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Abstract

We present the first rigorous study of nonlinear wave equations on extremal black hole
spacetimes without any symmetry assumptions on the solution. Specifically, we prove
global existence with asymptotic blow-up for solutions to nonlinear wave equations
satisfying the null condition on extremal Reissner—Nordstrom backgrounds. This result
shows that the extremal horizon instability persists in model nonlinear theories. Our
proof crucially relies on a new vector field method that allows us to obtain almost
sharp decay estimates.

1 Introduction
1.1 Introduction

Extremal black holes are characterized by the vanishing of the surface gravity (or,
equivalently, of the Hawking temperature) of the event horizon. Special examples are
the maximally charged extremal Reissner—Nordstrdom family (ERN) and the maxi-
mally rotating extremal Kerr family (EK). Extremal black holes are of interest from
both theoretical and practical points of view. Indeed, extremal black holes saturate
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various geometric inequalities [35], have interesting uniqueness properties [36], and,
moreover, are of interest in supersymmetry and string theory [52]. Furthermore, abun-
dant astronomical evidence suggests that many stellar and supermassive black holes
are near-extremal [22,54]. As we shall discuss in detail below, unlike sub-extremal RN
and Kerr black holes, ERN and EK exhibit various horizon instability properties. It has
recently been found that these properties could potentially serve as an observational
signature for extremal black holes by far away observers [6].

In view of the instabilities present already in the linear theory, understanding the
full dynamics of extremal black holes is an important and challenging problem. In this
article we investigate the global behavior of nonlinear scalar perturbations of extremal
black holes. Specifically, we consider nonlinear wave equations of the form:

Doy ¥ =AG, ) - g% - 809 - 3py + Oy 1%, 1Ty )k > 3,
1/f|}:r0 =€f, nz%tlmzégf = €h,

(1.1)
where gy is the metric of an extremal Reissner—Nordstrom spacetime with mass M, x
denotes a spacetime variable, X, is a Cauchy spacelike-null hypersurface (i.e. a hyper-
surface that is spacelike from the horizon till {r = R} for some R > M, and null from
{r = R} till null infinity) with Eig’ its spacelike part. We will show that for sufficiently
small initial data (i.e. for small €) solutions of (1.1) are unique and exist globally in
the domain of outer communications M up to and including the event horizon.

Our motivation for considering such a model is the study of the stability or instability
of extremal Reissner—Nordstrom black hole spacetimes in the context of the Einstein—
Maxwell equations, where part of the problem consists of dealing with nonlinearities
of the form studied in this article. Hence, the present work provides the first step
in understanding the fully nonlinear dynamics of extremal black holes without any
symmetry assumptions. We introduce new techniques that we believe will be relevant
for the study of that problem.

The main difficulties, discussed in detail below, arise from the slow non-integrable
decay of solutions ¥ and the fact that certain derivatives of y grow in time. This
necessitates the development of a new physical space method that yields maximum
decay (for the quantities that do decay) in order to compensate for the growth of the
other quantities. Before we provide an overview of these difficulties and their resolution
we present some relevant background for sub-extremal and extremal black holes.

1.2 Linear and Nonlinear Waves on Sub-extremal Black Holes

The sub-extremal black hole stability problem is currently one of the most actively
studied problems in general relativity. Important developments have been presented
by various research teams during the past two decades. Stability results for the linear
wave equation on subextremal Kerr backgrounds were obtained in the seminal works of
Dafermos and Rodnianski [30], [33] (see also the lecture notes [34] and the subsequent
work with Shlapentokh-Rothman [32]), which moreover introduced a mathematical
interpretation of the celebrated redshift effect, allowing the authors to obtain non-
degenerate integrated local energy decay estimates up to and including the event

@ Springer



Nonlinear Scalar Perturbations of Extremal... Page3of124 12

horizon. Furthermore, using weighted estimates at infinity introduced in [31] (and
extensively studied in [47]), the authors of [32] were able to show polynomial decay
in time for the solution and its derivatives of all orders. Precise inverse polynomial
time asymptotics were rigorously derived in [8]. For further results see also [20], [46],
[53], [50]. Global existence and uniqueness of solutions of (1.1) with small initial data
on sub-extremal black hole backgrounds were proved by Luk [43]. See also [19], [21],
[29], [41]. The major difficulty encountered in [43] was the loss of time derivatives
due to the trapping effect of the photon sphere. We also refer to the work of Yang [55]
which can be used to give an alternative proof of the results of [43] (using, however,
the techniques of [43] to deal with the loss of derivatives at the photon sphere). In the
recent breakthrough of Dafermos, Rodnianski and Holzegel decay was derived for the
system of linearized gravity around the Schwarzschild spacetime [28]. See also [2,27]
for works on linearized gravity around Kerr, and [37] for the problem of linearized
gravity on sub-extremal Reissner—Nordstrom. Finally, we refer to the impressive recent
work by Klainerman and Szeftel on the fully nonlinear stability of the Schwarzschild
spacetime [40] in polarized axial symmetry. It is worth noting that the latter work,
among other things, makes use of the techniques introduced in [9] which are useful
for deriving improved decay results and which play a crucial role in the present paper.

1.3 Related Works on Linear and Nonlinear Waves on Extremal Black Holes
1.3.1 Linear Waves on Extremal Black Holes

The study of linear waves on extremal black holes was initiated by the second author
in [10-13,15] where it was shown that, in contrast to the case of sub-extremal back-
grounds, first-order transversal derivatives of generic scalar perturbations on extremal
Reissner—Nordstrom do not decay in time along the event horizon. Higher-order
derivatives in fact blow up along the event horizon. The source of these instabili-
ties is the degeneracy of the redshift effect at the event horizon and a hierarchy of
conserved charges along the event horizon. Subsequent work [5] showed that generic
solutions to the wave equation do not satisfy a non-degenerate Morawetz estimate
up to and including the event horizon. The latter work, in particular, makes apparent
that new techniques are needed in addressing the global evolution of nonlinear wave
equations on such backgrounds. Precise asymptotics were derived in [7] where it was
in fact shown that solutions to the wave equation decay non-integrably in time. For
extremal Kerr spacetimes we refer to the works [24,39,42]. Extentions of these insta-
bilities have been presented in various settings [23,26,38,48,49,51]. For an extensive
list of references we refer to [17].

1.3.2 Nonlinear Waves on Extremal Black Holes

The study of nonlinear wave equations satisfying the null condition on extremal black
holes was initiated by the first author in [3] in the context of spherical symmetry. It
was shown that solutions of (1.1), with smooth spherically symmetric f and /, are
globally smooth and unique in M. It was further shown that, in analogy to the linear
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case, the derivatives of the solution that are transversal to the horizon do not decay
along the event horizon, while higher-order transversal derivatives diverge to infinity
along the event horizon. Other nonlinearities were studied in [14-16,18]. Numerical
simulations of the fully non-linear evolution in the context of spherical symmetry were
carried out in [48]. The results of [48] are in complete agreement with the results of
the present paper.

1.4 The Main Theorems
1.4.1 Notation

First, we introduce some notation in order to rigorously state the theorems proven in
this article. We start by recording the basics of the geometry of extremal Reissner—
Nordstrom black hole spacetimes. The domain of outer communications up to and
including the event horizon of an extremal Reissner—Nordstrom spacetime with mass
M > 0 can be given by the following 4-dimensional Lorentzian manifold-with-
boundary:

M =R x[M, o0) x S,
with metric
M = —Ddv? + 2dvdr + rzygz,

in the ingoing Eddington—Finkelstein coordinates (v, r, ) € R x [M, 00) X S? where

M 2

and yg is the standard metric on the 2-sphere S? (in the rest of the document we will
use g or gy for the metric, with raised indices indicating the inverse of the metric).
We also consider the double null coordinates (u, v) for v as before and u = v — 2r,
forre(r) =r — M — r’i’[ 2 4oM log (1 — %) the so-called tortoise coordinate. The
metric takes the following form in double null coordinates:

gm = —Ddudv + rzygz.

We denote the future event horizon at r = M by H™ = {r = M}, and future null
infinity by ZT which is where the null hypersurfaces {¢ = 7} terminate as v — oo,
for any t.

In the (v, r, w) coordinates we denote T = 9,, Y = 9,, and in the (u, v, ®)
coordinates we denote L = 9, L = d,,. We also have that

1 1
L=T+-DY, L=-=-DY.
2 2
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For w € S? we have that the corresponding volume form is given by dew = sin 8d6d
for 0 and ¢ the standard coordinates on the sphere, and the covariant derivative on s?
is given by Vg2 and the corresponding Laplacian by Ag.. We also use the notation
y = %ng and A = rizASz, and furthermore we define the three Killing vector
fields €2;,i € {1, 2, 3}, associated to the spherical symmetry of an extremal Reissner—
Nordstrom spacetime as follows:
Q1 =sin@dg + cotf cos pdy, 2 = —cospdy + cotdsingdy, 23 = dy,
and finally the vector fields 2 by:
Q" = Qs Qls,

for any m € N and (m1, my, m3) € Ng where m| + my + m3 = m.
Now we define the null-spacelike-null hypersurfaces X, by setting first

Ty ={v=vg, (N},

forvs, :[M,00) — R given by:
r
Vs, (r) = v + / G(rydr',
M
for some vy € R.g and G a non-negative function on [M, 0o) satisfying:

Gzl G- % >0, G(r)— % — 0¢~17Y),

for some § > 0. We further impose the following symmetry condition: if
(t ="32 ri,0) € 3q, then (1 = 4%, —ry, 0) € Bg. Now ¢ can be defined
by X; = f:(¥q) for f; the flow of T. We will work in the spacetime region

R = JT(Zq).

1.4.2 Statement of the Theorems

In the current article we show the following result for small-data solutions of equation

(1.1):

Theorem 1.1 Let (M, gur) be the domain of outer communications of an extremal
Reissner—Nordstrom spacetime up to and including the future event horizon with mass
M > 0, and consider the nonlinear wave equation

Oey ¥ = Alu, v, 0, %) - g% - @) - 3p9) + O(Y 5, Ty [N, k >3, (1.2)

in M up to and including the future event horizon. Here A denotes a function that
depends smoothly on the coordinates (u, v, w) and the solution  (where (u, v) are
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null coordinates and w the angular coordinate in M) that is bounded along with all its
derivatives. For equation (1.2) we consider smooth and compactly supported initial
data € f and €h given as

Vip = <l/f Zo,nzfol/f‘zig,) = (¢f, €h),

T

on an initial null-spacelike-null hypersurface ¥4, where Eig’ denotes its spacelike
part, where f and h additionally satisfy:

E’O[f]+2/ JHQET ™ ] msg dps, + 11 f g + Ml o1 < o0,
z

k<5
=5

for some s > 5/2 (where the norms E*[e], H} and ﬁ; for T > 79, are defined in
Appendix A.5). Then there exists a A > 0 such that for all 0 < € < A, equation (1.2)
with data (€ f, €g) as above admits a unique, global and smooth solution v in M
with finite E*[{] and || || us norms for any © € [19, 00).

Our main result establishes the global existence and uniqueness for solutions of (1.1)
for small enough, smooth and compactly supported data given on a null-spacelike-null
hypersurface (see Sect. 1.4.1 for the precise definition) that crosses the event horizon.
Note that data of this type, which are compactly supported at infinity, but non-zero
close to and on the horizon, are the most interesting from a physical point of view,
they can be used to model local perturbations of the extremal Reissner—Nordstrom
black hole spacetimes, and in the physics literature they represent outgoing radiation.
Moreover, and in sharp contrast to the sub-extremal case, our solution exhibits non-
decay along the event horizon for the derivative that is transversal to the horizon,
and growth for the second such derivative. In particular the qualitative behaviour of
solutions established in Theorem 1.1 is described by the following result:

Theorem 1.2 Under the conditions of Theorem 1.1, with v a solution of (1.1) given
by Theorem 1.1, we have that:

W, r, @) < ﬁ close to H* (1.3)
QU (v, 7, @) < ﬁ close to H*, (1.4)
Ty, r, 0) < ﬁ close to H*, (1.5)
Y| (v, 7, w) < € closeto HY, and |Y ¢ (v, M, w) — Yy (vg, M, w)| =~ eZonH*,
(1.6)

and
Y2y | (v, M, w) ~ evon HT, (1.7)
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for0 < 81 K€ 1,0 < 8 < 1 small enough, for € as in Theorem 1.1, where we work
with the (v, r, w) ingoing Eddington—Finkelstein coordinates close to the horizon H™
atr =M.

1.5 The Main Difficulties

The growth and non-decay of derivatives of the linear flow is one of the main obsta-
cles in proving global existence for (1.1). Moreover there is an additional difficulty
originating from the quadratic terms near the event horizon in the extremal case. This
difficulty can be illustrated by considering the transformed problem in a neighbor-
hood of null infinity via the Couch-Torrence conformal isometry.! Indeed, applying
this conformal transformation to a solution ¥y of the following equation restricted
close to the event horizon

ey ¥ = 8 - 3aVn - 3pVm, (1.8)

yields a solution y; of the following equation restricted to a neighborhood of null
infinity:

1 1 1 1, 1
Oew¥r = —(Lor) - (L) + —¢1 - (L) — =1 - (Lop) + =7 + = [Vil7,
r r r r r
(1.9)

where ¢y g = r; g and L = 9,, L = 9, the standard double null coordinates. On
the other hand, the classical null form (as defined in (1.9)) would take the following
form

(Lyrp) - (L) + Y. (1.10)

Note that, in view of the bounds |Ly/| < Cr—2, |Ly| < Cr~! and |Qyy| < Cr7 1,
the expression (1.10) decays in r towards null infinity like 3. On the other hand,
in order to obtain the same decay rate in r for the right hand side of (1.9) we need
to derive the following improved bounds: |¢;| < C, |Q¢p;| < C and |L¢;| < C and
moreover |L¢;| < Cr—2.

Hence, we see that merely obtaining the needed r-decay would require one to
show stronger estimates than those needed in the sub-extremal case. Such estimates
have not been shown in previous nonlinear works on asymptotically flat settings. On
the other hand, deriving mere boundedness of the transversal derivative Y at the
event horizon in the extremal case (which is required by the continuation criterion
for (1.1)) corresponds (again via the Couch—Torrence transformation) to bounding
pointwise the r-weighted derivative 2L (ry) in a neighborhood of null infinity. It is
important to emphasize that in the sub-extremal case the horizon and null infinity are
not conformally related and hence one can show pointwise boundedness and decay
for the transversal derivatives at the event horizon relatively easily using the redshift

! This transformation maps the event horizon to null infinity and vice versa. See also Appendix A.1.

@ Springer



12 Page8of124 Y. Angelopoulos et al.

effect. See for instance [43] and [55] for a demonstration of this in nonlinear settings.
The method of [43] and [55] breaks down for linear fields on extremal black holes.
In fact, they break down even if one considers a strongly degenerate nonlinearity on
extremal backgrounds such as

gy = (1 _ g) g - O, (1L11)

Global existence and uniqueness of solutions to (1.11) was proved in [4] using the
inhomogeneous energy estimates of [10] and a novel (r — M)-weighted commuted
(with Y) estimate in order to bound (1 — %) Y (whichis required for the continuation
criterion). On the other hand, in the context of spherical symmetry, [3] overcame the
extremal difficulties by a delicate use of the method of characteristics in combination
with the weak decay of the solution, something that is not enough outside spherical
symmetry.

1.6 Overview and Method of Proof

The classical local existence and uniqueness of solutions of (1.2) for data as in Theorem
1.1 can be upgraded to global existence and uniqueness in M provided one verifies
the following continuation criteria (stated schematically here):

Y| <e |Ty|<e |Q¥]S<e everywherein M.

Here we used the vector fields corresponding to the ingoing Eddington—Finkelstein
coordinates (see Section 1.4.1). The rest of the article is hence devoted to verifying
the aforementioned continuation criteria. This is done through a bootstrap argument.
First, we state the energy estimates we are going to use in Section 2. In Section 3,
we state our bootstrap assumptions. In Section 4, we use the bootstrap assumptions of
Section 3 to derive energy and pointwise boundedness and decay estimates (and hence
conditionally verifying the continuation criteria). In Section 5 we show a growth esti-
mate for the second transversal derivative close to the horizon, and a new v-weighted
estimate for L¢ close to the horizon. Then in Section 6, we improve the bootstrap
assumptions of Section 3, thereby closing the bootstrap argument. The results of the
aforementioned sections establish also estimates (1.3), (1.4), (1.5) and the first esti-
mate from (1.6). Finally in Section 7 we demonstrate non-decay for Y ¢ and growth for
Y2y on the horizon establishing the second estimate of (1.6) and estimate (1.7), while
in Section 8 we discuss how our methods can be adapted to weighted nonlinearities
on sub-extremal black holes.
Our proof relies on several novel techniques which we summarize below:

1. (Improved Morawetz estimate) We prove an improved Morawetz estimate that
optimizes the (r — M)-weights at the horizon. Schematically, it has the following
form:

/ (r— M)‘+5|aw|2 5/ JT[w] + inhomogeneous terms,
A =
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for any § > 0, and where A is a spacetime region close to the event horizon not
intersecting the photon sphere (see section 2 for precise definitions). Our proof
has certain similarities with Alinhac’s method of ghost weights (see [1]). Note
that our improvement is decoupled from the trapping effect at the photon sphere
{r = 2M} since the (r — M)-weights that we introduce are optimized only at the
horizon, while the region close to the photon sphere is treated separately using the
inhomogeneous versions of estimates first introduced in [10].

2. (Angular decomposition) We split solutions into a spherically symmetric part
and a remainder supported on angular frequencies greater or equal to 1 as follows

Y =90+ V=1.

