Im ag, we may take e = Im ag. One can also take inverses,
to the effect thatu /(1—v) € Hy (X) providedu, v € Hj(X),s > n/2,andv < C < 1,
which follows readily from the corresponding results on R”, see e.g. [102, §13.10],
by a logarithmic change of coordinates.

For comparisons with the Minkowski metric, we study the regularity properties of

=1 on "R*. Define the index set

Elog = {(=ik, j): k € No, 0 < j <k}, g i= Eiog \ {(0, 0)}. (2.36)

Lemma 2.8 Letting U = {t > %r} C m@, we have

- Erog - -
mhep Ae(U) CpC¥W) + o W) € p TUHE W), (237)

andt~'/p € C*®(U N 8@) is everywhere nonzero.

Definition 2.9 We define p; € C_Oo(’”R_“) to be any boundary defining function satis-
fying p;/p =t~ /p at U N 9" R4,

26 As before, the vector fields pi Dp; , defined using a collar neighborhood of H;, are in fact well-defined
modulo p; Vy (X), which is all that matters in this definition.
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By Lemma 2.8, this fixes p; in U modulo pZC"O(mR_“); away from U, p; is merely
well-defined modulo p C®("R#).

Proof of Lemma 2.8 Using the notation of §2.1, we have 1 e C°°(C,). Thus, it
suffices to work in C; N{v > — % }, where we can take p = r~!; we then need to prove
fi=pte Agﬁ’; and f| oRE 0 there, which implies the claim about = /p = 1/ f
as A;]fgg is closed under multiplication. Note that f € C®(R%), and f > Let
F(x) = x(x~1 € C*®((0, 00); [0, 1]) in the notation (2.5), so ¥ (x) = 0, x < L, and
xx)=1,x> %,then

W= =

f=1 +v—2mp)2(f)(log,o—log(1 —2m,o)). (2.38)

Note that near p = 0, f = p~ 't~ is the unique positive function satisfying this
equation: indeed, if f” is another such function, then | f — f'| < (plogp)|f — f'I.
At p =0, we have f = 1 + v. Thus, let k > 2 be an integer, and consider the map

T: f s —2mp(log p — log(1 — 2mp) (1 + v + f)

on pl—SHéC([O’ €)p X (—1/2,5)y), where § € (0, 1) is fixed. Now

U7 =T s e < Cellplog p = plog(l = 2mp)l el Xl | f = Fll s g

choosing € > 0 sufficiently small, the first norm on the right can be made arbitrarily
small. By the contraction mapping principle, this gives f — 1 —v € p!™% H® since
k was arbitrary. We can now improve the remainder term by plugging this into (2.38),
which gives

fF=@0+v=2mx+v)(plogp — plog(l —2mp))) € pz_‘SHg’o,

so f € A;]E +p2 H{*. Using that x o (-) maps Ai:g into itself, as follows from the
testing definition (2.33), the desired conclusion follows from an iterative argument. O

2.3 Relationships between different compactifications

The only difference between the compactifications ”"IR* for different values of m is the
manner in which a smooth collar neighborhood of 8”R# is glued together with R*.
Since this difference is small due to the logarithmic correction in (2.5) being only of
sizer ™! log r, different compactifications are closely related; see also [14, §7]. Indeed:

Lemma 2.10 The identity map R* — R* induces a homeomorphism ¢ : mR4 _, OR4,
which in fact is a polyhomogeneous diffeomorphism with index set E\og; that is, in
smooth local coordinate systems near 3" R* and 3°R?, the components of both ¢ and

glog

¢~ are real-valued functions on [0, 00) x R3 of class Aphg. Moreover, ¢ induces a
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smooth diffeomorphism 3"R* = 8R4, which restricts to ™ B("I1) = 98C1), and
also induces a smooth diffeomorphism ™I+t = 0+,

Proof We have Afllfgg C C*® + p!9H C C° so it suffices to prove the polyho-
mogeneity statement. Defining the smooth coordinates p and v as in (2.5), and the
corresponding smooth coordinates °p = r~! and “v = r~!(r — r) on “R#, we then
observe that °p = p, while in the notation of equation (2.38), we established that

& — . . . . .
14+% = f e Ap}lﬁgg on R4, giving the desired conclusion for ¢. For qb’], we write

v =% — =Ly (t/r)2m log(r — 2m) and note that t /r € C*(°R%). For the last claim,
we observe that o
v="% at9"R? (2.39)

under the identification with 3°R# given by ¢. This also shows that the sets " (" I 1) =
{v=>0}and °8(°I") = (v > 0} are diffeomorphic. On "M, resp. OM then, v, resp.
0y, are local defining functions of the boundaries 3" 1 +, resp. 9971t hence by (2.39),
the identification ” I = 97 in the interior of I indeed extends smoothly to its
boundary. O

In a similar vein, the scattering (co)tangent bundles can be naturally identified over
the boundary:

Lemma 2.11 The identity map T*R* — T*R* extends by continuity to a continuous
bundle map **T* ™R* — ST*OR4* which restricts to a smooth bundle isomorphism
over the boundary.

Proof Since away from r = 0, (d(r—')) and r T*S? are smooth subbundles of
sepxmR4 for any m, it suffices to show that d(t’l), which is a smooth section
of s¢T* 0@, extends by continuity from R* to 3™R* and restricts to a smooth
section of SCTB*m@mR_“. By Lemma 2.8, we have r = ,o’lf, f € Alf}lfgg,
dt = fd(p~") + p~ldf; but flynga is smooth indeed, while in a local product

neighborhood [0, 1), x R}, of a point in 3"R*, p~'df = (pd, f)‘;—‘; + (dx f)dTX

SO

restricts to the smooth scattering 1-form (dx f )dTX on 9" R4, O

Letus discuss this on the level of function spaces. The map ¢ in Lemma 2.10 induces

c® (m@) - Aglog

phe (OR#) and vice versa. Moreover, it induces an isomorphism

(" P) Hy 1o ("RY) = ) Hy 1. ORY), 5, €R, (2.40)

glog
as follows from ¢ € Aphg.

blown-up spaces "M, the failure happening at "™.# T; there, let us use

The corresponding statement is not quite true on the

m

p="p=r"1 "v="%—2mp)log(®p)"" —2m), v =r""(t —r).
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Now, the b-tangent bundle on °M is spanned near °.#* by spherical derivatives,

Opdo, € pam,,+Aphg Iy, “vdo, € (u+Ap;;’gg)amv,

and Opaou = ""pdmy; due to the logarithmic loss at Zt. we thus only have
(" p0)™ (" o) (" p1) " H 10 ("M € C o) Cpp)? =€ 0 p ) H 1. OM)

for all € > 0, but the inclusion fails for ¢ = 0. That is, conormal function spaces are
the same on "M and °M up to an arbitrarily small loss in the weight at .#+.

Polyhomogeneous spaces on "R* for different values of m are related in a simple
manner: if £ C C x Ny is an index set and Eog is given by (2.36), then ¢ induces
inclusions

(mR4) N A5+€log (OR4) Ag (0R4) N A8+510g (m

phg R%); (2.41)
this is only nontrivial where the two compactifications differ, i.e. away from r = 0,
i.e. where we can use r~! as a boundary function for both R4 and "R#4. Considering
asingle term r ~**(log r)k f(", w),withw € S? and f smooth, in the expansion of an
element of Aghg(’”]R“), the first inclusion in (2.41) follows from f o ¢ € Aﬁﬁ’gg (ORY),
which in turn can be seen by Taylor expanding f (*v —2m(°p) log((®p)~! —2m), w)
in the first argument around *v. The proof of the second inclusion is similar. See [14,
Proposition 7.8] for an alternative argument.

Polyhomogeneity on different spaces "M on the other hand is much less well-
behaved: for instance, a function u € C°° (™M) compactly supported near a point in
"I, m > 0,s0u € AQ) -0, m('”M ), is not polyhomogeneous on Op1: it vanishes near

7 ty° and O11)°, but is nontrivial at the corner 2.7+ N 01+,

2.4 Bundles and connections near null infinity

In the energy estimate (1.19) for the toy problem (1.18), derivatives of u along vector
fields tangent to the fibers of B: #+ — ST are better controlled than general b-

derivatives. In this section, we introduce analytic structures on the blow-up M of R*
capturing this in an invariant manner.

Definition 2.12 For vector bundles E; — @, j=1,2,let

Mg+, prE, C Diffy (M; B*E1, B*E2)
denote the C°°(M)-module of all first order b-differential operators A which satisfy
the following condition near #*: if E J=UX Cki, Jj = 1,2, 1is alocal trivialization

of E;, withid C R4a neighborhood of ST, see (2.12), and we pull these trivializations
back to B*E; = /3_1(1/{) x CKi then A = V + f, where V is a ko X ki matrix of
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vector fields V;; € V(M) which are tangent to the fibers of 8, and f € C®(M)kaxkr,
Let moreover

0
Mg+, pE, C MpE, p*E;

denote the submodule for which f| #+ =0

Forasingle vectorbundle E — R*, we write @ Mg+ := © Mg+ g+p. Whenever
the bundle E is clear from the context, we shall simply write @M = @ A p*E. For
k € N, we write M* C Diff{‘) for sums of k-fold products of elements of M.

It is easy to check that the definition of M g«g, g«g, is independent of the choice
of local trivializations; for M, this is true as well, since vector fields tangent to the
fibers of B annihilate the matrices for changes of frames of E| and E> which lift to be
constant along the fibers of 8. We make some elementary observations:

Lemma 2.13 We have:

(1) p1Diffy(M; B*E) C "Mpeg C Mpg;

(2) if A, B € Mg+g, and A has a scalar principal symbol, then [A, B] € Mg+g.
Strengthening the assumption to A, B € OM,S*E, we have [A, B] € OM/S*E,'

(3) there is a well-defined map

Mg oA A®Id € "Mgeg/p; C°(M; End(B*E)).

Proof (1) and (2) are clear from the definition. The map in (3) is given in a local
trivialization E = U x C¥ of E near ST as A - Idgxy € Diffllj(M )ka ; the transition
function between two different trivializations is given by C € C®WU; C**¥), which
pulls back to M to be constant along the fibers of 8; but then C (A - Idgx)C — (A -
Idisx) = CLA(C) € C°(M; Ck<Ky, with A acting component-wise, vanishes on
#* by definition of Mc. i

In local coordinates [0, €p)y, x [0, €9)p, X R§2x3 near 1N .7+ asin (1.17), with
R? alocal coordinate patch on S?, elements of M are linear combinations of pyd,,
p19p;,and pjdya,a = 2, 3, plus smooth functions. We thus see that (O)Mg is generated
over C®°(M) by (p;)C°° (M) and lifts of elements V € V, (@) which vanish at ST
as incomplete vector fields, i.e. V|g+ =0 € TS+R_4. (This should be compared to the

larger space V, (M), which is generated by lifts of elements V € 1}, (@) which are
merely tangent to S ). Note that by (2.28), we have

p~%, py'pior € "Mc; (2.42)
for a fixed choice of p, the operators p~!'3y and d; acting on sections of any bundle
B*E are therefore well-defined, modulo p; C* and pgp;p+C* valued in End(8*E),

respectively.
The modules defined above are closely related to a natural subbundle of °7 s+ M:
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Definition 2.14 Denote by
ﬁTj+M - bTy+M

the rank 2 subbundle generated by all V € T -+ M which are tangent to the fibers of 8,
see (2.13), and let #T M be any smooth rank 2 extension of # T+ M to a neighborhood
of .# 7. Let then

FTM): = {0 e T*M: «(V) =0forall V e P TM} c °T*M

denote the annihilator of P T M in °T*M.

Near 19 N .7+, we can for instance take #TM C PT M to be the subbundle whose
fibers are spanned by p;9,, and ppd,,.

Remark 2.15 Another equivalent characterization of M is that the principal symbols
of its elements vanish on (T g+ M ). We also note that for p € 7T, there is a natural
isomorphism

FTM),; = ThnS™. (2.43)

Indeed, given V € prM , note that B,V € st+@ is tangent to ST, hence has
a well-defined image in 7,S*; and V € ’3TpM is precisely the condition that this
image be 0. Thus, the isomorphism (2.43) is obtained by mapping n € Tg( » St to

°T,M >V > n(B:V).

Using this subbundle, we have
Mc =C®(M; PTM + p/°T M) + C®(M) C Diff (M),
where we write
COM;PTM + p°TM) :=C®(M; PTM) + p; C°(M;°TM). (2.44)

Note here that the sum of the first two spaces on the right is globally well-defined
on M even though we only defined #7M in a neighborhood of .#*: this is due
to PTM  PTM. The general modules Mp+g, p+E, have a completely analogous
description obtained by tensoring the bundles with Hom(B8*E, B*E>).

We next prove some lemmas allowing us to phrase energy estimates for bundle-
valued waves invariantly.

Lemma2.16 Let E — R* be a vector bundle, and let d® e Diﬁ‘1 (@; E, T*R* R FE)
be a connection. Then d¥ induces a b-connection, i.e. a differential operator

d® e Diffy(M; B*E,"T*M ® B*E), (2.45)
on B*E — M. If dE is another connection on E, then, with notation analogous to

(2.44),
df —df e C®(M; (PTM)* + p,°T*M) ® End(B*E)). (2.46)
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Proof Fix a local frame ¢’ of E, then for u; € C®°(M) C (foo(@), we have
dE(uiei) =du; ® e+ Uj dfeé'.

Now the map u; +> du; extends to M as the map u; > bdu;, with °d €
D1ff1(M C,PT*M); and f! := dFeé! € C®(R% T*R* ® E) canonically induces
B*f1 € C®(M:"T*M ® B*E) by B* f1(V) = f1(B.V), V € "T M. Therefore, the

expression dE(u, B*e') =Pdu; @ prel +u; - p*f1 proves (2.45).
Letting f* := dFe', we have (df — df)(u; - B*e') = u; - (B*f1 — B*f1). But
ﬂTﬁM C ker B, so the bundle map dE —dE annihilates T M at J T, giving (2.46).
O

Lemma 2.17 In the notation of Lemma 2.16, suppose E is equipped with a fiber metric
(-, )E, and let

K € C®(M; (S*PTM + p; S*’TM) ® End(B*E)). (2.47)

Moreover, let B € C*°(M,; Hom(bTM, bT*M)) denote a fiber metric on YT M. Then,
acting on sections of B*E, we have

@*)*BKdF — (d¥)*BKd® € piDiff,(M; B*E), (2.48)

where we take adjoints with respect to the fiber metrics on *T M and E, and any fixed
b-density on M. Moreover, if (dF)" denotes the adjoint with respect to another fiber
metric on E, then (d€)'BKdE — (dE)*BKd* € p;Diffi (M; B*E).

Note that for K as in (2.47) with both the S2#TM and the ST M summands
positive definite, and adding weights, the pairing ((d¥)*BKd*u, u) provides the
control on fiber-tangential derivatives of u as in the toy model (1.19), but is weaker by
,0} /2 for general b-derivatives; we will take care of this in Definition 4.1. The space in
(2.48) will be weak enough to be treated as an error term (similar to the Diffy, spaces
arising as error terms in Lemma 3.8 below).

Proof of Lemma 2.17 We write the left hand side of (2.48) as
dE*BK dF —df) + d* —d*)*BKd*,

with one summand being the adjoint of the other. Now, (d£)*B € Difftl)(M PTM®
B*E, B*E), while Lemma 2.16 implies

K(df —dFf) e p; C®(M;°TM Q End(B*E)).
This proves (2.48). (Alternatively, one can analyze the second summand directly,
using that over p € M, ((df —dE)*(B(V)®e), e')g = (e, (dF —dF)(V ®e))E for

Ve prM ,e,el € E 8(p))- For the second part, note that the two adjoints are related
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via (dE)t = C~1(dE)*C for some C € C®(R*: End(E)), hence df := (dE)'* =
dE + C*[dE, (C~1)*] is a connection on E, and therefore

(@5 — @By BKdF = (d* — d¥)*BKdF e p/Diff\(M; *E)
by what we already proved. O

Lemma 2.18 Equip E — R* with a fiber metric and fix a b-density on R4, Then for
principally scalar W € "M g*E>» With principal symbol equal to that of the real vector
field Wy € Vp(M), we have W + W* € —div W| + p; C*°(M; End(B*E)).

Proof In a local trivialization on E, we have W = W; ® 1 + Wy, Wy €
p1 C°(M; End(B*E)), while the fiber inner product k on E is related to tfie stan-
dard Euclidean fiber inner product & in the trivialization by k(e, ¢') = k(Ce, C¢’) for
some C smooth on R*, hence fiber constant on M. Denoting adjoints with respect to
k by T, and letting C := C*C, we thus have

W+ W= (W ®1+C W @ 1)C) + (Wo + W)
€ —(divW)®1+CT' W ®&1,Cl+pC,

with the second term also lying in p; C*° since C is fiber-constant. O

3 Gauge-fixed Einstein equation

As motivated in §1.2, we work in the wave map gauge with respect to the background
metric g, constructed in §2.1, since we expect the solution g of the initial value
problem (1.4) for the Einstein vacuum equation with initial data asymptotic to mass
m Schwarzschild to be well-behaved on the space "M . The gauge condition reads

(g gm)y = (88 8eGegm)u = w8 (T ()Y, — Tlgm)’y) =0, (3.1

where we recall the notation Gg = 1 — %g trg, and (84u),, = —uy,,.". For brevity, we
shall write

T(g) =7T(g: &n),

when the background metric g, is clear from the context. A simple calculation shows
thatifh € Hyo ™ “ 7“7 ("M), € > 0 small, is a metric perturbation, and g = g, + ph,
then the gauge condition Y (g; g,,) = O implies that the d;-derivatives of the good
components hoo, hyj, and tth = g”bha-,; decay towards .# . (See equation (A.5)
for this calculation for i with special structure). A key ingredient of our iteration
scheme is therefore constraint damping, which ensures that the gauge condition, or,
more directly, the improved decay of the good components at .# T, is satisfied to
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leading order for each iterate 1. We implement constraint damping by considering the
gauge-fixed Einstein operator

P(h) := p > Po(gm + ph).  Po(g) := Ric(g) — 5*Y(g: gm) (3.2)

where on 1-forms u

d
§u =8y u— 2)/% Qs u + y(Lpt—lvgmp,u)gm (3.3)
is a modification of the symmetric gradient 8;,"m by a 0-th order term; here p; is fixed
according to Definition 2.9. We discuss the effect of this modification in §3.3, see in
particular (3.26a). From now on, the mass parameter m will be fixed and dropped from
the notation whenever convenient.

3.1 Form of metric perturbations

One can easily establish the existence of a solution of (1.4) near / O\ (19N 7t) for
normalized initial data (see Theorem 1.8) which lie merely in pé/ 2+0H§°; this is due
to nonlinear interactions being weak at / 0. which in turn can ultimately be traced back
to the null derivatives (2.28) coming with extra factors of p0.27 However, we will use
(and prove) the existence of leading terms of the perturbation  of g = g, + ph at
# T as discussed around (1.18), this requires the initial data to be decaying to mass
m Schwarzschild data. At I however, weak control, i.e. i € ,oJ:l/ 2+0 Hb°° away from
#+, suffices due to the nonlinear interactions being as weak there as they are at 1°.
(The decay of our initial data does imply the existence of a leading term at I, see §7).
Motivated by this and the discussion of constraint damping above, and recalling the
notation (2.30) and the bundle splittings (2.19) and (2.21), we will seek the solution

h of P(h) = 0 in the function space Xk:bo.br.by.by

Definition 3.1 Let k € Ny U {00}, and fix weights?®
—1 <by <0 <b; <b) <min(4, bo);

let further x € C°°(M) be identically 1 near .# ™, with support in a small neighborhood
of .#* where the bundle splitting (2.19) is defined; different choices of x will produce
the same function space, as we shall discuss below. The space X*¥:20-21-b1-b+ consists

of all b € HY ™17+ (b p*$? 5T*RA) such that

27 This is related to the solvability of semilinear equations with initial data or forcing terms which are
mildly growing at spatial infinity, see [58, Theorem 5.14], where one can take the weight / < —1/2 in
certain circumstances. This is also the level of decay for which Bieri [16] establishes the global stability of
Minkowski space.

28 The imposed upper bound of % for by and b’I simplifies the arithmetic in §4 but is otherwise artificial;
the natural bound is b; < b/[ < min(1, bgp), with the upper bound 1 arising from the expected presence of
lower order terms in expansion of the metric at .# T as well as from the requirement that the function space
be independent of the choice of collar neighborhood of .# .
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kbbb kbbb
xhoo, xh e H """ (©), xhyy € Hy UTTT(B(r TFSY).  (3.4)
xhi =xh§11)log,o, +Xh(1?)+h11,b, (3.5
hot bz hor) = x (B B DY & (hot v, Bir v har 3.6
x (hot, 1b> ab) = x( o1 5> ab)+( 01,b> 1 b» ab,b)’ (3.6)

where the leading and remainder terms are

{4 0 0 0 by b
h§1)7 h(()l)’ h(_) h(gb') c p00p++Ht/)€(J+)’

b’
k;bo.by b
hot v, hivp, By, hapy € Hy -,

the latter supported on supp x and valued in the bundles C (for ¢ = 0, 1),
C, p*(r T*S?), and B*(r> S?T*S?), respectively; we describe the topology on
kibo.br.by.b+ pelow. Here, we use a collar neighborhood to extend functions from .#
to a neighborhood of .# ™ in M, and to extend the relevant bundles from .#* to smooth
subbundles of 8 *§2seT*R4 pear ., all choices of collar neighborhoods and exten-
sions give the same function space. We shall suppress the parameters bg, by, b, by
from the notation when they are clear from the context, so

k. kibo.brby by

Remark 3.2 The partial expansions amount to a statement of partial polyhomogeneity:

for example, the condition on %o in (3.6) for k = oo can be phrased as hg; €
bo,0,b 00;bg.by,b

Apong b + Hy 07

by a function space capturing the finite regularity of the leading term at .# . In view

of the existence of at most logarithmically growing leading terms of 4 € X* at /%,

. k:bo,—0.b
we automatically have h € H,~" "+,

, and similarly for k < oo if one replaces the first summand

Thus, h € X* decays at I1°, while (3.4) encodes the vanishing of the good com-
ponents at .#; (3.5) and (3.6) assert the existence of leading terms of the remaining
components, in the case of 411 allowing for a logarithmic term;?” at I finally, & is
allowed to have mild growth. The existence of leading terms of h € x*:bo-b1 bpby gt
# 7+ implies in particular that

k—1;bo.by,by

p1dphj € Hy, . (A, 0) = (0, 1), (1,b), (@,b),
k—1;bo,b;,b k—2;bo,by.,b
prop iy € By + HYTEOPPE S Ve HETEPOPRP 3y

which we will frequently use without further explanation.
For h € X°bo-b1-b:b+ "wwe describe P(h) using a closely related function space:

29 The slightly faster decay b’l of the good components as compared to the decay b; of the remainder terms
of the other components is needed to handle the logarithmically large size of the coefficients coupling good
components into the others, encoded in the (4, 1) entries of Ay and By, in Lemma 3.8; see the discussion
following (3.26¢).
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Definition 3.3 For k € Ny U {oo} and weights by, by, b’I, b4 as above, the function
space YKb0-b1.bybe consists of all f € Hg;b‘)’_z’h* (M; B*S?°T*R#) so that near
I,

k;bo,—1+b',,b kibo,—1+b;,b
Joo, fop ® f € Hy e o1, fip» fap € Hy 0 1o

0) — 0 bo b k;bo,—1+by,b
= o7+ firn, £ € ool HE (I, firp € HEPO TP (38)

The shift by —1 in the decay order at .# T is due to the linearized gauge-fixed
Einstein equation, or even the linear scalar wave equation, being /)1_1 times a b-
differential operator at .# ¥, cf. (1.18). A calculation will show that for & as above, the
gauge-fixed Einstein operator P (h) defined in (3.2) satisfies P(h) € Yooibo.bi *b/l’bﬂ
see Lemma 3.5 for a more precise statement. Note here that P (k) is well-defined
(i.e. gm + ph is a nondegenerate symmetric 2-tensor, making P (k) computable) in a
neighborhood of M due to the decay (in L*°) of g = g, + ph to g;,. In order for
P (h) to be defined globally, we need to assume ph to be small in L.

Fixing a smooth cutoff x asin Definition 3.1, we can define a norm on y’“bo’b’z b,
using the notation of Definition 3.3 by setting

by

||f||yk:b0.b’l.b,,b+ = 11(x foo, X Joi» X T/ff)”H:;bo,—Hb’l,bJr
+ 1(x for, Xf”;, Xf&l;)'lHéibOv*1+bl-b+
0) 0)
+ ||Xf11 ”pgopT’Hé‘(f*) + lIx (f1r — f11 )||H::bo-—1+b1rb+

+ ||f||Hé<:b0.*2-b+ ,

where the choice of p;-weight in the remainder term is arbitrary (as long as it is fixed
and less than —1). Equipped with this norm, J*:%0-21-01-b+ is a Banach space. A com-

o : :bo,by,b).b
pletely analogous definition gives a norm || - ||Xk;b0’bl~b/1'b+‘ The spaces X'°%:20-P1:01:0+

and Y°:bo-br.by.by equipped with the projective limit topologies, are Fréchet spaces.
In particular, using the Sobolev embedding Hg (M) < L°°(M) (which uses that
3 > dim(M)/2), we have an embedding X3 — pgopl’lp_bjLoo; thus, P(h) is well-
defined globally on M provided A is small in A3.
It will occasionally be useful to write

Xk =k

e @A, VI =Dk, @ W, 3.9

where yl’;h . = {x fl(?) : 1(?) € ,030 ,o_}f Hlf (.# )} encodes the leading term of elements

of Yk, while y{; ={f € Yk 1(?) = 0} captures the remainder terms (i.e. with
vanishing leading terms at .# *); the spaces Xé‘hg and Xt])‘ are defined analogously.

In order to exhibit the ‘null structure,” or upper triangular block structure, of the
linearized gauge-fixed Einstein operator Dy, P for h € X at . in a compact fashion,
we introduce subbundles of the symmetric 2-tensor bundle. We use the following
notation: given a nowhere vanishing section e of a complex vector bundle £ — U
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over base manifold U, we denote by (e) the line subbundle of E whose fiber of p € U
is given by {Ae(x): A € C}.

Definition 3.4 Define the subbundles
K§, = (2dsdq) ® 2ds @ r T*S*) @ (r’¢)*, K§:= K$, ® (ds?),

of §25¢T*R4| s+, which we extend in a smooth but otherwise arbitrary fashion to a
neighborhood of ST as rank 5, resp. 6, subbundles of $2seT*R4 still denoted by K,
and Ké'. Furthermore, define near ST the subbundles

Ko = (dq*) @ 2dg @ r T*S?) & (r’¢), K11 = (ds?). (3.10)
The only property of Ky and K11 which we will need is
K§ @ Ko = S>“T*R4, K, @ K11 = K.
Denote by
s ST R — 2T R4/KS = Ko,
i Ky — K§/Ki, = K (3.11)
the projections onto the quotient bundles,
myi=1—mp: S2seTHRA K§,
and

T = AN SZET*RY 5 Ky, wfy = (1 — )7 SZETHRY Kf,.
(3.12)
Writing
B*S? = g*S2eT*RA (3.13)

from now on, the improved decay (3.4) of the good components of & € x*:bo-br.b 1b+
can then be expressed, using local coordinates (62, #3) on S?, as

7oh = hoo dg? + hoa dq dO° + (tt h)gap d0® d6° € Hy """ (8*Ko).

similarly for (3.8). The refinement Ky, C K,
wi1h = 2hor ds dq + 2hop ds dO° + (hap — (5t h)gap) dO* dO”

will be used to encode part of the ‘null structure’ of the linearized gauge-fixed Einstein
equation at .# 1, as discussed in §5; the component

Tih = hy ds?
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will capture the logarithmically growing (relative to » ') component at .# .

Consider now a fixed & € X* which is small in X3 so that g := g,, + ph is a
Lorentzian metric on R*. Working near .# T, we recall g,, = (1 — 27’")dq ds —r? 4
and the barred index notation (2.20), so with p = r~!, the coefficients of g in the
product splitting (2.23) are

goo = r~'hoo, go1 = % 4+~ (hot — m), go» = hyj, (3.14)
= _lh = h T = — 2 h,—' '
g1 =r" N1, &b 15 8ab rogab +1hyp;
the coefficients gV of the inverse metric g~ = g;l —r_lgrzlhg,ﬁl+r_2g,;1hg;1hg,;1
+ H$;3+3b0’370’3+3b+ are

_ :24b9,2—0,242b
g% e —4r 1h11-|-H§o +oo b
00:2—0,2—0,242b,

¢ €2+ 4r~1(m — ho1) + Hy, ,
00;3+b9,3—0,34+2b

g% e2r7?n* + Hy .
gl e —d4rThyy + I_[l;><>;2+bo,2+b/,,2+2b+ (3.15)
b —2p b 00;34bo,3+b,3+2b.
g’ €2r~rhy” + Hy 1 ,
00;44-2b0,4—0,442b.

b —2 4ab —3pab
gy € —r—°g®” —r—°h% + Hy ,
where we raise spherical indices using the round metric ¢, i.e. ho‘i = g“bhog etc. Thus,

gt PL= Coo+Ht<)>O;1+bo,1—O,1+h+; gt}};_i_gah, V2 ¢ pcoo+Hl;>o;1+ho,l—0,1+h+.

(3.16)
The calculation of the connection coefficients, components of Riemann and Ricci
curvature, and other geometric quantities associated with the metric g is then straight-
forward; the results of these calculations are given in Appendix A.

3.2 Mapping properties of the gauge-fixed Einstein operator

Let h € X = x°bo-brbibi 1 order to compute the leading terms of the gauge-
fixed Einstein operator P(h) = 0 3Py(g), g = gm + ph, see (3.2), we first use the
definition (3.3) of 2(8* — 8;3) (given explicitly by (A.2) in the case m = 0) and the

. i2+bo, 140, ,2+b ..
observation, from (A.5), that Y'(g) € Hboo 0 ! * (note that the explicit terms

given in (A.5) lie in this space in view of (2.28) and the decay of the coefficients of &
in Definition 3.1), to deduce that

00;34bo, 24D/, 3+b+

2(8% — 8% )Y (g) € Hy (3.17)

The decay rate at I holds globally there—not only near I+ N .7 T where g, = g5.
2+b+

To see this, it suffices to show that Y'(g) € p, " " Hy* near (I)° (since 8* — S;m €
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p+Diff]13, cf. (3.3), then maps it into the stated space).30 But this follows from the fact

that there g differs from the smooth scattering metric g,, by an element of pfb* Hp®

(with values in §% °T*R#). Concretely, choosing local coordinates y!, y2, y3 in 9R4,
near any point p € (I7)°, we can introduce coordinates 2= ,04__1, 7% = ,o_zl y¢
(a = 1,2,3),in aneighborhood of p intersected with p > 0,and {d,»: u =0, ..., 3}
is a frame of S*TIR* there; but then, using d,» € pyV,(R*), one sees that I'(g,, +
ph),., —T'(gm),; is a sum of terms of the form

1+b d 2+b
((gm + P —(gm)"™ )3 (gm)ro € Py TH® - p4C®RY) C pi " HE® (near p),

and (g, + ph)"* 0« (phy, ), which likewise lies in p;~* HZ® near p. (The Christoffel
symbols themselves satisfy I'(gn),, € pTC®(RY), ['(gm + ph)}, € pLC®(RY) +
2+4by 1r00
Py HGT).
We can now pI'OVC:

Lemma 3.5 For any h € X, the tensor P(h) is well-defined near 9 M (in the sense
explained in the paragraph after Definition 3.3), and we have x P(h) € Y for any

X € C%°(M) with support sufficiently close (depending on h) to M. We have P(h) €

b, —1+b,b
Y provided ||h| 3 is small. More precisely, we have P (h);; € H;o’ 0 na

—1+by by

P11 € =2p 20100kt — 1o~ 01h%01h g, + H (3.18)

when p = r~ near I+.

Proof We use the calculations (near 19 U .# 1) of (ngT(g) in (A.6) and of Ric(g)

in (A.8); in view of the calculation (3.17), it suffices to prove that ,0_3(Ric(g) —
85, Y(g)) € V> near dM. In a neighborhood of / O'U 7+, this follows by subtract-
ing (A.6) from (A.8) and dividing by p3 (thus shifting the three orders down by 3);
the expression (3.18) is a particular result of this subtraction.

It remains to justify the decay rate globally at I+, which is a slight extension of
the calculations justifying (3.17) above. We use local coordinates near p € (I7)° as
above: firstly, the membership of 8;” Y (g) follows directly from the above arguments.
Secondly, the difference of curvature components R(g, + ph)* s — R(gm)" vica 18

a sum of terms of the schematic forms 9, (I'(g,n + ph)"ﬁ/\Jr— I'(gm)y,) and (I'(gp +

phYS, = T(gm)5,)T (gm + ph)Y; . both of which lie in o3+ HZ® by the calculations
above. But by construction, see equations (2.10)—(2.11), g, (iffers from a flat metric
by a smooth symmetric scattering 2-tensor of class pC> (R*), which implies that
R(gm)" vy, € piCo"(R“) near p. Therefore, the Riemann curvature tensor satisfies

R(gm + ph) € p) "* HE® (3.19)

30 Recall that on M , we can take t~! as a local defining function of (/ +)"; on ™M, this needs to be
modified by a term of size 12 log ¢ due to the different smooth structure.
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as a section of *TR* ® (**T*R#)®3 near (I7)°, which a fortiori gives Ric(g) €

pf_b* HY°, as desired. (The vanishing of P (k) modulo the faster decaying space

pgo HE near (I 0)° requires more structure of g,,, namely the Ricci flatness of the
background metric g;,). O

Note that one component of P (k) has a nontrivial leading term at .#*; in order for
this to not create logarithmically growing terms in components (other than the (1, 1)
component) of the next iterate of our Newton-type iteration scheme (which would
cause the iteration scheme to not close), one needs to exploit the special structure of
the operator Dj, P. See also the discussion around (1.26).

3.3 Leading order structure of the linearized gauge-fixed Einstein operator
For h € X:b0.b1.b1:b+ small, write

Ly := DyP, (3.20)
and let g = g,,, + ph. We shall now calculate the structure of Ly, ‘at infinity, that is, its
leading order terms at /0, .#*, and IT: at .#*, we will find that the equation Lyu = f

can be partially decoupled to leading order; this is the key structure for proving global
existence for the nonlinear problem later. Recall from [47] that

DgRic = 500, — 838,G ¢ + Z,.

Ry = (Re)* poatti™ + 5 (Ric(g) u + Ric(g)v i),
DY (9)u = —8,Gou — C(u) + Y (u), (3.21)

where (our notation differs from the one used in [47] by various signs)
Co)e = genCh ™™, Chy =T, —T @) ZeW)e = () tter.

Here, index raising and lowering as well as covariant derivatives are defined using the
metric g, and (Ogu),;y = —uyy,, . Thus, recalling the definition (3.3) of §*, we have

Ly = p (505 + (" = 869)8,G o + 3" (€ — ) + Re)p, & = gm+ph, (3.22)
which has principal symbol
o2 (Ly) = 5Gp == 5(g0) ™", gb = p’g. (3.23)

where G € C®°(T*R*) is the dual metric function G (¢) = |¢ |ZG. As afirst step towards
understanding the nature of Lj, as a b-differential operator on M, we prove:

Lemma 3.6 We have L € pl_lDiﬁ‘%,(M; ,3*S2) (see (3.13)).
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Proof Since g, is a smooth scattering metric, we see, using local coordinates z#* and
the membership 9« € pVp(R?*) as in the discussion preceding Lemma 3.5 to compute
Christoffel symbols, that

Ry, € p*C(R*; End(S2T*R*)), 8, € p Diff) (R*; 2 °T*R*, *T*R#4),

and[,, € p? Diffg (R_4; 52 SCT*@). This gives Lo € Diff%(@; 52 SCT*@), and thus
the desired conclusion away from .# . Near .# T, any element of Diff,lJ (@) lifts to
an element of p;IDiffé(M ); moreover, for Vi, V, € (@), the product ViV, lifts
to an element of ,ol_lDiffg(M ) provided at least one of the V; is tangent to ST. Thus,

expressing [, in the null frame 9y, 01, d4 (@ = 2, 3), we merely need to check that

the coefficient of 812 vanishes at ST; but this coefficient is g,ln1 =0. |

As suggested by the toy estimate (1.19) and explained in §2.4, we need to describe
lower order terms of Lj, near .# % in two stages, one involving the module M from
Definition 2.12, the other being general b-differential operators but with extra decay
at p; = 0. For illustration and for later use, we calculate the leading terms, i.e. the
‘normal operator,” of the scalar wave operator:

Lemma 3.7 The scalar wave operator Ug, (see (3.23)) satisfies

_ i 14bo, — 140, ,14+-b . _ .
Og, € —4p 20001+ H, o MR (€ HF OO pigd ().

(3.24)
For the linearized gauge-fixed Einstein operator Ly, the analogous result is:
Lemma 3.8 Forh € X small in X3, we have
70,7
Ly=L,+ Ly
where, using the notation (3.13) and fixing p = r ! near S+,
L) = —P_l((20_130 + Ap)o1 — By),
Zh c H;0;1+b0»71+b,,1+b+Ml23*52 + (™ + H;o;]+b(),70,l+b+)Dl.Jﬁ(M; ﬁ*Sz);
(3.25)

here ,07180 and 91 are defined using equation (2.42) and Lemma 2.13(3). In the
refinement of the bundle splitting (2.21) by (2.22), Ay and By, are given by

2y 0 0 00 0 0
—20ihg1 0 0 00 0 0
0 0 y 00 0 0

Ap = 0 023700y +231ho 531h%
—201hy;0  y 00 0 0
2y 0 0 00 % 0
—291h;; 0 0 00 0 0
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and
0 000000
20101hg1 000000
0 000000

By, 2010111 000000
20191h;3 000000
0 000000

20101h55 000000

The proofs of these lemmas only involve simple calculations and careful book-
keeping; they are given in Appendix B. We thus see that at ., L, effectively
becomes a differential operator in the null coordinates x? = ¢ and x! = s only,
as spherical derivatives have decaying coefficients; this is to be expected since r ~!V/,
V € V(S*) € Wo(M), is the naturally appearing (scattering) derivative just like do
and d;. We point out that a number of terms of Lj;, which are not of leading order at
% do contribute to the normal operators at /° and I7; this includes in particular the
spherical Laplacian, which is crucial for proving an energy estimate.

For the analysis of the linearized operator Lj, the structure of the leading term
L2 will be key for obtaining the rough background estimate, Theorem 4.2, as well
as the precise asymptotic behavior at .# T, as encoded in the space X'>°. To describe
this structure concisely, recall the projection 7o defined in (3.11) projecting a metric
perturbation onto the bundle K\ encoding the components which we expect to be
decaying from the gauge condition; and the projection 11 defined in (3.12) onto the
bundle K17 encoding the (1, 1) component, which we allow to include a logarithmic
term. Thus, in the splitting used in Lemma 3.8, 7y picks out components 1, 3, 6,
711 picks out component 4, and 7{, picks out components 2, 5, 7. Suppose now A’
satisfies the asymptotic equation L, k" = 0. Since moAp| K = 0 and 7o By, | K = 0,
the components 7o', which we hope to be decaying, satisfy a decoupled equation

2y 00
2p '3 + Acp)di (moh') =0, Acp:i=| 0 y 0|, (3.26a)
2y Oy

where Acp € C*°(M;End(Kp)) is the endomorphism induced by mgAj; on
B*S?/ K§ = Ko. (Thus, this matrix is the expression for Aj o in the splitting of
Ko = B*S2%/ K¢ induced by the splittings (2.21)—(2.22) via the projection 7¢). Note
that by equation (2.28), p~'dy is proportional to the dilation vector field —p; 0p;
(which is the asymptotic generator of dilations on outgoing light cones), hence equa-
tion (3.26a) is, schematically, (p;9,, — Acp)(moh’) = 0. Choosing y > 0, the
spectrum of Acp is positive, which will allow us to prove that moh’ decays at .# 7,
similarly to the discussion of the model equation (1.24); we will make this precise in
§§4.1 and 5.1.

Next, using that r{, Ap|k,, = Oand {, By |k, = 0, i.e. the logarithmic component
h11 does not couple into the other nondecaying components, we can obtain an equation
for the nonlogarithmic components 7z{; 2" which only couples to (3.26a), namely
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2p~ 001 (') = (= Aj, 1101 + Bj, 1) (k).

—201hg; 00 20191h01 00
S = —20h;y 0] B, =|2818ih500]; (3.26b)
—201hz; 0 0 20191555 00

the precise form of Aj |, B, ||, mapping sections of Ko to sections of K7, is irrel-
evant: only their boundedness matters (even mild growth towards .#+ would be
acceptable). The operator on the left hand side of (3.26b) has the same structure
as the model operator in (1.22); the fact that the forcing term in (3.26b) is decaying
will thus allow us to prove that nflh/ is bounded at .# 7, consistent with what the
function space X'*° encodes.

Lastly, 7114’ couples to all previous quantities,

_ woh’
20718081 (m11h') = (—Ap1191 + Br.11) ( ‘(?h’) ,
T

Anni = (0 —201m% y +201ho1 00 %8]h5’;>,
By = (28181h11 0000 0) . (3.26¢)

The logarithmic growth of the first component of By 11 is more than balanced by the
fast decay of the (0, 0)-component of 4’ that it acts on.

Remark 3.9 The fact that the logarithmic growth of /1 is rendered harmless due to
its coupling only to the faster decaying moh’ is the manifestation of the weak null
condition [78] in our framework. Here, the faster decay of woh’ is accomplished by
means of constraint damping, whereas in [79,80] the faster decay of ¢ applied to the
difference of the nonlinear solution and the background (Minkowski) metric follows
from the gauge condition which the nonlinear solution verifies, cf. [80, Corollary 9.7].

/

b . . L .
More subtly, the p,” decay of hy, is required at this point to allow for an estimate of

the remainder of /111 with weight ,of’ > ,o?’ log pr). The last component of A 11, act-
ing on the trace-free spherical part of 4, in general has a nonzero leading term at .# *;3!
hence, solving the equation (3.26c¢), schematically p;9,, (O h) ~ Blh‘ib(alh/)ag,
requires 711/’ to have a log p; term.

At the other boundaries 1% and I, we only need crude information about Lj for
the purpose of obtaining an energy estimate in §4:

Lemma3.10 We have L; — Lo € H,> ' TP0 71701 pigd . g2y,

Proof Near (I7)°, the stated prerr decay is a consequence of the calculation of differ-
ences of Christoffel symbols and curvature components as in the proof of Lemma 3.5.

Near .# T, we revisit the proof of Lemma 3.8: in the notation of equation (3.25), the

00: 14+b0. ~0.14+by 1y el
b

expressions for A, and Bj, give L2 — L8 € H, Regarding the

31 The discussion of Theorem 1.10 shows that for nontrivial data, this leading term must be nontrivial
somewhere on .# 1.
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second remainder term in Lj, we note that the leading order terms, captured by the
Diffﬁ summand with C* coefficients, come from terms of the metric and the Christof-
fel symbols which do not involve 4; thus, these are equal to the corresponding terms
of Ly. O

In order to obtain optimal decay results at /™ in §5.2, we shall need the precise
form of the normal operator of L;, which by Lemma 3.10 is the same as that of
Lo. Now, g, is itself merely a perturbation of the Minkowski metric, pulled back
by a diffeomorphism, see (2.10). It is convenient for the normal operator analysis at
I" in §§85.2 and 7 to relate this to the usual presentation of the Minkowski metric
g=dr* —dx>onR*inU = {r > 2r}:

Lemma 3.11 The metric g lies in Af;’; (U; S2seT*mR#) for the index set 1oy defined
gl/og

in (2.36), and g — g € A (U; §?T* "RA) C p! OHX(U; S25¢T* " R#),

The failure of smoothness (for m # 0) of g is due to the logarithmic correction, see

(2.5), in the definition of the compactification mR4. On the radial compactification
OR# on the other hand, g is a smooth scattering metric.

Proof of Lemma 3.11 In the region C; defined in (2.8), g, = g is smooth, see the
discussion after equation (2.10). In the region C, see equation (2.6), the spatial part

dr® + r2g is a smooth symmetric scattering 2-tensor on mR4, In the region ¢ > %r
and for large r, the claim follows from Lemma 2.8 in that region. O

Define

L:= %D§+(§*—8§)8§G5, (5*—@14 =2yt dt @gu—yt (tygu)g, (3.27)

cf. the definition (3.3), which is the linearization Ric(g) — S*I(g) around g = g,
where Y (g) is defined like Y (g) in (3.1) with g in place of g,,. Using Lemma 3.11,

one finds L € Asﬁ)é . Diffﬁ(U ; §2 SCT*@). Furthermore,
&l _
L—1Lje Ap;fg(U) -Diffy(U; §? S T*R%); (3.28)

but 9, € ,ol_lvb(M ), while derivatives along b-vector fields tangent to ST lift to
elements of V,(M); thus,

L—Loep; "0l OH® - Diff} (near It C M). (3.29)

4 Global background estimate

We prove a global energy estimate for solutions of the linearized equation Lyu = f
with & € X°°, and show that u lies in a weighted conormal space provided f does;
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recall here the definition (3.20) of Lj;. The weak asymptotics of u at the boundaries
10, 7%, and I'" can be improved subsequently using normal operator arguments in

§5. At .Z T, the estimate loses a weight of ,011/ 2 for general b-derivatives, as we will
explain in detail in §4.1. We capture this using the function space H}/:

Definition 4.1 Let E — R# be a smooth vector bundle. With M g+ defined in §2.4,
let

Hy(M; B*E) := {u € L{(M; B*E): Mgsgu C L{(M; B*E)},

HY(M; B*E) == {u € H)(M; B*E): p,/*Diff\(M; B*E)u C LY(M; B*E)).
For k € Np and e = 8, .#, define

H_lf(M; B*E) :={u € Ly(M; B*E): Difff(M; B*E)u ¢ H!(M; B*E)).

If {A;} C Mg+g is a finite set spanning Mg« over C°°(M), we define norms on
these spaces by

el g arepe iy = 10l ooy + DA ull gy
J

— 172

Note that for u € H;, we automatically have pIDiffllj(M)u C L% by

/2

Lemma 2.13(1), so the subspace H} CH é encodes a ,o; improvement over this.

Away from .# T, the spaces H élg and H}kb are the same as Hé‘“.
Fix a vector field ’ .
9y € Vo(RY) 4.1

transversal to the Cauchy surface ¥; we extend the action of 9, to sections u of a
vector bundle E using an arbitrary fixed b-connection d© on E, see (2.45), by setting
dou = (dFu)(3,).

Theorem 4.2 Fix weights by, b}, by, by as in Definition 3.1, let y > b}, in the defini-
tion (3.3) of 8%, and fix ag, ar, a; € R satisfying

ar <ay <ap, aj <0, a, <aj+0b).

Then there exists at € R such that the following holds for all h € X 00:bo-bi.by.by
which are small in X3: for k € N, uj € pgoH:_j(E), j = 0,1, and f €

HE V0= (v ges2y with o f € Hy O (M B S52), the linear wave
equation
Lyu = f, (u,dvu)ls = (uo, u1), 4.2)
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has a unique global solution u satisfying

||u||pg()pﬂ[pﬂ+H1 k— I(M ﬁ*s2) + ||7TOM|| ‘lopa]pu+Hl ke ](M ﬂ*SZ

< C(IIMollpgoH}I; + el jeo i + ||f||H:—1:ao~arl~a+ + ”nof”H:—l:aO,a’[—l,aJr)-
4.3)

In particular, if the assumptions on u j and f hold for all k, then

00 ap,ady,a ooa()a,u+
ueH T mou e Hy !

4.4)

We refer the reader to Remark 1.9 for a translation of the memberships (4.4) to
pointwise decay estimates. (For obtaining pointwise decay for any fixed number of
derivatives of u, the estimate of (4.3) for sufficiently large k is of course sufficient).

For completeness, we prove a version of such a background estimate with an explicit
weight a4 in §4.3. As we will see in §5.2, this allows us to give an explicit bound on
the number of derivatives needed to close the nonlinear iteration in §6. A nonexplicit
value of a4 as in Theorem 4.2 is sufficient to prove Theorem 1.1 if one is content
with a nonexplicit value for N.3> We will prove Theorem 4.2 by means of energy
estimates, as outlined in §1.1.1. Microlocal techniques on R# on the other hand, as
employed in [13], would work well away from the light cone at infinity ST, but since
the coefficients of L, are singular at ST, it is a delicate question how ‘microlocal’ the
behavior of Lj, is at ST, i.e. whether or not and what strengths of singularities could
‘jump’ from one part of the b-cotangent bundle to another at S™; since we do not need
precise microlocal control of Lj, for present purposes, we do not study this further.

Since dt is globally timelike for ¢ = g,, + ph provided ph is small in pX3 C L,
existence and uniqueness of a solution u € Hll(‘)c(M N R4 SZT*R4) are immediate,
together with an estimate for any compact set K € M NR*,

leell iy = CreClueoll oo i+ el oo rims + WS W ppicviao o), (4.5)

where one could equally well replace the norms on the right by standard Sobolev
norms on sufficiently large compact subsets of M N R* depending on K, due to the
domain of dependence properties of solutions of (4.2).

Using Lemma 3.10, it is straightforward to prove (4.3) near any compact subset
of (I9)°, where Hlyk !'is the same as Hk Let us define pg, p7, p near 19 as in
equation (2.25). Fix € > 0, and define for 3 n > 0 small

U:={p;>€ po—npr <38} CM,

32 One could obtain an explicit value for N even from a nonexplicit weight a4 if one improved the argument
in §6, which proves precise decay rates at I ", to not lose regularity. We expect that this can be accomplished
by microlocal propagation estimates along .# t and radial point estimates at .#+ N I, though we do not
pursue this here.
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Fig.9 The domain U with its spacelike boundaries U 13 , and Ug . We draw 10 at a 45 degree angle as the
level sets of the chosen boundary defining function p( are approximately null (namely, |d pol%;o by = 0).
The level sets of py are spacelike in p; > 0, but not uniformly so as p; — 0 '

which for € small is a neighborhood of any fixed compact subset of M N (1°)°.
(Since p; is bounded from above, U can be made to lie in any fixed neighborhood
{po < 80} of I provided 8 and 7 are sufficiently small). In view of (3.15), we have
G € 48001 —r2¢ + pg_OHg’O(U; §2s¢T*R4), hence the calculation (2.26) gives

G = Gob + pi PHZ(U; SPPT*R*), Goyp :=20,,(018p, — p0dpy) — G. (4.6)

Thus, dp; and d(pp — np;) are timelike in U once we fix §, n > 0 to be sufficiently
small, and thus U is bounded by ¥ N U and two spacelike hypersurfaces, U {’ ={p; =
€} and Ug = {po — np; = &} (as well as by U N O M at infinity), see Figure 9.

Proposition 4.3 Under the assumptions of Theorem 4.2, we have

”u”pgo Hg(U) = C(HMOHPSO H;;(ZNU) + llu; ”pgo Hé‘*l(zm(]) + ”f”p(‘)’O Hllffl(U))' 4.7

Proof We give a positive commutator proof of this standard estimate, highlighting
the connection to the more often encountered fashion in which energy estimates are
phrased [37]. Let us work in a trivialization °T*R# = R* x R*, and fix the fiber
inner product to be the Euclidean metric in this trivialization. For proving the case
k = 1 of the lemma, we set L := Lj; it will be convenient however for showing
higher regularity to allow L € Diff% + pé_OHI;’oDiff% to be any principally scalar
operator with op2(L) = %Gb, acting on CN -valued functions for some N € N; we
equip CV with the standard Hermitian inner product. (One may also phrase the proof
invariantly, i.e. not using global bundle trivializations, as we shall do in §§4.1 and 4.2
for conceptual clarity).

We will use a positive commutator argument: let V. = —Vp; € V,(R%), with
V defined with respect to gp; this is future timelike. For / > 0 chosen later, let
w=p, eF P1_and let 1y denote the characteristic function of U. Put W = 1y w?V.
Write L = Ly + L1, where Ly = 10, ® ligxio, L1 € (C® + py " HZ®)Dift]. We
then calculate the commutator

2Re(lywf, lywVu) = 2Re(Lu, Wu) = (Au, u) + 2Re(lywLiu, lywVu)
(4.8)
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using the L% inner product, where A = [Ly, W]+ (W + W*)L,. A simple calculation
gives op 2(A)(§) = Kw(§, &), where

Kw := —3(LwGy + (divg, W)Gy). 4.9)

(The K -currentis often given in its covariant form %(LZW gv—(divg, W)gp)). Therefore,
A = d*Kwd, since the principal symbols of both sides agree, hence the differ-
ence is a scalar’® first order b-differential operator which has real coefficients and
is symmetric—thus is in fact of order zero, and since it annihilates constant vectors
in CV, the difference vanishes. Differentiation of the exponential weight in W upon
evaluating Ky will produce the main positive term into which all other terms can
be absorbed. Indeed, the identity Ly Gy = fLyGp — 2V f ®; V for V € V}, and
f € C*™ gives

Ky =T(Vf,V)+ fKy, (4.10)

where
T(X,Y)=X®; Y — $gn(X,Y)Gp

denotes the (abstract) energy-momentum tensor. (The energy-momentum tensor of a
scalar wave u, say, is given by T'(X, Y)(du, du)). Therefore, Ky = w2(2F]lUK0 +
1y K| + K»), where

Ko=T(Vpr, V), Ki=-2aT (%2, V), Ky=T(Vly, V).

Since Vpy is past timelike, the main term K is negative definite; K> has support in
aU\ dM, so V1y being past timelike at Ula and U23, K> has the same sign as K| there.
Lastly, K1 has no definite sign, but can be absorbed into K¢ by choosing f > 0 large:

indeed, |T(%, V)(E, &) < —CT(Vpy, V) for some constant C depending only on

K, since gy, is a b-metric. Thus, (4.8) gives the estimate

(Lyw(=2F Ko — K1)du, 1ydu) < 2(|TywVul*> + [[LywLul*)
+ Ilywf|? + Clllyw(duo, un)|*.  (4.11)

In order to control u itself, consider the ‘commutator’

2Re(lywu, TywVu) = 2Re(u, Wu) = (—Lyw(div V)u, Tywu)—(V (1yw)u, u),

(4.12)
where V (1yw?) = 2F 1yw?(Vp;) — 2aolyw2% + w2V (1y). In the first, main,
term, Vpo; = —|dp; |§b < —cp < 0has a strictly negative upper bound on U; the third

term gives §-distributions at dU with the same sign as this main term at U {9 and U23
since V is outward pointing there. Choosing /- large to absorb the contribution of the
second term, we get

cof 1lywull® < nF IlLywul® + Cyf “LywVu|? + Clllywuol?,

33 That is, it is a scalar operator tensored with the identity operator on CN.
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so fixing n = co/2, this gives |[1ywul> < CF 2|lywVul> + Cr|1ywuol?.
Adding C’ times this to (4.11) yields

(Lyw(=2F Ko — K1)du, 1ydu) + C'||Lywul*
<Q+CCF HIlywVul® + 2| lywLiul?
+Cr (IILywf 1 + (C + CHIILyw(uo, dug, u)|?).

Fixing C’ sufficiently large and then f > 0 large, we can absorb the two first terms
on the right into the first term on the left hand side, using that —f K¢ > —2F Ko — K
for large /. This gives (4.7) for k = 1.

We now proceed by induction, assuming (4.7) holds for some value of k for all
operators L of the form considered above. If Lu = f,let X € (Diffg (R*))N denote
an N-tuple of b-differential operators which generate Diffé (R*) over C*°(IR*); writing
[L,X] = L'- X for L' an N-tuple of operators in (C* + pé_OHg’o)Diffl, we then
have (L — L')(Xu) = Xf. Applying (4.7) to this equation, we obtain the estimate
(4.7) for Lu = f itself with k replaced by k + 1. O

Given the structure of the operator Lj, on the manifold with corners M as described
in §3.3, itis natural to proceed proving the estimate (4.3) in steps: in §4.1, we propagate
the control given by Proposition 4.3 uniformly up to a neighborhood of the past corner
19N 7+ of null infinity and thus into (. 7)°. In §4.2, we prove the energy estimate
uniformly up to /T; the last estimate cannot be localized near the corner .#+ N I
since typically limits of future-directed null-geodesic tending to .# + N 1T pass through
points in I far from .7 .

4.1 Estimate up to null infinity

We work near the past corner 1° N.# T of the radiation field; recall the definition of the

boundary defining functions pg and p; of / 0 and £ from (2.25), and let p = r—1.

At .Z1, we need to describe Gy, more precisely than was needed near (/ O)°; we make
extensive use of the structures defined in §2.4. Equations (3.15) and (2.26) give
Gb=Gop+Gip+ Go, Gip:=p g, —Gop € CO(M; S>PTM), (4.13)

with Gop = 28, (p18p; — P0dpy) — G € p; 'C¥(M; S2PTM + p; S?PT M) as
before, and

~ _14b,
G € pt0 0, T (M S2PTM + p; ST M).
Dually, equation (2.27) gives
b/
b € (C® + pg ™00, HEY(M; SPET M) + p; S2°T* M) (4.14)
. d d d
where the smooth term is p2g,, = —2p; %(% + ﬁ) —g+p7C®(M; S?°T*M).
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Fix B € (0, b’l). For small € > 0, we define the domain
Ue :={pr <€, po— ,0’13 <1}c M, Ug =UN {%e < p; < €}, (4.15)

see Figure 10. Thus, U, is bounded by IO, I+, {pr = €}, and Uf = {po — pﬁ =
1, pr < €}. At Uf, we use (4.6) and (4.13) to compute

-1 2 _o —1+b
ld(po — P, € 2807 P oo+ Bo)) + 077 C + oy 0, THE,  (4.16)

hence U 3 is timelike for small enough €. As in the proof of Proposition 4.3, the main
term is the K -current of a timelike vector field with suitable weights:

Lemma4.4 Fixcy € R, let W := py > p >V, and V := —(14¢v)p1dy; + 00y,
then

Kw € 0570y > (21 (oudy — p1)* = 2ev (a0 = ar) (018,
—3(1+ 260 —ap + ev (1 —2a0) s 6)

+ g 20 072 (%0 pl 0 o P Oy (M S2ETM + py SEPT M. (4.17)

Furthermore,

—2a1

divg, W € =205 2 p; ' (1 + 2(ag — ar) + cv (1 — 2ap))
— — —1+b
+ 0 2aop[ 2a1+1(coo + ,0(1)+b0,01 + IHZ?O) (4.18)

_ b, .. .
Here, p, 1|V|§b € 2cy + p; C*® + ,oéerO,oI’ng’, so V is timelike for ¢y > 0.

This calculation also shows that the level sets of p; are spacelike in U,. The term
p1 Kw (du, du) will provide control of u in ,080 ,o;" H 1] (modulo control of |u|? itself,
which we obtain by integration), similarly to (1.19).

Remark 4.5 For easier comparison with energy estimates expressed in standard coor-
dinates on R*, consider the special case m = 0,50 pg = (r — N~ Vand p; = (r—1)/r;
then ppd,, = —(r0, + 19;) (scaling) and p;0,, = —r (9, + 9,) (weighted outgoing
derivative). Thus, the multiplier vector field W in ¢t < r, r > 0, equals

W = r2th(r — 1)2@0=4D (¢y 3, + (cy + Z1)dy).

Proof of Lemma 4.4 Recall that Ky = 1 (m — 3 (trg, 7)Gp), m := —LwGy. Since
V € Mg, Lemma 2.13(2) shows that © := —LwGp, expressed using vector

field commutators, lies in the remainder space in (4.17); using (4.14), this implies
—2ag+14by _—2a1+b]

tre, T € Py Py "HE®, so (trg, )Gy also lies in the remainder space.
Similarly, G| 1, contributes a (weighted) smooth remainder term to Ky . Lastly, for
w9 = —Lw Gy 0, the term %(JT() — %(tl‘gb 110) Gp) contributes the main term, i.e. the first
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line of (4.17) after a short calculation, as well as two more error terms, one from Gb, the
other coming from the nonsmooth remainder term in (4.14). The calculation (4.18)
drops out as a by-product of this, and can also be recovered by divg W = —trg,
Ky. O

In order to get the sharp weights>* for the decaying components ou of u at .+
in Theorem 4.2, we need to exploit the sign of the leading subprincipal part of L at
'+, given by the term involving p~!A;d; in Lemma 3.8, in the decoupled equation
for mwou, see (3.26a) for the model. We thus prove:

_ 24
Lemma4.6 Define W = p, 2“O/ol “ (p00py — (1 + cv)p1dp,) similarly to previous
lemma. Let y € R, and fix ag,a; € R such that a) < min(y, ag). Then for small
cy > 0, there exists a constant C > 0 such that

’
2a;

_ _ —2d/—1
Kw —2yW &, p~'01 < —Cpy > p, ((P13p)* + (P0dpy)* + p1@), (4.19)
in the sense of quadratic forms, in Ue, € > 0 small.
Proof Using the expression (2.26) for p; ! ,0;181, we have
2d)+1 _
Péao Ty ®; p~ 1o
€ (003py — P19p))* — v P1dp, B (P03, — P1p,) + p1 CO(M; PT M)

We can then calculate the leading term of ,ozao o Ia’ H times the left hand side of (4.19)
by completing the square:

1449% 2
=2 — D (Podm = P18y = 510y
1 12} PI 2()/ _ Cl;) PI
2C
—cv(ao—a}— v )(,01 pl)
2(y —a))

— (1 +2@ap — a)) + cv(1 = 2d)))p1 G.