Even though v and v/~ are coupled via the nonlinearity, we are still able to derive
sharp decay results for each of them.

3. (Horizon-localized and infinity-localized weighted hierarchies) We establish
various (r — M)~ P-weighted and r”-weighted hierarchies of estimates which
schematically take the following form:

/ (r — M)"P(Lp)* + / (r — M)""T(Lg)>
NH A

N / (r — M)~P(L¢)* + error terms,
N

and

/ rP(Lo)> +f PN Lp)? < / rP(L¢)* + error terms,
N1 B NI

0

where ¢ = r/, and where N, A’ are null hypersurfaces intersecting the event
horizon and null infinity, respectively, and .A and B are appropriate spacetime
neighborhoods of the event horizon and null infinity, respectively. Such estimates
were presented for the linear wave equation on extremal Reissner—Nordstrom in

[7].

We can show almost-sharp decay for ¥ by using the full range of p, namely for
p € (0, 3) for the uncommuted estimates and p € (0, 1) forthe (r—M )_zé—commuted
estimates. For the non-spherically symmetric part 1> we can prove integrable decay
by using an extended range for p for both the uncommuted and the commuted hier-
archies. The resulting estimates allow us to show integrability for ¥~ 1|3+ along the
event horizon and the radiation field ¢>1|7+ = r>1|7+ along null infinity.

We only apply these weighted hierarchies when considering the higher order deriva-
tives Tkl/f where k = 1, 2, 3,4, 5. We use the same range of weighted estimates for
T as for =1, and then we appropriately restrict p to smaller ranges for T,
k € {2,3,4,5}. Note that we need to commute with 7 multiple times due to the
presence of the trapping effect at the photon sphere {r = 2M}. The progressively
restricted range of p in both the (r — M)~P-weighted estimates and the r”-weighted
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estimates for 7%y implies slower decay for these time derivatives. This is a version
of the top order energy technique.

The ranges of p for the (r — M)~ P-weighted estimates close to the horizon and
for the r”-weighted estimates close to infinity for ¥ and 7'¢y are summarized in the
following table for 1, §, > O:

Multiplier/ (r—=M)"PL/ rPL / none (r—M)y"PL/ (r—M72L rPL /L
Commutator none

Yo pe0,3-681] pe©3-5] pe(1-4] p€0,1-4;1]
V=1 p€(0,2) p€(0,2) p €0, 1+6] p€(0,1+6]
Ty pe(0,2) pe(0,2) pe(0,1+6] pe(0,1+5]

It is worth noticing that this is the first nonlinear small-data problem where such
an extended range for the r”-weighted estimates is needed in a neighborhood of null
infinity.

4. (The method of characteristics for 1) The above energy hierarchies allow us
to verify the continuation criteria for d,v>1, Qv and T. For the spherically
symmetric derivative Y ¥y, however, we need to use the method of characteristics
(this is done in Section 4.3) as in [3]. Indeed, if we were to use the energy method
then we would need to apply the (r — M)~ P-weighted commuted estimate for
p = 1. However, it was shown in [5] that such an estimate does not hold even in
the linear case.

5. (v-weighted L%,wL;’oestimates) The bootstrap assumptions cannot be closed
using purely the weighted energy hierarchies since this would require to use a
range for p that is longer than allowed. For example, consider the following non-
linear term

Lo L2 L
P=1 '_(5_¢0>.

One would ideally want to estimate the L derivative in L* and use the commuted
(r — M)~ P-weighted estimates for the second factor with p = 1 + §;. This is
however, not possible since in this case we can only take p < 1. For this purpose
we prove new v-weighted L%’ »Lo° estimates bounding, for example, quantities
such as the following one

o0
// sup  (LT*Q"$)? - v+ dwdv,
vo JS? uelU,ug(v)]

wherek € {0.1,2,3},m € {0,1,2,3,4,5},6§ >0,M < R <rgandrp < 2M and
where u g (v) is such that r (ug(v), v) = R. The proof of such estimates involves
a very delicate use of the bootstrap assumptions as well as the structure of the
equation. Note that the loss of two angular derivatives, introduced by using the
wave equation, is overcome by appropriately integrating by parts on the sphere.
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The aforementioned estimate can be seen as a weighted Strichartz-type estimate,
which, in contrast with other settings, it is proven through physical space energy
methods. See also Section 5.2 for the details.

6. (Growth estimates) Finally we derive growth estimates for Y2y along the event
horizon. More generally, we establish upper and lower bounds for Y2 in a region
close to the horizon. The latter bounds are necessary, because in order to recover
certain bootstraps assumptions we need to estimate in L> the second derivative
that is transversal to the horizon of the spherically symmetric part of the solution
dr 9. Specifically, working in double null coordinates (with respect to which
Y2~ %’ L (%’ L)) we show that close to the horizon we have that:

D

2 2
r— )L (B’M)‘ se

where § € (0, 1]. The proof of such estimates uses an appropriate version the
method of characteristics where we allow for a loss of angular derivatives. These
techniques provide new results for the linear flow as well.

Remark 1.1 If we consider data that are supported away from the event horizon, then
the proof of Theorem 1.1 can be simplified. There is no need to separate the solution
in its spherically symmetric and non-spherically symmetric parts, and there is also no
need for the extra estimates described in points 5 and 6 above. This is because we
can apply commuted (r — M)~ P-weighted hierarchy for ¢ with p € (0, 1 4 §] for
some § > 0 which yields integrable decay for i close to the horizon and boundedness
for 9, . However, the physically relevant case is that of outgoing perturbations with
initial support crossing the event horizon.

1.7 Relation with Impulsive Gravitational Wave Spacetimes

It is worth comparing the current work with the construction of impulsive gravitational
wave local spacetimes by Luk and Rodnianski [44,45]. We will argue that our methods
can potentially be used to provide a global study of such spacetimes.

The impulsive gravitational wave spacetimes are solutions of the Einstein vacuum
equations with a delta singularity for the Riemann curvature tensor. Specifically, the
authors of [44], [45] considered characteristic initial data on two null intersecting
hypersurfaces H,, and H, such that on H,, the Riemann curvature has a delta singu-
larity. Optical functions u and u are dynamically constructed with u being ingoing and
u outgoing— similar to u and v respectively in the present paper— with corresponding
renormalized null vector fields e3 and e4 that are complemented by the spacelike vec-
tor fields e4 and ep for the angular directions. The level sets H, and H, are then null
hypersurfaces of constant u and constant u coordinates respectively. In [44] solutions
of Ry, = 0 are constructed in the region ug < u < uo+ 1, uy < u < uy+e€
with € > 0 small enough and 7 finite such that on H,, the Riemann curvature com-
ponent agxp = R(ea, e4, ep, e4) has a delta singularity on H,;, N {u = u, + %}.
Note that the second fundamental form y4p = g(Daes, ep) has a jump discontinuity
on H,, N {u = uy + 5} which is propagated along the hypersurfaces ﬁﬂo +5- The
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metric is smooth away from the singular hypersurface. On the other hand, in [45],
delta singularities are placed on both H,, N {u = uy + 5} (for aap again) and on
ﬂzo N{u =upg+ %} (where now a4 = R(eq, e3, ep, e3) has a delta singularity and
Xap = g(Dyes, ep) has a jump discontinuity) and a local solution of R, = 0 is
constructed in ug < u < ug + €, ug < u < ug + € for € > 0 small enough, with
the singularity for o propagating along H ug+S and the singularity for ¢ propagating
along HMOJr% , while the solution is smooth elsewhere.

To draw some analogies with the problem of the current paper, a nonlinear model
scalar problem is to consider an equation of the form (1.1) with € not necessarily small
(i.e. no small data) on the Minkowski spacetime with data given on two intersecting null
hypersurfaces H,, and H, (withu and u the standard double null coordinates) where
we assume that d,, () has a jump discontinuity on H g+ and that 9, (r) has a jump
discontinuity on H, . 5 for some 6 that is small enough. The discontinuities for d,, (r )
and 9, (ry) will propagate along H, . s and ﬁﬂo +3 respectively, while the second

derivatives 33,4 (ryr) and 837,4 (r¢) will have delta singularities on these hypersurfaces.

Note that the analogies with the fully nonlinear problem for the Einstein equations are
at the following level:

Yo g Y g O, () v o Q) X O, (FY) e

In our case, the event horizon plays the role of the singular hypersurface (analogous

toH, | 5 in the aforementioned problem — note that it is a constant u hypersurface for

u = —o0) where the second transversal derivative 8,2,1// (corresponding to 83,4 (ryr) in
the problem above, and to the Riemann curvature component ¢ in the fully nonlinear
problem of [45]) does not have a delta singularity, but exhibits asymptotic blow up.
Yet, at the level of techniques, the two problems seem to have a further connection,
as one key ingredient of our proof is the weighted estimate described at point 5 of
the previous section. This is an L%L;OLZ(SZ) estimate with v-weights for 9, (ry)
which is a quantity that corresponds to 9, (r) in the aforementioned problem, and to
0,8 ~ x in the fully nonlinear problem. From the statement of Theorem 3 in pages
29-30 of [45] and from the use of the O; 2,i < 2 norms from section 2.7 of [45],
we see that 3, ¢ and x are bounded in L2L3°L?(S) and this is a key ingredient in the
proof of the main result of [45] as well. It should be noted that the norms in [45] are
not weighted in u, but this is only because the problem is local and not global (yet
weighted versions of these norms analogous to the ones used in the current paper can be
used if instead of a local construction of impulsive gravitational wave spacetimes one
attempts to do a semi-global construction of impulsive gravitational wave spacetimes
- this construction will be established in an upcoming work of the first author).

2 Energy Inequalities

In this section, as well as in the one that follows, we prove certain L? estimates for
general solutions of the equation:

O,% = F. .1)
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We define the following regions for any given ty, T2 with 7] < 72:

A2 =R(t;, ) N{M <r <ro <2M}, 2.2)
B =R(t1,2) N{2M < r; <r < o0}, (2.3)

and
CE =R(u,m)Nirg <r <r}, (2.4)

for some fixed rg and r, and where R (7, 1) = Ute[r1 o] ¥, for ¥; anull-spacelike-
null hypersurface that crosses the event horizon (for the precise definition see section
1.4.1). We also have the following hypersurfaces

NE=s.niM <r<r), N =% 0{r <r <00},
and we note that

Az = | ) N BR= | M.

T€[T),72] T€[t1, 2]

We will derive (- — M)~P-weighted estimates over the hypersurfaces N and the
spacetime region A, and r”-weigthed estimates over the hypersurfaces A// and the
spacetime region B.

Recall that the energy-momentum tensor for the linear wave equation has the form:

1
Tapl¥] = Do) - 0% — 2 8apd” U - BV,
and an energy current is defined as:

T VaY Da = TeslVayr] -V,

for vector fields Vi, V».
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2.1 Morawetz Estimates Within and Outside of Spherical Symmetry

First we record a Morawetz estimate for the spherically symmetric part of a solution
Y of (2.1), which we denote by

1

I//0 = - l” dw’
4 S2
and which satisfies the equation
Uy Yo = Fo, (2.5)
where
Fo=— / Fdow
4 S2
We have that:

Proposition 2.1 Let Yo be the spherically symmetric part of a solution  of (2.1)
which satisfies equation (2.5). For any t1, Ty with t) < 7 and anyl € N we have that

J

sf T Yol - ns dps +/ LT ol dp
o R

71

Tl 2
+p! 1&0) dug

2.6)

Trpl
J [T 1p[/()] ‘ny dMZ +/ rl4n rl+n

(<TT’wo)2 D2 (YT'y)?
R7

2

forany n > 0.

We now consider the non-spherically symmetric part of a solution of (2.1):
V=1 =Y — o,
which in turn satisfies the equation
Og¥>1 = F>1. 2.7)

The difference with the analogous estimates for the spherically symmetric part ¥y of
Y comes from the trapping effect of the photon sphere (at r = 2M) which results
in the loss of one or two T derivatives. We state the Morawetz estimate for 1> that
is supported away from the photon sphere (see [4] for a reference), which has the
following form:

Proposition 2.2 Let =1 be the non-spherically symmetric part of a solution \ of
(2.1) which satisfies equation (2.5). For any 11, T2 with 11 < 1y and any l, k € N we
have that
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/ JTIQT Y] mydps
)]

1]

N / o (T s VT 0
R(r1.12) (€ rlit ritn

Qle o 2 Qle 2
VD! ZM—" + D! r4‘”) )d,uR (2.8)

5/ JT[Qle‘/lel-nzd,uz+/T2
>

7 !

+ / QAT oy Pdpe + sup / QT Foy Pd e,
2 /NCeE

T e[, 2]

PN By Pd g

where C was defined in (2.4), and where Xc2ye is a smooth function that is equal to
71
1 on the complement of C and 0 around the photon sphere.

Next we state two versions of the Morawetz estimate with support on the photon sphere
(which can be found in [4]):

Proposition 2.3 Let =1 be the non-spherically symmetric part of a solution  of
(2.1) which satisfies equation (2.5). For any t1, T2 with 1) < 1y and any l, k € N we
have that

TQle 2 YQle 2 Qle 2 Qle 2
[ (TR R T p Vel | @Y
RY2 rltn rltn r r4
I+1
< </ JJ[QkT'"w>1]~nzduz+/,2r1+"|s2’<T"1F>1|2dun> 2.9)
m=I lal R
I+1
- f QAT Py Pdpe + ) sup f QAT Fot Pd s
C;lz m:lr’eln,rzj E,/HC%

and

(T Ty )’ Y 7!y )? QT Yy P (@ T y)?
/( o+ DY’ =+ VD = p )dm
RI2 r r r r

+1
< JTIQET™ o] - nsdps +/ PN Fy Pd i
Y;Lt] - RPZ = (2'10)

71

o 1/2 2
+ / / IQFTH ey Pdp ) dr ]
T EI/HAZ

for any n > 0, where C was defined in (2.4).

Remark 2.1 We note that the inhomogeneous terms of the above estimates come from
a term of the form

‘ f (QT'F) - (XQlelﬁ)dMR’
R

@ Springer



12 Page160f 124 Y. Angelopoulos et al.

where & is the Morawetz multiplier vector field (which close to the horizon roughly
has the foorm X ~ T 4 D - Y), after applying Cauchy-Schwarz to it and absorbing
certain terms in the left hand side. In the following Section we will improve the weights
(in terms of D) on these terms.

Finally we state a basic estimate that allows to bound the 7'-flux without any loss
of derivatives:

/ JTIQ T o] nndpus
D)

2

S| IR T =] - nzdus
/:rl - 2.11)

2

1/2
2
+/ r1+5|QleF21|2duR+/ / QT F 12 dus, e | ,
R% T Z,ﬁCﬁf

1

for any 71 < 72 and any § > 0.

2.2 An Improved Morawetz Estimate

We will need to improve the weights close to the horizon on the aforementioned
Morawetz estimates.

Proposition 2.4 Let  be a solution of the equation (2.1). Then for any t1, T2 with
11 <17, ¢ =ry¥,anyl, k € N, and any § > 0 small enough we have that:

/ ST -y dus

Xn

+/ . [F—I—S(LQled))z +r_1_8(LQkTI¢)2 +r—1|QleW¢|2i| dwdvdu
B2

i / L= PRt e ¢ - ) LR T g)?
& 2.12)
+(r — M)3|QleW¢|2] dwdudv

5/ JTIQT!Y] - nyduy +/
b A

71

2\ okl )2
o —(r—M)1+5D |Q*T" F|” dwdudv

+/ IQXT! T F > dpe +  sup f QKT F 1> dpe,
CTZ ZT/QC;%

T e[, 2]

Proof For simplicity we look at the case k = [ = 0 as both the 2 and the T operators
commute with the wave operator. We will also ignore the bulk term of the first line in
(2.12) as we have the optimal » weights at infinity by the previous Morawetz estimates.
We show how to improve only the weights close to the horizon. First we will improve
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the weight in front of the L derivative. We define the function

1

fr)= o llogtr — )1

for some 1 > 0 that is small enough. Now we integrate by parts and use the equation
for the following integral:

2 / i el (LL¢) - (L¢) dwdudv
AT

71

and this gives us the following equality:

)
/ e/ (Lg)? dewdu + / D-e — (L$) dodudv
N A2 2(r — M) - [log(r — M)~']™"

= f el (L¢)? dwdu
NH
D?.ef
+/ (—D-D’-ef—Dz-ef-f/-i- ‘
A2

2r

) Yo |*> dwdudv

D .
+ / 7 el V| dwdv

r=R

+ / L O = M)Y) el ¢ - (L) dwdudv
AZ

1 .
— —/ e’ (L) - DrF dwdudv.
2 Ja2

71

In the second term of the right-hand side above involving the angular derivatives, we
note that the first term is the dominant one. The term with the angular derivatives on
r = R can be bounded by the left hand side of the Morawetz estimates provided by
Propositions 2.1 and 2.2. The fourth term can be handled by Cauchy-Schwarz and by
using the zeroth order term of the standard Morawetz estimates (2.9) and (2.10), and
both of the terms can be absorbed by the bulk term of the left hand side. It should be
noted that when we use the standard Morawetz estimates of Propositions 2.1 and 2.2
we work with the inhomogeneous term that was mentioned in Remark 2.1 and we apply
Cauchy-Schwarz to it with the better weights (in terms of D) that are available now
from the left hand side of the last equality (otherwise we would get no improvement
in terms of D-weights in our inhomogeneous terms).