The first term is the negative of a square, and so is the second term if we choose cy > 0
sufficiently small; reducing cy further if necessary, the coefficient of the last term is
negative as well, finishing the proof. O

Remark 4.7 For the value of cy determined in the proof, we have dive, W <
—Cp, _2a° 0, "0 near 7t by inspection of the expression (4.18).

Suppose now u solves L,u = f with initial data (ug, u1) as in (4.2). Note that the
estimates (4.5) and (4.7) provide control of u on er for any choice of € > 0; thus, it
suffices to prove an estimate in U, for any arbitrary but fixed € > 0. Let x € C*(R)

34 As explained before in the context of the weight at I T, this is not necessary, but easy to accomplish here
without lengthy calculations.
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Fig. 10 The domain U, and its
subdomain Ug where we have a
priori control of u, allowing us
to cut off and study

equation (4.20) instead

be a cutoff, x (p;) = 1 for p; < €/4 and x (p;) = 0 for p; > €/2, and put i := xu,
then u solves the forward problem

Lyi=f:=xf+I[Ln xlu (4.20)

o “1 controlled by the corre-

in Ue, with ||f|| 0 1 1

Hk LU + ||7TOf|| IH""(UE)
sponding norm of f plus the right hand 51des of 4. 5) and (4.7). (Use Lemma 3.10
to compute the rough form of the commutator term). Note that ¥ = yu is the unique
solution of Ly = f vanishing in p; > %6. See Figure 10.

Thus, the estimate (4.3) of u in U, is a consequence of the following result (dropping
the tilde on & and f):

Proposition 4.8 For weights by, b, by, ao, ay, aj, and for h € X*°, small in X3 asin

Theorem4.2, andfork € N, let f € pgop?’_lHlffl(Ug), o f € pgop?’ Hlf*l(Ue);
suppose f vanishesin p; > %6. Let u denote the unique forward solution of Lyu = f.
Then

ull ag ay 1k-1 + ||Tou
Il 3y V0N

< C( o T _
= (1 gt sy 170 g i

1

. ) 4.21)
HEL (W)

Proof The idea is to exploit the decoupling of the leading terms of Lj at .#* given
by Equations (3.26a)—(3.26c¢): this allows us to prove an energy estimate (for the case
k=1)

c
0 g 1 = COTON g 1+ Il g s ) 4.22)

Po Pr Hy b
where § > 0 fixed such that
—by <a;r—6, aj<a;—34. (4.23)
The estimate (4.22) contains 7rju as an error term, but with a weaker weight due to the

decay of the coefficients of the error term Lp—which is dropped in (3.26a). On the
other hand, mou couples into 7gu via at most logarithmic terms, hence we can prove
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¢ < ¢ _
el o e gy < COIE £ 1 o =12+ Nl o s 1) (4.24)

Close to .# ™, the last term in the estimate (4.22), resp. (4.24), is controlled by a
small constant times the left hand side of (4.24), resp. (4.22), hence summing the two
estimates yields the full estimate (4.21). The proof of (4.24) and its higher regular-
ity version will itself consist of two steps, corresponding to the weak null structure
expressed by the decoupling of (3.26b) and (3.26c).

All energy estimates will use the vector field

Vi=—0+cv)p10p, + podp,

from Lemma 4.4, with cy > 0 chosen according to Lemma 4.6. Denote uq := mou,
uyy = mu, u§y = u, and ug = mwiu = uy +uj;. We expand Lyu = f as

moLymouo = mwo f — moLypmgug, (4.25a)
iTlcthjTlcluil = ﬂflf - ﬂlcthT[ouo - JTlcthT[“u]], (4.25b)
muLpmnun = mi f — miLpmoug — i Ly ud; . (4.25¢)

Here, we regard $* Ko — M as a vector bundle in its own right, and u¢ as a section of
B*Ko: the inclusion Ko <> $2T*R# and the structures on the latter bundle induced
by g or g, play no role; likewise for K1 and K.

Starting the proof of the estimate (4.22) using equation (4.25a), let us abbreviate
L := moLpmy. By Lemma 3.8 and recalling the definition of Acp from equa-
tion (3.26a), we have

L=L"4+L, L°=—-2p"2800, + LY, LY =—p""Acpa. (4.26)

with lying in the same space as L, in (3.25) with B*S? replaced by p*Kj. Here,
L(l) denotes a fixed representative in p;l OM B*K,» defined by fixing a representative
of p0_181 € OM,S*KO, see equation (2.42), in the image space of Lemma 2.13(3).
Let w = p, a0 ,ol_a’ ; let further 1y, denote the characteristic function of Ue. Fix
Ve'M B* K> With scalar principal symbol equal to that of V. Let

Wi=1y, W°, W°:=uw?V.

Fix a positive definite fiber inner product B: T M — °T*M on ®T M, a connection
d e Diff'(R4; Ko, T*R* ® K() on K, and a positive definite fiber metric ko on Ko
with respect to which Acp = AED; note here that Acp is constant on the fibers of
# 7, hence indeed descends to an endomorphism of Ko|g+. Let (-, -) denote the L>

inner product with respect to ko and the density |dgy| ~ |%d prdgl; defining the
b-density dyup, := p; '|dgy| ~ |%dﬁdg| to define L2 (M), we then have

(u,v) = {pru, v)L%. 4.27)
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We shall evaluate

2Re(wLug, 1y, wVuo) = (Cug, uo),
C=L"WH+W'L=[L, W]+ W+ WL+ (L* - L)W. (4.28)

Let Kw denote the current associated with the scalar principal part of W, see (4.9), now
understood as taking values in the bundle S? 7 M ® End(8*Ky), acting on 8* K by
scalar multiplication. While Ky provides positivity of C near .# * for suitable weights
by Lemma 4.4—in particular, this would require a; < 0—we will show around (4.35)
below how to obtain a better result by exploiting the sign of Acp entering through
(L* = L)W.

In the proof of Proposition 4.3, where we worked in a global trivialization, all terms
of W and L other than the top order ones could be treated as error terms; we show
that the same is true here by patching together estimates obtained from calculations in
local coordinates and trivializations. Thus, let {{/;} be a covering of a neighborhood
of ST containing U, by open sets on which K is trivial, and let {x;}, x; € CZ°(U,),
denote a subordinate partition of unity; let X¥; € C°(U;), x; = 1 on supp x;. Fix
trivializations (Kg) |Z/{j =Uj x C* and the induced trivializations of 8* K. Write

L=Lj>+Lj;, W=W;;+W,p,
where L, = %ng acts component-wise as the scalar wave operator and L;
is a first order operator, while W; 1 := ]1er2 V1 acts component-wise, and W; o €
1y, w2p; C Uj, BT M), with the extra factor of p; due to the choice of V. On (K() lug; »
let moreover d; denote the standard connection, given component-wise as the exterior

derivative on functions, and let k; denote the standard Hermitian fiber metric; we
denote adjoints with respect to k; by 1. Now,

(Cug, uo) =Y {Cjuo, xjuo), (4.29)

where

—_— . . —_ * . * .
Cj= ch,k/év Cjke = Lj,kWJ,Z + Wj,zLJ,k-
k.l

The usual calculation in the scalar case, see the discussion around (4.8), gives
Cjan =L, W1+ W] |Lj,=d BKwd,,
SO

(Cja1uo, xjuo) = (d*BKwdug, xjuo) + ((Cj21 — Cj21)uo, xjuo)
+ ((d; - d;f)BKwdjuo, Xju()) + ((djfBKwdj — d*BKwd)u(), XjM()). (4.30)
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Summing the first term over j yields

f p1 Ko (duo, du) djun + / T(o1V1y,. Wo)duo, dug)disy,  (431)

€

upon application of the formula (4.10). The first summand—after adding the
term (4.35) below—is negative definite, controlling derivatives of ug as in (4.22);
the second term gives a contribution of the same sign: we have

T(p1V1y,. W°) = bys @ w’T?,

with 7% < 0 since —V1y, and W* are future causal. The remaining terms in (4.30)
are error terms: the second term is equal to

(Wjauo. (Lj2 — L) xju0) + (Lj2uo. (Wi — W' xjuo).

Now, ko and k; are related by k; (-, ) = ko(Q] , Q] ) with Q] C>°(U;; End(Ko))

invertible, and then AT = Q 1A*Q jforQ; = Q Q j when A is an operator acting
on sections of K. Thus, W; | — W;r*l =[W;1, Qj](Qj )*. On M, the constancy of
0, and hence of Qj., along the fibers of 8 and V; € %M give the extra vanishing
factor p; in

Wi — Wj*l =1y prw?qj1, ;1 € C¥(B~ U;); End(B*Kp)),
with g 1 only depending on Q. Similarly, L; > — L;*Z =[Lj2, Q’j‘f](Q]Tl)*; using

Lemma3.7 and [0, Qj] € p C*, we find (replacing the weight —0 there by —1/2+-b/,
for definiteness)

14+by —1+
L LTze oo ™ p; ’HQ’O(M)M/S*KO

L™+ 1+bop1 1/2+b) H§°)Diffé(uj; B*Ko). (4.32)

Writing L j oug = Lug — L 1uo and using the relationship (4.27), we thus get

{(Cj21 — Cj2D)uo, xjuo)]

1/2+b)
= C”XJWVIMO”LZ(”X//O[ w”OHHl + ||X/,01 quHHI)
+ C(IIXj,Oleuolng + ||Xj,01ij,1M0||L§)||Xj/01wu0||L§, (4.33)

where the norms are taken on U,. Note that in all terms on the right, at least one factor
comes with an extra decaying power of p; relative to wug, hence is small compared
to wug if we localize to U, for small € > 0, i.e. to a small neighborhood of .# ™. Next,
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we combine Lemmas 2.16 and 4.4 in the same fashion as in the proof of Lemma 2.17
to estimate the last two terms of (4.30) by

C(||)~(j/01wuo||ybl I jwuoll .2

+ (1% 1w T (duo, duo)' | 2y + 13 p1wuoll 2 o) xjwuoll 2oy ):
(4.34)

where the second term in the inner parenthesis comes from the pointwise estimate
T9(djug, djug)"/* < C(T?(dug, dug)'/? + |ug)).

The next interesting term in (4.29) is C; 11 + C; 10, specifically the term coming
from the ‘constraint damping part’ LO defined in (4.26). In a local trivialization, LY =
—p YAcpdy + L ;€ Cc>® (L{ ) (using the discussion around (2.42) for this
membership), so we have the pointwise equality

2Re ko(Wug, LY xju0) = —2Reko(W; 110, o~ Acpdi xjuo)
+ 2Re k()(Wj’()u(), L(l))(juo) + 2Re kO(Wj,lu(), L(l),ij“());

letting

K' = —2w?(Vi ® p~'81) ® Acp
c pOfZaop;z“/*lCoo(Ugg (SZ BT m + pr SZbTM) ®End(,3*K0)),

the first term integrates to [ p; K’ (djuo, d; x juo) d iy, which equals

/MK/(dMo, dxjuo)duy (4.35)

plus error terms of the same kind as in the second line of (4.30). The extra factor of p;
in W; o and LO (as compared to W; 1 and LO) allows the remaining two terms to be
estimated in a fashlon 51m1lar to (4.33). The remaining contributions to C; 11 + C; 10
are error terms coming from Lin (4.26) and can be estimated as in (4.33).

Lastly, the terms of (4.29) involving C; 20 can be rewritten and estimated as follows:

|2Re((L — L; uo, Wjoxjuo) + (Wjouo, [Lj 2, x;luo)]|
< 2(||,01wLu0||L2 + I XjprwL;, 1Mo||L2)IIXjP1wu0||Lg

1/24b

+ ”X/plqu”Lz(”ij] w”OHHl + ”X/p] w”O”Hl)

the norms are taken on Ue, and we use that [L; 7, x;] lies in the same space as
(4.32). We note that by Lemma 3.8, the terms involving L ; 1 here and in (4.33) can
be estimated by

- W 124
IXjprwLjuoll2 < C(lIxjo, wuoll g1 + I1xje," " wuoll 1),
b 8 b
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where x; € C°(U;) is identically 1 on supp ;.

This finishes the evaluation of (4.28); we now turn to the estimate of wug itself
by wVu. As in the proof of Proposition 4.3, this follows from integration along V.
Concretely, we consider a ‘commutator’ as in (4.12), that is,

2Re(Ly, wVug, py ' wig) = —(p; " divg, (Ly,w*Viuo, uo) + E,  (4.36)

where |E| < C||wu0||L§||p1wuo||L§ by Lemma 2.18. Using the negativity of the

divergence near .# " due to Lemma 4.4 and Remark 4.7, and that V; is outward
pointing at Uea , 50 Vi(1y,) is a negative §-distribution at UEa , we get

”w“()”Lg(UE) + ”wu()”L%(Uﬁ) =< CHWVMOHL%(UE); 4.37)

recall here that ug vanishes in p; > %, hence there is no a priori control term on
the right. Subtracting this estimate from (4.28) (the latter having main terms which
are negative definite in dug), the main terms are the left hand side of (4.37) and
er p1(K'+ Kwo)(dug, dug) dup from (4.31) and (4.35). By Lemma 4.6, they control
lwug]| HY U the error terms in U, can be absorbed into this, while those at Uﬁ
in (4.34) can be absorbed into the second terms of (4.31) and (4.37), due to the extra

decaying weights on at least one of the factors in each of those error terms as discussed
after (4.33). Thus, we have proved

ol ; < C(llmo f1l oy llmoLymgugl 1) (4.38)
P’ oy Hy ( ooy L 00y L%)

valid for a/l < min(ag, y). Since L, is principally scalar, moL,7 is a first order
operator, and by Lemma 3.8, we have

. _o —14b 0 — .
moLnr§ € py o, T Mk, + (€% + pd 0o P HEO)DfEL (M B Ko);  (4.39)

sincea; < ay+b), <aj+ %, the second term in (4.38) is bounded by ||u, ||pa(,pu,ﬂsHl
for sufficiently small § > 0 (by the assumptions on the weights in Theorem 40.2)1, Whié]h
establishes the estimate (4.22).

The proof of the estimate (4.24) proceeds along completely analogous lines, using
the weightw = p, 0 pl_a’ and positive commutator estimates for the equations (4.25b)
and (4.25¢). The main difference is that 7r11 L7711 and 711“1 Ly, 77101 have no leading order
subprincipal terms like oL,y does, hence we need a; < min(ap, 0) for K, 2y to
have a sign—this is the case a} = ay, ¥y = 0in the notation of Lemma 4.6. In order to
estimate the coupling terms on the right hand side of (4.25b), we use Lemma 3.8, so

w1 Lio € (p; ' C® + py py T HSIM + (€ + py " p; U Hy®)Diffy,
_o —1+b -0 — .
a{i Lyt € py Cpp M (€ + ph 0o 0Dt (4.40)
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which gives

||ui1 ||p(‘;0p‘l‘1 H} = C(||7Tf1f||pgop;u—'Lg + ||u0||pgop71+5H‘; + llun ||pgop71—5H’; )§
4.41)
for our choice (4.23) of §, the second term is bounded by a small constant times the
left hand side of (4.22). For analyzing the equation (4.25c) for u11, we observe that
711 Ly lies in the space (4.40), while

miLymyy € (,oéer",ol_lH,;’O(JJr NUe) + ,Oé_op;Hb’ H* )M
+(C + py oy " Hy®)Dffy,

where we exploit that hib has a leading term at .# ™. Thus,

loerall joo por 1 = C’(Ilmlfllpgop?rlL% + ”uO”ngp;’I*aHJJ + lJuf 2o p2r g1, ).
(4.42)
In order to obtain the estimate (4.24), we add (4.41) and a small multiple, n, of (4.42),
sothat nC" < 1 and ufl can be absorbed into the left hand side of (4.41); note that the
111 term in (4.41) is arbitrarily small compared to the left hand side of (4.42) when
we localize sufficiently closely to .# ™. As explained at the beginning of the proof, this
establishes the desired estimate (4.21) for k = 1.

To prove (4.21) for k > 2, we proceed by induction on the level of the hierar-
chy (4.25a)—(4.25¢) and the corresponding estimates (4.22), (4.41), and (4.42). The
key structures for obtaining higher regularity are the symmetries of the normal oper-
ators of oL, etc. at .# . Namely, —2,0_28081 € 0y, (p00py — P10p;) + Diff%
commutes (modulo Diffﬁ) with p(d,,, while for the vector field p;0,, generating
dilations along approximate (namely, Schwarzschildean) light cones, we have

[—20 728001, p19,p,1 € —2p 28031 + Diff.

Commutation with spherical vector fields is more subtle: we need to define rotation
‘vector fields’ somewhat carefully. We only define these on 8* Ky, the definition for
the other bundles being analogous. Using the product splitting R, x Ry x S? of R*
near S, denote by {Q;:i = 1,2,3} C V(S?) < W(M) a spanning set of the
space of vector fields on S, e.g. rotation vector fields, though the concrete choice or
their (finite) number are irrelevant; we can then define elements 2; € Difftl) (M; B*Ko)
with scalar principal symbols equal to those of €21 ; such that

[0~ "0, i1, [pg ' 91, i1 € prDIffl (M; B*Ko), (4.43)

where p~ 19y, Py 19, denote elements in M p*K,- (Note that the p; C* indeterminacy
of p~ 19y, Py 13, does not affect (4.43)). Here, it is crucial that we fix pg and p to be
given by (2.25) and thus rotationally invariant: €2; 100 = 0, so [, po]l € prC™;
we also have [Q2;, p;] € p; C* independently of choices. Regarding (4.43) then, we
automatically have membership in Difftl) by principal symbol considerations; to get
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the additional vanishing at p;y is then exactly the statement that the normal operators of
p’] 0o, resp. pal 01, and ; commute. For p’l do, whose normal operator is —%p; 9o,
this is automatic, while for o, ! 01, we merely need to arrange [ppd,,, ;] =0 at .¥ +,
which holds if we define €2; in the decomposition (3.10) by Q1 ; & WQ“. b Q2. We
therefore obtain

[ —2p 28001, 1, [L°, ] € DiffZ,

with L0 given in (4.26), which improves over the a priori membership in ,oleiff%. Let
us now assume that for the solution of equation (4.25a), we have already established
the estimate

||uo||pa0 @) it C(“ﬂ()f”pg()p;/[—]

+ 7Sl ag aj—s ,,10-1)- (4.44)
o P 7 b Hk_] 0 p(‘)‘OpII HVb )

b

We use {G} := {000py, 010y, 21, 22, 23, 1}, which spans Difftl‘(M; B*Kp) over
C®°(M), as a set of commutators. Writing L = moLp,7o, we then have

LGjug= fj +I[L,Gjlug, fj =G mf — GjT[()Lhn’OCug. (4.45)
We estimate the first term by

i /_ < C(||mo r_
i1 g -1 s < CUTOSN g i

C
TolU -5 .
b H¥ 7o ”pgop?l éH.];/'k,b)

b

For the second, delicate, term, we use the above discussion to see that
_o —14V . R
[L,GjleciL+py o, V1 M o Diff] + (€ + ooy *)Diff} (4.46)

with ¢; = 1if G; = prd,,, and ¢; = 0 otherwise. Thus, [L, G ;] = ¢;L + C{Gy
with Cf € ,oéfo,ol_Hb’ M+ (C*® + py % p; *)Diff}, and therefore

IIL, Gj]’/‘O”p a’,—lHk_] <cj ||Ll"0||'0(,;Opa’,—1Hk_1 +C Z ”Geuo”pgopfl_s_s/H‘]‘A:_l

1 b 1 b ¢ 7 .b
(4.47)
for ' > 0 small; recall that our choice (4.23) of § leaves some extra room. Now,
applying (4.44) to G jug in equation (4.45) and summing over j, we can absorb the
term (4.47) into the left hand side of the estimate due to the weaker weight. This
establishes (4.44) for k replaced by k + 1. The higher regularity analogues of the
estimates (4.41) and (4.42) are proved in the same manner; as before, this then yields
the estimate (4.21) for all k. ]

a,
00'0

This proposition remains valid near any compact subset of .\ I the proof only
required localization near .# . At this point, we therefore have quantitative control
of the solution of the initial value problem for Lyu = f in any compact subset of
M\IT.
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4.2 Estimate near timelike infinity

Near the corner It N #, fix the local defining functions

pri=v=(—r)fr, ppi=@—r)" (4.48)

of #F and I't, and let p := p; 5, = r~'; these only differ from the expressions for
the defining funcNtions pr and po used in §4.1 by a sign. We thus have Gy = ,0’2G =
Gop + Gip + Gy for

Goo = =20, (p1p, — p195.) — G € p; ' CO(M: SPPTM + p; S*°T M) (4.49)

and G| € C*(M; S>PT M), Gy € p;l+bl

while

1+b
py HHP(M; SPPTM + pr S2PT M),

b/
gb € (€ + p; o\ HEY(M: SPET MY + py $2°T*M)

with smooth term given by p?g,, = 2p1%(% + %) + ,0,2 C®(M; S>PT*M). In
order to be able to work near all of 1 +. we first prove:

Lemma 4.9 There exists a defining function p1 € C®°(M) of I'" such that dp/p+
is past timelike near 1T for the dual b-metric ,o_zgzl. Moreover, if C > 0 is fixed,
then for any h € X with |\h| 3 < C and for any € > 0, there exists § > 0 such
that dpy | p+ is past timelike with |d,o+/,0+|%;b > 0in{p; > €, py <8} for the dual

b-metric G, = p~2g~', g = gm + ph.

Proof For the second claim, note that in p; > ¢ > 0, we have G, — p_2g; I e

p}r+b+L°° with norm controlled by ||| 3, so

1+b
ldp/p+1G, € ldps/pil? 1 + pi P HE® (4.50)

is indeed positive near p4 = 0. To prove the first claim, we compute on Minkowski
space | fy 'dfol> = 1, fo = t/(t> = r?) int > r, computed with respect to the
dual metric of t’z(dt2 — drz).35 Similarly, in r/t > }‘, and r > r, large, we have
|f*’] df |i—2gm > Ofor f,, = 1/(t? —rf): this is a simple calculation where g, = g,?; is
the Schwarzschild metric, and follows in general by an estimate similar to (4.50) since
gm differs from g;,i by a scattering metric of class pl_OHé’o inr/t < %. Moreover, fi
is (apart from minor smoothness issues, which we address momentarily) a defining
function of /T near #*. But fo — fi € p> CHX for r/t € (4—1‘, %), hence f/ :=
X f« + (1 — x) fo has I(f/)_ldf’lf),zgm > 0 near I, where x = yx(r/t) is smooth

and identically O, resp. 1, inr/t < JT, resp. r/t > 43'1' Fixing any defining function p/,

of I, Lemma 2.8 implies [ € p/, C*(M) + (p;)z_OHg’o (M) (with the nonsmooth

35 See also the related calculations and geometric explanations around Equation (4.64).
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summand supported away from .#* by construction), so we may take p; € C>(M)
to be any defining function of /7 such that f' — p4 € (p},)> O H®. O

For the remainder of this section, py will denote this particular defining function.
Near It N .7, we need to modify p, in the spirit of (4.16) in order to get a timelike
(but not quite smooth) boundary defining function. Thus, fix 8 € (0, b’l) and some

small n > 0, and let pg € pf C®°(U) be a nonnegative function in a neighborhood U

. . —1

of I'" such that pg = n in p; > 21, pp(p;) = pf inp; < tn,and0 < pp =< ﬁpf ;
let then

ot = p+(1 + pp) 6,0+(1~|-/01)C°°(M) (4.51)

It is easy to see that p5" HX (M) = p’ Ht]f (M), likewise for weighted H s and H s
spaces.

Lemma4.10 Fix C > 0. Then there exist n,8 > 0 such that for all h € X*° with
Ih]l x3 < C, we have |d,5+/75+|§;b > 0in ps <.

Proof We compute the Gp-norms

dp d pzp’ dpy d PIPg |dpy |2
p+‘ ) o4 |2 B (2< P+’ﬂ>+ B ﬂ‘ ) 4.52)
1+P/3 P+ pI L+ pgl pr
In p; < 25 and thus near .# ™, we first note that p; = f 64 with f > 0 smooth; since
df/ f thus vanishes at #+ N I* as a b-1-form, we have

2<dp+ dp;

—14b} 14by 100
P+ PI P "

> 2+ p1C®+ps C)p; ' +p,

8 in pr < %77 and p small. The first and

third terms on the other hand are dominated by this, as they are bounded by p, S

1+28

thus the second summand of (4.52)is 2 p,

and p, , respectively. In . 31 < pr < 2n and p4 small, the parenthesis in (4.52) is

positive, the second summand being bounded by p, I+, ; the prefactor being positive
due to p) (= 0, the claimed positivity thus follows from Lemma 4.9. O

We also note that o 3, , which is well-defined as a b-vector field at / + and equals
the scaling vector field in (I1)°, is past timelike in (/7)°. Let

U={p.<8lcM

denote the neighborhood of It C M on which we will formulate our energy estimate.
Near .# ™, we need to exploit the weak null structure as in §4.1; thus, let

x € C([0,00),,), x =1 near p; =0, (4.53)

denote a smooth function on U localizing in a neighborhood of .#* where the pro-
jections my etc. are defined, see the discussion around Definition 3.4.
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Proposition 4.11 Forweightsb), by, by, a;, aj asin Theorem4.2, there existsay € R
such that for all h € X°° which are small in X3, the following holds: Let f €
P p *Hk Y), xmof € ,0?’_ pa+Hk Y(U), and suppose f vanishes in py >
%6. Letu denote the unique forward solution of Lyu = f. Then

[luel] P o+ gLkt + [ xmoull
H; 0 (U) p;ll pa+H17kb1(U)

< C(nfnp?,-lpimg,l o sl (4.54)

et T )

Proof We first consider k = 1. Near 911, we will make use of the vector field Vé =
(1 —cv)p1dp, — P4+9p,, cy > 0 small, analogously to Lemma 4.4; away from I,
the vector field V' := —Vp+ /p+ is future timelike. Fix a9 < —% and consider the

vector field V; := ,01_2‘” 5. +V0’ then

2ev (@) —an)(prdp)* +2ar(p1dp, — p+ds,)*

—2a;—1 o 2“+
Ky, € p; Py

+ (%(1 —cy) +a3_ —aj +Cva1),01$)

140

_ —249 -
+ 0,2 C® 4o, T oM SPPTM + o S2PT M)

—249 . . —
is < —p, —2ar= 1,0+ " asaquadratic form, and divg, V; < —p, 2ar,

Za, o

5.0
2a+ . Analogously

2a+ V. then K v =2y V] ®; p~ ') is negative definite
near 3/ " for cy > 0 sufﬁmently small.
To explain the idea for obtaining a global (near 1 +) negative commutator consider

the timelike vector field Wy := x Vi + (1 — x)po_. + ad V), andlet W = 5 + “* Wo: then
formula (4.10) gives

to Lemma 4.6,if V; = p,

24l 24! v3
Kw =0, " Kw, +2aL 5, T(Wo, —~£), (4.55)
Letting
ap = ag + a_lH

the first term gives control in ,o?’ pi* H} near .# T in a positive commutator argument.

On the other hand, its size is bounded by a fixed constant times pf{” inp; >e€>0;
5 —249 . . .

but there, T (W, —%) = p L “¥ in the sense of quadratic forms on b7 M since Wo

and —dp, /p, are both future timelike. Therefore, choosing a}r large and negative,

we obtain

-1

KW S _CIOI—ZCII p;2a+K{}V’
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where K {,V is positive definite on dT*M in pr > € > 0, while near .# T, we have
K;V = K1 + pr K>, with K1, resp. K>, positive definite on by resp. ETmt.
This gives global (near /™) control in p?’ pi* Hli

We now apply this discussion to the situation at hand. For brevity, let us use the
same symbol to denote a b-vector field in > M and an arbitrary but fixed representative
in OMﬂ* g according to Lemma 2.13(3), similarly for b-vector fields with weights

(such as V; and V/); the bundle E — R# will be clear from the context. For a _li_ eR
chosen later, consider then the operator W acting on sections of 8 *§2,

1 0
W= ﬁ;za* Wo, Wo = x(moVimo+7f, Vire) + nn Vimen) + (1 — x)pfa+ vy,
(4.56)
where 1 > 0 will be taken small, as in the discussion after (4.42). (Since u vanishes
in py > %8, we do not need to include a cutoff term here). ‘Integrating’ along W via

a commutator calculation for 2 Re(Wu, pl_lu) as in (4.36) gives control on u in the
function space appearing in (4.7) in terms of Wu. The evaluation of the commutator
2Re(Lpu, Wu) = (Cu,u), C = [Lp, W] + (W + W*)L, + (L; — L)W, then
combines the three separate calculations for the equations (4.25a)—(4.25c¢) into one:
near .#*, one writes Ly, in block form according to the bundle decomposition f*S? =
Ko®K{, @K1, with the diagonal elements 7o L, 77 etc. giving rise to the main terms of
the commutator, while the off-diagonal terms can be estimated using Cauchy—Schwarz
and absorbed into the main terms due to the weak null structure, as explained in detail
in the proof of Proposition 4.8. Away from .# T, all error terms can be absorbed in the
main term, corresponding to the second term in (4.55) upon choosing ai < O negative
enough. This proves the proposition for k = 1.

Suppose now we have proved (4.54) for some k > 1. First, the b-operator Lj,
automatically commutes with p4.d,, to leading order at ™; concretely, Lemma 3.8
gives

—1+b, 14b — 1+b .
[Li, o195, 1€ 0, 'pyt +M?;*Sz + (p+ C= + p; 00, HE)Dff2.