Finally noticing that due to the definition of .4 we have that in the integrated region:

c < el < C for some constants ¢, C,
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we have that

[ @@ dvau+ [ ( R (L¢)2+(r—M)3IY7¢I2) dodudy
NH AZ \ [log(r — m)=1]"

r=R

5/ (Lo)? dwdu + '/D'ef|77¢>|2dwdv
Nrfl’

+ / zef(qu)-Dera)dudv.
A7

Note now that for any § > 0 we have that:

1

r—M)>° <
’ [log(r — M)—1]1+"

which implies that for any § > 0 we have that:

/ (L¢)? dwdu + / ((r — ML)+ (r — M)3|Y7¢|2) dodudv
N A2

< L2dd+'/D-fW2dd
ng{(_¢) wdu e’ |Yp|” dwdv (2.13)

r=R

+

/ ef(LqS) - DrF dwdudv)| .
A2

1

On the other hand we integrate by parts and we use the equation for the quantity:

- / L [(r — M)‘S(qu)2] dodudv
A7

71

and we get that:

) (I" - )1+6 2 348
2 /Afz r—(L‘P) dodudy + / O((r — M)**)| V¢ ? dwdudv
7]

r=R

( )2+5
+/ 4—|Y7¢| dodu = /(r — M)’ (L¢)? dwdv
Ng r?
( )2+8
+ /NH = V6P dodu + / OWr — MY*D)p - (L) deodudv
3|
+%/ (r—M)‘S(qu)-Dera)dudv. (2.14)
A2

Combining (2.13) and (2.14), and noticing that the bulk term with the angular deriva-
tives in the left hand side of (2.14) can be absorbed from the similar term of (2.13)
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(as it has a bigger (r — M) weight), that the flux terms with the angular derivatives of
(2.14) can be absorbed by the T-fluxes (i.e. the T-energies) of (2.13), that the term
onr = R of (2.14) can be bounded by the left hand sides of the Morawetz estimate
(2.10), that the term before the last term of the right hand side of (2.14) can be absorbed
by the left hand side of (2.14) and (2.13) after applying Cauchy-Schwarz while the
one before last (after applying again Cauchy-Schwarz) can be absorbed by the left
hand side and the zeroth order term of the standard Morawetz, and finally that for the
terms of the left hand side of the Morawetz estimate (2.10) we have that due to the
(r — M)-weights on the horizon:

/ ((r — ML)+ (r — M)'(LP)? + (r — M)3|Y7¢|2) dodudv

)
A

- / ((r — MPATY) 4+ — M) (YY) + (r — M)3|y7¢|2) r2dwdudv
A2

1

> / . ((r - ML) + (- — ML)+ (r — M>3|w|2) dwdudv,
AP
we get that

/ JTIQT! Y] -y dus
>

1)
+/ [ = )P L@k g)?
AP
= MY LTI + (r — M)3|QkT’Y7¢|2] dewdudy
< f JTQAT Y] - nzdps
Ty

+/ QKT F P> dpue +  sup / QKT R d e
c? Er/ﬁcglz

T e[, 2]

+/ 2(IL(]ﬁI + |L¢|) - Dr|F|dwdudv.
A‘[

71
We get the desired estimate after applying Cauchy-Schwarz to the last term. O

With the improved Morawetz estimate that we just showed we can also improve
the estimate (2.11) for the 7'-flux that does not lose any derivative and conclude that:

/ JTIQFT! ] - nedps

T,

+/Q [fl*"(LQ"qub)z +r LR T ) ! IQleV¢|2] dodvdu
T

+/ . [(r — MY LTI )2 + (r — MY (LQFT! )2

1
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- M)3|QkT’Y7¢|2] dodudv

172 2
2}
5/ JT[Qlel/f]-nzd,u,z-f—/ / QT F)? dps dt
D a \/Zned

n 1
+/ / _— D2|QleF|2da)dvdu+/ / PN T FPdwdvdu,
71 Nl‘,"[ (I‘ - M)7 -1 ./\f“l

(2.15)

for any 71 < 72 and any n > 0.

2.3 (r — M)~P-Weighted Estimates and r’-Weighted Estimates

From [7] we have the following (r — M) ~”-weigthed estimates at the horizon and the
rP-weighted estimates at infinity that can be summarized in the following propositions
that will be used to show decay for these weighted energies later in the article. We
define the following quantities:

g . 2r . 2r 1,2r2 ,2r2
oy = BL%, <1>>1 = —L¢31, o) = FL%, <1>>1 = —L¢31~

We have the following proposition for vy (with ¢ = rg):

Proposition 2.5 Let Yy be the spherically symmetric part of a solution v of (2.1)
which satisfies equation (2.5), and let ¢ = rig. For any T, 71, T2 With 11 < T,
p € (0,3), and any | € N for the quantities

Ig,(0) = f (r — M) P(LT'¢0)* dowdu + / JTIT Y0 - s, dps,
NH ZAWHUNY
+ / PP (LT o) deodv (2.16)
Nl

T

we have that
1 rz11" dr’ <1f 1 D2|T'Fy|? dwdud
01(T2)+ ()dr Ol(fl)-i- Nﬂm |T" Fo|” dodudv

/ / PN T Fy P dodvdu

(r — M) (LT gy) - Tr(T’Fw dodvdu (2.17)
/4

53
rP (LT ¢o) - (T Fy) dodudv
NH

+ [ R due.

71

foranyn > 0.
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We also have the following proposition for ®{ and ®/:

Proposition 2.6 Let Yy be the spherically symmetric part of a solution W of (2.1)

which satisfies equation (2.5), and let ¢ = rig. For any 1, 171, T2 With 7] < T,
p € (0,1), and anyl € N for the quantities

10,(v) = f r — M)"P(LT' ol)? dwdu +/ JTITH ol - mx, dps,
' NH SAWHUNT

+/ rP(LT' ®8)? dodv (2.18)
1

T

we have that

1]

117,(r2) +/ 1y @ydr'

71

%] 1
<11? f / —  DYT™'Fy? dwdud
SUGE+ [ | Gy DT Rl dedudy

19]
+/ / PN TH Ry 12 dwdvdu
7 JN/

(2.19)
+

(23
/ / (r — M)"P(LT'®}) - L(*T' Fo) dodudv
n JNHA

+

123
/ / rP(LT'®) - L(T' Fy) dwdvdu
u JNJ

+/ T Fol? .
c2

1

Analogously we have the following for ¢~:

Proposition 2.7 Let > be the non-spherically symmetric part of a solution  of
(2.1) which satisfies equation (2.7), and let ¢ = rirg. For any t, 11, T2 With 1] < T,
p€(0,2),anyk <5,anyn > 0, and any |l € N for the quantities

12,0 = fNH r — M) P(LQ T ¢ )? dovdu

+[ JTIQT Y] - s ds
SANHUND

+/ rP(LQ*T! 9= 1)? dwdv (2.20)
NI

T
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we have that
©
2 (@) +/ 127, dr + @ - p)/ /NH r = M) PPV § 1 | dodudv
T T i
1
P 210kl 2
5 IZl,kvl(tl)+Z] /MH ml) ‘Q T lel dwdudv

(r—M)"P(LQT p) - %(Qlele)dwdudv (2.21)
NH

1]
+/ / r1+"|QkTIF>1|2da)dvdu+/ AT P dpe
u JN! - e -

+ sup / QLT ey P dpee.
nc

e[t ]/ X

Finally we have the following for 431; | and <I>IZ I

Proposition 2.8 Let > be the non-spherically symmetric part of a solution  of
(2.1) which satisfies equation (2.7), and let ¢ = rirg. For any T, t1, T2 With 7] < T,
p € (0,2] and anyl € N for the quantities

124 () = / (r = M)"P (LT @8 ) dwdu
Sk, o i

+ / JTIN T Y] - ny duy
S A\WHUND)

+ /NI r?(LQ*T'®L))? dwdv (2.22)

T

we have that

1)
11§1,k.1<fz)+f 12 de +/ f r — M) PPV T o ? dwdudv
T

1

1
P 210k pl+1 2
Sllilvkvl(rl)_l_‘[rl /NH WD ‘Q T F21| dwdudv

™
+f / AT e 12 dodvdu
N

(2.23)

r— M) P T ®H)) . LT Foy) dwdudv
N =

™
+/ f rl+”|Qle+lF21|2dwdvdu+/ QKT 3 oy P d e
A\WNH e

tosp [ TR s,
T/NCH

t'elry, 1]

Remark 2.2 The estimates of the last Proposition 2.8 hold also without the need to
restrict to higher angular frequencies if / > 1.
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We note that we also have separate (r — M)~ P and r? weighted estimates for any
71, T with 71 < 13, any [ € N and any > 0. For ¢ close to the horizon we have
that:

2]
/ (r — M) P(LT'¢0)? dwdu + f / (r — M) PTY(LT! ¢p0)? dwdudv
Ng 7 JNH

S / (r — M) P(LT'$0)* dodu + f T Y0l - nx, dus,,
NH z
7] 71

(2.24)
+

n Dr
/ / (r — M) P(LT'¢o) - — (T' Fo) dwdudv
T JNH 4

1) 1 123
+/ / —D2|T1F0|2dwdudv+/ f PN T Ry dodvdu,
o Jap (r = M) o JNI

for p € (0, 3). For <I>5I close to the horizon we have that:

™
/ (r = M) P(LT'®{)* dwdu + / / r — M) PN LT O dwdudv
H 7 JNH

L]

< f r — M) P(LT'®)? dwdu + / (r — M) P72(LT"¢0)* dwdu
NH H

71 71

+/ JTIT ) - ny dps
Ty

+

/ i / (r — M) P"2(LT'¢0) - (DT' Fy) dwdudv
71 JNH

(2.25)
+

123
/ / (r — M)"P(LT'®) . L(*T' Fo) dwdudv
o Jan

I+1

%) 1
I o VAL alll] 2
+mZ=,</;. fMH (r—M)1+nD |T" Fo|” dwdudv

15}
+f f PN T Fo)? dodudv
u JN/

I+1

m 2
+ Z,/c T Fol* dpec,
m= T
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for p € (0, 1). For ¥ at infinity we have the following estimates:

12
/ rP (LT ¢0)* dwdv + / / rP~Y LT ¢po)? dwdvdu
NI o I

2

< / rP (LT ¢0)? dwdu + / JT [T o] - nx dps
N} P

71

(2.26)

"p|(LTl¢0) (T'Fy) dwdvdu
1

(2} 1 123
+/ / —1D2|T1F0|2dwdudv+f / PN TR dodvdu
n g = M) 0 Iy

+f T Fol? dp,
2

1

for p € (0, 3). For ®/ at infinity we have that:

15]
/ rp(LTld>(1))2da)dv+/ / rP Y LT @) dwdvdu
NI o INT

2

< / rP(LT'®})? dwdu + f rPP2(LT! ¢0)? dodu
NI NI

71 71

+/ JTIT™ o] - ns dps
b

71

rPY2 (LT ¢o) - (T' Fo) dwdvdu
1

© (2.27)
+ / / Vp(Lqu)é) (L(r*T'Fy) dwdvdu
N

I+1

2 2
+Z(/ /NH = )HnD |T™ Fo|? dwdudv

12
+/ / 1T Fol? dodvdu
u Jni

I+1

+ Z/ 17" Fol* duc,

for p € (0, 1).
Analogous estimates hold for ¢ close to the horizon (as (2.24) for p € (0, 2))
and close to infinity (as (2.26) for p € (0, 2)), for CD > close to the horizon (as (2.25)

for p € (0,2) without the uncommuted terms with weight (r — M)~?~2), and for
@IZ | close to infinity (as (2.27) for p € (0, 2) without the uncommuted terms with
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weight #P+2), with extra terms coming from the trapping on the photon sphere (losing
either one or no derivatives as we do not consider integrated quantities over the photon
sphere).

3 Bootstrap Assumptions

From this section and on we will assume that our nonlinearity has the form given in
equation (1.1) without the cubic and higher order terms (that are easier to deal with),
hence we will use all the estimates that were presented in all the sections so far for

F =A@, v,0,9) g% .9 - v,

for A as defined before in the statement of Theorem 1.1. We set Fy = Fy—g and
F>1 = Fp>1. We also set

FC= g% . 9y - 5.

We will assume the following estimates in all the remaining section of the paper for
C a constant, Eg the initial energy as defined in Appendix A.5, §1, 82, Bo > 0 small
enough, for some € > 0, for0 < 8 < §and 0 < § < §,, and for £ being any “linear”
term among the ones that show up on the left hand side of inequality (4.7)-(4.46) (so
when we want to show these estimates the “linear” £ terms from the inhomogeneities
can be absorbed in the left hand side of inequality that is used). After examining their
implications, we will verify their validity through a bootstrap argument (the letters
used below roughly correspond to the number of 7' derivatives).

CEpe?
2 2
FolPdur < —————, Al
/Rz%r' o iR S ey (Ab
(%) CE 2
/ / (r — M) P"'D?| Ry > dwdudv < + for p € (0,2 — &1,
u JNH (I+7y)——p
(A2)

2 _ CE()€2
/ /NH (r — M)"?(L¢o) - (DFy) dwdudv| < m for p € (2,3 —41],
7] |
(A3)
)
/ / (r — M)"P(LO) - L(r* Fy) dwdudv| < BoL (A4)
7 JNH
CEpe?
W fOI'p S (0, 1— 81],
CE062
/rRTZ\ATZ rp+l|F0|2d,uR§ mforpe (1,2—81],311(1 (AS)
T \Tp
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2

12
(%) CE 2
[ f PR P dodv)  du| S for p e (2,3 8],
T NI (1 +1p)>o1—r

u

15)
/ / rP(LOY) - L(r3 Fo) dwdvdu| < BoL (A6)
. JN/
CE0€2
W fOI'p € (0, 1 —8]]7
Z ( L= M) ' D2 QK Fey P dwdudv +/ - r2|QkF>1|2duR)
k=<5 \7Aq RI\AZ
(B1)
CE()€2
Y ()
)
> / / r — M)"P(LQkp=1) - D(Q*F=1) dodudv| < BoL (B2)
k<s [Jm SN
CEge?
—i—mforpe (0,2—51],
1]
Z / f (r—M)"P(LQFOH ) . L(r*QF Fs1) dwdudv (B3)
s /T NH >
CEpe?
< e
S BoL + TR for p € (0,14 821,
Z/ rPHNQR P Pdpr < CE—OEZforpe(l 2-681, (B4
i=s JRE\AZ - ~ (14 1y)3ter ' '
©
> / / rP(LQFDL ) - (L) Fay) dodvdu| < oL (B5)
k=5 7T N/ -

CE()€2
(1 + T1)1+62—P

Z(/ Tz(r—M)_1_3D2|QkTF|2dwdudv+/t

for p € (0,1 + 621,

r2|QkTF|2du73>

k<5 Afl R%\A%
(CD
CEye?
O
15]
Z/ / (r — M) P(LQET¢) - D(Q*T F) dodudv| < oL (C2)
k=5 |70 NH
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CE()€2

Wforpe (0,2—8]],

S BoL (C3)

2

1]
/ / (r — M) P(LQFT M) . LG?QFT F) dwdudv
k=5 7T NH

CEye?
W fOI'p (S (O, 1 +82],

2
Z rp+1|QkTF|2d/L <CE—0€f0r e (1,2 —-41] (C4)
R\ A2 R=gopyrnr P ’ .

k<5

2

k<5

S BoL (C5)

12
/ / rP(LQFT ) (LR QFT F) dwdvdu
u JN]

CEye?

W forp S (O, 1 +82],

> (/ (r = M) DHQ T FP dwdudv +/ r2|QkT2F|2d,uR>
A% R2 ©

kfs ] T
(D1)
CEge?
~ (1 + ‘[1)2"‘52’
1%]
Z / / (r — M)"P(LQKT?¢) - D(QXT?F) dwdudv| < BoL (D2)
ks 17T N
CEge?
m forp € (0, 2 — 81],
1%]
Z / / (r — M) P(LQFT? 0y . L QFT? F) dwdudv| < oL (D3)
ks 17T N
CEge?
W fOI'p S (0, 82],

CEoe?
1ok T2 )2 0
Z/RQ\AQ rPUIQTIF I dugr S At o)tar forpe(1,2-411, (D4)

k<5

2

1%)
/ / rP(LQFT? 0Ty (LR QT2 F) dwdvdu| < BoL (D5)
k=s [/T N
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CE()€2
m for p €< (0, 52],
CE()G
Q*T?F|*d D6
;/ | Pduc S G (D6)
Z (/ (r—M)—1—502|Q’<T3F|2dwdudu+/ o r2|ssz3F|2dm>
ks \JAT R \A
(E1)
CEge?
AU
/ / (r — M) "P(LQFT3¢) - D(QFT?F) dwdudv (E2)
k<5
CE()
<,3£ mforpe(o,l—f-&z],
Z/ — M) 2DHQ*T3F )2 - 0" dwdudv < CPEZe*, (E3)
k<5
CEpe?
p+1 k3 0
Z;[ JrrhetT Fl>dur —(1 = for p € (0,1 + 85, (E4)
CE()G
QT3F|*d E5
k;f | Pdue S T (ES)
o 1/2 2
Z / / PIQKT3F PP dps | dt | < CEpe?, (E6)
k<5 T1 210<R2\A2)
Z(/ (r—M)’1’5D2|QkT4F|2da)dudv+/ o rZIQkT4F|2dMR>
i=s \/AG RA\AZ
(F1)
2
< CEpe ’
~ 141
/ / (r — M) "P(LQFT*p) - D(QFT*F) dwdudv (F2)
k<5
CE()€2
S Ut for p € (0, 1],
Z/ — M) ' D2 IQFTAF )2 0P dwdudv < CEge?, (F3)
i=s /AR
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CEge?
Z/ rp+l|QkT4F| d —06 fOI'p S (07 1]7 (F4)
2 Jreoa ~ A+l

CE
Z/ QTP ape < CEE &
= (1+ )
) 12 2
Z f / r1+3|QkT4F|2 dl“/E d‘[ 5 CE()EZ, (F6)
k<s \7T \VEr ( 12\“412)
Z/ =) DQATIF o dwdudv (GD)
AT

k<5

2

o 1/2
+ / / QXT3 FPPdus, | dr
T EAWHUND

5]
+/ / rIIQKTS P12 dpupprdr
7 JN]

o 12 2
+ / f PIQATIF P dus | dr | < CEge?,
7 N (RZ \AZ)
- CE 2
Z/ QTS F P dpe < =225 (G2)
14+ 17

k<5

4 Decay and Boundedness Estimates

4.1 Energy Decay Estimates

First, we will derive the decay estimates for the various energies restricted to the
spherically symmetric part 1/ of a solution ¥ of (1.1). We will apply the bootstrap

assumptions of Section 3 together with the energy inequalities of Section 2.