Here, by an abuse of notation, p1d,, € oM pg+s2 is defined by first extending the
vector field pyd,, € C®(It,°T;+ M) to an element of 0./\/!@, and then taking a
representative of the image space in Lemma 2.13(3); for this particular vector field,
such a representative is in fact well-defined modulo p;p+ C*(M; End(8*S$2)), the
extra vanishing at o being due to the special (b-normal) nature of p4 9, .
Therefore, commuting o d,, through the equation L,u = f, we have the estimate

o4 8p,ull jar ja+ yra—t + [ xT0p+3p ull o
ot ey

<C( -1 + || xm r_ + ||u 5 ay—(1+b ) 4.57
< ||f||pclz1 P HE Il x 0f||p7, ! Il ”p;” S ik (4.57)

by the inductive hypothesis, where we used a; — 8 > a; — b} for § > 0 small to
bound the forcing term [Lj, p4 9y, Ju by the third term on the right; see the related
discussion around (4.39).
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Second, the timelike character of pyd,, at (/ )° for € > 0 implies that
C(,oJerJr)2 — Ly, is elliptic in p; > € for large C (depending on ¢); therefore,
letting x; € C(U \ #T), j = 1,2, denote cutoffs with x; = 1 on supp(l — x) and
%2 = 1 on supp x1, we have an elliptic estimate away from .# T,

”X1””pi+H§+’ < C(||X20+3p+u||pi+H§ + ||X2u||p1+H§ + ||X2f||pi+H§—l), (4.58)

for u supported in py < %8 . Near .# T on the other hand, we have the symmetries
of null infinity at our disposal, encoded by the operators p;d,, and the spherical
derivatives €2, see the discussion around (4.43). Let x € C*°(U) be identically 1
on supp x, and supported close to .# . Defining the set of (cut-off) commutators
{xGj} = {xp1dp;, x21, xS0, xS$3} which together with p,d,, spans Vy(M)
near .# T, and recalling the commutation relations (4.46), we find

IxGjull o s pri—1 + I xwoG jull «
P T e H

< C( - .+l xm _
= ||f||p?1 IPTHli llx Of”p?/, Ipi+Hlf
+ Gyu - o1+ P10, U - — ) 4.59

% IXGe ||p71 ﬁpgj ”,];%k,b' 1 X p+0p, ||p71 rfp:zj ”.];f'k,b' ( )

But for any 1 > 0, we have the estimate
”XGWHP(/”_(SPTH;%EI < 77||XGK“||,,;’I pi+H,lV:l(,;1 + Cn||X1M||pi+ HE

and the second term can in turn be estimated using (4.58). Summing the estimate (4.59)
over j and fixing n > O sufficiently small, we can thus absorb the terms involving
X Geu into the left hand side, getting control by the norm of f, plus a control term

Clloydp, u ”Pi+ HE Adding to this estimate 2C times (4.57), this control term can be
absorbed in the left hand side of (4.57). This gives control of u as in the left hand side
of (4.54) with k replaced by k + 1, but with an extra term on the right coming from the
last term in (4.57); however, this term has a weaker weight at 1, pf_(l_b*) > pi* ,
hence can be absorbed. This gives (4.54) for k replaced by k + 1. O

Combining the estimate (4.5) in compact subsets of M° with Proposition 4.3 near

(1°)°, Proposition 4.8 near .#+ \ (#* N It), and Proposition 4.11 near It proves
Theorem 4.2.

4.3 Explicit weights for the background estimate
We sketch the calculations needed to obtain explicit values for the weights in the

background estimate. More precisely, we prove the following slight modification of
Theorem 4.2:
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Theorem 4.12 Let a4 = —%. There exists an € > 0 such that for a; < a; < a; <
min(0, ag) with |azl, |a}|, |al, by, b} < y < € subject to the conditions in Defini-
tion 3.1, as well for h € X 00b0.brby b iy Al w3 < €, the unique global solution
of the linear wave equation

Lyu=f, (u,odu)|ls = (ug, uy)

satisfies the estimate

C _
leell 2o o sy ||7T“u”p3007’ Pyt H ! * ||”°"||p3°p?9pi+H;".;‘

= C(1luoll o g + a0 o

gt 1) L gtovapiras +170S | o tagaytas ) (460)
b

Proof The usage of an intermediate weight a; € (ay, a/l) allows for a small but use-
ful modification of the argument following (4.42): namely, in the notation of that
proof, we are presently estimating u1; with weight p}” , while the term u{, coupling
into the equation for uy; via 711 Ly7{, is estimated with weight pj’ < pj’, hence
automatically comes with a small prefactor if we work in a sufficiently small neigh-
borhood of .# . Correspondingly, in the proof of Proposition 4.11, we would replace

. . - S —2a; o—2a% _ .
the third inner summand in (4.56) by 711 V711, with V; = p, 2ar Py “r Vj; in order to

obtain (4.60) (with a; < 0 not explicit at this point yet).

The only part of the proof of Theorem 4.2 in which we did not get explicit control
on the weights is the energy estimate near /. In order to obtain the explicit weights
there, we note that for y = 0, h = 0, and Schwarzschild mass m = 0, we simply
have 2Lj; = [,, the wave operator of the Minkowski metric g = dt?> — dx?, which

acts component-wise on S>7*R* in the trivialization given by coordinate differentials.
Recalling from (2.17) that °M denotes the manifold with corners constructed in §2.1
form = 0, we shall prove that the solution of the scalar wave equation t>C] a w=f,

with [ € ,o;” _1pi+ L% supported in p4 < 1, satisfies the estimate

< - 4.61
ujl ay a 1 .
I ||p11p++ H}, ~ ”f”p;’] piJrle] ( )

for ay = —% and a; < 0 small, using a vector field multiplier argument; here,

pr =%p; and p = p,. But then, if the weights ay, aj, aj etc. are very close to one
another, the nonscalar commutant used in (4.56), modified as above, is very close to
being principally scalar away from .# T; correspondingly, a slight modification of our
arguments below for the Minkowski case (4.61) yield the estimate (4.60) for k = 1.
Higher b-regularity follows as in the proof of Proposition 4.11.

In order to prove the estimate (4.61), we introduce explicit coordinates near the
temporal face /T C M within the blow-up of compactified Minkowski space. First of
all, the calculations in A.3 imply
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Fig. 11 Left: part of the conformal embedding of Minkowski space into the Einstein universe (E, d 12— 8s3)s

E=RxS3 Right: conformal embedding of de Sitter space into £, and the backward light cone of a point
g on its conformal boundary, whose interior is the domain of the upper half space model (4.63) of de Sitter
space, which near ¢ is equal to the static model of de Sitter space near its future timelike infinity, g. The
coordinates (7, x) are regular near ¢ = (f = 0,x = 0)

PO, =Dy — 2, (4.62)
where
gas =t 2(dt* — dx?) (4.63)

is the de Sitter metric; notice though that we are interested in # >> 1. Thus, consider
the isometry

(t,x) > (£,%) = %(r, x) € [0, 00); x R} (4.64)
tc—r

of ggs, definedint > r = |x|:itmaps I T to (0, 0) and .# " to {Z = |%|}, see Figure 11.
(The map (4.64) is the change of coordinates between the upper half space models
of de Sitter space associated with g on the one hand and its antipodal point on the
future conformal boundary of de Sitter space on the other hand; see [61, §6.1] for the
relevant formulas).

Define the blow-up M’ := [[O, 0); X R; {(0, O)}] at the image of ™. Then the
lift of {f < |%]} to M’ is canonically identified with a neighborhood of I C M.
Concretely,

(p+, Z) == (£,%/%) = (t/(t* — r?), x/t) € [0, 00) x R?

gives coordinates on M’, in which U := [0, 1),, x {|Z| < 1} is identified with a
collar neighborhood of I C M so that

dp? d
gas = 2282 — d&2) = (1 — |Z|2)% —27 dz% —dz>. (4.65)
+ +

Furthermore, p; := 1 — |Z|?> = 1 — r?/1? is a defining function of .#* in U. Let us
write R := |Z|. Instead of the vector field Vioc = (1 — cv)p;10,, — p+0,,, which is
defined locally near .# ™ and was used in the proof of Proposition 4.11, we use the
global vector field
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Vo=—(1+ R p4dp, — (1 —cy)(1 — RHRdg

which is equal to Vioc near .# T, up to an overall scalar and modulo p;Vy + o4 Vb;
moreover, Vy is timelike in U \ .+ for small ¢y > 0. Considering the commu-
tant/vector field multiplier W := p1—2a1 plzm’ Vo withay = —3 3 and a; < 0 small,
the expression for the K -current Ky is somewhat lengthy, so we merely list its main
features in 0 < R < 1, writing p%“’“pi“ Kw =: K1 + K@, with K| a section of
S (p4 9y, , Or) (considered a 2 x 2 matrix in this frame) and K a scalar:

— tr Kyley=0 = —2(1 — R* —a;R*(4 + R?)) < 0, which persists for small cy > 0;
— det Ky|ey=0 = —4a;(1 +a;)R*(1 — R?) > 0 and

(cy det K1)ley=o = —16a7(R* — 17 )(R* + 3752-) > 0,

so det K; > O for small cy > 0;
- Kley= 0 = -2+ a1R2) < 0, which persists for small cy > 0;
= 2 2 div g, Wley—o = 6 — (2 — 4a;)R% > 0.
Thus, fixing cy > 0 to be small, the main term arising in the evaluation of the
. . d
commutator —2 Re((Cgys —2)u, Wu)is [, —Kw (du, du)+4(div g, W) u|? pL: dz,
which thus gives the desired control on u in Hlj, except |u|? itself is only controlled

in pj! p 1/2L2 due to the weaker welght of divg,s W at .#; control in pj’ pi" L2

is obtained by integrating 04 d,, u € ,01 o +L2 from p; = 1. This yields (4.61). O
5 Newton iteration

Fix bo, by, b’,, b4 and y as in Theorem 4.2. Recall that we want to solve the symmetric
2-tensor-valued wave equation

P(h) =0, (h,dvh)|s = (ho, h1)

for initial data (ho, h1), hj € pgo Hgo(E), small in a suitable high regularity norm,
and we hope to find a solution & € X 00:bo-br by.by Following the strategy, outlined in
§1, of solving a linearized equation at each step of an iteration scheme, we consider,
formally, the iteration scheme with initialization

Loh® =0, (", 9,h)|5 = (ho, h1),
and iterative step AN TD = BV 4 (N+D "where
Lywu™tD = —p™)y, (h™N+D 5, nNtDy|5 = 0.
Assume that AY) € X has small X3 norm. In order for this iteration scheme to

close, we need to show that AV D e X Since P(hV)) € > by Lemma 3.5, this
means that we need to prove:
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Theorem 5.1 Forweights as above, there exists € > 0 such that forh € X°° bo.b1.by.bt
with || x5 < €, the following holds: if f € Y°%P0-b1-01b+ and ho, hy € pi® H(E),
then the solution of the initial value problem

Lou=f, (u,ou)ls = (ug,uy),
satisfies u € A o0:bo.br by .by

Remark 5.2 We recall that membership, of a scalar function u for simplicity, in
pg" Hp® (R3) is equivalent (up to an arbitrarily loss in decay) to pointwise estimates
[Vi---Vyul < (r)_”o where the V; are translation, rotation, or scaling vector fields
on R3. The membership h € X001 Db+ means pointwise decay of various com-
ponents of i towards leading order terms at .# ™ or to zero; see Definition 3.1 and
Remark 1.9.

According to Theorem 4.2, we have the background estimate

00;by,—0,a . 2 003 by, b —0,a+
€ Hy, (M B*S?), mou € H,

(M; p*$). (5.1
for suitable ay. We shall improve this to u € X°%b0:b1 by using normal operator
analysis in several steps, which were outlined around (1.22): using the leading order
form (3.25) of Ly, or rather its decoupled versions (3.26a)—(3.26c), we obtain the
precise behavior of u near # \ (# T N IT) in §5.1 by simple ODE analysis; the
correct weight at I ™ but losing some precision at .# ™ near its future boundary in §5.2
by normal operator analysis and a contour shifting argument; and finally the precise
behavior near ., uniformly up to .# N I, again by ODE analysis in §5.3.

For later use, we record the mapping properties of P and its linearization on the
polyhomogeneous and conormal parts of X'*°—recall (3.9).

Lemma 5.3 Let h € XD0-b1-bibs it |\ ys small; write h = h,,hg + hp, hpig €
X350, hy € X0, Then: (1) P(hpg) € Y, (2) LY: X% — V>, (3) Ly, Ly: X5° —
yb P (4) Lh Xpo;?g - yb .
The point is that the behavior (2)—(3) of the leading term L2 and simple informa-
tion (1) on the nonlinear operator automatically imply precise mapping properties (4)
of the error term Lj;, which are not encoded in (3.25).

Proof of Lemma 5.3 Part (1) follows from Lemma 3.5. One obtains (2) by inspection
of (3.25); note that LO is only well-defined modulo terms in (C°°+p1+b° O,oler+ H{®)
D1ff1 which always map X;og — Y. Likewise, the first part of (3) follows
from (3.25); the fact that the ‘good components’ (encoded by the bundle Kg) have a
better weight b/, than the weight b; of the remaining components (in K) is again due
to the structure of L2 discussed after Lemma 3.8. The second part of (3) is clear, since
this concerns the remainder operator Zh, whose coefficients are decaying relative to
,o;lDiff%, acting on X>°, which consists of tensors decaying at # .
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Finally, to prove (4), we take upng € X;}fg and write Zh uphg = Dp P (Uphg) —Lguphg.
The second term lies in J*° by (2), while the first term equals

d
ap(hphg + sttphg + hv)|

s

s=0

d 1 ~
= a (P (hphg + Suphg) + /(; Lgphg+suphg+thb (hy) + ththrsupthrthb (hv) dt)

but each of the three terms in parentheses depends smoothly on s as an element of ))*°
by (1), (2), and (3), respectively. O

5.1 Asymptotics near° n .7+

With conormal regularity of u at our disposal, all but the leading order terms of Ly
can be regarded as error terms at .# T: from (5.1) and Lemma 3.8, we get

. / 00;by,—14+b,—0,a
Lgu c yoo,bo,blybpbﬁ- + H, 0 1 +

Let us now work in a neighborhood U € M of I° N .#* and drop the weight at 1+
from the notation. To improve the asymptotics of u{, := 7{,u, we use part (3.26b) of
the constraint damping/weak null structure hierarchy as well as b, > by: this gives

. . bo br—1
20 2d0d1us, € pglp, T HES.

Using the local defining functions pg and p; from (2.25) and multiplying by py, this
becomes

b
P13 (009 — P13p)1S, € P2 P2 HEC. (5.2)

We can integrate the second vector field from p; > €, where “?1 S pgo Hb°°, obtaining
p1p U € pgopf’ H°; thisuses by < by (see Lemma 7.7 for details). Integrating out
p19,, (see Lemma 7.6) shows that u{, is the sum of a leading term in pg" HE? (FTNU)

and aremainderin pgo pf’ HE°(U). This then couples into the equation foru | = myu,
corresponding to part (3.26¢) of the hierarchy:

P10p (P0dpy — Pr19p 11 € prmit f — S@h™)01 WS )gp + p00 0] HE®. (5.3)
The first two summands lie in pgo HX(I/TNU)+ pgo ,0?’ Hp*; integrating this along
p19,, generates the logarithmic leading term of ;. Thus, u; = ugll) log pr + ug(;) +
u11.p with u(ljl) € pg"Hg’o(,ﬂ+ NU)andupp € pgopf’ H®, as desired.

It remains to improve ug = mou. Write u = uphg + up, where uppg € X[;’}fg and
uy € pgo p};’ H{® according to what we have already established; note that the space

Xg’lfg is independent of the choice of by, b’, € (0, 1). Then
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0 e > ~ by by—1 .
woLymouo = 7o f — mwoLy (mouo) — oLy (m§up) — oLy (w§uphg) € po' o'  Hy® -

for the first summand, this follows from f € Yibo.bi ’b/l’b+, for the second summand
b;—0 . > .
fromug € ,ogo p;" " H and the decay of the coefficients of Ly, similarly for the third

summand; and for the fourth summand, we use Lemma 5.3(4). Using the notation of
part (3.26a) of the hierarchy, this means

by b
(p13p; — AcD)(P0dpy — PI3p U0 € Py’ o,  HS®.

Since we are taking y > b, all eigenvalues of Acp are > b’, so integration of
. . v
P19y, — Acp and then of pyd,, — p1d,, (using b} < by) gives ug € pgopI’Hl;’o. We

have thus shown that u € X°00:01:07:b+ pear [0 &7 *; in fact, this holds away from
IT.

5.2 Asymptotics at the temporal face

We work near I+ now and drop the weight at 19 from the notation. Recall from (3.27)
the gauge-damped operator L on Minkowski space; by Lemma 3.10 and (3.29), we
have

Ly — L € p; ' =0p it B (M) - Diff2 (M; p*S2). (5.4)

We shall deduce the asymptotic behavior of u at I from a study of the operator L
(and its resonances) on a partial radial compactification N of R*—without blowing
up the latter at the light cone at future infinity. Before making this precise, we study
L in detail as a b-operator on N. Let

T = t_l, X =x/t;
these are smooth coordinates on the radial compactification
N := [0, 00); x R}

of R*int > 0, see Figure 12. We have dxy = tdy, t6, = dx, t8; = 0%, and
19, = —19; — Xdyx. Thus, if we trivialize $25¢T* OR4 using coordinate differentials,
the explicit expression of L given in §A.3 shows that L is a dilation-invariant element
of Diff2(N; C!%),ie. L = N(L), recalling the definition (2.2) of the normal operator.

Note that L, (and even Lg) has singular coefficients at 3/T C ™M due to
the gauge/constraint damping term: the singular terms come from —p~!'A;d; in
Lemma 3.8. Likewise, L, on the blow-up of N at the light cone {t = 0, |X| = 1} at
infinity, has coefficients with /)1_1 singularities, which would complicate the normal
operator analysis at the temporal face i T, the lift of

B:={r=0,[X[ =1},
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Fig. 12 Tllustration of the compactification N near its boundary at infinity 9N = {t = 0}. Shown are future
timelike infinity B = Oﬁ(olﬂ, its boundary 0B = S, and, for illustration, the light cone |x| = t (dashed)

On the other hand, L does have smooth coefficients on the un-blown-up space N, and
we recall its well-understood b- and normal operator analysis at 9 N momentarily. The
discussion of the relation between the blown-up and the un-blown-up picture starts
with Lemma 5.7 below.

Conjugating L by the Mellin-transform in 7, thus formally replacing 79, by
io, gives the Mellin-transformed normal operator family z(o) € Diff2(3N ; Qlo),
depending holomorphically on o € C; the principal symbol of Z is independent of 0.

We already control u in Theorem 5.1 away from I™ C M, so only need to study
u (and how L relates to it) near ™ I ", whose image under the blow-down map "8 on
"M is identified with B, see Lemma 2.10. For s € R, we then define the function
space H*(B; C'%) as the space of all v € H{ (ON; C'%) which are supported in B.
(We are using the notation of [56, Appendix B]). Let

X' = {ueH(B;C): LOwu e H'(B;C")}, 9*:= H*(B:C"").

Semiclassical Sobolev spaces are defined by H,j = H* with h-dependent norm
liell g = I1(hD)*u]| 2 on N = R3. Let further M C Diff' (9N; C'°) denote the
C®(dN)-module of first order operators with principal symbol vanishing on N*9 B,
and fix a finite set {A;} C M of generators.36 For k € Ny, we then define

H*(B;C)Y ={ueH: Aj,---Ajuc H, 0< <k
and the semiclassical analogue H}f * = F5* with norm

lulos = Nl + D0 NChAG) - (hA )l
0<t=<k

Lemma5.4 Let C > 0, and fix s < % — C. Then Z(o): x5 — 9~ Lis an analytic
Sfamily of Fredholm operators in {o € C: Imo > —C}, with meromorphic inverse
satisfying

IZ@) " fllge < Cilo) Ml gemrx, [Imo| < C. [Rea| > 1,
(o)~ (o)~

o)

for any k € Ny.

36'Near 0B, and omitting the bundle Qm, one can take as generators the vector fields (|X| — 1)X 0y,
XJBX,* — XlBXj.
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Proof For k = 0, this is almost the same statement as proved in [107, §5], see also [13]
and the summary of the presently relevant results in [14, §6]; adding higher module
regularity, i.e. k > 1, follows by a standard argument, commuting (compositions of)
a well-chosen spanning set of M through the equation z(a)u = f; see [13, Proof of
Proposition 4.4] and the discussion prior to [58, Theorem 5.4] for details in the closely
related b-setting (i.e. prior to conjugation by the Mellin transform). We shall thus be
brief.

The only two differences between the references and the present situation are: (1)
L (o) is an operator acting on a vector bundle; (2) we are working with supported
function spaces in B, i.e. future timelike infinity, rather than globally on the boundary
of the radial compactification of Minkowski space. Since L (o) is principally scalar,
(1) only affects the threshold regularity at the radial set N*d B. For y = 0, L is simply
a conjugation of % times the scalar wave operator, acting diagonally on C', and in
this case the threshold regularity is given as s < % +Imo in [14, §6], which is implied
by our assumption s < % — C. For small y > 0 (depending on the choice of s), this
assumption is still sufficient. A straightforward calculation (which we omit) shows
that the eigenvalues of o (t3(g* - 8;,‘)8gG gt_1)| ~+ag are > 0, hence the threshold

regularity is s < % + Im o for any y > 0. (This is closely related to the fact that the
components of the solution of Lu = f € C2°(R*) do not grow at .# *; see Lemma 5.7
below for the relation between growth/decay on M and regularity on R%).

In order to deal with (2), it is convenient to first study Z(a) acting on supported
distributions on a larger ball B; := {|X| < 1+4d}. The only slightly delicate part of the
argument establishing the Fredholm property of L(a) acting between H*(By; C19)-
type spaces is the adjoint estimate: we need to show that L (o)* satisfies an estimate

||u||g17s(35) 5 ||L(U)*u||ﬁﬂ'(35) + ||”||1§A‘0(B§) (5.5

for some so < 1 — s; here H® (B3) denotes extendible distributions, i.e. restrictions
of H}} . sections on N to B3. This estimate however is straightforward to obtain
by combining elliptic, real principal type, and radial point estimates in By, as in the
references, with energy estimates for Z(O’)* which is a wave operator (on the principal
symbol level) in By \ B]/z, see e.g. [114, §3.2] where our L(o)* is denoted P. High
energy estimates for L(o) on H'(By)- -type spaces follow by similar arguments (using
[107, Proposition 3.8] for the energy estimate).

Suppose now Z(o)u = f e H~'(B) withu € H*(B>). Then energy estimates in
B>\ B imply suppu C_B. This and the Fredholm property of L on B, yield the desired
Fredholm property of L X* — P’ ! (specifically, the finite codimensionality of the
range). Similarly, the high energy estimates on By imply those on B, finishing the
proof. O

Lemma 5.5 For small y > 0, all resonances o € C of L satisfy Imo < 0.

Remark 5.2 One can in fact compute the divisor of L, i.e. the set of (z,k) € C x Ny
such that L (o) ~! has a pole of order > k + 1 at ¢ = z, quite explicitly for any y: it is
contained in —iU — 2iU —i (1 4+ y)U—i(1 +2y), using the shorthand notation (2.35).

@ Springer



Stability of Minkowski space and polyhomogeneity of the metric Page 890of 146 2

g+ g+ /U\ St

o [

Fig. 13 The neighborhood U of It C M as well as its image in R* under the blow-down map

Proof of Lemma 5.5 For y = 0, and in the trivialization of S?T*R* by coordinate
differentials, L acts, up to conjugation and rescaling, component-wise as the scalar
wave operator on Minkowski space, for which the divisor is known to be —i, see [13,
§10.1]. For small y, L is a small perturbation of this, and the lemma follows. (See

also [107, §2.7)). O

Since by Eq. (3.28), Lo — L € pl_OHg’oDiffg(’"@), the normal operators as b-
differential operators on ™R* are the same, N (Lg) = N (L), hence the above results
hold for N (Lg) in place of L.

We next relate the relevant function spaces on "M, mR4. We only need to consider
supported distributions near it C M. We drop m from the notation. If p € C>°(M)
denotes a defining function of I such that p. > 2 at 19, let

={pr <1} C M.

Let My C Difftl) (@) be the C“(@) module of b- differential operators with b-
principal symbol vanishing on °N*S+,37 and define Hb loc (R“) to consist of all u €

Hy, 10C(R“) forwhich A; - - - Aeu € Hy R forall0 < ¢ < k, Aj € My.Supported
distributions on a compact set V C R* are denoted Hb (V)

loc

Lemma5.7 Foray € R, d > —L1 and k € Ny, the map Bluvom: U \ oM =4

BWU)\ AR? induces a continuous inclusion

p7++d—1/2pi+ Héc+d(U) s pi+ Hf’k(ﬁ(U)), (5.6)
and conversely
. d—1/2 y
P B > ot ), G

Thus, given the condition on supports, b-regularity near SV is, apart from losses
in module regularity, the same as decay at .#*. See Figure 13. A version of the
inclusion (5.7) is (implicitly) a key ingredient of [14], see in particular §9.2 there.

Proof of Lemma 5.7 First consider (5.6). Dividing by p% = ,o;” pf’, it suffices to
prove this for a4 = 0. Furthermore, elements of M, lift to b-differential operators on

37 The b-conormal bundle PN* S+ ¢ bT; +@ is the annihilator of the space of b-vector fields tangent to
St In the coordinates (2.6), My, is spanned by p3p, POy, vdy, and spherical vector fields.
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M in fact, Diffllj(M ) is generated, over C°°(M), by the lift of My, to M. Therefore, it
suffices to consider the case k£ = 0 and prove
d—1)2

07 Hb U) — Hb BW)), d=> ——. (5.8)
For d = 0, this is a consequence of the fact that p; times a b-density on M pushes
forward to a b-density on R4, cf. (4.27). Next, note that V, (R*) lifts to pfl Vo (M) and
thus maps o Hg loc(M) — p‘;‘_leSIOIC(M); the Leibniz rule thus reduces the case
d € N to the already established case d = 0. For general d > 0, (5.8) follows by
interpolation; we discuss d € (—%, 0] below.

For (5.7), we again only need to consider a4 = 0, k = 0, and prove

d—1/2

H{(BW)) = p; “LiU) = pf Li(B)). (5.9)

For d = 0, this is clear; for d = 1, integrating the 1-dimensional Hardy inequality,
Ixull @,y S Iu'll2g, ) u € CC(Ry), in fact gives Hy (B(U)) — xLy(B(U)),

where x is a defining function for S(0U) within R4 In particular, 8*x € C*(M)
vanishes at .# T and is hence a bounded multiple of p;, from which (5.9) follows.

For general d € N, we use the following generalization of the Hardy inequality: for
ue Cé)o (R+),

1 52 Sd
|x7du||L2 = H/ / / u(d)(tx) dtdty---dtydx
/ / / D))\ 2 de dty - dty dx

d
||u< Mgz

L2

~Qd)!

For real d > 0, (5.9) again follows by interpolation.
Ford € (— é, 0], we dualize (5.8) with respect to L%(ﬂ(U)) and thus need to

show HE(BU)) — p¢~?HE(U), e = —d € [0, 1/2). But this follows from (5.7),
as in this regularity range, supported and extendible Sobolev spaces are naturally
isomorphic [102, §4.5]. Similarly, (5.9) for d € (—%, 0] follows from (5.8) for d €

[0, §) by dualization. O

Returning to the proof of Theorem 5.1, we have already proved (1 — x)u € X'
where X = X(,o+) is identically 1 for p4 < 1 and vanishes for p4 > 1. Consider

Xu € p; ,oJr H°°(U) a4+ < by, which satlsﬁes

Lixu = fi:=xf + L, xJu € pr = pl B (),
where we use that [Ly,, x Ju is supported away from /. Let
al, =min(ay +1+by,by) <0,

@ Springer



Stability of Minkowski space and polyhomogeneity of the metric Page 910f 146 2

and fix d € (=1, =1 —a/,), then Ly, — N(Lo) € py ™o\ HE* (M) - Diftl (M)
(see Lemma 3.10) and Lemma 5.7 yield
N(Loyxu =: fr € p; ' ~0p\" HE*(U) = p™ H *(BU)). (5.10)

Shrinking U if necessary, we may assume that # > 1 + r, in U. It then suffices to use
dilation-invariant operators on " R# to measure module regularity at " S . Indeed, for
m = 0 and thus r, = r (the discussion for general m being similar), recall that with
R = |X|, w = X/|X|, we can take td;, (1 — R)dg, 9., and 7dg as generators of My;
but 7dg = c(1 — R)dg withc = t/(1 — R) € [0, 1] bounded. Write (5.10) using the
Mellin transform in t as

1

27 Jimo=—a

xu tL(0) " fa(0) do,

initially for « = —ay; then ﬁ(o) is holomorphic in Imo > —a/, with values in
H%®(B; C!9), and in fact extends by continuity to

P) e L2(imo =—d}): () VHLN, (B:C%) (YN). (5D

By Lemmas 5.4 and 5.5, Z(cr)_1 ]/‘\2(0) is thus holomorphic in Imo > —ajr as well,
with values in H?*1-%°_ extending by continuity to the space in (5.11) with d replaced
by d+1; therefore yu € p“,+ I:IIfH’OO(,B(U)), SO XU € pl_opii“l-'lboo(U) byLemma5.7,
as we may choose d arbitrarily close to —% — a/, . This improves the weight of u at

I by a', — ay; iterating the argument gives xu € pl_o ,OiJr I-'IIS’O(U ).

5.3 Asymptotics near ./t NI+

It remains to show that the precise asymptotics at .#+ which we established away

from IT in §5.1 extend all the way up to I+, with the weight pfbﬁ at I*. This is

completely parallel to the arguments in §5.1: working near /™, we now have Lgu €

. / ;bo,—14+b,—0,b . . . .
Yo0:ibo.br.by.by Hlfo 0 17 so with coordinates p;, py as in (4.48) (dropping

the superscript ‘o’),

by b
P19, (P10, — p1p Uty € Py’ pi" HY™;

now, in p4 > 0 (and away from / O), uﬁ | has aleading term at g+, plus a remainder in
p?’ H{®, while in p; > 0, u§, = 7{u lies in ,o_}f HZ®. Using Lemma 7.6 to integrate

the above equation for u{,, we conclude that u{, is the sum of a leading term in

pg" ,oi': H°(#) and a remainder in pg(’ ,o?’ pf’: H{®, as desired. Similarly, we obtain

the desired asymptotic behavior, uniformly up to /™, of u1; and then of ug. Therefore,
u € Xbo-brbrby completing the proof of Theorem 5.1.
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6 Proof of global stability

We now make Theorem 5.1 quantitative by keeping track of the number of derivatives
used and proving tame estimates, the crucial ingredient in Nash—Moser iteration. Fix
the mass m; for weights by, by, b’,, b as in Definitions 3.1 and 3.3, let

Bk — Xk;bo,b,,b/l,b+; Bk — yk;bo,bl,bll,b+ ® Dk;bo’
; b b
DkP = p HETN (D) @ py’ HE (D).

Let us write | - |5, resp. || - ||s, for the norm on B?, resp. B®. Put
B> = (1 B*, B® =B\
keN keN

We recall Saint-Raymond’s version [ 100] of the Nash—Moser inverse function theorem:

Theorem 6.1 (See [100]). Let ¢p: B® — B> be a C*> map, and assume that there
existd € N, € > 0, and constants C1, Ca, (Cs)s>a such that for any h,u,v € B*®
with |h|3q < €,

lp(Mls < Cs(1 + |hls4q) Vs >d, (6.1a)
¢ (Wull2g < Cilul3a, (6.1b)
llg" () (u, v)l2a < Ca2lul3alv]3a. (6.1c)

Moreover, assume that for such h, there exists an operator ¥ (h): B® — B satis-
fying ¢’ (W)W (h) f = f and the tame estimate

[ () fls < Cs( flls+a + |hlstall fll2a), Vs >=d, feB>. (6.2)

Then if ||¢(0)|l2a < ¢, where ¢ > 0 is a constant depending on € and Cy for s < D,
where D = 16d? + 43d + 24, there exists h € B™®, |h|3q < €, such that ¢ (h) = 0.

This uses a family of smoothing operators (Sp)g-1: B® — B satisfying the
estimates

1Sovls < Cs, 00 "vls, s =15 v —Spuls < G, 0" [vly, s <1 (6.3)

Acting on standard Sobolev spaces H® (R"), the existence of such a family is proved
in [100, Appendix], and the extension to weighted b-Sobolev spaces on manifolds
with corners is straightforward: the arguments on manifolds with boundary given
in [60, §11.2] generalize directly to the corner setting. For the spaces B® = X* at
hand then, one writes h € B* as x1h + (1 — x1)h, with x; € C*°(M), j =0, 1, 2,
identically 1 in a small neighborhood of .#, and x4 = 1 on supp x;. We smooth
out (1 — x))h € pgo ,o}"’,oi+ HZ° (M) (see (2.29) for the notation p7°) as usual and cut
the result off using (1 — xo); since we are working away from .# T, the weight of p;
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plays no role here. (The proof of [59, Lemma 5.9] shows that cutting off the smoothing
of (1 — x1)h away from its support does not affect the estimates (6.3)). Near .# ™ on
the other hand, we have x1h = (x1hy), where we denote by &, the components of 4
in the bundle splitting (2.21). The decaying components (3.4) as well as the remainder
terms hyp in (3.5)—(3.6) can then be smoothed out and cut off using x2. To smooth
out the leading terms, fix a collar neighborhood of .#*; considering for example
X1hol = xgh(()(i) + x1ho1,b, see (3.6), we smooth out h((ﬁ) in the weighted b-Sobolev

space ,030 ,oi* H{° (S ), extend the result to the collar neighborhood, and cut off using
Xo0; similarly for the other components of /.
Given initial data (ho, h1) € D°°, we want to apply Theorem 6.1 to the map

¢(h) = (P(h), (h, 3,h)|s — (ho, h1)), (6.4)

with P given in (3.2). Note that the smallness of ¢ (0) in particular requires P(0) =

,0_3Ric (gm) to be small. Now, P (0) is nonzero only in the region where we interpolate

between the mass m Schwarzschild metric and the Minkowski metric (both of which

are Ricci-flat!), i.e. on supp dy Usupp d¢ in the notation of (2.10)—(2.11); thus in fact

P0) € Agflwg’o. Itis then easy to see that || P(0) ||y« < Cym forall k € N, which is the

reason why we need to assume the ADM mass m to be small to get global solvability.
For h € X'* with |h|3 small, the tensor

g =gm+ ph

is Lorentzian (by Sobolev embedding) and hence ¢ (4) is defined; since P is a second
order (nonlinear) differential operator with coefficients which are polynomials in g~
and up to 2 derivatives of g, and since h +— (h, d,h)|x is continuous as a map
Xk — DK-3/2 for k > 2, the estimate (6.1a) follows for d = 3. The estimate (6.1b)
also holds for d = 3 and |h|3g4 < € small, since the first component of ¢'(h)u,
namely Lju, is a second order linear differential operator acting on u, with coefficients
involving at most 2 derivatives of /; similarly for (6.1c).

The existence of the right inverse v («) : B*® — B is the content of Theorem 5.1;
we merely need to determine a value for d such that the tame estimate (6.2) holds.
(As stressed in the introduction, the mere existence of such a d is clear, since the
estimates on ¥ (1) are obtained using energy methods, integration along approximate
characteristics, and inversion of a linear, smooth coefficient, model operator in §4,
§85.1 and 5.3, and §5.2, respectively). Consider the first term on the right in (6.2): we
need to quantify the loss of derivatives of the solution v of Lyu = f, (u, dyu)|y =
(ug, uy), relative to the regularity k > 0 of (f, (uo, u1)) € BX.

Now, dropping the H{lﬂ regularity part of Theorem 4.2, we obtain u €

pgop‘;’pf Hlf, Tou € pgop?’ ,ofJHé‘. The arguments near /° N .#% in §5.1 first

express u§, as the solution of a transport equation (5.2), with the right hand side
involving up to two derivatives of u; since integration of this equation does not regain
full b-derivatives, the leading terms (and the remainder term) of uil lie in H]f_z,
with the correct weight by at 1 0 (and b; at .#1); next, this couples into the transport
equation (5.3) for u11, again with up to 2 derivatives of u, so integrating this yields
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. . . _ .. b _
leading and remainder terms of u; in Hlf 4; and similarly then ug € pgo 0 11 Hé‘ 6

near /1N .7+,

On the other hand, improving the b-weight at I by 1 + b, which we may take to
be arbitrarily close to 1 by taking by < O close to 0, uses the rewriting (5.10), which
due to the second order nature of L, — N (L) involves an error term (subsumed into
f> there) with 2 derivatives on u. Passing to the blow-down using Lemma 5.7 loses
at most 1 module derivative; inverting N (Lo) gains 1 b-derivative (which is used to
recover the ,o,_O bound at .# ), but no module derivatives, so passing back to the
blow-up, we have lost at most 3 b-derivatives. Thus, improving the weight at I from
a4 to by ~ 0loses at most dy := 1 4 3[ay ] derivatives relative to Hé‘.

These two pieces of information are combined near .# T NIV in §5.3, where we lose
at most 6 derivatives, just as in the discussion near /%N .#*, relative to the less regular
of the two spaces Hlf*6 and H]f 4 from above; we thus take d = 6 4+ max(6, dy). If
we use the explicit background estimate, Theorem 4.12, so a4 = %, this givesdy =7
and therefore

d=13.

For this value of d, one may then verify the tame estimate (6.2) by going through the
proofs of Theorems 4.2 and 5.1 and proving tame estimates by exploiting Moser esti-
mates; this is analogous to the manner in which the microlocal estimates for smooth
coefficient operators in [107, §2], [58, §2.1] were extended to estimates for rough coef-
ficient operators in [52, §§3—6], which were subsequently sharpened to tame estimates
in [59, §§3-4]. In the present setting, obtaining tame estimates is much simpler than
in the references, as the estimates in §§4—5 are based on standard energy estimates, so
one can appeal directly to the Moser estimates; or, in view of the fact that our energy
estimates can be proved using positive commutators (and are indeed phrased this way
here), which also underlie the tame estimates in these references, the arguments given
there (using vector fields instead of microlocal commutants) apply here as well. We
omit the details, but we do point out that it is key that the proofs as stated only use
pointwise control of up to 1 derivative of & (via causality considerations and defor-
mation tensors, see e.g. the calculation (4.16) and Lemma 4.6) in order to obtain the
main positive terms in the commutator arguments; thus, control of |4 |4 suffices in this
sense, that is, the constant in (4.3) for k = 1 only depends on |A]4. The proofs of
higher b-regularity use commutation arguments, which do not affect the principal part
of Ly, as well as ellipticity considerations around (4.58) which only require pointwise
control of A itself; correspondingly, at no point do we need to use the smallness of any
higher regularity norms of 4. (See the end of [55, §6.4] for a related discussion).
Next, we deal with a small technical complication stemming from the fact that for
m # 0, the closure of {r = 0}, on which in Theorem 1.1 we compare the initial data
with those of the Schwarzschild metric in its standard form, inside of MR4 is not a
smooth hypersurface when m # 0, the issue being smoothness at 3" R*; furthermore,
our discussion of linear Cauchy problems used "X # {t = 0} as the Cauchy surface.
We resolve this issue by solving the initial value problem for a short amount of time
in the radial compactification “R#, with initial surface {f = 0} (whose closure is
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smooth in 0@), pushing the local solution forward to mR4, and then solving globally
from there. Recall the function 7, from (2.14), and the notation (2.17). (Thus, %%, is a
rescaling of 7, and °% = (%, = 0}).

Lemma 6.2 Fix N large, and let by > 0, € > 0. Suppose y,k € C®(R?; S2T*R3)
are vacuum initial data on R3, that is, solutions of the constraint equations (1.5), such
that for some m € R,

Vi=y = x(A =27 ar? 4 2g) € p T HEP R S2TRY) (6.5)
and k € p§+b° H* (R3; §25¢T*R3) satisfy
Il 7N s v+ K] 2100 0 <5, (6.6)

where § > 0is a sufficiently small constant; here x = x (r) is a cutoff, x = O0forr <1,
x = 1forr > 2. Then, identifying R3 = °% ¢ "M via R3 5 x — (0, x) € R*, there
exists a solution g of the Einstein vacuum equation Ric(g) = 0 in the neighborhood

U= {6l < 3}, 6.7)

attaining the data (y, k) at S (that is, (1.4) holds) and satisfying the gauge condition
Y(g; gm) = 0; moreover, g = gm + ph, where h € pgoHl‘J’o(U; §2ser*OR4) pas
norm ||h||pgpoN+1(U) < €.

Proof Note that the metric g, is smooth on U C O@, as near 1Y it is given by the
Schwarzschild metric g5, see (1.3). Using the product decomposition R* = R; x ]Ri,
we define a Lorentzian signature metric over the interior Oy ={r =0} by

g0:= (1= x(N2)di* —y € C¥((°%)°; S’ T*RY, (6.8)
whose pullback to °% is equal to —y. We next find g; € C*°(°%; S2T*R?) such that
k = Igy1sg,; denoting by N = (1 — X(r)27m)_1/28, the future unit normal, this is
equivalent, by polarization, to

g((VFTE = VIOX, N) =k(X, X) VX e T(OD)*;
Here, we view g as a stationary metric near ¢+ = 0, which due to its symmetry under

time reversal ¢ — —t has vanishing second fundamental form: go(Vf(OX ,N)=0.A
calculation in normal coordinates for go shows that this is uniquely solved by

g1(X, X) = —2(NO) " 'k(X, X) = =2(1 — x (N2 2k(X, X). (6.9

It remains to specify g1(N, -) and g;(N, N), which involves the gauge condition at
t = 0; thatis, forall V € T{tzo}R“, we require
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=Y (g0: gm)(V) = (Y (g0 + 1815 &m) — Y (g0: &m)) (V)
= (Ggg) (V. V&) = (1 — x (N 22) 2(Ggg1)(V, N). (6.10)

ForV € T(OE)O,thisdetermines (Ggog1)(V,N) =g1(V, N).Lastly,if E1, E», E3 €
TO%)° completes N to an orthonormal basis, this also determines (Gg,g1)(N, N) =
5(&1(N,N) + 3 ; g1(E, E)) and thus g; (N, N).

The assumption on y gives

ho == 0y (80 — gm) € PP HPOE; $2 T ORY). (6.11)
We claim that likewise
hi = py g1 € pg" Hy® (0% 7 T "RY). (6.12)

We introduce the extra factor of o, ! since 0y ! d; is a smooth b-vector field on OR4
near 9% and transversal to it; that is, in (4.1), we can take

d =0y 0.

Now the restriction of 41 to S2 T 9% lies in ,ogo HE®, as follows from (6.9). (Recall that
7 0% is spanned by coordinate vector fields on R3). To prove (6.12), it thus suffices
to prove that Y'(go; gm)(V) € pé“’“ HZ® for V equal to 9, or a coordinate vector field
on R3; this however follows from (6.11) and the local coordinate expression (3.1) of
Y, as such a vector field V is equal to pg times a b-vector field on OR4,

This construction preserves smallness, i.e. we have ||I’l()||pb0 gy T 1hy ||pb0 N <
0 0 b

C4 for some constant C. We can then solve the quasilinear wave equation P(h) = 0
in the neighborhood U of %, e.g. using Nash-Moser iteration as explained above.
(Since we are not solving up to .# © where our arguments in §5 lose derivatives, one
can use a simpler iteration scheme here, see [102, §16.1]). The constraint equations
then imply that 9, Y (g, + ph; gn) = O at 0% see [60, §2.1]; since Y solves the wave
equation (1.31), we have Y = 0. O

To extend this to a global solution, we recall from Lemma 2.10 and the isomor-
phism (2.40) that & pushes forward to an element of pgo HX(UN, U = {"t| < %},
and satisfies a bound || ||pgO HYH W) < Ce, with C a constant depending only on m.
We can thus use (hg, h1) = (h, d,h)|»x as Cauchy data for the equation P(h) = 0.
Note that the gauge condition Y (g) = 0, g = g + ph, holds identically near " X; by
uniqueness of solutions of P(h) = 0 with Cauchy data (hg, /1), a global solution 4
will automatically satisfy Y (g) = 0, as this holds near X, and then globally by the
argument given around equation (1.31).

Theorem 6.3 Fix N large, by > 0, € > 0, and 0 < n < min(}, bo). Then if m € R
and hg, h; € pgoH,fo(mZ) satisfy

m| =+ ||holl » + ||t » <34
]+ ol oo + 11y < 5.
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where § > 0 is a small constant, then there exists a global solution h of
P(h) =0, (h,dyh)|ny = (hg, hy), (6.13)
that is,
Ric(g) = §*0(g) = 0. g = gm + ph.

which satisfies h € X o0ibo.br.by b for all weights by < b}, < min(1, by) and by < 0,
and so that moreover ||h|| yobynni2—n < €. If in addition Y (g, + ph; gn) = 0,
Y (gm + ph; gm) = 0at ™%, then g solves

Ric(g) =0
in the gauge Y (g) = 0.

As explained above, data for which the assumption in the second part of the theorem
holds arise from an application of Lemma 6.2. This assumption is equivalent to the
statement that the Riemannian metric and second fundamental form of "% induced
by a metric g, + ph with (k, d,h)|ns = (ho, hy) satisfy the constraint equations, and
that the gauge condition Y (%; g,,) = 0 holds pointwise at ™ X. These are assumptions
only involving the data (hg, h1); the vanishing of 9, (h)|nx for the solution & of
P (h) = 0 with these data follows as in the proof of Lemma 6.2.

Proof of Theorem 6.3 This follows, with b; < b/I < min(%, bo) at first, for N =
2d = 26, from Theorem 6.1 applied to the map in (6.4). The constant § > 0
depends in particular on the constants Cy in (6.1a) for s < D = 3287; that is,
5 = 8(||h0||p§°Hlf’+' + ||h1 ||pgpoD). Repeating the arguments in §§5.1 and 5.3 once

more shows that one can take b; < b/l < min(1, by); see also the proof of Theorem 7.1
below.

We remark that / is in fact small in X3¢ = X3, but if one is interested in the size
of up to two derivatives (e.g. curvature) of 4, control of its X'® norm is sufficient by
Sobolev embedding. O

Remark 6.4 In other words, using the notation of the proof and d > 13, N = 2d,
D = 16d? + 43d + 24 = 3287, and fixing m and bg, we can solve the initial value
problem (6.13) for data in the space Z := | J Z(C), where

2(C) = {ho, h): ho, i € pP HE("E), ||
ol o ver + 1l o o < 3CC),

ol o govs + W1l o o < €.

An inspection of the proof of Theorem 6.1 in [100] shows that lim¢c_.¢ 6(C) > 0, so
2 in particular contains all conormal data (hg, k1) for which |m| + ||]’l0||pb0 y D+ +
0 b
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Ilh1 ||pbo g < 80, where 8o > 0 is a universal constant (i.e. depending only on m and
0 b

bo). Moreover, one also has a continuity statement: for any choice of weights by, b7, b
as in Theorem 6.3, the solution & € X 3dibo.brbyby of (6.13) depends continuously
on (ho, h1) € Z, the latter being equipped with the pgo HP ' @ pgo HP topology.®®
Indeed, to obtain continuity at the Minkowski solution, note that the map ¢ in (6.4)
depends parametrically on the data (hg, k1) € Z, but the constants appearing in the
estimates in [100] can be taken to be uniform when (hg, hy) varies in Z(C) with C
fixed. Continuity at other solutions is similarly automatic, but the base point of the
Nash—Moser iteration (called u¢ in [100, Lemma 1]) should then be given by the
solution one is perturbing around.

The solution 4 of (6.13) in fact has a leading term at I, as will follow from the
arguments in §7, see the discussion around (7.16); this precise information was not
needed to close the iteration scheme, hence we did not encode it in the spaces X*.

The conclusion in the form given in Theorem 1.1 can be obtained by combining
Lemma 6.2 and Theorem 6.3: using the coordinate #, on "M, the initial surface O
in Minkowski space is given by #, = —2mpgx (r) log(r —2m). A diffeomorphism of
"R* which near " £ is not smooth but rather polyhomogeneous with index set Ejog,
and which is the identity away from ™ X, can be used to map {t, > —2mpgx (r) log(r —
2m)} C "M’ to™M = {1, > 0}; pushing the solution g obtained from Lemma 6.2 and
Theorem 6.3, which is defined on ¢ > 0, forward using this diffeomorphism produces
the solution g as in Theorem 1.1. (The gauge condition satisfied by g is the wave
map condition with respect to the background metric which is the pushforward of
gm)- We omit the proofs of future causal geodesic completeness of (M, g), as one can
essentially copy the arguments of Lindblad—Rodnianski [79, §16].

Remark 6.5 By Sobolev embedding, 4 obeys the pointwise bound
| < Cy(l 41+ (1 + (e =) )" YV >0 (6.14)

and is small for fixed n > 0if § = §(n) > 0 in the theorem is sufficiently small; here,
we measure the size of 4 using any fixed Riemannian inner product on the fibers of
/3*52, equivalently, by measuring Zij |h(Z;, Z})|, where {Z;} = {0;, 0,1, 0,2, 3,3}
are coordinate vector fields. The bound (6.14) also holds for all covariant derivatives
of & along b-vector fields on "M. In particular, by Lemma 3.11, |g — g| < C;(1 +

t+ r)_1+", n > 0. The Riemann curvature tensor also decays to 0 as t +r — oo,
with the decay rate depending on the component: this follows from an inspection of
the expressions in §A.2. Note however that the components in the frame (2.23) have
no geometric meaning away from .# *. Geometric and more precise decay statements
were obtained by Klainerman—Nicolo [66].

Remark 6.6 If the ADM mass m of the initial data is large, there does not exist a
metric with the mass m Schwarzschild behavior near .# 1 but Minkowski-like far

38 Hamilton [51] shows that the data-to-solution map is in fact a tame smooth map Dbo 5 (ho, h1) —
h e x°%P0:P1:b1b+ (defined in the neighborhood 2 of the origin of D:00),
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from 19 U .#F which is sufficiently close to being Ricci flat for an application of
a small data nonlinear iteration scheme like Nash—Moser: this follows from work
of Christodoulou [25], Klainerman—Rodnianski and Luk [65,68], An—Luk [5], and
(for the noncharacteristic problem) Li—Yu [83]. On the other hand, for arbitrary m,
but without the smallness condition (1.6) on the data, one does obtain small data
by restricting to the complement of a sufficiently large ball. Working on a suitable
submanifold of "M, defined near I° N .#+ by pg < € + pf} for B € (0, by) and
€ > 0 sufficiently small, cf. (4.15), our method of proof then ensures the existence of
a vacuum solution on this submanifold; in particular, the solution includes a piece of
null infinity.

We can also solve towards the past: Lemma 6.2 produces a solution g of Einstein’s
equation in the gauge Y'(g; g,) = 0 in a full neighborhood of {r = 0}, and we can
then use the time-reversed analogue of Theorem 6.3 for solving backwards in time,
obtaining a global solution g on R*. Note here that by construction, the background
metric g,, is invariant under the time reversal map ¢: r — —t on R*, hence the gauge
conditions of the future and past solutions match. To describe the behavior of g on a
compact space, as illustrated in Figure 1, let us denote by ,R* the compactification
defined like ™R#* in §2.1 but with ¢ replaced by —¢ everywhere. Thus, ¢ induces
diffeomorphisms "R#* = ,,R*; denote by S~ the image of ST. The identity map on
R* induces an identification of the interiors of R4 and ,,R* which extends to be

og

polyhomogeneous of class A;l]g

variant of Lemma 2.10. We then define the compact topological space %R_“ to be the

on the maximal domain of existence by a simple

union of "R* and mR_“ quotiented out by this identification; this is thus a manifold of
class AS{’;, and in fact of class C* away from 9”R* N 3,,R*, hence in particular near
S* as well as near " 8(" I'") and its image under (. Define the blown-up space

M =R ST, 857,

i.e. blow up both St and S—; these are closed and disjoint submanifolds, hence the
order of blow-up does not matter. Then /" M is a polyhomogeneous manifold, covered
by the two smooth manifolds "M’ and ,M’ := [,,R*; S~1, and with interior naturally
diffeomorphic to R;"x. We denote its boundary hypersurfaces by .#* and i* in the
obvious manner, see Figure 1, and [ 0 is the closure of the remaining part of the
boundary. In view of the isomorphism (2.40), weighted b-Sobolev spaces on /M are
well-defined. For future use, we also note that polyhomogeneity at 19 with index set
&o is well-defined provided

‘-(:0 + glog = 807 (6.15)

as follows from (2.41); note that given any index set £, the index set & := 58 + Elog
satisfies (6.15) (and is the smallest such index set which contains 58 ) since Elog+Elog =
Elog-

It is useful to describe /)M as the union of three (overlapping) smooth manifolds,
namely "M, ,M := /"M, and the set U defined in (6.7). We can then define the
function space

@ Springer



2 Page 100 of 146 P.Hintz, A. Vasy

00:b. bbb
Xg]obal

to consist of all distributions on R* which lie in ,080 HZ® on U, and such that their
restriction as well as the restriction of their pullback by ¢ to M lie in X'°%0-01 by

Theorem 6.7 Given initial data y, k as in Lemma 6.2, there exists a global solution
g of the Einstein vacuum equation Ric(g) = 0, attaining the data y, k at {t = 0}
and satisfying the gauge condition Y (g), which is of the form g = g, + ph with

bo,by, b, .b
he Xoon "1 for all by < b < bo and by < 0.

7 Polyhomogeneity

We state and prove a precise version of the polyhomogeneity statement, made in
Theorem 1.1, about the solution of the initial value problem which we constructed in
§6. We use the short hand notations (2.32) and (2.35).

Theorem 7.1 Let by > 0, and let 50 C C x Ny be an index set with Im 50 < —by.
Suppose y, k € C®([R3; S2T*R3) are initial data such thatm € R, 7, deﬁned in (6.5),

and k satisfy the smallness condition (6.6), for N large and 8§ > 0 small.>® Assume
moreover that the initial data are polyhomogeneous (namely, 58 -smooth):
A = Aphg(R3; SZSCT*R3). (7.1)

Let h denote the global solution of Ric(g) = 0, g = gm + ph, in M, satisfying the
gauge condition Y (g; gm) = 0. Then h is polyhomogeneous on M. More precisely, h
is E-smooth, £ = (&y, Er, E4):

he A&) 18

c & E.
gzgg, €4 and moh € A 0.8+ near I+, where the

index sets are the smallest ones satisfying*°

with the refinements i h € A

E0DE) + &g E0D j(E—i)+i ¥VjeN (7.2a)
at 19, with Sl’og defined in (2.36), while at .9,
&} D EUQRES — i) (7.2b)
ErD0U(EU(Er + & U e — D)), (7.2¢)
Er D 0UEU((Er + &) U 2€))), (7.2d)

39 We can take N = 26 as in (the proof of) Theorem 6.3.
40 We shall prove that such index sets indeed exist.
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E1DjE —i)+iVjeN, (7.2¢)
and finally at I,
&4 D (—il0) U (&4 — HU — iU\ {0, DD). (7.2f)

At I, we only need to capture the index set arising from nonlinear terms in Ein-
stein’s equation since the background metric g, solves p~>Ric(g,,) = 0 identically
near I°; the addition of the index set Elog arises when pushing the solution near
{t = 0} c "R# forward to "M see (6.15). We point out that the index sets we

obtain are very likely to be nonoptimal due to our rather coarse analysis of nonlinear
interactions.

Example 7.2 For data which are Schwarzschildean modulo Schwartz functions, i.e.
58 = {J, the above gives &) = @ and

&=\Jij.3j+0, &=o0ug, &= J-ij.3i -1,
j€Np jeN

= (=i, 3iG+3).

JjeNo

Recalling the notation logfk introduced around (1.38), this gives, schematically, lead-
ingterms 7114 ~ log=! p;+p; log=* p;, ¢ h ~ 1+ p; log=? p1, moh ~ pylog=? p;
at .#*t (near the interior of which one can take p; = r '), and h ~ 1 + P+ logf6 P+
at I (near the interior of which one can take py = .

Example 7.3 Consider 5'8 = —i: this corresponds to initial data which have a full
Taylor expansion in 1/r at infinity, beginning with O(r~2) perturbations of the
Schwarzschild metric. In this case, we get many additional logarithmic terms from
Eo = E) + Eiog = Ujen(—ij, j — 1), namely

&r=J (). 5iGj+D+1). & =00{J(=ij. 373 +9).
J€No JEN

& =J(=ij.3iGi+3). &= (=ij. 5iG? +5) +10),
jeN jeNp

so 11h ~ log=! p; + prlog=0 p;, wiih ~ 1+ prlog=* pr, moh ~ prlog=> p; at
It andh ~ 14 pylog=8p, atI.

Remark 7.4 Let us consider the index set 58 = —i again. As indicated above, the
addition of E{Og in (7.2a) is only due to an inconvenient choice of initial surface

which produces logarithmic terms when passing from OR4 (which the initial surface
in Theorem 7.1 is a smooth submanifold of) to IR*. If instead one is given the ADM
mass m and initial data (y, k) on "%, with (y, k) close to the data induced by g,
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on "% (measured in pgo Hév ("%; 2T+ my) for suitable N), then the index set at
10 can be defined as in (7.2a) but without Sl’og. Correspondingly, the index sets at the
other boundary faces have fewer logarithms:

&= (.5 +1). & =00J(=ij.5/ 1),

jeNp jeN
& = U(—ij,Sj—Z), &= U(—ij,%j(5j+11)),
jeN j€eNg

so mi1h ~ log=! p; + prlog=0 p;, 7,k ~ 1+ pylog=* p;, moh ~ pylog=> p; at
I+, and h ~ 1 4 p, log=3 p, at I™. (The exponents in subsequent terms of the
expansion are smaller than in Example 7.3).

The proof of Theorem 7.1 is straightforward but requires some bookkeeping: we
will peel off the polyhomogeneous expansion at the various boundary faces iteratively,
writing the nonlinear equation P (k) = 0 as a linear equation plus error terms with
better decay, much like in §5. As a preparation, we prove a few lemmas for ODEs
which were already used in §5:

Lemma7.5 Let X := [0, 00),, u € ,0_°°H;7’°(X), suppu C [0, 1], and f := pD,u.
Then:

(1) fep®HP(X), a<0=uep'HP(X);
(2) fep'HXX),a>0=uce Aghg(X) + p®HP*(X);

() f € A5 (X), € any index set = u € Af,?gO(X); if (0,0) ¢ € thenu e A5 0(X).

Proof This follows immediately from the characterization of b-Sobolev and polyho-
mogeneous spaces using the Mellin transform [87, §4]. Alternatively, one can explicitly
construct the unique solution of pD,u = f with support in p < 1: part (1) follows
. _ . rl dp . _ .orl dp . rp dp .
easily from u = —i [ f <&, while for part (2), u = —i [y f 7 +1i [ [ <} gives
the decomposition into constant and remainder term. The appearance of the extended
union in (3) is due to the fact that while pD,u = p'*(log )k, k € Ny, is solved to
leading order by u = % p'%(log p)¥ for z # 0, we need an extra logarithmic term for

z=0,as pDP(ﬁ(log ,o)k“a) = —i(log p)ka plus lower order terms. O
Adding more dimensions is straightforward:

Lemma7.6 Let X = [0,00), x [0,00)p, x RI, U = {p1 <1, pp < 1} C X,
p = p1p2, and let &1, &, denote two index sets. Suppose u € p~°Hy°(X) has
supportin U, and let f := p1 Dy u. Then:

(1) £ €p{" p5> H®(X), a1 # 0 = u € A2, (X) + p{' p3> HE*(X);

@) f e AL, a1 # 0= u € ApZ(X) + AjE2(X);

.phg . b,phg
@) f e AP = ue ALP(0; i (0.0) ¢ &, thenu € AZPE(X).
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Fig. 14 Illustration of P2
Lemma 7.7 which describes

solutions of the transport

equation along the vector field

—p10p; + 020, one integral - Supp X
curve of this vector field is
shown here
P1
1

Lemma7.7 Inthe notation of Lemma 7.6, withu € p~°° H,;°(X) supportedin p; < 1,
let f = (p1Dy, — p2Dpy)u. Let x = x(p1, p2) € C°([0, 1)2) denote a localizer,
identically 1 in a neighborhood of the corner p1 = p» = 0. See Figure 14. Then:

(1) fepP pRHX(X), by > by = yu € p' p2* HX®(X);

Q) f e AE(X) Imz # —b; whenever (z,0) € & = xu e A2E(x) +

b . b,phg phg
Ayl ong (X
8 & E1U&E
B) fe A, (X) = xue A, "7 (X).

Proof We drop the R, factor from the notation for brevity. For (1), write u(p1, p2) =
—i fP]l fa o1, 1p2) % and f = ,0l p22f f € H>, thenfor0 < € < by — by
2dpy dpa

b2 b1 T t
Mup&ﬁ_f/‘L Faor, P
! dxon\1/2dt\*d
5/1</ ﬁ2“([ Fu plxﬂr—Q) ) A
0 X2 ! P1
< </ (2(b2—=b1—e€) dt) / / / 2€|f(x1 x2)|2 @ﬂdﬂ
0 X2 t X

<C b1 by o,
< ClflL oo,

as desired; higher b-regularity follows by commuting p; D, through the equation for
41
u.

For the proof of (2), it suffices to consider a single term
fie = py*(log p2)*ai(py), (7.3)

with a € pfl H{°(Hy) supported in p; < 1. Let uy = péz(log 02)%b(p1), where
by = br(p1) solves
(p1Dp, — Db = ax (7.4)

41 A more conceptual proof, which does not rely on explicit integration of the vector field, uses a positive

commutator argument with the commutant a = x| (pl)xg(pz)pl_b' ,oz_hz, Xj € C ([0, 00)), xj(p) =1

near 0, and x; < 0, i.e. the evaluation of 2Im((p1 Dy, — p2Dp,)u, azu)Lz, in two different ways: once
/ b

by using the equation satisfied by u, and once by integrating by parts and using that (013p; — p29p,)a has
a constant sign on supp a N supp u. See (4.12) for a similar argument.
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and is supported in p; < 1, then the error term

fi—1 := (p1Dp, — 2Dy — fi = ((01Dp, — 2) — (p2Dp, — 2))ux — fi

= pit(log o) ar_1(p1),  ar—i = ikby,

is one power of log p2 better than fi. Rewriting equation (7.4) as p1 Dy, (,o1 b)) =

,o] ‘a € pI‘HmZHOO(H]) we can use Lemma 7.5 to obtain b, € Aphg(H]) +
1H °°(H1); therefore uy € A (g Dxy + Ablpflzgk)(X ). Proceeding iteratively, we

next solve (p1Dp, — p2Dp,)ui—1 = fr—1 to leading order, etc., reducing k by 1 at
each step, and picking up one extra power of log p; at each stage by Lemma 7.5(3)
(conjugated by pi%). We obtain u = ZI;:() uj € Ar(jl’g)’(z’k) (X)) + Agfr’éfg’k) (X).