Lemma 4.1 Let 1o be the spherically symmetric part of a solution r of (1.1) for which
the assumptions of Section 3 are satisfied. Then for all T > vy we have that

Ege?
r : < __Z0°
/}E,J [Vol -nsdus S A+ 4.1

for € and &1 as in the bootstrap assumptions of section 3.
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Proof We will omit several details of the proof as they are quite standard. We first note
that by the bootstrap assumptions (A3), (C1)-(C5), we have that the quantity

(%) s
/ IIO"O(I) dt
T

1

(see Proposition 2.6) is bounded by C Eoe2 for all 71, » with 11 < 1. Note that the
above quantity contains

123
/ / r (Lo dwdvdu
u NI

and so the later is also bounded by C Eoe? for all 71, o with 71 < 1. By a standard
argument we have that

CE()€2
1+

5,1
1(7,) <

9

over a dyadic sequence {r,} }, and that

CEye?
1+t

/ r(Ld))? dodv <
/\/’1

W

over another dyadic sequence {tnz}. It’s easy then to see that we have that

CEye?
1+,

11310(zn)+/ r N (L®g)? dvdv <
, v

™

for {t7,} = {t,}} U {7:,%}. By Hardy’s inequality (A.4) we have that for all ©

15,66‘&) SII(()S)I()(T)-{-/ J Yol -z dus,

T

and that

/ r?7 01 (Leo)? dwdv < / rN(L®G)? dodv + / T o] - nx dps,
NI N{

P

by using the decay over {t,} for II(')S”0 and f/\ﬂ ro (LCIJ(’))2 dwdv, estimates (2.17)
and (2.26) for [ = 0, and the bootstrap estimates (A2) and (A4), we can get that over
another dyadic sequence {A,} we have that

CE()€2
14+ Ay

)

2— —
Ig o™ ) + /NI r2 7 (Lepo)* dewdv <

An
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where we also used that by the bootstrap assumptions (A1)—(A6) we can actually show
decay of rate 72 for the T-flux of ¥ (for details on this see Theorem 21 of Section
6 of [3], the situation is analogous to the one in the present paper). By a standard
argument and using estimates (2.25) and again (2.26) we have that

2

_ CEpe
15’081@) < 1—£r for all t,

and

2-5 2 CEge?

r " (Lgo)” dwdv < for all 7.
N
Arguing in the same way we can now show that
CE()62
I} o(t) < ————forall 7,
00 2 T

from which, using moreover (2.17) and (2.24), it easily follows that

CEoe?
/ J Yol -ng dps S m for all 7.

X
by using also (2.12) for ¥ = vy (which does not lose any derivatives on the photon
sphere). O

Remark 4.1 Note that by the proof of the above Lemma, we get the following hierarchy
of energy decay estimates under the condition that the assumptions of section 3 are
satisfied:

CEjé?

(I +7)30r
CEQGZ

(1 _;,_.L.)]—(S]—p
CEoe?

(14 17)3-8i-p

/NH (r — M)"P(L¢po)* dovdu < forall T and forall p € (0,3 —68;], (4.2)

/ (r = M)"P(LOI)? dodu < forall r and forall p € (0,1—6;], (4.3)
NH

/ rP(Lo)? dwdv < forall z and forall p € (0,3 —68;], (4.4)
Nl

T

and

CEoe?
/ rP(L®{)? dwdu < % forall 7 and forall p € (0,1 — 8],
_/\/'I

~ A +o)ihi-r

T

4.5)

where the range of p € (0, 1 — 1) in (4.3) and (4.5), and the range of p € [1 — 61, 2]
in (4.2) and (4.4) can be obtained through interpolation.
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For the non-spherically symmetric part ¥>1 of a solution ¥ of (1.1) we have the
following energy decay estimate arguing as in the case of the spherically symmetric
part for which we argue as in the proof of the previous estimate Lemma and where we
use the corresponding energy decay estimates.

Lemma4.2 Let > be the non-spherically symmetric part of a solution vy of (1.1)
for which the assumptions of section 3 are satisfied. Then for all T we have that

CE()G2

(1 4 7)3+02° (4.6)

5
> [ amietyen s dus
k=12t

for € and &, as in the bootstrap assumptions of section 3.

Proof The proof of the above Lemma follows the same lines as the previous Lemma
using now the corresponding bootstrap assumptions from section 3. O

Combining the previous two lemmas we have that:

5 2

CEpe
JTQ ) ngdps < ————. 4.7
/;/z Vi S @

Similarly we have the following estimates after commuting with 7" derivatives:

5 2
CEpe
T k
;/E IRV mz dity S (48)
5 2
CEgye
TrokT?2 0
,;/E,J 972 np s £ (49)
5 2
CEgpe
Trokr3
5 2
CE
Zf JTIQT Y] ms dps, S ==, (4.11)
k=17 I+
and
Z/ JTIQFT Y] ny dus < CEge?, 4.12)
D

k=1
Note that by the proof of the previous Lemma, we get the following hierarchy

of energy decay estimates under the condition that the assumptions of section 3 are
satisfied:
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and

/ r?(L®L))? dodu <
NI

T

e
//\/

_ ) CEye?
(r— M) P(L¢=1) dodu S W for all t and for all p € (0,3 — §1],
T
(4.13)
CEye?
r— M) P (L2 1)2 dwdu < 0¢ for all T and for all p € (0, 1 + 6>],

(14 7)lto—p
(4.14)
CEye?

W for all T and forall p € (0,2], (4.15)

/ rP(Lg=1)? dodv <
NI -

T

CE()62

(1)—14_52_17 for all T and for all p € (0, 1 + §2].

(4.16)

Similarly after commuting with T derivatives we also have the following estimates:

CEge?

/ (r — M)"P(L¢)? dwdu < % forall r and forall p € (0,3 —68;], (4.17)
NH (A +z)y=o=r

CEge?
/ r— M) P (L") dodu < ——°C  forall r and forall p € (0,1 — 8], (4.18)
o (1 +o)0p

CE
/N,’ PP (L) deodv < mw% for all 7 and for all p € (0,3 — 81, (4.19)
CEpe?

/ P (LD dwdu < ———5—; forall r and forall p € (0, 1 — &1], (4.20)
I SIS

CEpe?
fN,H (r — M)""(LT$)* dodu < Mi‘;;w for all rand for all p € (0, 2], (4.21)

CEpe?

W for all 7 and for all p € (0, 1 + 8,],(4.22)
T 2

/ (r—M)"P(LT®") dowdu <
NH

T

CEpe?

p 2 < ==
/er P (LT$)* dwdv < TF o3 for all  and for all p € (0, 2], (4.23)
CEgée?
fN, PP(LT D) dwdu Mi(ia” for all 7 and for all p € (0, 1 + &1, (4.24)
/ (r = M) P(LT?*¢)* dowdu < CEioé for all T and for all p € (0, 2] (4.25)
NTH ~ (1 + r)2+52_P ) ) .
2 HA2 CEyé’
(r — M) P(LT*®")? dwdu < ————— forall 7 and for all p € (0, 8,1, (4.26)
¥ S T
CE
/N, PPLT2)? dovdv < Migis” for all 7 and for all p € (0, 2], (4.27)
CEge?
/ rP(LT?®")? dodu < _ S0 torall 7 and for all p € (0, 8], (4.28)
N (+ohr
CEye?
f/\/,” (r = M) P(LT*¢)? dodu < (1_'_)7?;” for all 7 and for all p € (0, 1 + 8], (4.29)
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e

/ rP(LT3¢)? dwdv <
Nl

T

(r — M) 2(LT3¢)?* dwdu < CEge?,

CEpe?
(1 + r)H—Sz—P

/ r2(LT3$)? dwdv < CEge?,
NI

T

CEye?
f (r — M)"P(LT*$)? dodu < ——25__
i T+

/ (r — M) " (LT*$)? dwdu < CEpe® forall § < 8,
N

CEge?
/ PP (LT $) dadv < 0¢
NI

T

(1+71)

/ rIH(LT4)? dwdv < CEge? forall § < 8,
Nl

T

/ (r — M) ' (LT ¢)? dwdu < CEge? forall § < 8y,
NH

/ LT $)? dwdv < CEge® forall § < 8.
Nl

T

for all 7 and for all p € (0, 1 4 821,

for all 7 and for all p € (0, 1],

T for all 7 and for all p € (0, 1],

(4.30)
4.31)

(4.32)

(4.33)
(4.34)
(4.35)
(4.36)
(4.37)

(4.38)

Also as it is evident from the proof of estimates (4.1)and (4.6), we also get the
following decay estimates under the condition that the assumptions of section 3 are

satisfied:

and

71

/ o= )RR 0 + ¢ = M) L2 )] deodudy
A'L'

71

+f (@ Tw0? + (24 y0)?) dur
RE\(AZUBE)

pl+d rl+s

LK) (LK ¢o)? CEye?
+/2<( ®0) +(_ ¢0)>da)dvdu< 0€
B3

+f (@ Ty + (Y QYo + V2= P) dum
RE\(AZFUB:E)

k 2 k 2 2
+/' <(LQ =1 | (LL¢=1) " V=1l )
B2 r

@ Springer

dwdvdu <
148 e

~ (143

CEge?
~ 1+ T)3+82 ’

(4.39)

/ ) [(r — MLk )P+ — M) LD )P+ (r — M)3\Qky7¢21|2} dodudv
A 2

(4.40)
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for any 11 < 1, for € and §1, &7 as in the bootstrap assumptions of section 3, for any
k <5, and for any § > 0. We also have that:

/ . [(r — ML) + - — ML D) + (r — M)3|QkY7¢>|2] dwdudv
A

+/ o o, (TR + 0 1194 dur (4.41)
RA\AZUBY)
(LQFp)? (L ¢)? VI CEge>
— < -7
+ /;32 ( AR Th + p dodvdu S ST

Similarly we have after commuting with T derivatives the following estimates:

/ 2 [(r — M) L TP + (r — M) LT + (r — M)3|QkTW¢|2] dodudv
A7

1

+f (@729 + YR Ty) + ¥R TYP) diie
RE\(AZUB)

CEpe?
dwdvdu < 0¢

Saro @42

AN AN

(LQ*T¢)?  (LQ'T¢)?  |VT¢[?
o ( )

/ ., [(r — M) LT2H)? + (- — M) LK) + (- — M)3|S2kT2V¢\2] dodudv

71

+f (@797 + 0T + VR TP diire
RE\(AZUBE)

k72 42 k72 402 2412 2
+/r ((LQ T°¢) 4 (L&2°T79) n WTr¢\ ) CEpe (4.43)
BZ

< -7
148 A dodvdu S 1+ .,;)2+52 ’

/ [(r — M) HLQETIP) 4 (r — M) P LTI + (- — M)3\QkT3Y7¢|2} dodudv
AZ

gl

+f (@17 + QT+ VR Ty P) dure
RENAZUBZ)

k73 )2 k73 )2 3402 2
+/12 ((LQ T°¢) n (LQT ) n |Y7Tr¢| ) CEoe (4.44)
B2

e PR dodvdu S 1+l

/ ) [(r — M) LT + (r — M) L) + (- — M)3\QkT4Y7¢|2} dodudv
A 2

7
+f (@ T%9)? + T ) + YR Ty ) dur
RE\(AZUBE)

CEge?

dwdvdu < R
147

~

(4.45)

pl+é pl+é

LQkT4 2 LQkT4 2 T4 2
+/Br2<( ¢)+(7 ¢)+|Y7r¢|>

/ [(r — ML TI)? + - — MY P LR T 9) + (r — M)3\QkT5W¢|2} dodudv
A2

7

+f (@ 7097 + VRT3 + VAT diure
RI\AGUBR)

kS 1N\2 k5 1\2 5012
+/, ((m ¢ LT’ IVTr¢I
B

I+6 (S > dodvdu S CEge’. (4.46)
r r
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4.2 Pointwise Decay Estimates

First we state the decay estimates satisfied by various quantities away from the horizon.

Lemma4.3 Let Y be a solution of the equation (1.1) for which the assumptions of
section 3 are satisfied. Then we have that

12
C.E) "€

P2l S S5 (4.47)

P C1/2E1/2
Zr Q5= (2, 0) < W’ (4.48)
k=0

C, E()E

Z / (=1 (r, r, @) do < e (4.49)

for all T, for € and 81 as in the bootstrap assumptions of section 3, and for anyr > M
where the constant constant C, diverges to infinity asr — M or asr — 00.

Proof The proof follows from a standard application of the fundamental theorem of
calculus. We demonstrate it only for v (since the argument for estimate (4.48) and
(4.49) is almost identical) where we use a coordinate system (o, w) on X, for any t:

1 o0 1 o0
Wi (z,r) ST / (Bpv0)? p?dp < - / D(d,0)* p*dp

=7y, ) S Cff J Yol -y dus
P
C2Eje?
2 r
=r- Yy, r) < e

where we used the fact » > M in order to present the D factor in the integral in the
first line, and in the last line we used the decay estimate (4.1). O

Using the previous estimates we have the following decay estimates close to the
horizon for the spherically symmetric part of (1.1).

Lemma 4.4 Let g be the spherically symmetric part of a solution v of (1.1) for which
the assumptions of section 3 are satisfied. Then for all (u, v) € A /SO (2) we have
that

1/2 1/2
ol vy < S0 € 4.50)
T ey R

for € and 8, as in the bootstrap assumptions of section 3, and for all (u, v) € B that

1/2El/2
lgol(u, v) < W' (4.51)
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Proof We apply the fundamental theorem of calculus to wg and we have that
9314, v) S ¢ (o, v) + fNH 9ol - |Lo| du S ¥ (uo, v)
+ f ¢5 du + f ol - ILgol du
N N
< i (o, v) + / J" ol - ny dps
2y

12
2 1 2
+</N’UH¢O Ddu) . </.;\/’,f’ B(Lff’o) du)

< Y2 (uo.v) +/ J ol - ns dus

172

Xy
12 12
+ ( f J ol - ns dm:) - ( / r - M)z(gqsofdu)
y NH
Eoe>  E)?e  EY?e _ Ege

+ : :
~ 3oL T 32=01/2 | Yl2=81/2 ~ 2=

where we used the decay estimate in the interior (4.47), the energy decay estimate
(4.1) and the energy decay estimate (4.2). The estimate at infinity follows in a similar
way using estimates (4.4). O

For the non-spherically symmetric part we have the following decay estimates:

Lemma 4.5 Let =1 be the non-spherically symmetric part of a solution v of (1.1)
for which the assumptions of section 3 are satisfied. Then for all k < 5 and for all
(u,v) € A /SO(2) we have that

CEpe?
k 2 0
/SZ(Q 91, v, 0) do S 2 452)

for & as in the bootstrap assumptions of section 3, and for all (u, v) € B that:

CE
/ (@b, v, 0) dw < zf; . (4.53)

Combining the previous Lemmas gives us also the following estimates for any
k<5:

2
/ (@2 v, ) do S 2% forall (u, v) € AT/SOQ),  (4.54)
/ (@ D), v, 0)do S —5—5— CE ” forall (u,v) € BX/SO(2),  (455)
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2

C, E
/ Q@) (. r, 0)do < foranytand M <r < o0o.  (4.56)

After commuting with T derivatives we have the following decay estimates for any
k<5:
Ko 112 CE
(Q To) (u,v,w)dow < ——— for all (u,v) € AY 5 /50(2), 4.57)
2
k 2 CE 00
(Q T$) (u, v, 0)do < ——— forall (u,v) € B /SO(2), (4.58)
C.E
r/ QT (t, 7, w)dew < TOE forany v and M < r < 0o, (4.59)
T

/ (QT?¢) (u, v, w)dw< CE for all (u,v) € AY/S0(2),  (4.60)

2
/ (QT%¢)%(u, v, w)dw< CE forall (u,v) € BY/SO(2),  (4.61)

C,E
r/ (@ T2 (r.r, w)do S — 056 forany T and M < r < oo, (4.62)
s? T +02

2
/(QkT3¢)2(u,v,a))dw< Cfm forall (u, v) € AT/SO2), (4.63)
SZ

CEge?
(QT3¢) (u, v, w)dow < —— 0 forall (u, v) € BX/SO2), (4.64)
« ul/2+8
C,Ege?
r/ (QET39)2 (1, r, w) do < ’l—faj forany T and M < r < o0, (4.65)
S? T

2
/ QT4 (u, v, w)dw < wa forall (u, v) € AZ/SO(2),  (4.66)
SZ

CEge?
/ QT4 (u, v, w)dow < — /4°f6 forall (u, v) € BX/SO(2),  (4.67)
SZ

2
rf QT ) (¢, r, w) dow < CrEee” por any tand M < r < 0o, (4.68)
/ (QT°¢)*(u, v, w) dw S CEge” forall (u,v) € AP/SO(2),  (4.69)
f (QT¢)*(u, v, w) dw < CEge” forall (u, v) € BY/SO(2),  (4.70)

r/ (QkTSI//)Z(T,r,a)) do < C, Epe? for anytand M <r <oo. (4.71)
SZ

4.3 Boundedness of 0,y

In this section we will show that the transversal to the horizon 0, derivative is bounded
within spherical symmetry close to the horizon, while it decays (at a slow rate) outside
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spherical symmetry or after commuting with 7 (again close to the horizon — away
it decays with a much better rate via the use of the elliptic estimates (A.6)). For the
boundedness result we will use the method of characteristics (following a similar
approach to [3]) while for the decay results we will use the (r — M)~”-weighted
energy hierarchies. We also note that the following boundedness estimate involves
a bootstrap argument under the assumptions of Section 3 (the same is done for the
growth estimates of Section 5). The later assumptions are then verified through another
bootstrap argument (in Section 6) and the choice of the final smallness constant is the
minimum of the constants involved in the aforementioned bootstrap arguments.