The proof of (3) proceeds in the same manner: if fj is of the form (7.3), now

&E1U; &E1Uz,(z,k
with ax € A5 (H), then by € ASS(HY), so up € AST“EP(X) and fioy €
Agﬁ;z’(z’k 1)(X). Iterating as before gives u € Af)ﬁ;(z k). (@, k)(X) O

Proof of Theorem 7.1 We shall first prove that if the Cauchy data (h¢, /1) in the notation
of Theorem 6.3 are polyhomogeneous at 0™ %,

ho. hy € A, ("), (1.5)

then the conclusion of Theorem 7.1 holds. Now, by Theorem 6.3, we have h €
Xo0bo:brbbe for all by < b}, < bg and b < 0. Note that since the gauge con-
dition Y (g) = 0 is satisfied 1dentlcally, h solves Ric(g) — S*T(g) = 0 for any choice
of 8*; this will be useful as it will allow us to work with simpler normal operator
models.

For now, consider % as a solution of P(h) = 0 for y > b/l as in Theorem 4.2. We
write

1
0= PG =po+ [ Lutdi o= PO €A 00

(In fact, supp poN(I1°U.#T) = @since g, is the Schwarzschild metric near I1°N.7 ).
Let us first work near /°, away from I+ Suppose that for some ¢ > bg, we already
— b —0 .
have h € Aphg b o4 oP; Hb , moh € Aphg S + psp," HE®, with the exponents
referring to the behavior at 19 and .#*, respectively. Then

1
Loh = —po + /0 (Lo — Lo () dr: (1.7)

we have Ly — Ly, € (Agogl -0 pé“p,_l_OHI;’O)Diff% by an inspection of the
proof of Lemma 3.8, and it respects the improved behavior of wph, so we find

2E0—i,—1-0
Loh € ‘Aphg,b

28p—i,—1+b},—0
phg,b

1+0,-0 . oo

—i—,o(C)HpI 170Hb°°, moLoh € A +,0(c)+1,01_ T UHES.
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Denote by & := {(z,j) € &: Imz > —c} the (finite) set of exponents already
captured, and let & :={(z,j) € &: —¢c—1<Imz < —c}. Let

[] oDy —2). R=RyoR.
(z,k)e;

Let N(Lg) € pI_Ilefz(M ) denote the normal operator of L at / 0 ie. freezing the
coefficients of L¢ at pg = 0 for a fixed choice of a collar nelghborhood [0, €)py X 10
of 1% thus N (L) commutes with P00py, and Lo — N(Lg) € ,00,0_1D1ff2 Then
Rh € pip; OHQ’O solves the equation N(Lg)(Rh) = f, where

1 b
fi=—R(Lo— N(Lo)h + RLoh € p§ "' p; O HE®, mof € p§ o 1 HES,

due to 28 — i C &p; the Cauchy data of R# lie in pC'HH > due to the polyhomo-
geneity of iy and /. The background estimate near / 70 being sharp with regards to
the welght at 19, see Propositions 4.3 and 4.8, this gives Rh e p‘“pl OHb ,moRh €

by — by —0
,o(c)“pl H°° Thus, h € Aphgb ~|—,05Jrl 0; Hb ,moh € Aphgb oy 6“ p; HEC.
Iterating th1s gives

Eo.b,—0
h e Aphg b Toh € Apﬁg’{) near 7°. (7.8)

Following the structure of the argument in §5, we next prove the polyhomogeneity
at 1\ (L1 NIT) using Lemmas 7.6 and 7.7. We now take y = 0 in the definition
of P and its linearization. Thus, let us work near 19N .# +, and assume that we already
have

& c _ _
moh € Al g 4RO e e ABEN L AT i e ASET 4 AT O,
(7.9)
for some 0 < ¢; < c, < ¢ + 1. Using (7.6) and the structure of L;; = Lzh + L,h,
we find

1
7l Lt h = —mfy po — /0 (i  Lenmefyh + 7§y Linmroh + 7 Lyymiih) dt. (7.10)

The proof of Lemma 3.8, condition (7.2e), and the fact that £ D> & D E D& —i
give

g Eo—i ,E Eo—i,c1=0\1~: £

L, € (C*® + Apgg’ I+ Apgg’{,” YDiff?,

76 LYo € p; (€ + AT 4 AL O], (7.11)

and nflL?hm 1 = 0. Multiplying (7.10) by py, grouping function spaces in the order
of the summands in the integrand above, and simplifying using 2&y — i C & and
0 C &, this gives

c 50,51-‘1—51—[ &o, 51+51 E0,2E1—i &, 51 .
19 apl (,O()apo —PI apl)nllh € ‘Aphg + ‘Aphg + 'Aphg + ‘Aphg b
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the first space is contained in the second. In view of condition (7.2¢) (note that the
index sets in parentheses there lie in Im z < 0), we obtain

&o,c;—0

c &0.&
T[llh (S A + ‘Aphg b

o (7.12)

which improves on the a priori weight of the remainder term at .# . Next,

1
7111L87111h = —T11Po —/ (i1 Linmiih + i Ligmoh + m Ly h) di.
0

Lemma 3.8 and the membership (7.12) imply
mﬂ&mepf@w+A$;&+Aﬁgq4mmt

Eo—i,E Eo—i ¢} - eel
muLldwf, € py (Apgg’ " A )D1ffb,

with p; times the latter having a leading ord_er term at ., cf. the discussion of (5.3);
together with (7.11) and (7.12), and using £; C &7, one finds

—i &0.E1+E]
P19, (00 — prdpmith € A2 4 A

ji £0.28; &o.cj—
phg phg +A + Aphg b >

phg
with the first space again contained in the second. Condition (7.2d) then gives

&
wh € A]fﬁ’gg’ + Apﬁgc{) ) (7.13)

Lastly then, we can improve on the asymptotics of 7oh at .# * by writing

1
moLymoh = —mopo — / (moLinmoh + woLin{ih + moLpmiih) dt;
0

now JTOLthTf1 =0= noL?hrrn and S} c & C &, so, since y =0,
0,281 —i &o,c+1-0
P13, (P03py — P13 moh € A= ™+ AT
but condition (7.2b) and Lemma 7.7 imply
SU,C’,+170

p18p,n'()h S ‘Aphg l + Aphg,b 5

an application of Lemma 7.6 gives the same membership for moh, since we already
know that o/ has no leading term at .# ™. This establishes (7.9) for (c;, c’l) replaced
by (¢}, ¢; + 1), and we can iterate the procedure to establish the full polyhomogeneity
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away from ™. Near # T N [T the arguments are completely analogous, except we
only have conormal regularity ,o L HX at ] +. Thus,

E0.81.b4
phg,phg,b>

g(),g[,b+

£0.8) by
woh € A phg.phe,b*

C
phg,phg,b’ mih € A

T heA

Next, we use this information to obtain an expansion at /™, similarly to the argu-
ments around (5.10). We shall use the linearization L, still defined using y = 0, and
its normal operator at I C M—instead of its normal operator at the boundary of @,
which obviates the need to relate (partially) polyhomogeneous function spaces on R4
and M. Namely, fix a collar neighborhood

U:=[0,1),, xIT, I"={ZeR*: |Z| <1},

of It in M, and denote by Vi, _ (U) C V(U) the Lie subalgebra of vector fields tangent
to I'" but with no condition at .# . Then for y = 0, we have Lo € Diffy _(U) (the
algebra generated by M, _), acting on sections of f*S?|y: by Lemma 3.8, Lo €
Diff%(M ) — Diff%v_(M ) certainly has smooth coefficients, and the same is true for
L) = —2p728031 = p, (p1dp, — p+3p,) + Diff2(M), p; = 1 — | Z|?. Furthermore,
by Lemmas 2.10 and 3.10 as well as equation (3.29), the normal operator N (L) of Lo
at I can be identified with N (L), so that in fact N (L¢) = Ugys — 2, defined using the
expressions (4.62) and (4.65), acting component-wise on the fibers of the trivial bundle
R!0, where we use Lemma 2.11 to identify g*$2|,+ = 0g*(§2sc1*0 R4)|o + =RIO
by means of coordinate differentials. By [107, §4] and the module regularity proved
in [57],

Lo@)~ ' B~ V51t — B 1) (7.14)

is meromorphic for o € C with s > % — Im o, where the bar refers to extendibility
at 31T = {|Z| = 1}, while the parameter k € Ny measures the amount of regularity
under the C*°(I+)-module Diff} (/7); that is, H*(I*) consists of H* functions on
I which remain in H® under application of any operator in Diffﬁ(l *). (This is
analogous to Lemma 5.4, except in the present de Sitter setting we work on high
regularity spaces rather than the low regularity spaces in the Minkowski setting, see
[107, §5]). Strictly speaking, the references only apply to the operator obtained from
Lo by smooth extension across 81T to an operator on a slightly larger space than I
but (7.14) follows simply by using extension and restriction operators, and the ch01ce
of extensions is irrelevant since Lo(a) is principally a wave operator beyond 9/%.
The divisor R of L, see Remark 5.6, is then

R = —i: (7.15)

indeed, using the relation between asymptotics on global de Sitter space and resonances
on static de Sitter space as in [60, Appendix C], this follows from [106, Theorem 1.1]
for n = 4, A = 2, with the logarithmic terms absent: the indicial roots are 1 and 2, see
[106, Lemma 4.13], and in the notation of (4.65), the difference of U, and its indicial
operator —(£9;)2 + 379; is T2As, thus vanishes quadratically in 7 as a b-operator
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on [0, 00); X R;. Hence, for the formal solution u = Tv_ + f2v+ constructed in
[106, Lemma 4.13], the Taylor series of v+ only contain even powers of 7; 1 — 2Ny
and 2 — 2Ny being disjoint, there are no integer coincidences which would cause
logarithmic terms.

Now, consider again (7.7): if x = x (o) denotes a localizer near I, identically 1
near /T and vanishing near 1°, we have

1
Lo(h) = —x po + [Lo. x1h + /O %(Lo — Lup) () di. (7.16)

We have x pg € A%0 with the exponents now referring to the behavior at . and

phg’
I, respectively. Suppose we already have

EEx
phg

+A§ﬁ;§1 wih e ASLE g ABer e ASLER L ASE(717)

moh € Ay phg phg.b* phg phg,b

Using that &4 — i is closed under nonlinear operations, i.e. j(Ex — i) +i C &4,

jeN,wefind Lo — L, € Aphg C*“Hg’"

Using the structure of L;; near .#+ N I from Lemma 3.8 as above, and noting that
supp[Lo, x1h C suppdy is disjoint from I, we deduce that

near (I7)°; see also Lemma 3.10.

' Er+i, 26 —i Etiertl
LoGeh) € AGD 4 ASHY A58y pEet D g\ (0, 1),
where the weight of the remainder term is as stated since all (z, k) € &4 except for
(0,0) have Imz < 0. (Here & D & +i D & + i allows for a nonlogarithmic
leading term at .# T, capturing the worst component of elements of the space Y in
Definition 3.3, and moreover captures all nonlinear terms of (7.16)). Replacing Lo by

N (L) causes another error term, (Lo — N (Lg))(xh) € ASiHREml Bt

phg phg,b >
SO
Er+i, Ep—i Er+i, cy+1
N(Lo)(xh) € Aphg + Aphg + Aphg b .
Mellin transforming in p4+ at Imo = —b, inverting ZB(U) on Af{l;i(lﬂ using

Lemma 7.8 below, taking the inverse Mellin transform, and shifting the contour to
Imo = —c4 — 1, we obtain

0,RU0 00E;,(RUENU(EL—i) 00E;,cp+1
Xh € Aphg + ‘Aphg + Aphg,b .

The index set at I T is contained in £, by condition (7.2f), so this improves over (7.17)
by the weight 1 in the remainder term; the index sets at .#+ on the other hand are
automatically the ones stated (but now with the improvement at /1), as the presence
of a nonzero term in the expansion of 7711 i, say, at . * corresponding to some element
in (OU&)) \ €7, would contradict our a priori knowledge (7.17). Iterating this gives the
polyhomogeneity at I, as claimed.
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Next, let us show that the smallest sets satisfying conditions (7.2a)—(7.2f) are indeed
index sets: we need to verify condition (2.31b). For &, this is clear since, letting

g:(()) = 58 + gl/og’

=&UJiE&-n+i
jeN

and Im gg < 0; note that this gives In& < 0. At #*, we take & = Uren &) 40
likewise for £ and &7, where we recursively define &; 0= 5_'1,0 =&r0="%¥and

El w1 = EUQREx — 1), (7.18a)

Elg+1 =0U (500((5_1,k + &0 U Qe — 0)), (7.18b)

Erir = (00EU(Erk + €70 U EL0)) U (i =D +i).  (1.180)
jeN

It easy to see by induction that
Img},k, Im(&'_],k\(O, 0)), Im(SI,k\(O, 1)) < —c¢, c¢:=min(l, —supIm &) > 0,

for all k. Therefore, to compute the index sets in any fixed half space Imz > —N,
it suffices to restrict to j < N + 1 in (7.18c), which implies that the truncated sets
Sg,k;N = 5}’,( N {Imz > —N} etc. are finite for all k; we must show that 5;,k;N etc.
are independent of k for sufficiently large k (depending on N). Note then:

_ é_‘;,k-i-l;N only depends on &7 k. (v—1)/2;

— &1 k+1;n only depends on & x;(v—1)/2, E1,k:N—c» and Séyk;N;
— &rk+1;n only depends on &7 . n—¢, 1 k:(N=1)/2> E1.k: N> and S}’k;N.

Combining these, one finds that, a fortiori, 5}’,{“;]\,, 51,k+1;N, and &; g4+1.5 only
depend on the sets 5;’](7@;1\/70, 5],](_(;1\]_(;, 51,k—(;max(N—c,(N—l)/2)a £ =0,1,2.
Therefore, for N > 0, 5}’ kN Cfc. are independent of k for k > 3N /c, as desired.
An analogous argument implies that £, is an index set as well.

Finally, we show that the polyhomogeneity of the initial data y and k in the sense
of (7.1) implies that the solution in the neighborhood U, see (6.7), of {r = 0} con-
structed in Lemma 6.2 is indeed polyhomogeneous at /° N U with index set &; this
however follows from the same arguments used to prove (7.8) (and we can in fact

ignore the weight at .# ). In fact, working on “R#, we have h € A;fgg(U ) where
6'6 = jeNy ( Jj (5(()) —i)+ i) does not include the extra logarithmic terms from &og;

this relies on the observation that the gauged Cauchy data constructed in the proof
of Lemma 6.2, see (6.11)—(6.12), lie in Aiﬁg (°%), which follows from an inspection

of the proof. Upon pushing the local solution % in U forward to ’"R_“, we incur the
logarithmic terms encoded in the index set &jog, see (6.15); this proves (7.5). ]
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To complete the proof, we need to study the action of Lo (o)~ ! on polyhomogeneous
spaces. Let £ be an index set, and let ¢ € R be such that Imz < —c¢ for all (z, 0) € &;

thenA(;";g(I"_) C,O 1H00(1+) C H—1/24c— 000([+)

Lemma 7.8 The operator Z(\)(o*)_1 in (7.14) extendjfrom Imo > —c as a meromor-
phic operator family Lo(o)™!: A[‘f};’ M — Ag;fgg(lﬂ with divisor contained in
RUE.

Proof Given f € p; 1,élphg(l T), we shall explicitly construct a formal solution Uphg

of Lo(a)uphg = f at 31", which we then correct using the inverse (7.14) acting on
Co° (I). The construction uses that

Zo(a) =—-D,, (p1Dp, —0) + Diff%(IJ“), (7.19)
which follows from the form (4.49) of the dual metric of p~ gm Thus, consider
(z k) € & fo € C®WOIT) = C®(S?), and suppose f = ’Z Yog pn)¥ fr €

l(fhg)(l“‘) near p; = 0. If z # 0, we then have

Lo0)(—z 'z — o) 1 pi*log p)* fi) — fone
=(z—0) '  og o) it + 2 —0) 7

for some fi_1 € C®(dIT), and with [’ e pl_lAE)i’g)_i(l"’) holomorphic in o. We

can iteratively solve away the first term, obtaining u; € C°°(31") such that

k k
fo(a>(2(z — o)/ o log p)* T u j) —f=) G=0)'f],
j=0

j=0
where f’ ,/ € p; Al();g = )_i(l *) is holomorphic in o and has improved asymptotics
at 917, If on the other hand z = 0, f = /ol_1 (log p1)kfk € pI_IA;?q’;)(IJF), we need

an extra log p; term: there exist u; € C*° (317) such that
k
Lo(o) <Z o~/ (log Pl)k+l_]1"j) -f
=0

k
_in S g Ok+1—j)—i
= 07T fenr Ay A,
j=0

(Note that there is no term on the left with (log on)?). In general, given f €

O; ].Aphg(l T), we can use these arguments and asymptotic summation to construct,
locally ino, a family uphe € ghjgg (I'"), depending meromorphically on o with divisor

contained in &, such that
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Lo(@)uphg — f =: ' € A, (") =C>(™)
is meromorphic with divisor contained in £; applying Lo (o)~ to this gives an element

of C*(I) = Aghg(ﬁ), and

u:=Lo()" " f = tpng — Lo(a) " f’
solves z\o(a)u = f, with divisor contained in RUE due to the second term. O

The global solution g = g, + ph constructed on the space i} M in Theorem 6.7
is polyhomogeneous as well; the only place where this is not immediate is 79, where
however polyhomogeneity is well-defined under the assumption (6.15) on the index
set &y, which is already satisfied for the set & constructed in Theorem 7.1. Thus, the
index sets of hat 1=, #~, I°, 7%+ and I are £, &1, &, &1, and £, respectively,
likewise for the refined asymptotics of 7{;h and moh near .¥ +

8 Bondi mass and the mass loss formula

We shall first use a different characterization of the Bondi mass than the one outlined
in §1.3: the Bondi mass can be calculated from the leading lower order terms of the
metric g in a so-called Bondi—Sachs coordinate system in §8.2; in order to define
these coordinates, we first need to study a special class of null-geodesics in §8.1,
namely those which asymptotically look like outgoing radial null-geodesics in the
Schwarzschild spacetime. For simplicity, we work with the infinite regularity solu-
tions of Theorem 1.8, and we only control the Bondi—Sachs coordinates in a small
neighborhood of (.#1)°, as this is all that is needed for deriving the mass loss formula.
More precise estimates, including up to .# ™ N I, of this coordinate system, and a
precise description of future-directed null-geodesics and other aspects of the geometry
near (null) infinity will be discussed elsewhere.

8.1 Asymptotically radial null-geodesics

Suppose ¢ = gm + ph, h € X o0b0.brby by golves Ric(g) = O in the gauge
Y(g; gm) = 0, where the weights are as in Definition 3.1; by an inspection of the
expressions in §A.2, the gauge condition implies improved decay of certain (sums
and derivatives of) components of the metric perturbation /, for instance, Y'(g)g = 0
implies

00;24b0,2+by  2+b

Iy’ e mr=2 + H 8.1)

We wish to study null-geodesics near (.# 1)°. Introducing coordinates v* on TR* by
writing tangent vectors as v*d,u, the geodesic vector field H € V(TR?*) takes the
form

H = v"0wu + F,‘fkv"vkavu.
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As usual, we will use x0 = ¢ + Ts, x! =t — r,, and local coordinates xZ, x3 on SZ.
Consider first the case that & = 0, so g is the Schwarzschild spacetime near .# .
Radial null-geodesics then have constant xband x?, b = 2, 3, while v9(s) = x%(s)
satisfies the ODE 00 = —mr(s) " 2(v?)2, so ¥ = —mr—2(x")%. We then use:

Lemma 8.1 We haver = r, —2mlogr, + (’)(r*_1 logry), andry = %()c0 —xh.

Proof Let ro(ry) = ry and
rkt1 () = 1y — 2mlog(ri(ry) — 2m) = ry, — 2mlog(rr) — 2mlog(l — 2mrk_1),

then |41 — il < Cr*_1|rk — rx—1l, k > 1, and the fact that |r; — ro| = O(logry)
show that r —ri = O(ry 1 log ry), hence evaluation of r| gives the result. O

Often, we will only need the consequence that
r=1x" 4+ O(logx%) (8.2)

for bounded x!, suggesting the approximation ¥ = —4m (x%)~2(%9)2 for the geodesic
equation. Solving this by Picard iteration with initial guess x8 (s) = s gives

x?(s) =s+4mlogs, )'c?(s) =1 +4ms71,

and subsequent iterations give O(s ™! logs), resp. O(s 2 log s), corrections to x?(s),
resp. )'c(l)(s). Let us generalize such radial null-geodesics:

Proposition 8.2 Fix a point p € (. 1)° with coordinates xi(p) =: X'. Then there
exists a future-directed null-geodesic y: [0,00) — M, y(s) = (x*(s)) such that
y(s) = pin M and x%(s) — %% = o(s 1) as s — oc.

Proof We will normalize y by requiring that x’(s) ~ s 4+ 4m log s, and we shall seek
y: [s0, 00) — M for sy > 0large. For weights g, o1, ¢ > 0, to be specified in (8.10)
below, we will solve the geodesic equation on the level of the velocity v* = x* using
a suitable Picard iteration scheme on the Banach space

X == {v=(": [0, 00) > R*: 90 e 717000l e s7171c0 4@ € s_l_¢CO},

(8.3)
where we use the notation

P(s) := 00s) — (1 +4ms™ ),
and where C° = C%([s0, o0)) is equipped with the sup norm; as the norm on X, we

then take the maximum of the weighted C% norms of 9% and v, i = 1,2, 3. Forv € X,
we define its integral x = I (v), X*(s) = v (s), by

o0
xo(s) =5 +4mlogs —/ %O(u)du,
s

@ Springer



Stability of Minkowski space and polyhomogeneity of the metric Page 113 0f 146 2

o
x'(s) =% —f v'(u)du, i =1,2,3. (8.4)
N

As the first iterate, we take
T0(s). vj(s) =0, xo := I(vo);

note that ||lvgl|x = 0. Fork > 0, v € X, |lvkllx < 1, and xx = I (vg), let then

o0
Uy (9) == v,’f(OO)Jr/ T vk @vp @) du, xepr i=I(ks1).  (8.5)
N

Note that for some fixed constant C > 0,
Ix(s)—s —4mlogs| < Cs™, |xl(s)—%'| < Cs™, |xi(s)—%'| < Cs™%, (8.6)

which in particular allows us to estimate the Christoffel symbols appearing in (8.5). For
w = 0, writing ri (s) = r(xx(s)), and using the improved decay of various Christoffel
symbols due to the gauge condition Y'(g) = 0, we have

o0 oo
W (5) = —dms™! +f mrk(u)_2du+/ O (™27 du
N

N
o
+/ O™ logu - 1-u ') + Ogy(u™" - 1-u'7%)
S
+ OSO (uil logu : u727a1) + Oso(”il logu . uilf"‘l . u,17¢)
+ Oy (- u™") du, 8.7)

with the integrals on the first line coming from terms with (x,2) = (0,0) and
using (8.1), while the remaining terms come from (x, A) = (0, 1), (0, b), (1, 1), (1, b),
(a, b), in this order, using that v,? =0O(), v,l =O(s~ '), and vy = O@s™17%). As
for the notation, the constants implicit in the Oy, notation depend only on so and are
nonincreasing with sg, as they come from the size of the Christoffel symbols along
x (s), which satisfies (8.6). By (8.2) and (8.6), we have

o0 o0
/ mri(u) 2 du = / dmu™? + Ow 3 logu)) du = 4ms~' + O(s~*log s).
N N
Therefore, we have
|52+1(s)| s sTI=br 4 g2 logs + sTImd 4 g2

which, for fixed o9 < by, is bounded by %s’l’“o for large sg, provided g <
min(¢, 1 + a1, 2¢ — 1); in particular, this requires ¢ > %
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We obtain estimates on v,i 4 (s),i =1, 2, 3, in a similar manner. Namely,

(e.¢]
RO / Og 2721 1) + Ogy (™ - 1-u™ 17 4 Ogy (w701 1 w179
s

+ OSO(”_l : ”_2_2a1) + Os()(l/t_l Lyl u_1_¢)
+ Ol w4 du (8.8)

satisfies |v,1+1(s)| Sso sTI70 4 s~2¢_ hence |v,i+1(s)| < %s’l"’“ provided the
weights satisfy o; < min(b’;, 2¢¢ — 1), and provided we increase so, if necessary.

Lastly, using the precise form of the leading term of Iy,

o0
v (s) = / (’)So(u%*b/’) + (’)so(bf3 I lal))

+ (u_1 N T (Q‘Yo(u_2 -1 ~u_1_¢))
4+ O ™2 w272 L O (u™ w10y
+ 05 (1-u™>"*)du. (8.9)

Integrating the first term in the second line gives a term bounded from above by

—rgs T =TT @),
so we get |v,‘j+1(s)| < (% + %)s‘l_"é provided ¢ < 1 + b’l (which is consistent with
g > %). Thus, the iteration (8.5) maps the unit ball in X into itself, provided we fix

weights
ap € (0,b), aj €(0,b)), ¢ € (%, 1+0b)), (8.10)

and choose sg large; recall here that 0 < b; < b/I < 1. Moreover, taking so larger
if necessary, vy — vk41 1S a contraction; such an estimate is only nonobvious for
the difference of quadratic terms in (8.5) involving the component v°; however, the
corresponding terms come with a small prefactor due to the smallness of the relevant
Christoffel symbols.

Let now v := limy_o vx € X denote the limiting curve in TR*, and integrate it
by setting y := I(v). Then v satisfies the integral equation (8.5) with vy and v
replaced by v, so vis C I hence yisa c? geodesic. In particular, |v(s)|§(s) is constant,
hence equal to its limit as s — oo, which is

OGP 1) 40015717y £ O™ 1. 5717%)
+ 07! logs - s L O - sTIT s L O 5T
=o0(l), s —> oc.
This proves that y is a null-geodesic with the desired properties. O

Note that y is the unique null-geodesic, up to translation of the affine parameter,
tending to p and such that y € X. (Indeed, for any such y, the velocity y has small
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norm in a space defined like X but with weights decreased by a small amount and for
so large enough. The uniqueness then follows from the fixed point theorem).

Definition 8.3 For p € (.#1)°, denote by y,(s) the maximal null-geodesic such that
v = yp and x = y,, satisfy equation (8.4) and v € X, with X given in (8.3). We call
¥p a radial null-geodesic.

We record the following stronger regularity property of the geodesics y,:

Lemma 8.4 In the notation of Proposition 8.2, let y,(s) = (x*(s)) denote a radial
null-geodesic; then we have

X0(s) € ST ([0, 00)), X' (s) € ST ([s0, 0)), F(s) € S #([s0, 00)),

fqrall weights ap < by, a1 < b, ¢ < 14D, where T0(s) := x0(s) — (s +4m logs),
X' (s) := x'(s) — X', and where S™ ([sg, 00)) denotes symbols of order m, i.e. functions
u € C*®([s9, 00)) such that for any k € Ny, |u®© (s)| < Cy(s)"*.

Proof Certainly x*(s) is smooth as a geodesic in a spacetime with smooth metric
tensor. The symbolic estimates for Bskf“ (s) for k = 0, 1 follow immediately from the
construction of y, in the proof of Proposition 8.2; for k = 2, they follow from the
proof as well, specifically, from the decay of the integrands in (8.7)—(8.9). Assuming
that for some k > 1 we have 3] X°(s)| < (s)%07/,0 < j < k+1, with ag as in (8.10),
likewise for X, i = 1, 2, 3, we have

30230 = 0¥ x0 — 852 (s + dmlogs) = 9550 4 0¥ (4ms?),

and 9f ¥0 = —0¥ (I'0)  &#%"). Note that x%(s) = O(s), 0,x"(s) = O(1),and 3/ x°(s) =
O(s~'=7) for 2 < j < k + 1. Expanding the derivatives using the Leibniz and chain
rules thus gives the following types of terms: for (1, v) = (0, 0) and all derivatives
falling on the Christoffel symbol,

O (9% = 88 @ms ™2 + O(s2721) (1 + O(s ' log s))
= 3k (dms™2) + O(s k270

by the inductive hypothesis and the b-regularity of the remainder term in F(())o? the
remaining (u, v) = (0, 0) terms are, with €1 + €» 4+ €3 = k and £, > O,

@ T (0210 (9% = 0270 57170 578) = O™+ ).

Estimating the terms with (u, v) # (0, 0) does not require special care: derivatives
falling on x* are estimated using the inductive hypothesis (thus every derivative gives
an extra power of decay in s); a derivative falling on l"gv on the other hand either

produces (80F2v))'c0, which gains an order of decay due to the Christoffel symbol

(recall that 9 is a b-derivative which vanishes at #7), or (9; F?w)xi, which gains
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Fig. 15 The outgoing light cone
C:1 limiting to the sphere
S ¢ (#£1)°. Also shown
are a number of radial
null-geodesics

an order of decay due to X' = O(s~!). Thus, the bound 85 (83550) = O(s k=2~
follows from the same arithmetic of weights as used after (8.7).

The arguments for the other components X' are completely analogous, and in fact
simpler as no terms need to be handled separately. This finishes the inductive step,
and thus the proof of the lemma. O

We further note that for any compact subset K € (.#1)°, there exists a uni-
form value s9 € R such that the null-geodesics y,, p € K, are defined on [s, 00);
since moreover y, arises, via y, = I(y,) as in (8.4), from the Banach fixed
point theorem for a smooth (in p) contraction, Lemma 8.4 holds smoothly in the
parameter p, that is, making the dependence on p explicit as a subscript, we have
X0(s) € C®(K; 7% ([s0, 00))) etc.

Consider now the union of radial null-geodesics tending to the points of particular
S? sections of .# 7. Concretely, for fixed x! € R, denote

SEh:={pest:xl(p) =3z}, Ca = U ¥p (50, 09)), (8.11)
peS(xl)

where s¢ is chosen sufficiently large, which will always be assumed from now on.
See Figure 15. Thus, on the Schwarzschild spacetime, C;:1 is the part of the null
hypersurface x' = x! on which x > s.