Theorem 4.1 Let v be a solution of (1.1) with the corresponding initial data, and
assume that the bootstrap assumptions of Section 3 hold true. Then there exists some
€’ > 0 such that for all 0 < € < €' we have for all (u, v, w) € A that:

(u, v, ) < Cy/Ege. 4.72)

2rL¢
D=

Proof The proof will follow a standard bootstrap argument. We note that equation
(1.2) has the following form in double null coordinates for ¢ = r - i close to the
horizon

LL$ =O((r — M)*) A + O((r — M)*)¢p

Dr
A8 v Oy

(4.73)
+

For the quantity
2r
h(u, v, ) = (—L¢> (u, v, ®)
D
the above equation (4.73) gives us the following equation
L 2rL¢ —1A¢+ D’+D 2rL¢
D=") 2r 2 2r D~
2
r
+ O = M) ¢+ —AG, Y) - g alr - 0p¥

1 D' D 2r
80+ (543 ) - (FLo) +ow—mn-e @7

ra-twp) (Zre)-a- ¢ (ZLs

r D~ 2r2 D~

1 D A

tA =G (L)~ A P VIR
r 2r 2

The last equation is of the form

Lh+ (r — MYh ~ Fy, (4.75)
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where

2r D 2r
=—A¢+@((F—M)) o+A-—-(Lp)- (3£¢)—A-—~¢~<—L¢>

2r D~
D 2
Al g o)A 9 +3-|w|.

We integrate the previous equation (4.75) in the v direction and we have that

2rL
(BJb) (u,v, w)

2r 1 v ,
~ (—Lq)) (u,vo,a))—I— ) D~A¢dv

)/ D-O(r—M)-¢dv +D( > — . (L¢)- (%gp) dv’
D
—D(u’v) UODAA-ﬁ ¢ - < L(/J)dv—l—D( v) =g (Lp)dv
D 2
) ,,OD'A'272'¢ D(u v) 7 IVorav.
For the second term we have that
v v v C1/2E1/26
D. , < 0 < 12 /
D(u, v) fvo Ao dv S/vo Ao dv “f (v)1+82/2 dv'sC

by using the pointwise decay estimates (4.52). For the third term we have that

va~O((r—M))~¢dv’
v

v Cl/2E1/2
/
vo

D(u, v)

~ D(u, v)

1 v 1 !
< Cl/zE(l)/ZE—f D.D dv ~ CI/ZE(l)/ZE—/ L(D) dv’
D(u, v) D(u,v)

1
SCPEe—— D, v)|' S CPE) e
D(u, v) %

where we used the pointwise decay estimate (4.54). For the fifth term we have that

1
pr. ——
D(u,v) Jy, (v)l=a/2

l v
/Dzdv’gEoez /L(D)dv/
% D(u,v) Jy,

- D(u, v)‘

dv’

2r
= Lo | dv < Ege?
D(u v) 22 9 (D_¢) U~ 506

< E0€2
( ,v)

< E()62 < E()E

vy "~

D(u, v)
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where we used the pointwise decay estimate (4.54). For the sixth term we integrate
by parts and we have that

¢ (Lg)dv

UO_ )/ ( >¢d”

CE()E
v (U/)z_(sl

v D. A(u, v, )
D(u, v) r

_;.[D.éqﬂ]( ' w)
h 2D(u, v) r wu,w

v
< CEge? —i—/ $*dv' < CEge? +

vo

dv' < CEge?,
where we used pointwise decay estimate (4.54) and the smallness of 81, and the fact

(p:5) =m0y
LD =)~ - M3

r

The seventh and eighth terms can be treated similarly. Finally for the fourth term we
have that

L S PADN
D(u i (L) - (3_¢) v
2rL , v
D(m) [ e (5—¢>](”’”’”) Y
( %) (o) a
_ L p-(=Lo)d
D(u,v) Jy, D

¢
! ‘p.A L(ZlL)d’
“Dww P\t

and we note that the term
A " 2r L) dv
oL v

is of size < CEge? as it is of higher order in D due to the L derivative hitting LA
while for the last term we use the equation and we have that

1 v A 2r
— D-Z.¢-L(ZLg)d
D(u,v) v r D
1 v A
= — D -—.¢- dv’
D(u, v) Jy, r ¢ Agdv
1 v
D(u,v) Jy,
1 v

S D@, v) )y,

_ L(
D(u,v) Jy,

A
D= ¢0((r—M))< ¢)

2
A—2 SO((r — M) dv'
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L 21 6) dv
D(u 2 —-¢-(Lo)- (5745) v

n " p? A2 e 2rL¢ dv’ ! ‘p. A ¢ (Lp)dv/
A e (2 W — AT ;
D(u,v) % 2r3 - D(u v) % r2

Dww l, Eratatll D(u v)

S 9-IVgIPav. (4.76)

We note that all the terms apart from the second one and the fourth one are integrable
in v as they can be bounded by

/

v CE0€2
/ < v

v C3/2E3/262
S| oy v or ~/ -
v ) ! v

sothey are of size < C Ege?+C3/? ES/ZEZ as 41 is small enough, by using the pointwise
decay estimates (4.54), (4.57), and the bootstrap assumption. For the second term we
note that we have that

A(x ¥)
D, v)/ ¢ O((r —M))< L¢>

CEge? , , 1 /‘v )
< . _
/ D-O(r—M))- )7 dv Se D |, D-O((r — M))dv

D()

~¢? / D - D' dv' < CEge?e®

f L(D)dv < CEge?,
D(u, v)

(u, v)

where now we took advantage of the (r — M) factors inside the integral, after using
the pointwise decay estimate (4.54) and the bootstrap assumption.

For the fourth term of (4.76) we integrate by parts with respect to L and use again
the equation. It is easy to check that all the terms can be bounded by

< C3/2E3/2 3 +C2Eg€4

after using the pointwise decay estimate (4.54) and the bootstrap assumption.
Gathering together all the above estimates we note that we got a contribution of
size < CV/ 2E 12 ¢ from all the linear terms, while from all the nonlinear terms we got
a contribution of size < CEoe + C3/2E3/2 34 C2E(2)e4, and this suffices in order
to close the bootstrap argument and prove estimate (4.79) if we choose € < €’ for €’
small enough. O

For the restriction of i to higher angular frequencies and for 7 we have that:

Theorem 4.2 Let  be a solution of (1.1) with the corresponding initial data, and
assume that the assumptions of Section 3 hold true. We have that

CEye?

2r k 2
BLQ ¢=1) W, v,w)do S 4.77)
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and

2
2/ ( LQkT¢) (u, v, ) do < Cfg’f , (4.78)

k<5

forall (u, v) € AZ/SO3).

The proof of the above Theorem follows easily from the decay estimates (4.14) and
(4.22), and an application of the fundamental theorem of calculus.
A combination of estimates (4.72) and (4.77) gives us the following:

Z/ ( Lk ) (u, v, ) do < CEge?, (4.79)

k<5

for all (u, v) € A%’/SO(.%) and for all € < €’ (for €’ as in Theorem 4.1).

Finally we record the following two auxiliary estimates for the transversal derivative
to the horizon with added (r — M)?-weights where g € [1/2 + 81, 3/2 + 81/2), and
where [ < 5:

2 2 C Ege?
f r =My (ZLQ'$) v, 0)do S —%— (4.80)
s D ve=di
and
2r 2 CEoe2
N VAV el Xoll < T
/Sz(r M) <D£Q T¢> u,v,w)do S e (4.81)

for (u,v) € AY /SO(3) which follow from the use of the (r — M)~ 7-weighted
estimates.

5 Growth Estimates

5.1 Growth for 6%y

In [11] it was shown that a linear wave on an extremal Reissner—Nordstrém spacetime
behaves as follows on the event horizon:

2r L¢
D
Here our goal is to obtain an upper bound for the second transversal derivative of a

nonlinear wave i satisfying (1.1) with small data in a neighbourhood of the horizon.
We have the following:

v, a))‘ 5.1)
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Theorem 5.1 Let r be a solution of (1.1) with corresponding initial data, and assume
that the bootstrap assumptions of Section 3 hold true. Then for all 0 < € < €” where
€” > 0 is small enough, we have that

2r
‘DI/Z 5/2D ( ¢)

forall (u, v, w) € A and any § € (0, 1].

(u, v, w) S CPE e, (5.2)

Remark 5.1 Note that in our case as well we have an estimate of the form (5.1) on the
horizon (which corresponds to the case § = 1 in the aforementioned Theorem). This
shows that for § = 1 estimate (5.2) is sharp in the region A.

Proof Using equation (A.2) we have that:

AL Dl/z—a/sz gL¢ _ _4(V—M)D1/2—5/2 20 +HM(r — M>D1/2 8/2
D—\D™ M? r3

+O((r — M)*)D'/>~ a/2> 2’ ( L¢) D1/2 A/ZA( ¢>

4, 2
+<A/; D282 L O((r — M))D'/?~ 5/2) r L

5.3)
+ <—2MLD1/275/2 + O((I’ _ M)>D1/275/2> Aﬁb
+< i; DY 4 o((r — M))D1/2*5/2>¢

2r A-r
DY2R L [ . g% o,y - 05y ).
+ D= > 8 oV - 0V
We examine the last nonlinear term and we have that using (A.1)

g 2r A-r 5/ 21 A-r
D]/2 B/ZBL (T .gotﬁ O - aﬂw) — _D1/2 8/25L (T) .golﬁ B - 3ﬁlﬁ

2 2 2r r2 D 2r
A DR\ Ty (L) | —a-pP2 | Zg (L
+ D=\ ¢ D Lo D~ | r* ¢ D Lo

2 2 r? D
A.D1/275/2LL ‘6L _A.DWV22l [ Z 2
+ D~ 3¢ ¢ D~ M¢
+ A DI L(|W¢|)—an+an+fH,l+fH,l+an+an
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We examine each term separately. We leave the first term as is for now. For the second

term we compute that
2r _ 6 2r
()] (20) (31
2r

Lo-
s (o) e (o)
. 1/275/2_7 =
o 2 (510)

1 2r
. pl/2=érz . | N i
+A-D > (Ag) (DL¢)

1/2—-5/2
an_AD/ /D |:

+A- D1/2—8/221—rg"’3 e - DY - (%Qﬁ) .
For the third term we compute that
r2 D 2r
fizn==A-DPRoL [7¢’ : (5@)]

_ 2D D’ 2r
— A. D272 (—3 — —2) - (5@)

r r

~

D 2 2r
_A.DV282 2 L — A. D292 - - L .
2,3 Lo 2r 3¢ D D—¢

For the fourth term we compute that
4 1/2-8/2 r’ 2 1/2-5/2 0
S =A-D oL r—3¢'L¢ =A-D r—2¢'L¢
1 2r D’

A-DV292 [ Zre) (o) — A DY23/2. Z_ 2

+ r2 ¢ D_¢ 2r2¢

_ 1 sl
+ A-DVE2, Z¢ -(Ap)+ A-D'/? 8/2;¢ g% 3 - dpy.

For the fifth term we compute that

2 /
s __a.prsnt (P 4 prasp (D 2DY o
fH;n_ A-D D£<r4¢)_ A-D ( r2+r3 ¢
D 2r
—_A-DYVP2 = (o).
50 (Lo
For the sixth term we compute that
an Dl/2 3/2 L(|V¢| ) D1/2—8/22Dr2|V¢|2

+A-DV*02C <sz (BL¢>,VSZ¢>.
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We get the following equation:

Lfus + & ;— B(F — M) fu.s >~ gHin.s, (5.4)
where
fus =D (2—rg¢> ,
’ 2D D
and where

. 1
8Hins = 8H;s T Z (flll;n + fI%I;n + fls-};n + fg;n + flél;n + fg;n) ’
for gp.s given by:

gH;S(ua U, (,())

2 2r 4r3 2r
— Zpl/2-é/2 L DY2-8/2 L o — M)DV/292) 2L
- A Lo )+ +O((r — M)) oL

253
+ <_#D1/25/2 + O((V _ M))D1/25/2> A¢

4 3
+ <—#D1/25/2 +O((r — M))D‘/”/2> ¢.

Using the boundedness of A we have that:

2 (2
B+ B T T+ Sy = D' 0 | T (T
2r 2r 2r 2
1/2-6/2 . N = 1/2—-6/2 . =
o 51 (is)] 00 (B0
+ DY (L) - (%qu) + D22 (Ke) - (%ch)

LD g (%QP)
D22 g (L) + DV g (A) + DIV Dl

1 2
+ D232 D2 9 4 DAY <V82 <BFL¢> ’ VSQ¢>
r

2r
+ D22, (Em) 8% oy - gy + DT g g By - g
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We solve (5.4), which gives us that

348
D2 (u,vp) 1 Vo3

Frs(,v,0) = == fs,v0,0) + —55—— | DT @, v) g dv.
D2 (u,v) D2 (u,v)

The term

3468
D2 (u, vo)
—— fH:s(u, v, )
D7 (u,v)

is bounded by < C!/ 2E € by the properties of D and our initial data assumptions.
From the 1nh0m0geneous part we first we look at the contribution of the linear terms
coming from gx.s and more specifically the second one of them (which turns out to
be the worst) we break the integral into the regions vp < v’ < S and § < v’ < v

(noting that if v < 5 then the second integral is just 0) and we have that

1 1 min(v,u/2) 2
s [ (i) =t [ (1)
(u, v) D2 (u,v) Jvo b
1 v 2 2}’ /
R D7 pLe ) dv
D2 (u, v) Jmin(v.u/2) D

In the region vy < v’ < u/2 we note that we have (r — M) < % which implies after
using the boundedness estimate (4.79) that we have the following for the first term of
the above expression:

min(v,u/2) min(v,u/2) _
H;/ D?. <2—rg¢) dv' S CVPE e f DT dv
D7 (u,v) D vo

1/2 1/2 u? 1 12
SCYTE, = ad <cC E
v (V)

For the second term of the previous expression we now work in the regionu /2 < v/ < v
where it holds that (r — M) 2> % which implies after using again the boundedness
estimate (4.79) that:

1 v 2 2r 1/2 -1/2 v 1-6
_ D*. [ =L¢ ) dv <CV?E)/ ¢ DT dv
3+8 . D~ ~ 0 .
D2 (u’v) min(v,u/2) min(v,u/2)

1 v

< Cl/zEé/ze—
(r — M)?