Lemma8.5 Fori' € R, the set Ci1 is a smooth null hypersurface near % . Moreover,
if I' € R is a precompact open interval, then there exists a function u such that

/

~ b — _ _
u—x'=iep CHREM): Co={u=3" el (812

Proof With coordinates x%, a = 2, 3, on S, write y(il; s, X2, 23) = y(iujz’;z)(s).
First, we shall prove that there exists a coordinate change of R .0 x Riz 3

o' 0 x? 1% = (10 — dmlogx® + 30 1% + &%, 1 + %) =1 (°, @, @),
(8.13)
depending parametrically on x! € I', and with P e ST, d9 e §7¢ for weights as
in (8.10) (with the symbolic behavior in x?), such that the map

§(x% &, x% ) =y o 10, 22, 1)
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satisﬁes xlod=xli= O 2,3.To do this recall that, putting y* = x* o v, we have
YO —(s+4mlogs) =: 70 e S~ pl —3!l =yl ¢ s~ sand y —x® = (yte s,
so after some simplifications, our task becomes choosing @' such that

30 = dmlog(l — 4m(x) " logx® + @Y%) — PO @), P = —pE; @)
(8.14)
this can be solved, first with P (x%)~20 0 erc. using the fixed point theorem, and
then in symbol spaces using the smoothness of 0 (which follows from the implicit
function theorem) and an iterative argument.

Let us drop x9, x2, x3 from the notation. The desired function u is then defined
implicitly by uo8 = x!'. Writing x' (8(x!)) =: X!+ f, where f € S~ by Lemma 8.4,
we see that § is one to one for large x°, as ! + f(x!) = ' + f(3!) implies
0> |x! =3 = c@O|x! — 3], s0 x! = y!if x¥ is large. Writing u = x! + 7,
we thus need to solve

G+ + fE+D) =5 = T=—fGE +D),

which by another application of the fixed point theorem has a solution # € S~%I.
Lastly, note that the vector fields d,;, i = 2, 3, 4, and xoaxo span Vy (M) near (.#7)°
in view of p; = 1/x°, hence §~ C p“‘ 0H°° near (.#1)°. Since we can take o
arbitrarily close to b} by (8.10), the existence of u and smoothness of C;1 follows.

It remains to prove that C;1 is a null hypersurface. To this end, we sketch a different
way of constructing C;1: let X > 0, and consider the 2-sphere S:i:0 = {x° =
X, xl = )El}. For sufficiently large %0, Sz1z0 is spacelike; hence, for any p € S;izo,
there are precisely 4 rays of lightlike directions in (7,51 0)T, and there exists a
unique v(p) € (TpS);]Xo) Which is future lightlike and outgoing (i.e. dr(v(p)) > 0),
and for which v(p)? = 1 + r(p) By writing out the condition g(v(p),d;) = 0
using the form (3.14) of g, one obtains an expression for v(p)“ in terms of a small
multiple of v(p)! and certain metric coefficients, while using |v( p)|§, = 0 (and using

the nonvanishing of gg) gives an expression for v(p)! in terms of a small multiple of
v(p)“, plus certain metric coefficients. Solving this simple system, one finds that the
components of v(p) satisfy v(p)! = (’)(r_l_b/l) and v(p)* = (’)(r_z_b/l); they are
thus small when measured in the norm of X (restricted to a single point) in (8.3), cf.
the upper bounds on the weights in (8.10).

A small modification of the fixed point argument in the proof of Proposition 8.2
shows that we can solve the geodesic equation with initial data v(p) in the backwards
direction up to a fixed value of x9, say x% = C > 1; denote the union of these null-
geodesic segments emanating from points on S;i1;z0 by C;iz0. Letting %0 — o0, it then
follows that C;1;0 converges over every compact subset of R*N{x° > C} to C;:iin
the C! topology. By construction, every C 130 is a null hypersurface; thus, its C! limit
C;i is a null hypersurface as well. O

The function u is uniquely defined by (8.12); thus, Lemma 8.5 shows the existence

of a neighborhood
(I cUtcMm (8.15)
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. b, — _
and a function u € x! + p,’ OHQ?OC(UJF) such that Cz1 N UT = {u = &'} for all
-1
x' eR.

Remark 8.6 The weight in (8.12) is consistent with the choice of the domain (4.15)
whose boundary component Uf is spacelike, see (4.16).

Since |Vu|* = 0 by construction, the vector field Vu consists of null-generators of
its level sets C,;; more precisely, we have Vy, Vu = 0, so restricted to the image of a
radial null-geodesic y, C Cy, we have (Vu)ly,s) = cpy)p(s) for some constant c).

Taking the inner product with 8; and using the form (3.14) of g yields 14+O(s ™" 110y =
cp(3 +O(s 1), so letting s — oo gives ¢, = 2 and thus

(VM)Iyp(s) = 2)}[7(3)~

We can then extract more information using r = %s + O(logs) and go; = % +
25 (ho1 —m) + O(s~*log s): Lemma 8.4 then gives 2(yp(s),d1) =1+ 45 ho +
O(s~17%0), 50

i —2r " hot € p; O HES. (8.16)

8.2 Bondi-Sachs coordinates; proof of the mass loss formula

The function u has nonvanishing differential everywhere on C;1 when x¥ is large; we
will use it one coordinate of a Bondi—Sachs coordinate system (u, F, %2, %3), where
the coordinates 7 and X%, a = 2, 3, are geometrically defined and constructed below;
with respect to such a coordinate system, the metric takes the form

¢ = guudu® + 28, du di — F>qap(d3® — U* du)(dz’ — U” du)
for some g,u, gurs gap, and U4, and quantities of geometric or physical interest such
as the Bondi mass and the gravitational energy flux can be calculated in terms of
certain lower order terms of these metric coefficients [12,91]. We begin by defining 7.
Introduce a projection 7 : Ut — S? by

T(Yi10)(8) =0, 0 € S?,

which is well-defined due to Lemma 8.5; in fact, in the notation of its proof, using
local coordinates x%, a = 2, 3, on S2, we have

w0 xt 12 x0) = (@G + T X0 2% x0) a3, (8.17)
which in particular gives
7 xl x2 xhH — 2 xY) e s (8.18)

The map 7 defines a fibration of every C,,; these fibrations have natural sections, as we
proceed to explain invariantly. Let N := ker m, denote the subbundle (smooth in M°)
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consisting of vectors tangent to the fibers of 7: this is the bundle of null generators of
the null hypersurfaces C,, and therefore N L T C,. This implies that the spacetime
metric g restricts to an element

[g] € S*(TC./N)*.
On the other hand, the pull-back 7 * ¢ induces a Riemannian metric [7*¢]on TC, /N,

i.e. an isomorphism TC,/N — (TC,/N)*, hence [n*g]_l[g] € End(TC,/N) is
well-defined. We then define the area radius 7 by the formula

= det([7* g1 ' g]), # > 0.

o by =0 . _ 1+, —0
Lemma 8.7 We have i —r € p,' ~Hp® and doF = % —mr=t +p, " "H® near

().

Proof 1t suffices to prove the first claim. We start by finding representatives in 7C,,
of a basis of TC, /N by considering the vector fields

Vo= fa01 + 04, a=2,3, (8.19)
with f, to be determined. Working over the image of a fixed geodesic y,, : [so, 00) —

M,weusey, = (1+ O~ 1)+ O 1793 + 3, O(s~17%)9, and the form of
g to calculate

gWp Vo) = 3 +0G6™NA+ 06 fo + O,

demanding this to vanish determines f, = O(s'~). Since ¢ < 1 + b/, is arbitrary,
we conclude that

8Var Vi) = —r2gap + rhzz + O(b1+0), (8.20)
while the observation (8.18) implies that 7,.(V,) € 9, + CS dp, C, fl’ = O(s™%), hence
@) (Va, Vo) = gap + O(s™'7P140), (8.21)

Therefore,

=t det(l — r_l(gbché;;)a,c:zﬁ + O(S_l_b/’+0))
=41 —r b+ OO,

which is equal to r4(1 + O(S_l_bll"ro)) due to the decay of ¢t at #T coming from
the membership h € xX0:b1.b by e ultimately from the gauge condition. Taking
fourth roots, carrying symbolic behavior in s through the argument, and noting that
these calculations depend smoothly on the parameter p € (.# 7)° completes the proof.

O
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Corollary 8.8 Define the punctured neighborhood Ut = UT\(F1)° of (Ih°,
see (8.15). Then if UY is a sufficiently small neighborhood, w,?,m): UT —
R x R x S? is a coordinate system on U,

Proof This follows from Lemma 8.7 and the asymptotics of u and w in (8.12)
and (8.18). O
: : a 2 : °a . a a 1+b/1_0 00
Choosing local coordinates x“ on S and letting £ := x%om = x“+p, Hy?,
we can introduce the Bondi—Sachs coordinates

(u, 7, %2, %%) (8.22)

on U; the metric g and its dual G = g_1

construction,

simplify in this coordinate system since, by

G(du,du) =0, G(du,d?") = (Vu)(x9) = 0. (8.23)

Furthermore, using (8.16) and Lemma 8.7,
G(du,di) =1+ p, "1 HE®,

345,-0

Gd#, diP)y = —#~2g% — #3570 4 p 10 oo, (8.24)

where the leading term in the first expression comes from g01 (01u)(9o7). In order to
calculate G (dF, d7) to the same level of precision, we need to sharpen Lemma 8.7.

Lemma 8.9 Near (£ 1)°, we have
017 = =%+ (m + L1 — 2ho0) + rdohn — $¥aYph®™)r =" + o O HgE.

Note that in (8.20), we already control g(V,, V) modulo terms more than two
orders beyond the leading term, which suffices for present purposes. On the other
hand, the remainder term in (8.21) is not precise enough.

Proofof Lemma 8.9 Put A := [7*¢]~'[r~2g] € End(TC,/N), so (*/r)* = det A,
and Lemma 8.7 gives A> = BZ—r_lth—i—p;er’_oHlfo and (det A)—1 € p;+h’_OH§°.
Suppose now that

di(det A) = r 2+ o(r™2), (8.25)

then 01 ((F — r)/r) = %(det A)73/49 (det A) = ;llr’zu +0(r=2), so expanding the
left hand side as r 1317 + 3 — mr~1) + o(r~2) implies that

i =—1+rtm+ L +o™ (8.26)

Our calculations will imply that the o(r~1) remainder is of size O~ 1=0110) but
we shall stick to o(r 1) etc. for brevity. Trivializing TC, /N locally using the frame
{Va:a = 2,3}, with V, defined in (8.19), A becomes a 2 x 2 matrix-valued function.
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We can thus use the formula 9; (det A) = (det A) tr(A~19; A), so it suffices to deter-
mine the function p in tr(A~'8;A) = r—2u + o(r~2). One contribution comes from
differentiating [r~2g], which by (8.20) and Y (g); = 0 yields
(21 a1l g = (—g = 1A+ O @1 hgp) + O
= —r "9tk h — 120 B + 002
=2r2(hy) — 2ho1) — 2r 2V ahy? + 4raoh1s + 0(r 7).
(8.27)

The remaining contribution to tr(A~13; A) is —tr([7*¢]~'9;[7*¢]) (using the cyclic-
ity of the trace). Let us work near a point zg € R?, and suppose x2, x> are normal
coordinates on S? centered at the point 7 (z¢p). Then

(31GT* ) (Vs Vi)) 2o = 31 ((gea © 1) (V) (Vi) L2
= Fedlr(zo) (31 (T V) ) (T Vi) - Fed | (2) (77 Vi) (31 (1 Vip) D).

Now (774 V)¢ = 8¢ 4+O(r~1=1110) whose derivative along d; is of size O(r~'~119),
S0

01 () (Vs Vi) = gbc01 (T Va) + facOi (V) +0(r™?) atzo.  (8.28)
Let us first calculate the contribution to this coming from the term 9, in V. By (8.17)

and recalling the form of the map ® from (8.13) as well as its defining relation (8.14),
we have

01 (:02)" = 910, D" (x! +10; 2%, 2%, %)
= —010,7" (" + 7 1Y —dmlogx® 4+ d°, X2 + %, X3 + B%); (8.29)
now Vb,gs x€-derivatives (¢ = 2, 3), and P are of size O((xo)_l_b/1+0), so dropping
@2 and @3 gives an o(r2) error; likewise, 8x0)7h = O~ 270119 50 replacing the
second argument by x° gives another o(r~2) error.
To analyze this further, we need to digress: consider the 1-parameter family
w(s; €) := y(x1+€’xz’x3)(s) of null-geodesics, with x2, x3 fixed, and let

Y(s) 1= 0cw(s; 0) = 01y(x1 42,43)(s)

denote the Jacobi field along y (s) := w(s; 0). The asymptotics proved in Proposi-
tion 8.2 give the a priori information

Y(s) = OG0 + (1+ OG0 + Y 0701103,

3, Y (s) = OG0y 50 1 O(s 1721109, + > O(s~27b1t0y5,. (8.30)
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We shall determine the component Y (s)” by solving the Jacobi equation
(V3 VY (s) + R(Y, 9)p)” =0. (8.31)

Heuristically, it suffices to calculate this modulo o(s ’4) errors, as the second integral
of such error terms (integrating from infinity) is o(s ~2); we will verify this heuristic
in the course of our calculations. Using y° = 14+ O(s™ 1), y! = O(s’l’b/ﬁo), y< =
O(sfz’b,l +0), the a priori information (8.30), and the expressions for the curvature
tensor in (A.7), one finds

(R, 9)7)P = RV Y9V = —RPoo1 (9°)2Y ! — RPooa (092 Y + o(s™).

Now, using the gauge condition Y'(g)o = 0 and the expressions for Christoffel symbols
given in (A.3), one finds that in fact R? 00a = 0(s73), rendering the second term size
o(s_4). Let us calculate Rbom = 3()F81 — 01 Fgo + Fgl Fgu — FgOFZI more accurately
than in (A.7). In the third term, the only contribution which is not o(r —4) comes from
w = 2,3, giving —%r‘381 ho? + JTF_4Y7hh01 - the fourth term is o( —%). For the second
term, we use

T5) = 8% To00 + £'°Ti00 + &*Tuoo = o(s ™) + 0(s ™) — (r2dpho” — %r_3y7bh00),

exploiting Y (g)o = 0. In view of the leading order vanishing of ho? and hop at & *, we
have 9, Fgo = —r~290(d1ho?) + %r‘3y7h81 hoo + o(s~*); now 91 h¢? can be rewritten,
using Y (g)» = 0,interms of ko1, hjz, and hj;; since these have (size 1) leading terms at
4T, subsequent differentiation along dy only produces nontrivial terms (i.€. not of size
o(r—*)) when acting on the r-weights. On the other hand, d1/¢9 = —rYhor+o(r™h
from Y (g)o = 0. Arguing similarly for the computation of 9y Fgl, one ultimately finds
that all nontrivial terms cancel, so

RPoo1 = o(r™).

Thus, the curvature term of the Jacobi equation (8.31) is of size o(s ~*) simply. Regard-
ing the first term of (8.31), the information (8.30) and a brief calculation give (V; Y )0 =

O(s~ 170140y (v, ¥)! = O(s~1721%9), and, using r ! = 257! + O(s 2 logs),
(VyY)! = 8,¥> + 1), yry*
= o, ¥? + 57 Y — 2573V b + 45300 + o(s ),

with nontrivial contributions only from (u, 1) = (0, 1), (0, ¢). In particular, V; Y
satisfies the same rough asymptotics as d; Y in (8.30). Since differentiation of ht? and
h1? along y gains a weight s' 7?7 due to these components having a leading term, this

and (8.31) imply
o™ = (V3 V1) = 85V )P + 5LV V)P + o™
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= 92YP 4+ 25719, YP + 454V bt — 8574y + o(s™)
=57 2(3,(s28,Y") — 2lis ™2 + 0(s72)),

where
L= lim (4hi? — 2y 4hP?)
§—> 00

is the value of this combination of metric coefficients at y(co) € #*. Since
lim,_, o0 $295 Y2 = 0 due to (8.30), we find 3,Y? = —27is 3 + o(s—3) and thus

Y =ps2 +o(s7%) (8.32)
since limg_, oo Y2 = 0.

Returning to the expression (8.29), dropping u gives an O(r
by Lemma 8.5; we thus conclude that

/
—2=b1%0) error term

01 ()" ==010ay" (x'; x0, X%, X)) +0(r ™) =(= Va1 "+3Va Y ah")r 2 +0(r7).
(8.33)
We have another term in (8.28) coming from the term f,9; in V,; but f, and its
derivative along x! being of size (’)(r_b/f“o) (see the proof of Lemma 8.7), it suf-
fices to show that (77,91)¢ = O(r~2) in order to conclude that d; (s (f,91))¢ =
o(r=2) is a lower order term. But we can simplify (n*81)5|(xo‘x1, 243 = 01P¢ =
—017¢(x x0, %2, %) + o(r™%) = O ~?) (using (8.32)) in the same manner as we
simplified (8.29).
Finally then, plugging (8.33) into (8.28), and adding the result to (8.27) yields (8.25)
for

w = 2(h11 — 2ho1) +4rdoh11 — Y Vsh,

which by (8.26) proves the lemma. O

We can also compute 91%° = 9;7” modulo o(r~2), as this is given by the
component Y? of the Jacobi vector field of the proof of Lemma 8.9, so 9;%” =

(h? - %Y7dhl;‘z)r_2 +o(r~2).In summary, we have shown that

du=o(r~dx" + (1 4+2r'hoy + o(r~))dx" + Z o(l)dx®,
C
dr = (% —mr 4 o(rfl))dx0
+ (=L + On+ iy = 2h01) + rdohi — LY Yeh®™yr =" 4 o) dx!
+ Z o(1)dx¢,
C

di® = o(r )dx" + (" = §Vah™)r 2 + o(r ))dx' +dx" + Y oG~ dx,
(8.34)
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where the remainders are in fact more precise: o(r ) can be replaced by p];+b’ _OHG’O

near (.#1)°, so a fortiori by O(r ~¥~21+0) We can now supplement (8.23)—(8.24) by

G(dF.di) = =1+ 2mr~" + 2801y — Lr™ W Voh®™ + o™ O HEC,

2+45,-0
1

G(d#, deb) = (n® = Ly by 4 oV EEe, (8.35)

(Note that in the first line, the logarithmically divergent terms /411 from g% (3p#)? and
g11 (817)? cancel). Let us summarize the calculations (8.23)—(8.24) and (8.35):

Proposition 8.10 In the Bondi-Sachs coordinates (8.22), the dual metric G = g~V is

G =21+ 0(F~"))d,0 — (1 —2m#~ = 230h11 + 3#7 'V Vph®™ + 0(F~"))0?
—F2g 4 FTR  o(F ) (30 + (UaP 2+ 0(F2)0;)
(3 + (Up ™% + 0(F2)3;).

where U, = —%hla + %Wcha-g. The metric g itself takes the form

g = (1—2mi~" = 200h1 + L'V, V50 + 0+ "))du? + 2(1 + 0(F~"))du dF
— P2 (gap — T hgy + 0P ) (AR — (UF2 + 0(F72))du)
(dxb — (UPF% + o(F72)du).

The o(#~%) remainders can be replaced by plﬁb’fo H® = O =149 pear (F+)°.
Furthermore, the coordinate vector fields satisfy

00 = (1= (h1y +2rdohn — LY Vph™) " 4 0G=1) a0
+ (1 =2ho1rr " + o™ + (=% + 1Vh*)r ™% + 0(r™2)) 84,
% = Q@+4mr~" + o™ ) + o1 + Y oo,
C
3z = 0(1)3 + o(1)d) + , + ZC o(r~"d,. (8.36)

Proof The statement (8.36) on the dual basis of (8.34) follows by matrix inversion. O

Remark 8.11 For comparison, the Bondi—Sachs coordinates on Schwarzschild are sim-
plyu = xL, #=r,and spherical coordinates x¢ = x¢, and the metric takes the form

(@5)™" = 20,0 — (1 — 2mi~ )02 — #72¢;,
gy = (1 = 2mi~du? + 2du di — ﬁzg,

Remark 8.12 Near (.# 7)° and relative to the smooth structure on M, the conformally

rescaled metric r~2g is singular as an incomplete metric at .#*: indeed, 29y is

a nonzero multiple of 3,, by (2.26), and r2g(r?dy, r*dy) = rhop = c’)(p,‘”b').

@ Springer



Stability of Minkowski space and polyhomogeneity of the metric Page 1250f 146 2

On the other hand, changing the smooth structure of M near (.#)° by declar-
ing (F’l, u, %2, )‘23) to be a smooth coordinate system, so p; := #lisa defining
function of .#%+, we have #~2g € C?/~0. Indeed, 05, = —#29; is null, while
(f—zg)(a;,,, o) =1+ (9(/3}“"70) is C11=0 and the remaining metric coefficients
have at least this amount of regularity. Since by Theorem 6.3 one can take by arbitrarily
close to min(by, 1), this gives

#72g € C Va < min(b, 1), (8.37)

relative to the new smooth structure. As mentioned in §1.3, smoothness properties
of conformal compactifications have been widely discussed, in particular from the
point of view of asymptotic simplicity [94] and the decay properties of the curva-
ture tensor [24,67]; see also [45] for further references. Whether or not there exists a
compactification with smooth (or at least highly regular) .# ™, meaning that the confor-
mally rescaled metric extends smoothly and nondegenerately across .#, is a delicate
issue as it depends very sensitively on the precise choice of the conformal factor and
the smooth structure near .#* and requires the identification of at least two ‘incom-
mensurable’ geometric quantities.*> The observation (8.37) shows that this cannot
happen prior to the next-to-leading order terms in the expansion of g at .# . Work by
Christodoulou [24] on the other hand (see also [35, §1.5.3]) strongly suggests that the
conformal compactification is generically at most of class C!:%.

Therefore, the mass aspect, see [91, Equation (37)], is —% times the #~! coefficient
of the du? component,

Ma(p) = m + (rdohi1 — V. Vph®),, p e (7, (8.38)

and the Bondi mass Mg (u) = # fs(u) Madgis

1
Mg (1) =m+—/ roohi1dg, ueR, (8.39)
47 S(u)

where we exploited that the divergence in the expression (8.38) integrates to zero.

Remark 8.13 Recall that near (.# 7)°, hq; can be written as hgll) log pr+h ﬁ(i) +,0];’ HE®,
with h{) € C®((#1)°), j = 0, 1,50 rdghi1| s+ = —Lh{}) picks out the logarithmic
term.

Theorem 8.14 The Bondi mass (8.39) satisfies the mass loss formula

d

1 2
—M = —— N|5dg, Ngp:= ,h-; . 8.40
di B(u) 307 [S(u)l |g g ab u ah'ﬂJr ( )

Moreover, Mg(—00) = m is the ADM mass of the initial data, while Mg(4+00) = 0.

42 An example would be given by two metric components which have nonzero leading terms of size py
and pj log py, respectively, though we reiterate that this depends on the choice of py, i.e. of the smooth
structure.
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Proof The formula (8.40) is an immediate consequence of Lemma 3.5, and
Mpg(—00) = m follows from the fact that rdphq € pgopljf H°(I) decays to 0
as po — 0.

Let us fix the boundary defining function p to be equal to 7! near .#*, and fix
o1 and py near I so that p;py = p. In order to prove Mg(+oo) = 0, we analyze
the equation satisfied by 4™ := h|;+. The existence of this leading term was proved
in §7 starting with equation (7.16) (in which we do not use constraint damping); that
is, restricting that equation to I and using the Mellin-transformed normal operators
Z\O(O) = Z(O) € pI_IDiff%(I T) at frequency O (so this is the action of L on 2-tensors
smooth down to I followed by restriction to ™), we have

LOK" = =P O+ = —p~ Ric(gn)l+- (8.41)
Moreover, th has a logarithmic leading order term hz log py,
ht — b log pr (dx')? € C¥UT) + pl HE (1) € HY/*1=0(rt),  (8.42)

where hZ‘ = (p19p,h1) g+ = (=2rdoh11)y;+, so by Lemma 3.5
+ 1 2 5.1 +
hy 0) = — IN|“dx", 6 €dl™.
410

Since L(0) is injective on H'/2+0(J ™), the tensor 4™ on I is uniquely determined by
equation (8.41) and the ‘boundary condition’ (8.42). The strategy is to evaluate h(J{O lor+
in two ways: one the one hand, this quantity vanishes identically by construction of
the metric / in our DeTurck gauge; on the other hand, we will show that solving (8.41)
directly yields the relation

i/ higlar+dg = sm — e, cim htdg, (8.43)
4 91+ 00 2 4 4 91+ ¢

which thus gives the desired conclusion. For the proof of (8.43), let us split AT =
h' + h"”, where

h/ e COO(I+, S2 SCTI*Jr@)’ h// c hz— log,OI (dxl)2 + 1:11/2+O(1+, S2 SCTI*Jr@)

(8.44)

are the unique solutions with these properties solving the equations
LOW = =PO);+, (8.45)
LO)h" = 0; (8.46)

the first equation is uniquely solvable in this regularity class due to P(0) € CS°((I1)°).
We first solve (8.46) with the boundary condition (8.44), to the extent that we can
determine /y,. This can be viewed as a calculation of (a part of) the ‘scattering matrix’
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of the operator 2(0) on It,* which can be done explicitly: writing points in /T using

spherical coordinates as Z = Rw € R3,R = r/t €[0,1],w € S2, we have
—2L(0) = R2DgR*(1 — RH)Dg + R 24, + 2,

acting component-wise on the coordinate trivialization of T*R*; see (4.62) and
(4.65). Since E(O) is S O (3)-invariant, it suffices to calculate uqg|5;+ for the solution
of L(0)u = 0 for which u — clog p;(dx")? € H'/2H0(1+); recall that ¢ was defined
in (8.43). Now at I T,

(dx")? = di* — 2% drdx; + le—f; dx; dx;, (8.47)
where we write x; for the Euclidean coordinates on R3; obsefye then that if ¥, €
C%°(S?), AYy = £(£ +1)Y, denotes a spherical harmonic, then L(0) (u ¢(R)Y, (a))) =
0 holds for

_ _ _ _ _ _R2 _ _
uo = R~ log(F=X), uy = R log(1=8) +2R™", uy = K log(17%) +3R 2,
(8.48)
Taylor expanding at R = 0, one sees that R‘u; is a smooth function of R?, hence
u¢Yy is smooth there; moreover, uy satisfies the boundary condition uy, — log p; =
O), py = 1 — R, at R = 1. (In fact, uy is the unique solution with these two
properties). Using (8.47), we find i = ¢ - (ug dt* — 2uy dt dr + u> dr?), so writing
dt = (dx°+dx") /2, dr = %dxi, and r = (dx° — dx')/2 near 91" within I, this
gives

hiolar+ = ¢+ (Juo — Sur + fua)| o, = —1ec. (8.49)
In order to solve (8.45), note first that the map h € C° (") ,o_3Ric(§+ oh) |+

is linear in h,** hence writing g,, =: g + ph, we have

PO)|;+ = p~* (Ric(g + ph) — Ric(g)|;+ = LO)h — p~*838,Ggph;
for later use, we note that in a neighborhood of 31 in /™,
h==2mp 'r=Ydi* + dr*) = —m((dx")* + (dx"?). (8.50)

This suggests writing ph’ as the sum of —ph (to solve away the first term) and a pure
gauge term, so we make the ansatz

W =—h+p'8io+h, (8.51)

43 Trivializing the 2-tensor bundle using coordinate differentials on R4, a conjugated version of E(O) acts
component-wise as the Laplacian of exact hyperbolic space with spectral parameter at the bottom of the
spectrum; see Equations (4.1), (6.11), and (6.13) in [61].

44 This reflects the fact that the normal operator of the linearization of the Einstein equation around a
metric of the form g + ph only depends on the leading order part of the metric at 1 +,ie. on g; see also
Lemma 3.10.
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where w € C®((I)°; SCT;;R_“) solves®
,0_28£G£6§w =10 1= p 28,G4(ph) € C°(I™: TR, (8.52)

and /' is a solution of Z(O)E/ = 0 which we will use to solve away any singular terms.
We compute ¢ to leading order at 3/ by using rzzSgr’]dt2 = 0 and r28gr’]dr2 =
dr, so B -

O = —2mdr = —mdx’ +mdx' + p; C°U").
Write p‘zﬁgGg(S; = pDp~!, where D = p‘38gGg8;‘,o is % times the wave operator

on 1-forms on Minkowski space, re-weighted to a b-operator as usual; then equa-
tion (8.52) becomes

D(i)(p; ' @) = p; . (8.53)
Now p;'0 e H~'/270%°(1*), while DG~ BSTLo(1Ty — HS®IT) for
s > —%, cf. (7.14). Therefore, the solution satisfies w € p;HY>0°(1t)

p}_ng’O (I™) (by Sobolev embedding for functions of the single variable p;), which
using the expression (A.1) implies that & does not contribute to fg|,;+, namely
(p_15;‘w)00|31+ = (p~'8ywo)|5;+ = 0, where we used that p~19 is a multiple of
the b-vector field p;d,, at 91+,

A careful inspection of the solution of (8.53) shows that p_l(S;w is not smooth.

Indeed, in the bundle splitting (2.19), we have D € —2p =233, +Diff2 (°M), as follows
from the same calculations as (B.13), so using the expression (7.19) for o = i, we
have D(i) € 3, (013, + 1)+ Diff2 (1), which implies that*® w = p; log p; 9 |y;+ +
H3/270.29 (1) therefore

(p7'8kw) |+ = (—dx"dx' + (dx")?)mlog p; + HY*~O0(U).

Therefore, while we do have E(O)(—@ + ,o_lrSZ,‘w) = — P(0), we need to correct the

2-tensor on the left by adding the unique solution i’ of
LO =0, 7' € (dxdx' — dx"?)mlog s + H/*0(u)

in order for &’ in (8.51) to have regularity above H'2(11), which, as remarked before,
implies that it is the unique smooth solution of (8.45), as desired. Arguing similarly

as around (8.47)—(8.48) and noting that dx* dx! = dr> — dr? = dt> — %dxi dx;,

45 We abuse notation by using the same expression for a b-operator on R4 and its Mellin-transformed
normal operator at O frequency. Note that for a b-differential operator A, the operator A(0) is independent
of the choice of boundary defining function (unlike A (o) for o # 0); see also [105, p. 762].

46 Using the arguments employed in the proof of Lemma 7.8, we in fact have pflw elogp; C®UIT) +
C®(IT), as follows by constructing a formal solution at p; = 0, starting with the stated leading order
term, and solving away the remaining smooth error using @ @)~ L
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the solution is given by n = muo dt® — up dr?) — m(uo dt® — 2uy dt dr + u» dr?).
This gives

~ 1 1 1
hoolar+ = gm(uo — u2)lar+ —m - (—3) = —5m.

In view of (8.50), we conclude that

/ 7 1
hoolar+ = —hoolar+ + hoglar+ = 7m.

Adding this to (8.49) establishes the relation (8.43), and proves Mp(+o00) = 0. O

Remark 8.15 The construction of Bondi—Sachs coordinates is local near (.# *)° and
as such did not rely on 4 being small. (The proof of Proposition 8.2 used the smallness
of certain Christoffel symbols in a weighted C° space, but this is automatic for any
fixed h € X'™ if one relaxes the weights at .# * by a little and works in a sufficiently
small neighborhood of .#T). Likewise, the proof of Theorem 8.14 did not require &
to be small. Therefore, we in fact conclude that any (large) solution of the Einstein
vacuum equation of the form g = g,, + ph (with m possibly large), h € X' *°*—which
requires it to decay to the Minkowski solution at /T—satisfies the conclusions of
Theorem 8.14.