1/2 1/2
< C'2E,
min(v,u/2)

All the other terms coming from g .5 can be treated similarly (noting that they behave
better than the above after using the pointwise decay estimates (4.54) for the terms
involving A¢ and ¢, and the decay estimates (4.77) for the term involving A (% Lo)).
All the terms of f 111 ., can be treated also in a similar manner and it is easy to see that
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they are better and of size < C Ege”v®. Now we consider the second term of the sum
Fhin + Fivin + Figon + Fiyon + Fiy., and we have that

1 /UD¥ D D |:2}’ (2—”[,(]5)] dv’
M(u v) D—\D™

CEoe?
/ pF . plit. U qy
D (u, v) ()
1

345

<CE()€ DT -D'2aqv

i
2

<CE06 )dv <CE()E

+

2

o l.”
o L0
where we used the pointwise decay estimates (4.54) and the fact that

2r L 2r I
ot (5%)

for any 8’ > 0 and for all § € (0, 1] (due to the extra D'/ weight) by our bootstrap
assumptions. The previous estimate follows by choosing 8’ small enough so that 8’ +
81 < 1. For the third term of the sum f,zi;n + ff];n + f;‘];n + ff,;n + ff,;n we have

that
1 oz 1 (2r o
———— | DT -DTD(=L¢) dv
348 D—
D2 (u,v) Jv

1 Vo 348 1-5 2
< 3%—/ D72 .D2D 7 ( L¢) dv'
(u, v)

v
§CE0623+8—/ D . piay
2 (u,v)

D1/2D1/275/2 (u, v, w) S C1/2E(1)/2v6/’

1 v
< CEgpe m—/ L(DT)dv' < CEge,
(u, v)

where we used the boundedness estimate (4.79). For the fourth term of the sum f f,; 2t
I, + [+ fi., + f5., weintegrate by parts and we have that:

1 Vo34 1-5 2r ,
W—/ D72 -D2 (L¢)-<—L¢> dv
D2 (u,v) Jw D
o [ e (o) wno]
= "H»(S— D> ¢(M,U,C()) : _L(p (M,U,Cl))
= (u, v) b v

1 /‘v 348 1-5 <2r ) ,
e e E— L|{DZ  -D7 )¢ -|—Lo|dv
D#(u,v) vo ( ) D
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1 Vo34 1-5 2r ,
- D72 .D2¢-L|—Lg¢| dv.
D2 (u,v) Jw D

The last of term of this last expression is better or similar to the rest by using the
equation (4.74). The first term is just bounded by C Ege?, while the second term can
be bounded by CEge? as well by using the boundedness of ¢ and %’Lq& and the

presence of the D2 weight in the integral. For the fifth term of the sum f7. +
ff,;n + f;‘,;n + fg;n + fg;n we have that

v

H—51 / 31 6. <2qu5> dv'
24 D

D2 (u,v) Jv

v 2
< l_f D D%—CEOG dv’
U

For the sixth term of the sum ff,,n + f,31.n + ff,;n + f,5+n + ff,;n we integrate by
parts and we have that

1 /v 348 16 , 1 5,2 v
- D7Z -D7 ¢ -(L$p)dvV = ———— | D¢"(u, v, w)
D#(u,v) 348 [ ]

1 v
— T/ L(D*¢>dv'.
2D7 (u,v) Jw

vo D72 (u,v) vo

The first term is bounded by C Ege? by the properties of D and the boundedness of ¢,
while the second term is also bounded by C Ege? again by the boundedness of ¢ and
the presence of the D>/? inside the integral. For the seventh term we have that

1

Va4 =) voog2
w—/ D%(“’v/)'DITDQPZdv/Sf e v S €
DT (u,v) Jw v ()

again for o small enough so that the term in the last integral is integrable. The eight
term of the sum f121~n + fg,‘n + f,‘;.n + fg‘n + fg.n can be treated similarly to the term

of the last expression. For the ninth term of the sum fé‘n + fﬁl,n + f;‘l,” + fg,n + flg,”
we have that
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1 L 1 2
P F e / D vy - DA <Vs2 (Erw) , Vs2¢>> v’
u,v

1 v 2r
< —/ D3 (u,v') - D122 ‘ng <35¢)‘ Va2l dv'
D72 (u,v)
v CE062

< ——_ dv' < CEye?,
" (v/)1+82

where we used the pointwise decay estimate (4.52). Note that the last two terms of the
sum ffl,n + f1§1'n + f;;n + ff],” + fg_n are of cubic nature, so they can be treated
similarly and they are bounded by < C3/ 2E8/ 2e3y8, Finally for the first term of the
sum fé,n + fil,n + f;_‘,,n + ffl,n + fg,n we integrate by parts and we have that

! /v e 1/2-6/2 2 2r
- - D (u,v')- DY /~(L¢)- —L(=L¢
D#(u,v) v D D
v
= 3+51 ’ D¥ ¢ Dl/z 52 |:2r_(2_£¢
D7 (u,v) D—\D v
1 Vo 348 1= [2r (2r ,
——5 | DO —-M)¢-D2 |=L|—<Lo||dv
D72 (u,v) Jvw D D
1 Vo 348 1-s 2r
_Tf Der.Dzd).A(Bqu) dv’
D7 (u,v) Jvo

v B ! v )
‘Tf DS?-DV¢-4&¢du/—ﬁ/ D DTt av
u,v

D72 (u,v) Jvo
! fﬁ)% D4 2rL( Dy ) v’
—_——————— . . g . . v
D (u, v) Ju D=\2 “nw

The last term of the last expression is of cubic nature and can be treated similarly
to the rest, in the end it can be bounded by C3/ 2E /2318 The first term due to the
pointwise decay estimate (4.54), the properties of D and the bootstrap assumption
is of size < CEge?v’. The second term can be bounded by C Ege?v® by using the
pointwise decay estimate (4.54), the bootstrap assumption, and the presence of the

term D”2* D'/ inside the integral. For the fourth term we have for 8 = 1 that

1 v 2r v CEpe?
—/ D?|¢| - |==L¢ du/gf 0 dv' < CEpev® < CEpe*v®
D2(u, v) D w VI
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where we used the pointwise decay estimate (4.54) and §; < 1. On the other hand for
8 = 0 (which is outside the range of the Theorem) we have that

1 v 2r 1 v CEpe?
32—f D2|¢| - |=Le| dv' < v / D*———dv
D32 (u,v) J,, D D32 (u, v) Jy, pl=a

1 v
< 2 2 I < 2
< CEge —D3/2(u,v)fv D*dv’ < CEgé?,

where we used again the pointwise decay estimate (4.54). The rest of the § range
follows by interpolation. The third, fifth and sixth terms can be treated similarly (and
as can be easily seen they admit better bounds). Similarly we can treat the term
1/2-8/2 2r
D'>R2(L¢) (T L)
In the very end, we note that we were able to bound D1/2-8/2 |%£ (%Lqﬁ” (u, v, w)
by

< Cl/zEé/zev‘S + CEge®v® + C3/2E8/263U5,

and for € small enough this is bounded by C!/? Eé/ Zeyd
The Theorem now follows by gathering together all previous estimates. O

5.2 Some Auxiliary Estimates

From our previous pointwise estimates it is clear that our energy estimates are not
enough to conclude that T for m € {0, 1, 2, 3} apart from the case of m = 0,
are integrable in v close to the horizon. Nevertheless we will show some weighted
boundedness estimates in v for 7™y, m € {0, 1, 2, 3}.

Theorem 5.2 Let  be a solution of the equation (1.1). Under the bootstrap assump-
tions of section 3 and for all 0 < € < € for €y small enough we have that

// sup (LTmSZk¢)2~v1+‘3dwdvSCEOEZ, (5.5)
SZ

u€lU,ug |

forall V, forany) <6 <2 —361ifm =0, forany0 < § <2+ 8§ if m = 1, for any
0 <8 <148ifm =2, forany0 < § < & ifm = 3, forany (ug ,, v) € AY \SO(3)
where v € [vg, V]and any (U, V) € A s \SO@3) (where up,y, is on the hypersmface
r=Rforany M < R <rg), form € {0 1,2, 3}, and for any k < 5.

Proof The proof will be done through a standard bootstrap argument. First we use the
fundamental theorem of calculus for a dyadic sequence {v,} and we have that
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(LKLT™$)? - v dwdv

/’vn-H /‘
Un 82 r<R

Un+1
= / / (LT ) - v dwdv
Uy S?

u

(5.6)

r=R

Un+1 u
+ / / / 2LLET™¢) - (LT™¢) - v' 0 dwdu'dv.
v, upn JS?

We use again equation (4.73) after commuting with QF for k € {0,1,2,3,4,5} and
we have that

2LL(QKT™ ) =O((r — MYD)AQET™d) + O(r — M) (QXT™$)

Dr
+ = QT [A g% -3,y - gy ],
and as

%QkT’" [A, v, 9) g% - 89 - 95 ]

2
= Y a (LQk‘T”“(;S) (BrLQkZme)
ky+ko=
m1+m2_m

D? 2

- Y A @hrmg) - (Lakrg
273 D

ki1+ky=k

mi+moy=m

D
+ Y A (@ITMe) - (LQRT™g)
r
ki+ky=k
mi+may=m
- Y A @1y (@R T™¢)

k1+ka=k
mi+moy=m

+ Y A= (yohT™Me, YR T 9)

ki1+ky=k
mi+moy=m

+ Z (leT’"‘A) L@k Fe),
k1+ky=k

mi+moy=m
ki+m1>0

we have that

2LL(QF T ¢)
= O((r = MPHAQT"¢) + Or — M) (T ¢)
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+ Y A

k1+ka=k
mi+moy=m

r

D2
> Ass

ky+ko=k

+ > A

k1+ky=k
mi+my=m

ki1+ka=k
mi+my=m

+ Y A
k1+ky=k
mi+my=m

+ Y @hirmay —

k1+ky=k
mi+my=m
ki+m1>0

Tl

D?
o (@NT) - (QRT™g)

_ZA.Z

D 2
7 (LN T™Mg) (Brgszkz T%)

Qb Tmg) . (%Lgszmqu)

(@R Mgy (LR T™ )

le T, Wka T $)

(Qk2 Tm2 FL)

Going back to equation (5.6) we have that

Un+1
/ / (LQET™$)? - v dwdv
Uy S? u

Un+1
:/ / (LQET™$)? - v dwdv
Up S?

(5.7)

r=R

Un+1 u
+ f / /2 O((r — M)(AQET™¢) - (LKET™¢) - v' 0 dwdu'dv
ugn JS

Un+1
(’)((r
Un+1
2
ky+ho=k ¢ Vn S
mi+mo=m

(LQKT™$) - v dwdu'dv

s

ki+ky=
m1+m2_m

AD

2r3

: (szklcp)

2
: (BrLkaqb) (LK) - ' dedu' dv

Un+1

k1+ko=
m1+m2_m

0! dwdu'dv

AD

— MY)QET™P) - (LQET™ @) - v' 0 dwdu’dv

< LQk T’"2¢>

T"9)
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U u . D?
- > / H/ /Sz Azr? @ rmg) (@1 - (LT )
k Un UR.n

ky+ko=
mi+moy=m

" dwdu' dv

. Z /vn+l u [ A-D . (Wle Tmld)v WQkZTm2¢)> . (LQkTm¢)
ke v o

r
k1+ky= UR.n
mi+mo=m

" dwdu' dv

. Z /Un-H /u / (Qk' TmlA(I/t, v, ¥)) Dr . (leTszc) . (LQkTm¢)
& Up URn s?

2
ki+ky=
mij+my=m
ki+m1>0
01 dwdu'dv

=lh+bh+h+L+Is+lc+17+13+ 1.

The first term /; can as follows:

Un+1
I =/ / (LQET™$)? - v dwdv
Vn S?

r=R

Un+1
Suntd / /S 2(LQ" T"$)* dwdv
Un

r=R

<plto / NG M)>(LQFT™ $)? dwdudv
A n

~“n+l1
Un
UH_? vl—Hi UH_? UH_?
< _ntl — < _ntl — < _n+l — < _n+l —
S35 ifm=0,5 33, ifm=1,5 315, ifm=2,5 5 ifm =3,
vl’l vn Un Un

where we used a standard averaging argument and the Morawetz decay estimates
(4.41), (4.42), (4.43) and (4.44).

The ninth term Iy can be considered similarly as the rest so we will not study it in
detail. For the second term /> we integrate by parts on S* and additionally we integrate
by parts with respect to L and we have that:

Un+1 u
I =/ f / O((r = M))(AQXT™¢) - (LQKT™¢) - v' 0 dwdu’dv
Un UR n S2
Un+1 ! u
=— / / f O(r — M)(YQLT" ), VLT ¢) - v dwdu’ dv
Un UR.n s2
Un+1 u
:/ f / O((r — MHYQET"¢)? - 0"+ dwdu'dv
Un UR.n s?

Un+1 u
+(1+ 3)/ f / O((r — MHYQLT"$1% - v® dwdu'dv
Un ugn JS?
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u
R /
Ug, JS?

O((r — M)H|YQLT" ¢ 1> dwdu’

O((r — MYHYQET" ¢ dwdu’

V=Uy

~ zii?/ /” / O((r — MH|VYQET™¢)? dwdu'dv

UR.n

+vu, T sup / [ O(r — MH|YQT" ¢ 1> dwdu’
VE[vy, Vnt1] JuR y
146 vl+8
<CEe? ;j;l if m =0, < CEge? ;j; itm=1,
U,
nl+3 v1+8
<CEye? 2”* ifm =2, < CEpe? fja ifm =3,

Un

where we used decay provided by Morawetz decay estimates (4.41), (4.42), (4.43)
and (4.44), and the decay of the T-fluxes (4.8), (4.9) and (4.10). For the third term /3

we have that

I3 =/U"H / / O((r — M) QKT p) - (LT ¢) - v' 0 dwdu'dv

1+8
N Untl

/2

( / / / (r — M) P QKT g)? dwdu’dv)
Un+1 u 1/2
X (/ / / (r — M)’ P(LQFT™¢)? da)du’dv)
U ugy JS?
Un+1 u 1/2
( f / / NG MYFBLQFT™ $)? da)du’dv)
Un Ugn JS
Uppl U 172
X ( / f / (r — M)’ P(LQFT™ ¢)? dwdu/dv>
Un upn JS?

148
Sanr]

148
145 VCVEpe /CyEge n+1
Sanrl = . 3/2 572 NCEoe 33 ifm =0,
VL n
148
148 VCJEge . VC/Ege < CE e
~Unt1 NI 3/2+52/2 ~ 0’ 3+521 m==5
n }’l
148
148 \/6'\/ EOG \/E/\/ EOE 2 n+1
i plF8/2 T T45/2 S CEoe- 2T ifm =2,
n n
1+5
<148 ‘/6\’ EOG \/_V 6 CE 2 n+1 if 3
SVt VTR IIEEYEN m =
n
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where we used Cauchy-Schwarz, Hardy’s inequality (A.4), and the Morawetz decay
estimates (4.41), (4.42), (4.43) and (4.44). For the fourth term we look at the case
m = 3 (since the cases m = 1 and m = 2 are either easier or similar) and we have
that

AD

s L

k1+ko=k
mi+my=3

0! dwdu'dv

[vn+l/ A - D Qk1¢) ( Q]QT ¢> (LQkT’;(b)

< LQ"ZT’”qu) (LT3 )

SZ

k+k =k
0! dwdu’dv
Un+1
QT - ( LQRT? ¢>~(LQkT3¢)
k1+ky=k

v dwdu'dv

Un+1 u
e

k1+ko=
S(LQ*T3¢) - v dwdu'dv

Un+1 u A
N A
Z Un UR n s?

) - ( szkzw)

k k73
b) - (D 92¢>~(LQT¢)

k1+ko=
' dwdu' dv
Un g1 172
< 145 k k 2 /
an+1k+k (/ /MRH /SZ (r_M)1+52(LQ 1¢) (L2 273 b) dwdudv)
1+ko=

12
Un+1 u
x / / / (r — M) 2 (LQFT3¢)? dwdu’ dv
Un UR.n s?
Un+1 172
1+6 12
+v,19 (/ / /SZ —(r— M (LQ'T=¢) dwdudv)

k1+ky=

Un+1 u 172
x / / / (r — M)'2(LQRT3¢)? dwdu'dv
Un UR n $?

1/2
VT Bl (/ [ Lo )ZMnTz@zdwdu/dv)

11 <5
h<5

Uptl LU 172
x / / / (r — M)*(LQL2T3¢)? dwdu'dv
Un UR n S?
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1/2
Un+1 u 1
+ v CEpev't? / f / — _(LO"T?¢)? dwdu'dv
nH Un UR.n s? (r - M)2

I1<5
h<5

Un+1 u 172
x / / (r — MY (LQ2T3¢)? dwdu'dv
Un UR.n s?

Un+1

Sl (/ /Zsup(LQk‘qb)zm‘*‘sdwdv
kitha=k \Un §2
1 2

12
u 1 1
(LR T3¢)? . —— dwdd’
w [ e LT i dod

vE[vn,vn+1]

172
Un+1 u
x / / /(V—M)1+52(LQkT3d>)2dwdu’dv
v ug, JS?

Un+1
+ U,llﬁ Z (/U /;2 st;p(LQk‘Tqb)2 " dwdy

ki +ky=k

vE[vn,vn41]

1/2
Un+1 u
x / / / (r — M) (LQ*T3¢)? dwdu' dv
v ug, JS?

172
Un+1 u
+/CVEpev! 18 [ / (r — MYA(LQ" T?¢)? dowdu' dv
11<5 Un UR n s?

<5

Untl LU 172
x / / / (r — MY (LQL2T?$)? dwdu'dv
Up UR n s?