Let us connect this to the alternative definition of the Bondi mass and the mass
loss formula used in §1.3, which has a more geometric flavor [23]. To describe this,
consider an outgoing null cone C,, and let

Su’; =C,N{r=r}

denote the 2-sphere of constant area radius (which is a particular choice of transversal
of C,). Let L € (T'C,)" be a future-directed null normal vector field, i.e. a smooth
positive multiple of Vu; then the null second fundamental form is

xL(X,Y):=g(VxL,Y), X, Y €TS,;.

Note that x,; = ay for any function a. There exists a unique future-directed null
vector field
L e (TS, )" suchthat g(L,L) =2. (8.54)

Define TC, := TS, @ (L), which s the tangent space (at S,, ;) of a null hypersurface
C, which is the congruence of null-geodesics with initial condition on S, ; and initial
velocity L. (L and C,, resp. L and C,, are often called ‘outgoing’ and ‘ingoing,’
respectively). The conjugate null second fundamental form is then

xL(X,Y) :=g(VxL,Y) = —g(VxY,L), X,Y €TS8,

with the second expression showing that this depends only on L at S, ;. Letting
§ = gls, ; denote the induced metric, the trace-free parts of x and x are

XL — 3&trg(xL).

XL = xL— 2 trs(xu), X, =
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Rescaling L to aL, we must rescale L to a”! L, so the product tr xz tr xz is well-
defined, and we may drop the subscripts on x and x. The Hawking mass of S,  is
defined as

; 1
MG, ?) = =1+ — trytrxdsS ), (8.55)
2 167‘[ S(u,;) -

where d S is the induced surface measure. For a 1-form, let us write its components w
in Bondi—Sachs coordinates as w,, w;, wg, a = 2, 3, similarly for higher rank tensors.

Lemma 8.16 We have |My(u, ) — Mg(u)| < #2110, hence

lim Myg(u,r) = Mg(u).

F—>00
Proof We work in Bondi—Sachs coordinates, so TS, ; = (d;2, ;3), and

o

Sop = —Fgap + Fhgp + o), (§TH = —F72g® — 730 4 0273,

Let us take L = 9; and write x = xr, then x,; is the Christoffel symbol of the first
kind, Cpar = &(Va.q 0z, 03»). By Proposition 8.10, g(dza«, dz«) = 0, therefore

ar
Xab = 207845 = —Fgab + 3haj +o(D), (8.56)

which due to tt &7 = o(1) gives

A

trx =2¢""+ oGP, Ry = —xhgy +o(D). (8.57)

Next, a simple calculation shows that the unique future-directed null vector field L
defined in (8.54) is given by

L=Q+0G™)o — (1= 2mi~" = 280h11 + 177 VaYph™ + 0(™))o;
+ (=% + 1902 4 0(F72)) ;.

(The spherical component is determined by g(L, dz) = 0, ¢ = 2, 3, the 9, compo-
nent by g(L, L) = 2, and the 9; component by g(L, L) = 0). Working in normal
coordinates on S?, using L= —%fauh&,; - %(Wah”} + Yphia) + %(Wavchl;c +
Y5¥Vchat) + o(1), Typ = Fgap — 3hap + 0(1), and Ty, 5 = o(72), the components
of x 1= x are

— Shap + 3 (Vahig + Yohia) — $(YaVehs® + VY cha®) +o(1),  (8.58)

Xab = _Fu&ééﬂ = (; —2m — 2’9‘80]111 + %Va?dhad)gub + 70'814]1(;5

which gives
trx = =27+ @m +47h11 — 1V Vh™ — Vi DF 2 4 0GP,
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Rap = Py + YV ah® = 3¥ehiOgas + Shas
+ X (Vahyp + Yohia) — 3(VaVehi + YV eha®) + o(1). (8.59)

Finally, the surface measure on S, ; is | det g 12| g% dzP| = (;zgab +o(7))|dx? dxb|,
hence the Hawking mass is My (u, #) = m + % fs(u) Fooh11dg + o(1) = Mp(u) +
o(1). (As usual, the o(1) remainder is really symbolic as # — 0, namely of class
S_b1+0). O

With L and L defined as in the proof of the lemma, consider the conjugate null
vectors aL and a~'L. By (8.57) and (8.59), there exists a unique a = 1 + O(F~!)
such that

tr XaL + 10 X1, =a (@ tr x +1tr x) = 0; (8.60)

thus &rlL = Fo,h;; + O(1) = X 4+ O(1), hence to leading order, the normaliza-

tion (8.60) does not change X . We can now calculate the outgoing energy flux through
Su,F’

1
E@,f) = —— Z1PdS === | INIZdS+o(l),
32w Su,r) — 32w S(u) ¢
with Ngp = 0yhz; is as in Theorem 8.14.47 Clearly, E has a limit E(u) =
lim;_, o E(u, #) at null infinity, and the Bondi mass loss formula (8.40) then takes the
equivalent form

dM =-F
My () = ~E(w).

Acknowledgements We are very grateful to Rafe Mazzeo for his encouragement to work on this project,
and to Piotr Chrusciel for many comments and corrections. We would also like to thank Sergiu Klainerman,
Hans Lindblad, Jonathan Luk, Richard Melrose, Michael Singer, Gunther Uhlmann, and Maciej Zworski
for useful discussions, comments, and their interest in this project. A.V. gratefully acknowledges support
by the NSF under grant numbers DMS-1361432 and DMS-1664683 as well as from a Simons Fellowship.
Part of this research was conducted during the period P.H. served as a Clay Research Fellow; in its early
stages, this project was supported by a Miller Research Fellowship. Last but not least, we would like to
thank three thorough referees for many helpful comments and suggestions which significantly improved
the readability and accessibility of the paper.

Appendix A. Connection coefficients, curvature components, and nat-
ural operators

We list the results of calculations used in the main body of the paper: geometric
quantities and relevant differential operators for the exact Schwarzschild metric in
§A.1, its perturbations (as considered in §3.1) near null infinity in §A.2, and near the
temporal face of the Minkowski metric in §A.3.

47 Using (8.59), we could compute a as well as E («, ) to one more order, exhibiting a =1 term plus a
o(#~ 1) remainder for both.
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A.1. Schwarzschild

In the notation of §2.1, in particular around (2.23), the Schwarzschild metric
g= 851 =(1- 27m)dqu —r2g

and the dual metric g~! have components

goo =0, go1 = (1——) gOb—O 811 =0, 81h—0 gab——r 2gab,
OO:O’g(n:r_Zm’ g —Og —Og —Og Zgab
The only nonzero Christoffel symbols in this frame are "¢, = —r2]7’cab, th = ]7’2 b
and
Tioo = Amr=3(r —2m), Teop = —-(r — 2m)gbe, Torl = —smr=3(r — 2m),
Cep =50 —2m)gpe,  Toap = z(r —2m)gab, Tiab = =50 —2m)gap,
LYy =mr=2, TS5, = 4r7 11— 208, T} = —mr—2,
If, = —3r (1= 285, T0, = —rgap, Tl = rfab-

The only nonzero components of the Riemann curvature tensor (up to reordering the
last two indices) are R%pcq = 2mr~— 1(5‘1gbd — 84 9 &bc) and

- 2 - - 2
RO01 = —mr=3(1 = 22), R%0q = —mr~" gpa, Rlijor =mr=3(1 -2,

_ - 2 [ 2
R'p1g = —mr~' gpa, Rig1g = —gmr=3(1 — 22)84, R 10q = —ymr=3(1 — 22)84.

With respect to the rescaled bundle splittings (2.19) and (2.21), we have

gn =(0.5(1—2).0,0,0, )T, trs = (0. %-.0,0,0, — ),
further
1 0 000 0 -4 0 0
0 0 000(f— %) 131 10 0
71 1 —1/1
G._|0 0 100 0 e d 0 lag-rtdonm
8 0 0 010 0 g;?z 0 31+;
0 0 001 0 0 Lrld la4rdom
024000 G, rlg Sl g
(A.1)

We also record dt = (%, %, 07, Vént —
nition of 3* from (3.3), we have, near S,

(1, 1, 0), and, paralleling the defi-

r2m

d( _1)

-2y Qs () + ¥ (Lrvem =1y () &m
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100 0 0 0
11 1 1
o0 o
_ 1005 -
=Yt o107 0 0 0 (A-2)
00% 0 0 0
000 _r—erg _ﬁg 0

A.2. Perturbations of Schwarzschild near the light cone

We consider a metric g = g, + ph = g;fl + r~'h, with the perturbation 1 €
X o0bo.br.by by lying in the function space of Definition 3.1, and continue using the
splittings (2.23) of (§2)T*R*; however, we express the components of 4 using the

rescaled splitting (2.21) as in (2.24), since for & € X'*° all components /5 lie in the

same space Hy ooibo.—€.by, ; more precisely, they satisfy (3.4)—(3.6). The components

guv and g™V were already computed, see (3.14) and (3.15). Recall also the observa-
tion (3.7) and the memberships (2.28). We shall write b — 0 for weights which can
be taken to be b — ¢ for any € > 0; any two choices of € are equivalent due to the
assumption that all components of & have leading terms (possibly with a factor log py
for h1y) at .# 7. The only part of the analysis that relies on the precise structure of the
gauge-fixed Einstein equation is the analysis at .# ™, so in the calculations below, the
weight at .# is the most important one. We compute:

00:2+b0. 2+ 2+

Tooo € H,, ,
100 € % (m ho1) — 5 “191hoo + [_]<>o i2+bo,2+by, 2+b+
Teo0 € H§°’1+b°’l+b/1’l+b+

Toor € 37 'd1hoo + Hy 2bo. 240} 24by

Fio1 € % “Loohi — 1r%hy + HOO i3+4b0,3~ 03+b+’

o1 € 501hoc — grflachm + Hy 00; 1+bo, 1+by. 1+by

00; 14-bo, 140}, 1+b4

—
=)
S
S
m
=

bl

_ Abo, 14+by, 14b
FlObG%r Yaphor — $d1hg; + Hy® o0 IO 1D

00:b0.b1.b
Teop € —%(r — 2m)gpe + Shjz + Hy ",
00;3-0,3—-0,3+b+
b )

“2(hor —m) +r " d1hor — Sr~aoh11 + Lr?hy + H,
00:34-b0,3—0 3+b+

—

2

m
= [\_)|>—-

INTRSE 31h11+ 5r2hy, + Hy,
Fc11=31h1c—§V Lach,

Vb, 1+b7, 14+b
Totp € $01hg; + 1r = phor + Ho o0 H01 10

i 14bo,1-0,1+by

Ceip € %(F —2m)gpe + %ralhgg - %hgg + %(31;}115 — dchyp) + H T ,
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bo,by,b
Toab € 3(r — 2m)gap — Thay + Hy 0707,

14bg,1-0,1+b
Tiah € —3(r — 2m)gap — 3rdiha; + L(@ahyj; + dph1a) + Shyg + HES 0040

Ceap = _VZFcab + %r(aahgg + dphaz — Och &15)‘
The Christoffel symbols of the second kind are therefore

_ 2+bo,2+by,2+b.
Ty € r=2(m — ho1) — r = d1hoo + HYO 200200240+

00;2+bg, 24D ,2+b
T} € H, peTE
00;34bg,3+b,,3+b
TS € Hy R
0 1 00;34b0, 24D} —0,342b 1
Cgp € r™ doh1 —71’ h11+H ,

00;2+bo, 240}, 2+b
Ty e 131hoo + Hy ,

3+4+bo,3+b;,3+b
TS € —1r201ho® + Lr3Yhoy + HES 002 T0n 30

_ 00; 1+bg, 1+by, 1+b.
ng € —81]101; +r abhol —r- hlb + H, 025 O

péb c Hb°°i1+bo,1+b/1,1+b+’
Iy, € %r‘l(l Zm)ab 41 r_zhb I Hoo :24b0, 24Dy, 2+b+,
I er torhyy + 3r 2hiy + 22 (m — hon)dihn

— 4 2R dihor +2r 2 onh, g + HOO P03 =0.3+2b

Flll IS r_z(hm —m) +2r_ 01ho1 — ! doh11

) 3-0,2+b,—0,342b
+ 372 h 4+ 472 m — ho)drhor + Hy : o

e —r 20 4+ 3r Y h + 28 hy 91 hoy

00;4+bo,3+b;—0,442b
r3n g g+ He -

_ _ 00;2+4bo, 1457 —0,242b
9, € r ' 9phiy +r iy + r ' doih;; + Hy .

), € dihg; + 1~ 'ophor + HE 0 IHP D
T € —3r (1= 285 — grloih; — zr*2h55
+ 12 @ahy; — dphy ) — 3r 2R 0 s + H§0;3+h0,2+b’1,3+2b+,
[0, € (=1 + 2ho1 — 2h1)gab — (r + 2m — 2h01)d1hgj
+ (Yahys + Vohia) + 3ha; + H°°’1_0a1—0,1+2h+’

bo.by.b
Lap € (r = 2ho1)gap — shap + Hy 07",

14bg, 14D, 1+b
C € P+ i gy — 2r N (Vahy® + Ypha® — Vehgp) + Hyo o Hon e

(A3)
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We can then calculate T (g)" = g’”‘(F(g)}jA —T'(gm).,), see (3.1), to wit

T(9)? € r 19y th + 2r2(hy — 2ho1) — 2r 2Vahi?

le i2+bo, 240, —0,2+b
+4r7180h11+i’72hdL31hd‘é+H§O 02+ * *,
T(g)l c 4}"_13]]’[0() —|—4r_2h()1 + H;O;2+b0,2+b[,2+b+’

T(9)° € —2r201ho” +2r 3 hot +r 3V gh® — 20730 E 4 g

(A4)
and therefore
Y (9)o € 2r ™ d1hoo + 25 2hoy + HEOPHPORHIL2ED
(@)1 € 3r 91t h + r =21 — 2ho1) — r 2V ahy?
+2r oy + Ar 2Rt h g, 4 BT RITO2
Y(8)e € 201hoz — 2r " ochor — r 'Y hag + 2r hig + HIS PR
(A.5)

Using (A.1), this gives

00;3+4bg,2+b,,3+b
65 (oo € Hy T,
00;3+b0.,2+4b) 3+by

(6% (o1 € r~'d1d1hoo +r~*d1ho1 + H,, :
;3+bo,2+b,3+b
85 Y(@)gp € Hy 0T

(65 V(@)1 € 3rtondyh +2r " 9100h11 — r201Yahi? + %"_zh(zéalalhgg

T

dé 13+b0,2+b,—0,3+b
+r 2@k = 20thon) + §r 2 0uh P anh g, + Hyo T

_ - - - :34b0,2+b7,3+b
8% T())yp € r " d1dihgy — r29pdihor — 5 2V d1hgg + r 201y + Hy T

(5* Y_(g))a[; c Hboo;3+hn.2+h,.3+h+. (A6)

m

Next, we calculate the curvature components; as explained in §5, we shall need

to know the components Ricz; modulo terms decaying faster than p3+b°, p?+b’ , and

pf_b* at 19, 7% and I, respectively, in order to control each step in our iteration
scheme. At 19, the leading contribution to the curvature components will come from
the Schwarzschild part of g; cf. the calculations in §A.1. Thus, we compute

_ _ _ ;3+bo,2+by,3+b
R01 € —mr™> + 1713181 hoo + r 211 + Hy® TSI

0 00:2+bo, 14+b7,2+b
R 004 € Hy )

_ _ 00;2+4bg,14+by,2+b
R14 € —=3181hog + 1 ' 8adihor — r ' dyh g + HYo T

0 Oo;l+b0,b},l+b+
R"0ca € Hy )
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R0
R%104
R4
Rolcd
R0

0
R 04

0
R"p14

0

R"pea
1

R 001
1

R 004

1
R 014

1
R 0ca €

1
R 101

1
R 04 €

1
R 114

1
R ica €

1

R 501
1

R pod

1
R p1a

1
R pea €

R%001
R 004
R014
R0cd
R%101
R 104

R%11a

00:3+4b0.2+b1 3+by

€ Hy )

00;24bg, 14+, ,2+b
€ H, e,

_ ; 00;2+bg, 1+b, ,2+b
er lh]ealalhgé—i-Hb +,

31450, 1-0,1+b
c H]fo +bo + +’

_ _ 00;2+bg,14+b;,2+b
63]31//105—1’ lab81h01+r 181h15+Hb 0 ! +,

— 00; 1+bg, by, 1+b
€ —mr ' gpq + H, A

€ —(r +2m — 2ho1)0101hjpg + (201hor — 91h11) gba
14bo,1—0,14b.,

+ 81(8},h13 + 0qghyj) + 231/’10181th — %31/’15531/’10?5 + Hlfo ,

1bo,— 14D b
€ rd\(Yahpz — Vehgg) + Hy 0 0,

00;3+4bg,2+b",3+b
c Hb 0 +’

00;2+bg,2+4b ,2+b
c Hb 0 I +’

00;2+bg,1+b" 2+b
€ H, ke

00 14bo, 1457, 14+by
Hb s

_ _ — 00;3+bo,2+b7,3+b
emr——r 13131/’10()—}’ 231h()1+Hb 0 ! *

00;2+4bg,14+b' ,2+b
Hb 0 + ,

_ _ 00;2+bg,1+b;,2+b
€ 101hgg — r~"019ahor +r A1k g + Hy TR

00; 14-bo, b, 14+bt
Hb ! ,

00;2+bo,14+b",2+b
c Hb 0 +’

00; 1+bg, b, , 1+b
€ H, e,

_ 00; 1+bg,b" , 1+b
€ —mr 1gbd+Hb ! *,

00;by, — 14+ ,by
Hy ,

00;4+bg,3+b, ,4+b
€ H, P

00;3+bo,2+b,,3+b
c Hb 0 1 +’

— 00;3+bo,2+b,3+b
E—%mr 353+Hb 0=

00;2+bo, 140, ,2+b

m
=

s

€ %}”728131/’1011 — %}”73Y7a81h01 + %}"7331h1& + H]:O;4+b0'3+b1’4+b+,

e —%mr_383 + H50;3+b0,2+b1,3+b+’

€ —3r ' 01d1hy" + 3r201(Y g+ Yal®) — 3r2h%%0101h g,
+ r*Z(alhm - %31h11)53 + 77231h0131hga
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1,20 paeq 1 _ 00;3+bo.2+b] 34Dy
— 3" orh alhdé+Hb ,

_ . . 00;2+bo, 1+b, 2+by
R%cq € 3r7101(Yahe® — Ychi®) + H, ! ,

Riyop € HOO3Hb02+b13+bs
b

)

R4 bod € Hoo;2+b0, 14+b7.24+by
b )

_ - 24bo. 14b, 24b
Rpia € 3r71 81 (Wohpg — Yphy) 4+ Hy o 700 0T
Rpea € 2mr~ (8¢ gpa — 85 gpe)
a Z Abo, 1-0,14b
L @18 — 91788 + 91k ghe — 01h gpa) + HEZ OO

(A7)

and the Ricci tensor

. 00;3+bg,2+b,,3+b
Ric(g)oo € H, e,

Ric(g)o1 € r~'8181hoo + r 2d1ho1 + H,fo;3+h°’2+b"3+b+,

. 00;3+bo, 24D} ,3+b+
Ric(g)op € Hy, ,

Ric(g) 11 € 2r' o101 thh — r 20,99 g + Lr2n%9,01 kg
+r 2@y = 200ho1) + §r200h o h g, 4 HYS T
Ric(g),; € }’713131}101; — rizalabhm — %r*al%h,;d + 77281h15

+ H';x:;3+bo,2+b1,3+b+’

00:3+b0, 245} 3+bs

Ric(g),; € Hy (A.8)

A.3 Perturbations of Minkowski space near the temporal face

We work on R* = R, x Rf‘, equipped with the Minkowski metric g = dr® — dx?,
and consider the linearization of Po(g) := Ric(g) — E*I(g),

@ — Spu =2yt dt @ u—yt~ (yza)g, Y(g) = g8 '8;Gys.

—1

around g = g; concretely, let L := £’3Dg£0£, where p := 17" is a boundary

defining function of Réint > er, e > 0. We have
L=r(30,+ @ - 62)8§G§)t‘1.
Splitting
T*R* = (dr) ® T*R?, S’T*R* = (di*) & 2dt ®; T*R*) @ S’T*R>, (A.9)
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and writing e = dx? for the Euclidean metric on R3, we have g = (1,0, —e)T,

trg = (1,0, —tr,),

1 1
- ]/0 50 Etre _ -
==l 0oyl|, Gg=|01 0 ,sgz(af ‘Sfo>.
¢ ye 0 - leo1—let, B 0 =9 =3
2 2

Moreover, [, is diagonal using the standard trivialization of T *R3, and the scalar
wave operator is 1‘3Dgt_1 = —(td; — %)2 —1?A + %, hence

L=5(=08 =3 =r*As +3)

Iy@a,—1)  ytse  Fyd — Dtr,
— | —lytde y@d — 1)yt + Lditro)
Ty(td — De  yted, 3y (td, — Detr,

Appendix B. Proofs of Lemmas 3.7 and 3.8

We perform the necessary calculations using the results in §A.2.

Proof of Lemma 3.7 We use the invariance properties of the conformal wave operator
(i.e. the conformal Laplacian in Lorentzian signature),

A=p (0, — tR)p =0y — tRe. 8= p’g.
. J14bo,— 146, ,1+b . . .
Here, the scalar curvature satisfies ,o_zRg S H,fo oo =lHbp I *. indeed, in view
of (A.8), and using in addition the memberships (2.28) of the operators dp, d; (and

spherical vector fields, which lie in V,(M)) as well as the memberships of the met-

ric coefficients of /& as encoded in Definition 3.1, one concludes that ,o_zRic(g) €

00; 14+bg,—1+b , 1+b . . . _
H, 0 ! *. since the metric coefficients of g I'are bounded and conormal,

the rescaled scalar curvature p‘zRg = trg (p~2Ric(g)) lies in the same space.
We next write the wave operator as

Oeu = —r_s(“"’)gmaﬂé)vu + r_S(K)g‘l‘jFEiaK.
In the first term, when . = 0, the terms with v % 1 contribute H, 00:3+b0.3-0,3+b. Diffz,
K b b

while v = 1 gives —439; + (02 + Hoo P02 03 ODife2 For = 1, v = 1

oo;3+b0,l+b’1,3+b+M2

produces a term in Hy due to the decay of hop at .# T, while v

spherical gives an element of Hg}o 3+b0.2-0.3+by Diff%. Lastly, u and v both spherical
give (p2C>® + H{)X) ;3+b°’370‘3+b+)Diff%. For the second summand, recall (B.12), while
for ik # 1, g77T%, € pC + HZ 017020 by (B.8). Thus, Oy = —4009) —
2r~'9; modulo a term lying in p? times the error space in (3.24). Since Ug, =
A — A(1), the claim follows. O
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Proof of Lemma 3.8 We consider each of the terms in (3.22) separately. The contribu-
tion from

(0> Rgpu)s = p_z(Rg)'?,;a;gwuk& + 30728 (Ric(g) z5usv + Ric(g)g5us/)

to terms of size at least p;] at .# " comes from those components of R, and Ric(g)
of size at least p;. The only such components of R, are

— ;34+b0,2—0,3+b
Rol;lge—r 13131h5d‘+H§O +oo ++,

i 1 -1 G 00:3+b0,2—0,3+b
R 1ad € —3r 0101hy; + H, ,

. .. :3—-0,140},3+b .
while all other components lie in H;o 777" the decay order at 10 is due to

the contributions from the asymptotic Schwarzschild metric, as e.g. in R%y;. On the

other hand, (A.8) shows that Ric(g) € H];)O;3+b0’l+b"3+b+. Using the form (3.15) of

g’l, this gives

000 0
000 0
000 0

0 000 3p~13,8,h%
00 19,81h%000 0

0 0 000 0

2p7 1919105 0 0 000 0

00; 14+bo, —14-b], 1+b

(=l oo Ne)
o OO

0
0
0
PR, € 0
0
0

4 pC® 4 (®B.1)
Next, we have (Zu)e = Y(g) u s, with Y(g)* € H o 2P0 HPr240e by (a4,

Now, equation (3.3) implies
5% — 61 € pC™(M; Hom(B* “T*RY, p*5%)), (B.2)

so the expression for §* obtained from (A.1) and the inclusions (2.42) show that
3" € popr- My, gz gugo + p DIy (M; p* ¥T*RY, 757, (B.3)

and therefore

00; 14b, b}, 1+4by

oo;1+b0,—1+b1’1+h+M + Hb Diffllj. (B.4)

,073’5*%,0 € H,

Next, the only parts of ¢, which will contribute leading terms to (3.22) come
from those components C 39 which are of size at least p; at #; these are, modulo
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I_Ioo;2—',-b0,2—0,2-i-bJr
b b
C?l = r_181h1], Clll = 2r_181h01, Clél = —I’_lalhlg,

] - (B.5)
Cr=—3r7" oS, Ch=—r""oihy;,

. Xoqe - 00;2+4bo, 1+b,2+b ..
while all other components of C Z—‘“-) liein H, O TTUY Therefore, writing sec-

tions of B* sT*R4 in terms of the splitting (2.19), we have
4r=1o1ho1 0 0 000 0o b b 2ah
Cee |2 ahn 0 0 000—Ly g | 4 H T
4r=191hy; 0 =2r 7191057 00 0 0

and then (A.1), (B.2), and (B.3) give

0 0 0 000 O
200ht0 0 000 0
0 0 0 000 O

p 8 Cpep oo 20010 0 000 —Lan%

201h; 0 =31h;* 000 0
0 0 0 000 O
0 0 0 000 O

00; 1+bg, —1+b,,14+b i 14+bo,—0,14b4 .
+ H, 0 PR M g gm0 el (B.6)

the only terms of §* which contribute leading terms to this operator are the d; deriva-
tives in &g .
For the second summand in (3.22), we note that G, € COO(R_4, End(S$? SCT”‘@)),

H];)O; 1+4b0,1-0,1+b (ﬂ*

while equation (3.16) gives G, € Gg,, + $2). Further, using

the notation (2.24) and setting FED = rs(")’x("’v)l“l’jv, we have
Bgu) = —r VD g9 (r W Vugg) + g7 (M zugs + Tizupe)s  (BT)
now r M3, € p V(M) unless A = 1, and moreover
FE{, c ,OCOO + I_Iboo;2+b(),lfO,ZerJr (B.8)

for all indices, and g% —2 € pC™ + HSO;HbO’l_O’Hb*, hence only the terms with
g°19; survive to leading order:

—20; 0 0 0000

Sec| 0 =201 0 0000 |+ (pC™+ H>T01=02 e pigel
0 0 —20,0000
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Now ((8;‘ — 8;f‘m)u),1,; = —C’?,-wu,; can be calculated using (B.5); hence, we can now
use the expressions (A.1) and (A.2) for Gg,, and 5 — 8;’” to evaluate 8% — 5;‘ =
(8% — 87 ) — (8% — 8% ) and thus obtain

2y 0 0 00 0 0
0 0 0 00 0 0
0 0 y 00 0 0
p (3 — 83)8;Gep € —p 1| 201k 0 —281h1% 00y 4281kt O
0 O0y—2ahz"?00 0 0
2y 0 0 00 y 0
—201h;; 0 0 00 0 0
00 1459, =0, 14b s ol
+ (C*™ + H, )Diff, . (B.9)
Finally, we determine the leading terms of
(Dgu)p,(; — _r—s(u,,v,K,A)g/ZXaA(rs(u,v,/()uﬂl_);’?)
+ g“(rgiuéa;,z +T% Uz + D5 upns). (B.10)
Consider uzpz = r*UY®8, (- “Vugg) — Thousy — Thiugs. For k= 0,

all Christoffel symbols except those with u, A both spherical (second summand)

. . .. :2+4bg, 146, ,2+b .
or v, A both spherical (third summand) lie in ,o2 C*® + H]fo 0 ! *. while
FSE € %r‘léz + /o2 C>® 4+ H{:O ;2+b°’2_0’2+b+; the contributions of the latter cancel the

leading part of the term coming from differentiating the weight r—5") 3y (s (V) =
%s(u, wr~! 4+ r=2C%. For k # 0, we use the rough estimate (B.8), and obtain

00;2+4bg, 14+b,,2+b
Upp,0 € doupp + (,02 C® + Hb ! u

:2+bo, 14+, ,2+b .
C (pC™® + HZ P02 ey piggly,

U1 € s + (pC + HYZ PO 1702H0y,
Uppz € (pC® 4 HXOFHOI=02 ey pyigel BiD
In the second line of (B.10) then, the only relevant terms (namely, with coefficients not

decaying faster than p;) are those with u differentiated along 91 and the corresponding
prefactor being of size at least p;; using

X _ 00;2+4bg, 145, 2+b
gK)LF’%_X c _2,, l+pZCOO+Hb 0 1 +’

(B.12)
this leaves us with
g 2ouss1 + 8" TSouzz1 + 8T i1 + (02 € + Hye 0270 Diiffly

C (s(yv) — 2r  Bups
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3+bg,1+b,,3+b ; — .
+ Hb+ 0,1+ + +./\/lu + (,02 o + H§O’3+bo’2 0'3+b+)leftl)u.

Turning to the first line of (B.10), for A = 0, indices k¥ # 1 contribute terms of the
form H,* $3+b0.3-0.3+b4 DiffZu due to (B.11) and the decay of ¢, while k = 1 gives
a term —2r_5(”’”)80rs(“’”)81u,19 + (p2C> + H$;3+b0’2_0’3+b+)Diff%u. For A =1,
the term with « = 0 is equal to —231dpuzs + (p> C® + Hf;3+b°’2_0’3+b+)Diff§u;
k = 1 produces (due to the decay of the long range component /)

_ 00;3+bo, 1+b},3+b
—r S(/L,v)gllal(rs(/t,v)uﬁ‘_};l) c Hb 1 +M2u

u. Lastly, if A is a spherical index and

. 34b0,2—0,34 b o~ . .
k = 0,1, we get a term in H° oo + *Difflu, while for spherical k, we use

(3.16) to deduce that the nontrivial spherical components of g ~! give atermin (p>C>®+

. . :34b0,2—0,3+by 1+
and spherical k give HbOO b0, 20,3+ +lefg

HY” ;3+h°’2_0’3+b+)Diff%u. Putting everything together, and conjugating by weights,
we obtain

_ _ 14bo, — 145, 1+b bbo.— .
p 300 € —4p~2000) + Hy T T A 4 (020 BT b i

(B.13)
(Note that due to the discussion after (2.42), the first term here is well-defined modulo
Diffllj(M; ,B*Sz)). Together with the expressions (B.1), (B.4), (B.6), and (B.9), this
proves the lemma. O
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