172
Un+1 u
++/CVEpev! 18 f / /(r—M)Z(LQl'T3q>)2dwdu/dv
<5 Up UR n s?

12
u 1 1
— (LR T*¢)? . —— dwdd’
Sup /MR." [52 r — M)+ (& ?) piFe dedu

<5
Un+1 u 172
x / / /(r—M)z(LleT3¢)2dwdu/dv
Un UR.n s?
148 145
<3/253/23_ Vntl 1 1 3/21:3/2 3 Vntl 1 1
SCV E) "€ + C/7E) "€
0 1/2+5/2 _52/2—8/2 _1/2+82/2 0 1/246/2 _1/246,/2—8/2 _1/2462/2
vﬂ vﬂ vﬂ vn vl’l vﬂ
" o148 " e " o148
3/2 3 Untl 32 123/2_3 Untl 3/2123/2_3 Yn+tl
+CVTE "€ L2+ +CVTE) e LI SCTE) e e
n n n

where we used Sobolev’s inequality (A.3) in all three terms. For the first term in the
above expression we used estimate (5.5) for m = 0 (in the context of the bootstrap
argument), the decay estimates (4.29), and the Morawetz decay estimate (4.44). For
the second term in the above expression we used that LT ¢ decays like T2¢ (hence
we use the decay from (4.60)), the boundedness of the (r — M)~ P-weighted estimate
for T% for p = 2 + 8, (which follows after applying Hardy’s inequality (A.4) and
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using the boundedness of the corresponding commuted estimate for p = §>), and the
Morawetz decay estimate (4.44). For the third term in the above expression we used
the boundedness estimate (4.78) and the Morawetz decay estimates (4.43) and (4.44).
For the fourth term in the above expression we used the boundedness estimate (4.79)
and the Morawetz decay estimate (4.44). We also note by using the same method we
get the following bounds in the m = 0, m = 1 and m = 2 cases:

1+8
v
m=0:< C3/2E8/263 3n+51 —1:< C3/2E3/2 3 ;z+61 m=2:
v, ! +
3 1+<§
< 325323 Yng1
C E 2+52

For the fifth term of the original expression we look again at the case of m = 3 (as
the cases m = 0, m = 1 and m = 2 are easier or similar) and we have that

Z /vn+1/ <2—rLQk2Tm2¢>
UR,n s? D

ki+ky=
mi+mo= 3

A(LQFT3¢) - v dwdu'dv

/Un+l/ / 5 (Qk1¢) ( LkaT ¢>
k1+k2 S2 2r

. (LQkT3¢) " dwdu'dv

Un+1
(kT LQkT?
2 / //s o @ ror (GLatTs)
1 2=

S(LQF T3¢) " dwdu' dv

Un+1
/ / / — (leT ¢)< LQ"2T¢>
ki o= 2 2r

: (LQ"T3¢) " dwdu'dv

/Un+l/ (2_rLQk2¢>
i +k §? D
: (LQ"T3¢) " dodu’ dv
1+5 Un+1 u 1/2
SVCVEpe 1n;1/2 / f / r — MY*(LQ"T3¢)? dodu’dv
<5 \YVn Ugy JS?
<5

Un+1 u 172
x / f / (r — M)2(LQL2T3¢)? dwdu'dv
Un ugy JS?
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1+8

1/2
Un+1 u
/ Un+1 _ 2 112 1\2 I
+ \/>6 1+6 </7;)1 »/I;R.n w/SZ(r M) (LQ T ¢) da)du dv)

Un <5
h<5

Untl U 12
x / / / (r — MY (LQ2T3¢)? dwdu'dv
Un UR.n $2

1+? Un+1 u 1/2
n+ _ 2 1 2 /
TVEVEe T ( / / L~ M@ Te) dudu dv)

h<5
lz <5

Un+1 u 172
x / f / (r — MY (LQ2T3¢)? dwdu'dv
Un UR.n 2

/2
++/C\/Egev) ! ( / / / r — M) (LQII¢)2dwdu’dv>
<5 UR.n
<5
1/2
R 207 b3 a2 /
X / f /(r—M) (LR?T @) dwdu'dv
Un UR.n s?
32 v, 13 3/2 v, ) 3/2 o
3/213/2 3 n+1 3/2 3 gl 3/2 3 Vn+1
<€ Eye 2+52751/2+C Ey 5/2+352/2+C Ey e 9/4482—581/2
vn vn vl’l
" 1t
3/213/2 3 n+1
<€ Eye v2+82781/2’
n

where we used Sobolev’s inequality (A.3), Cauchy-Schwarz, the decay of the terms
To, T2¢ and T3¢ (given by the pointwise decay estimates (4.57), (4.60), (4.63)), and
the Morawetz decay estimates (4.41), (4.42), (4.43) and (4.44). Forthe m = 0,m = 1
and m = 2 cases we have that:

U1+8 vl+8
—_0-<32p32.3_“ntl 1< 325323 Untl
m=0:35C/'Ey’e s, M 1:SCV7EY "¢ 155,512
Uy Un
1+8
o .< 325323 Untl
m=2:5C/'Ey e 3h
n

For the sixth term we look once again at the case m = 3 (since the cases m = 0,
m = 1 and m = 2 are similar or easier) and we have that

Un+1
27m2¢) - (LQET3¢) - '8 dwdu’dv
ki+ka= UR,n 2
mi+my= 3
Untl U A
f / @) - (LQRT3¢) - (LQFT3¢) - v dwdu'dv
ki +ky= UR.n s?
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. Z /vn+1/ /A D (@ Te) - (LR T2P) - (LQET3¢) - v!* dewdu'dv
upn JS?

ki+ko=
it A-D 4o k ko3 143 ,
+ ) / / /Sz QN T2P) - (LT ) - (LQFT3p) - v dwdu'dv
ky4ko=k ¥ Vn
vt A- D £ - k 145 /
+ Z . QRT3 (LQRg) - (LQFT¢) - v dwdu dv
k1+ko= Un UR.n
Un+1 1/2
< VCVEpe ]”j;'/z (f / /(r—M) (LQ"T3¢) dwdu/du>
URn
E

Un+1 u 12
x f f (r — M)2(LQ2T3$)? dwdu’'dv
vy Uy JS?

++/Cy/Eoe ,’;j;z'/z (/v"“/ /(r—M) (LQ"T29)? deodu dv)

<5
<5

Un+1 u 12
x f / / (r — M)2(LQ2T3¢)? dwdu’'dv
vy UR.n s?

144 Un+1 172
Un+1 _ I /
+VCVEye ————— 1/2+52/2 (/,, /MR" - (r M) (LR T¢) dwdu dv)

1'7 <5

Un+1 u 12
x / / (r — M)2(LQ2T3¢)? dwdu’'dv
vy Uy JS?

+V/CVEoe 1/4’111—51 . (/UW/ / (r = M)*(LQ"$)? dwdu’dv)

/2

/2

1'><5
12

Un+1 u
x / / (r — MY2(LQPT3¢)? dowdu' dv

vy UR.n S?

3/2 UH—? 3/2, Ul+? 3/2, I+f
3/213/2 3 n+ 32 3 Ung 3/2 3 Ung

SCTTE) e +C77E, 5/2+352/2+C Ey O
n n

2+8,—81/2
vn+2 1/

where again we used Sobolev’s inequality (A.3), Cauchy-Schwarz, the pointwise decay
estimates (4.54), (4.57), (4.60), (4.63), and the Morawetz decay estimates (4.41),
(4.42), (4.43), (4.44). For the m = 0, m = 1 and m = 2 cases we have that:

o1+ 148
—=0: < g3 _ntl 1< 32323 Untl
m=0:3SC/'Ey’e s M 1:SCVEy e 155, —61/2°
Uy Uy
1+8
— < (325323 Untl
m=2:5C/°E, €v3+82 572
n

For the seventh term we look once again at the case of m = 3 (since the cases
m = 1 and m = 2 are easier or similar) and we have that
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Vn41 A . D? k k ko3 14 ,
Z / / _/gzﬁ'(gl(ﬁ)'(gzd’)'(LQT@'v dwdu'dv
UR.n

ki+ko=
m]+m2_3
Un+1
B C(@49)- @ T ) (LT ) v dudil
k1+k2 Un UR.n
Un+1
. . (le T¢) - (Qk2T2¢) . (LQkT3¢) . v1+5 dodu'dv
k1+k2 kY n
1 Un+1 1/2
SVCVEe 1njsr1/2 / / f (r — M* Q" T3¢)? dwdu'dv
<5
<5

1/2
Un+1 u
x / / (r — M)"P(LQLT3¢)? dwdu'dv
Un UR.n Sz

+ vV CVEpe ,j}zl/z (/Hf f(r— M@ T2 ¢) dwdudv)

12 <5

1/2
Un+1 u
x / / (r — M) (LQLT3¢)? dwdu'dv
Un UR.n S2

1/2
Un+1
<VC\/Ege 1":;1/2 (/ / /(r—M)‘ S(LQ T3 ¢) dwdu’du)
UR.n

<5
<5

1/2
Un+1 u
x / / (r — M) (LQLT3¢)? dwdu'dv
Un UR.n Sz

Un+ 1/2
+/C/ Ege 1ia+21/z (/ 1/ /(r—M)' SLQIT¢) dwdu’dv)

/2

<5
12<5
172
Un+1 u
x / / /(r—M)”‘S(LQ’ZT%)deu’dv
Un UR.n 2
e oI+
<C3/2E3/2 3 Vntl +C3/2E3/2 3 Unt1
L2 H0=81/2-8]2 LO/202=61/2-5/2
n }’l
32 o1t
3/2 3 Untl
SCTE) e 202 —81/2-5]2"
n

where we used Sobolev’s inequality (A.3), Hardy’s inequality (A.4), the Morawetz
decay estimate (4.44), and the energy decay estimates (4.10) and (4.9) for p = é. For
the m = 0, m = 1 and m = 2 cases we have that:

1+ pits
0. <R Vbl o 3pdRa_ Vnbl
m=0:5CE, =y m=1:35 C7°E, ¢ AR/
n n

@ Springer



12 Page620f 124 Y. Angelopoulos et al.

vl+8
< (325323 n+1
m=2:35C/7E, 6—v3+52—81/2—3/2'
n

For the eighth term we consider once again the case m = 3 (as the cases m = 0,
m = 1 and m = 2 are easier or similar to it) we have that

— e A'D' ki pmy ko rm

ki+ko=k Y
my+my=3

A(LQFT3¢) - v dwdu’dv
Un+1 u A . D
= 25umk1+k2=k/ / / — (yahg, yaoRkTie)
vy UR,n S2 r
A(LQFT3¢) - v dwdu’dv
Un+1 u A . D
+2 ) / / / (YQNTg, YQRT?¢)
YV UR ., S? r

ki+ko=k ="
(LQFT3¢) - v dwdu’dv

(r— M)y ( / «@"¢)? dw’)
r<R $2

Un+1 u
sy ([ L
<5 \Yvn URy vS

h<5
3<5

12
(QPHIT3g)? dwdu’dv)

1/2
Un+1 u
X ( f / / (r— M)1+5(L913T3¢)2dwdu’dv>
Uy ugn JS?
Un+1 u
+uat / / (r—M)>7° (/ Q' T3¢)? dw’)
Un UR.n $? S?

L<5
h<5
<5

12
(@R )2 dwdu’dv)

172
Un+1 u
X ( f / / (r—M)1+5(L913T3¢)2dwdu/dv>
Uy ugn JS?
Un+1 u
+ 0,00 / / / (r— M) ( / (Q’1T¢>2dw’>
Un UR.n s? S?

L<5
h<5
3<5

12
(@RI T2¢)? da)du/dv>
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Untl LU 12
x / / f (r = M) LQBT3¢)? dwdu'dv
Un UR n S2
Un+1 u
+ v, / / f (r = M) ( / (@ T2¢>2dw’)
Un UR n s? S?

11 <5
h<5
3<5

172
(@RI T ) da)du’dv)

12
Un+1 u
x / / (r = M) LQBT3¢)? dwdu'dv
Un UR n §?

1
<32 3/2 3 ntl
SCTEY € 35
Un
14 e
3/2 23/2 3 n+1 3/223/2 3 ntl
+ CVEy "e +CVTEy e 0735, /2-5]2
n

5/2438,/2-9/2
Un

146
vn-H

<3/253/2.3
SCVTE) e 2 T302/2=5]2
n

where again we used Sobolev’s inequality (A.3), Cauchy-Schwarz, the Morawetz
decay estimate (4.44) for all terms, the pointwise decay estimates (4.54), (4.57), (4.60),
(4.63), and the energy decay estimates (4.2), (4.21), (4.25) and (4.29) for p = §. For
the cases m = 0, m = 1 and m = 2 we have that:

1+8 1+6

v v
—0-< 325323 Cntl _1.< 32323 Tntl
m=0:35C/'Ey’e 3,252 ™ 1: S C77E) "€ 4435,—81/2—-3/2°
Uy Un
e
< (325323 Uil
m=2:5CIE) € S5

Un

All the above estimates give us that in order show the estimates (5.5) we need the
following conditions for §:

m=0:1486<3-81 =686 <2—56;,
m=1:148§<3+8% =68 <2+,
m=2:14+6<2+86 =56 <1+46,
m=3:148<1468 =68 <6,

and € small enough so that €3 < €2. O
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6 The Bootstrap Argument

In this section we will present the bootstrap argument and verify the estimates of
section 3. We will prove the following Theorem:

Theorem 6.1 Let Y be a solution of the equation (1.1) with the corresponding data,
and assume additionally that the bootstrap assumptions of Section 3 for a given €.
We have that the following estimates hold true for 81, 82, Bo > 0 small enough, for
0< B <érandfor0 <4 <8

C2E(2)cs4

TETSE A

/ rFolFdur S
R2

71

2 —p=1 12,2 C2E364
/ /NH(I' — M) P=iD |F()| dwdudv S mforp (S] (0, 2 — 51],
7] ki
(A2’)
12}
/ /N” (r — M)™P(L¢yg) - (DFy) dwdudv (A3)
7 N
C2E2e4
S Wforp €(2,3-4l,
12}
/ / (r — M)"P(L®) - L(r* Fy) dwdudv (A4)
7 JNH

C2E864

<Bof 4+ - 0
SPLt e

forp € (07 1 _81]7
C2E2 4
f PP ol dug < M%forp c(.2=8] and  (AS)
RE\AZ T)3

2 \? 252 4
72 C7Eje
[ rimdods) | £ S porp e 3 - b
o\ (SR

u

123
/ / rP(L®Y) - (L Fo) dodvdu| < BoL (A6)
u JM
C’E}e* 01
+Wf0”l’e( , 1 =611,
Z(/ (r—M)’]’5D2|QkF21|2dwdudv+/r . r2|Qszl|2du7g>
ks \JAT RE\AZ
(B1’)
C2E364

< . 2.8
Y ()
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/ / r — M) P(LQkp=1) - D(Q*Fo1) dwdudv (B2?)
k<5
C2E2 4
S BoL + W}CO”P € (0,2 —-41],
/ / r — M) P(LQ* DY) - L Q F=y) dwdudv| < BoL (B3’)
k<5
C2EZe*
+ mforp € (07 1 +82]7
+1 6k 2 2E364
14 < V- — ’
kg;/ PR P dur § oSS forp € (L2 - a1l (B4)
/ f rP(LQ*®L ) - (L(PQFFay) dwdvdu| < poL (B5”)
k<5

C2E364

Wﬁ)rp € (0, 1+ 8],

Z ( = M)~ D2 QT F |2 dwdudv +/ r2|S2kTF|2duR)
AT

k<5 71 R%\AZ
(C1)
. CEget
N (14 1)
/ / (r — M)"P(LQKT¢) - D(QXT F) dwdudv| < BoL (C2%)
k<5

C2E(2)e4

Tty forp € 0.2 5],

f / (r — M) P (LT D) . L QFT F) dwdudv| < BoL (C3)

k<5
C’E3e*

Wﬁ”ﬁ € (0, 1+ 681,

1ok 2 2E364
rP+ IQFTF P dur < ———% — forpe (1,2 —68], (C4”)
; /sz T+ op3=p P

< BoL (C5”)

/ / rP(LQET O (LR QFT F) dwdvdu
NI

k<5
252 4
C Eje

Wforp € 0,1+ 8],
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(r — M) 'O DYQT? F)? dwdudv + rP2IQ T’ F 1> dug
2
AZ :

k<5 RE\AZ
(DT1°)
2
< C2E0o54
AIEEDECE
f / (r — M)"P(LQFT?¢) - D(QXT?F) dwdudv| < BoL (D2%)
k<5
+ %f € (0,2 —8;]
TR
/ f (r — M) P(LQFT?dM) . L(*QFT?F) dwdudv| < oL (D3)
k<5
C’E}e* 05
Wforp € (0, 821,

1ok o2 112 2E3et
p+ < _ ’
;/Q rPNQATF T dur S (l+rl)2+82_pforp€(l,2 811, (D4

/ / rP(LQFT? 1) (LR QT2 F) dwdvdu| < oL (D5%)
k<5
C?E}e* 0 s
mﬁ?rp € (0, 821,
f C2E2 4
b
Z/ T FP due $ S5 (D6”)

k<5

> <f r — M)~ ' DT F? dwdudv +/
_ATZ 12

r2|QkT3F|2dMR>

k<5 7| Ry \-AZ
(E1’)
C2E}e*
~ 1+ )’

/ / (r — M) P(LQ*T3¢) - D(QFT3 F) dwdudv| < BoL (E2”)

k<5
CZ 2 4

+mf0rpe(0 1+ 621,
Zf — M)2D?QFT3F)? 0P dwdudv < CPEfe?, (E3’)
k<5
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Pl ok 73 C*Ege’
A — b
ng‘/ PPN R dug < (1+Tl)1+32_pf0rp € 0,1+ 8], (E4’)
<
3 C2E2 4
9
];/ TP due S (E5")
<
o 172 2
> / / PIQKT3FPdus | dr | < CPEZ*, (E6")
iz \Ja \Jzmn(rRi\42)
Z(/ (r—M)—1—502|Q’<T4F|2dwdudv+f o r2|QkT4F|2dMR>
k=5 \JA7 RE\AZ
(F1°)
212, 4
< C Eje
14+ 1 ’
/ / (r — M) P(LQFT*p) - D(QFT*F) dwdudv (F2%)
k<5
C?E2et
S mﬁ’rl) € (0, 1],
Z[ — M) DAQATHF? P dwdudv < CPEZEY, (F3)
k<5
C’Eje*
Z/ rP+‘|9"T4F|2dMR < (l—forp € (0, 1], (F4)
k<5
C2E2 4
Z |sz"T“F| dpe S : (F5°)
i=s (I+1)?

2

1/2
)
Z/ / PPQAT F P dps | dr | < CPEREY, (F6)
1 \En(R\AZ)

k<5 T

Z/ r — M) DAQFT )2 o' dwdudv (G1’)
k<5

1/2
12
+/ / QT FPdus | dr
7| S AWNHUNYT)

12
+/ / rIOIQA TSP dpeide
7 JN!

2

2

1/2
1)
+/ / P TIF )P dps dr | < CPEje*,
n \Jzn(RAR)
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2 4
Z/ QKT F P due < —. (G2)

k<5

Remark 6.1 We expand the nonlinear term with Q% and 7" commutations and we
have that:

/ L= M) PLQ T ) - DR TP F) dur
T
= (V—M)_p(LQsz(p). M%D-(Lgkl’rmlq»
Z o p

ki+hko=k Y R
mi+my=m

2
( Dr Lok T’”2¢> dwdudv

A - D?
- > /,ﬂ(r—M) PLRT ) - —— - (@1 T ¢)
ky+ky= 4
mi+my= m

. (ggszkz T’”2¢> dodudv
D
6.1)

2A-D
- /,2<r—M) ML T?¢) - == - (@1 T™ ¢)
ki+ky= "

mi+mp=, m

(LR T™ @) dwdudv

k A-D? ki m ko pmy
— Z [Tz(rfM) P(LQ T? ) - QN T™M ) - (VT @) dwdudv

ky+ko=
m1+m2—m

+ Z (r=M)” P(LQFT? ) - (VQ’” T™ ¢, YR T ¢) dwdudv
k1+ky= TI
m1+m2—m
+ ) / (r = M)"P(LQ*T%¢) - DM T™ A) - (QRT™ F) dpr.
ki +ky=

m1+m7—m
ki+m1>0

We will use the above equation in the bootstrap argument for (C1’), (D1’), (E1’) and
(F1).

Proof We will prove the estimates stated in the Theorem one by one.
(A2’): In order to estimate the term for the second bootstrap we expand again Fy
into its actual terms and we have for any 1, T with 77 < 17 that:

/ / (r — M) P D?|Fy|? da)dudv</ / (r — M)"P71A2. D2 . (L¢,)?
2r
. ( L¢*> dwdudv

1%} 2 2
+ f / (r—M)"P7'A2.D* . ¢2. (—rm*) dwdudv
n JNH D
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12}
" / /NH (r = M)"PTLAL D - (L) dodudv
T f
2

T
- f (r—M)P71A2. D* . ¢? . 2 dwdudv
a N,

H
1) ’
" / / (r=M)"P7'AT- D? - ¥4 - [V devdudv,
7 JNH
where the subscript * denotes the different angular frequency localizations that always
add up to O (when applying the projection to the 0-th angular frequency to nonlinear

terms). For the very first term we have that for any 7, 7, with 7] < 15 that the following
holds:

[ 2 2

/ f (r—M)P71A2. D?(L¢,)?* - Lo, dwdudv
T JNH D
v (6.2)
%) C2 E2€4
< CEpe? / / (r — M)"P3 (L) dodudv S ————,
0 I (I +11)30

where we used the pointwise boundedness estimate (4.79), and the Morawetz decay
estimate (4.41) (as p € (0,2 — 81]).

For the second term we have that

n 2r 2
/ / (r—M)=P71A2. D*. 42 (—Lqﬁ*) dwdudv
u JNH D

w2 2r 2
< f / <r—M)P1D4~¢3-(—L¢*> dwdudv
n JNH D

5}
< CE()GZ/ / (r — M)~Pt7 ~¢>z dwdudv
T JNH

12}
< CEpe? / /NH (r — M)™P™ . (L¢)? dodudv
7] f

212 4
< C Eje
ACEENEE
where we used the boundedness estimate (4.79), Hardy’s inequality (A.4), and the

Morawetz decay estimate (4.41).
For the third term we have that

)
f / (r—M)P71A2.D?. ¢2 . (L¢,)? dwdudv
7 JNH

12)
S/ / (r—M)"P71D%. ¢2 . (L¢,)? dwdudv
1 JNH

CEpe? [T
ST ), gt =07 oty
1 7 JNH
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CEye? 2
= 1+ 1(1))62—51 / /N” (r = M)~P*! - (L$.)* dodudv
7 g
~ (14 1)>2-p’

where we used the decay estimate (4.57), Hardy’s inequality (A.4), and the Morawetz
decay estimate (4.41). As p € (0,2 — §1] we have that:

C2E}e* C’Eje*
(14 7)) 21=p ™ (14 1p)3007

For the fourth term we have that
f / (r — M) P71A2. D*. 92 . 2 dwdudv

< / (r —M)"P7I1D* . ¢2 . 92 dwdudv
0 Jan

CEpe? [T
S ﬁ/ / (r—M)_p+7~¢§da)dudv
71 7 NvH

_CEe (™ s 2
: (I4+17)2% /n /Nﬁ(r - M)"PT - (Lgw)" daodudv

C’Eget  _ C’Eget
T+ T)TBEr Y ()3

where once again we used the decay estimate (4.50), Hardy’s inequality (A.4), the
Morawetz decay estimate (4.41), and the fact that p € (0,2 — §;].
Finally for the fifth term we have that

/Q / (r=M)""7'AL - D? - [V - |Vl deodudv
1 JNH
< / ) / (r = M) D Y |Vl dwodudv

g [y o

CE
S 1+ O)€2+52 / / (r = M)"PH - (LQ¢,)* dodudv
71 u JNH
C2E2e* C2E2e

~ (14 7))t Y (14 1)
which is a better estimate than the one desired (as §; > 0), and which we obtained by

using the decay estimate (4.52) for k = 1, Hardy’s inequality (A.4), the energy decay
estimates (4.13), and the fact that p € (0,2 — §1].
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(AY’): This follows from the estimates for p = 1 in the bootstrap argument for

(A2’), where it was shown that for p = 1 we have decay of rate (which is

C?E,
(147 )3 81
better than required for the purposes of (A2%)).
(A3’): We examine only the term of the nonlinearity involving both L and L deriva-
tives (as the rest are similar or easier as demonstrated already by our work in (A2))
and we have for 8 small enough and for the subscript * denoting the different angular

frequency localizations always adding up to O that:

f : / (r — M)"P(Lepo) - Ax(Ly) - (L) dwodudv
f / r— M)~ P(qu*)z —7 dodudv

+./ / (r — M)"P(Lps)? - (Ldps)? - v' P dwdudv
1 JNH

1
S / (r — M)™P (Lg)* deodu
T| ve [t1,12] NH
)
—i—/ / sup(Lpy)? - v' P dwdv - sup / (r — M)"P(L¢s)? dodu
7] S? u velr, ] JNH
1
S s [0 - ML) dodu
7| velr,n] JN!

veE(T), 2]

fsup(L¢*)2-v1+/f‘dwdv- sup / (r — M) PP2(Lo)? dwdu
S2 u NH

velTy, 2]

19]
+ / / sup(Lpy)? - v' P dwdv - sup / (r — M)"P(L¢o)* dwdu
u JS? NH
1

<L s / (r — M)™" (Lg0)* doodu
NH

velt,r]
LC Ce n Ce
E 9
‘L'? 81—p T13+52*P

where we used the auxiliary estimates (5.5) for m = 0 (by taking 8 < 2—4§1), Hardy’s
inequality (as p € (2,3 — §1] = 4 — p > 1) and the energy decay estimates (4.2),
(4.14).

(A4’): Using again the form of Fj and denoting by subscript * the different angular
frequency localizations we have that:

B
7

1)
/ / (r — M)"P(LOL) - L(r? Fo) dwdudv
u JNA

w A 2r
= / / (r—M)"P(LO) - = - (Loy) - (L(*Ld’*)) dwdudv
T JNH r D

g A 2r
+ / f = M) P Lof) - 2 (LLg.) (—@*) dodudy
n JnH r D
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+/Q/ (r = M)~P (L) -

T JNH

,/TZ/ (r,M)ip@q)(I;I)'
u JNH

_/T2/ (,_M)"’@bé’)-
. JNH

+/r2/ r — M)"P (Lol -
7 JNH

2r dodud
[0 ()] douuas

—/Q/ r — M)"P (Lol -
T JNH

—// r—M)~P (Lol
7 JNH

v

—// r — M)"P (Lol -
T1 NH

v

(93 A
ff f r— M)“P (Lol -
n Jne

—// (r = M)"P (L) -
T Nﬂ

v

+/Uf (r — M)"P(LOf)
o JNH

+/Q/ (r — M)"P(Lof)
T JNH

For the first term we have that

n A 2r
/ / (r —M)"P(LOE) - = - (Lo - <L (—Lm)) dwdudv
n JNH r D

(LA* + A D) . [(qu) . (21L¢)] dwdudv
r 2r2 D~ .

2r
- Doy - (L <5L¢*>> dwdudv

D(Lg.) - (%’m) dodudy

A, - D?
2r3

(LA* D

A, -DD'
2r2

4r2

S

*

- (Loy) - (Los) dwdudv

M
:

(LA* 4
r

(LL¢) dwdudv

Ay -D
2r2

) -[¢ - (LP)], dwdudv

= -2D¢, - (L$.) dwdudv
p

A, - D?
2r3

A, -DD’
4r2

LA, -D
2r2

) . [¢2]* dwdudv

<Ay - (LY ¢y, Vo) dwdudv

LA, - (You, You) dodudv.

- [ w(L(*L 21ddd
=/, N[’(r_) ,3,@)8 mwuv

T 2
+ / i / (r— M) " (L)’ - (L <2—’L¢*)> 249 deodudy
_— D

1
S %
~ _d

T

_ 2r 2
r—Mm)~"? (L (—L(bo)) dwdu
NH D

sup

12 2 2
+ f f sup(Lep)? - v+ dardv - / r— M)~? <L (lgp*)) dodu
7 JST u velt,nl JNH D

S
rlo g
CEpe?
+ CEy?———,
T —o1—p

1

for some 0 < 89 < 82, where we used the auxiliary estimate (5.5) for m = 0 and the

energy decay estimates (4.4).
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For the second term
/ / r—M)~ P(L<I>O ) - - (LL¢o) - <2—DFL¢O> dwdudv and
2r
/ / r— M)~ P(LQDO) (LL¢>1) (EL(f)Zl) dwdudv

we can use the equation to expand L L¢,, and we get terms with better decay than
required.
For the third term we note that due to our assumptions on A we have that

LA, A .D 2r
‘/ / (r— M)"P (LD ( : ) [(qu) (5@)] dodudy
2r
< —M"’LQDH-D-‘[L ~<—L )}
/n /Nﬂ(r ) PILDy | (Lo) D_¢ .

and this can be treated as the terms in the (A2’) bootstrap.
For the fourth term we have that

dwdudv,

2 A 2r
—_M)“P Hy . -
N (r—M)""(L®y) 22 Dy <L < DL«b*)) dwdudv

7]
=< ﬁf / r — M)""TH Lo dwdudv
. JNH

L= —p=171242 2r ?
+*/ / (r—M)"P7'D°¢; - | L —=Lox dwdudv
BJy InH D

S /3/ 2/ r — M)"P*N(Lol)? dodudv

1 CE()G 43 2 2
i B (14 1) / / —M)7r (L <3£¢*)> dwdudv

S ﬂ/ / r — M)"PTH(Lo)? dwdudv
N

1 CEpe?
B (14 7)3-2-p’

and as §; is chosen to be small enough, we have that 3 —25; — p > 1 — §; — p for
any p € (0, 1 — §1], and this gives us the desired estimate by choosing § to be also
small enough. Note that we used the pointwise decay estimate (4.54) and the energy
decay estimates (4.18).

For the fifth term we have that

2r
’/ / (r—M)~ P(cho) - D(Loy) - (5L¢*> dwdudv

= ,3/ / r — M)""N (Lol )? dwdudv
. JNH
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’3/ / (r—M)"P~1 . DX(Lo,)? - ( L¢*> dodudv

< /3/ / H(r — M) P (Lo dwdudv

2
,3/ / (r— M)~ . DX(Lo,)? - ( L¢*> dodudv

= /3/ / (r — M)7P+I(L<I>(])1)2 dwdudv
7 JNH

1 fz
+ =CEpe? / f (r — M)"P3 . (L¢y)? dwdudv
B 7 JNH

12
< ﬁf / r — M) PN (Lol)? dwdudv
1 JNH

22, 4
L1 CEge
B(+r)soir

and this gives us better than the desired decay. Note that we used the boundedness
estimate (4.79) and the decay estimates (4.18).
For the sixth term we note that due to the assumptions on A we have that

(F—M) P(LDG) -

(LA .D A,-DD A, -D?

i T o )-[¢2]* dwdudv

(r = M) P|LOf |- D |[¢*],| dodudv
H

and the resulting term can be treated as the terms in the (A2’) bootstrap.
For the seventh term we have that

‘f / (r—M)" p(L%) (L) - (Loy) dwdudv

Sﬁf / (r — M)"PT (Lo dwdudv
. JNH
+l/r2'/ (r_M)ipil(é(»b*)z'(L¢*)2da)dudv
B Jx NH
=f /Tz / (r — M) P (LOF)? dwdudv
T JNH
L[ —p-1p2 , (2r 2
+_/ f (r—=M)"P7 D7 (L¢y) -(—qu*) dwdudy
ﬂ 71 ./\/—UH D
S,B/Tz /N (r — M)~ (L) dewdudv
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1 ©
+ —CEye? / / (r — M)~ Pt (L¢)?> Ddwdudv
B 1 JNH
1%
< ﬁ/ / r — M) P (Lo dwdudv
T JNH

1
+ —CEOEZ/ r— M) P Ly dug
B AP

71

1)
< ﬁ/ / r — M)"PH (Lo dwdudv
u JNH

1 C2E3e*
+ _—5
B (14130

where we used the decay from the Morawetz estimate (4.41) as p € (0,1 — §1] =
3 — p € 2+ 61, and this gives us better decay than desired.
For the eighth term:

%) _ " A()
(r— M) P(LD§) - — - ¢s - (LLy) dwdudv and
1 JNH r
%) _ " A*
(r—M) ”(LCDO )+ — - @5 - (LLy) dwdudv
T JNH r

we can use the equation to expand LL¢,, and we get terms with better decay than
required.
For the ninth term, due to the assumptions on A we have that

2r2

" LA, A.-D
/ /NH(r —M)ip(éqj(l)i)' <_r + )[¢ (L)1, dodudv
71 g

S /72 /NH(V _M)—p(éq)gl) D -[¢ - (L$)], dodudv,

and the resulting term can be treated as the terms in the (A2’) bootstrap.
For the tenth term we have that

17
‘ / / (r = M) (LOf) - 22 2D, - (L) dodudy
o JNH r
1]
< ﬁ/ / r — M)"PTH (Lo dwdudv
7 JNH
1 [
+—/ / (r — M) P71 D292 . (L)? dwdudv
B Jy NH

1]
=< ﬁ/ / r — M)"PH (Lo dwdudv
. JNH

1  CEge?

%)
- — My 2
B (1412 '/;1 /NUH (r = M)" P (L) dwdudv
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© ol y e HA2 1 C?E}e
55/ / (r — M) PN (Lo dodudv + — ———2
n JNH B (1 +11)>201—>p

where we used the pointwise decay estimate (4.54) and the energy decay estimate
(4.17). Since §; > 01is small enough, we obviously have that 5 —261 —p > 1 —6 —
for p € (0, 1 — §1], which is better than desired.

For the eleventh term, due to the assumptions on A we have that

LA.,-D A,-DD' A, D?
= - + = >~[¢2]O dwdudv
r

12}
— M) (Lo - -
NvH(r ) (L) ( 2r2 472 23

©
5/ / r —M)"?(LO{HD* - [¢*], dwdudv,
n JNH

and the resulting term can be treated similarly to the terms of the (A2’) bootstrap.
For the twelfth term we note that we have that

(r — M) P(LOY) - Ay - (LY ¢y, Yobu) dvdudv
H
2
5/ f (r — M)_p|L‘I’(I)1\ | LRy | - |Q0| dwdudv
f / (r — M)"P|LDY |- DIQy| - 19¢4| dwdudv
/ / M)PHL o) dwdudv
2 1
*/ / (r—M)"P7V L |LQg.|? - 1926 |* dwdudv
BJy InH
2
E/ / — M)™P71 . D21Qe. | - 1994 dodudv
/ / — M) PN Lol? dodudv
2 2
*/ / r— M)"" L L¢P - 1964 dodudv
:B T D
+*/ / (V—M)_p+3'|52¢*|2- |Q¢*|2da)dudv
BJu Jnp
1]
S ﬁ/ f r — M)"P* (Lol dwdudv
7 JNH

2 ©
+ fCEOeZV/ f (r — M)"PP3Q¢.)? dodudv
ﬂ T NLH

2 CEye? ©
S [ R0 dodudy
7] g

™ 2 C2E} 2 CEpe?
gﬁ/ / — M) P Lo dwdudy + - + = "
o Jan B (A +1)>4 ﬂ(1+r1) 1
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where we used the Morawetz decay estimate (4.41), the pointwise decay estimate
(4.52), and the boundedness estimate (4.79).
Finally for the thirteenth term we note that

[ e vy s o 30 s
T] i

1)
sf / (r — M)"PILOL |- D - Q¢ - Q64| dwdudv,
1 JNH

and the last term was dealt with in the context of the twelfth term.
(B2’) Using the form of F>; we have that:

Z/ / r — M)"P (LK ¢=1) - D(Q"Fs1) dodudv
k<5 NI N N

= / / r— M)~ P(Lsz"<b>1> D - (LM g,
7]

ki+ky=.

2r
: (—Lkazp*) dodudv

A
-2 f / r—M)"P(LQKp=1) - —= - D* - (@5 ¢y)
k1+k2 NUH 4}"3

2
( d Qk2¢ ) dwdudv
D

/ / = M) P L)) - 25D (@) - (L) dwdudy
4l

ki+ko=k 2r

- > f / (r—M)’p(Lsz"¢>1)-A—’;-D2~(Qk1¢*)-(szk2¢*)dwdudv
k1+ko= N - ar

+ 2 / / (r— M) P(LR o) - 22 DYQHM g, Y24, daodud
k1+ko= N - 4r
f / r — M)"P(LKp=1) - (2 Ay) - DQF FS) dowdudv,

klljkzl g

1>

where we use * as a subscript to denote the different angular frequency localizations
that always add up to the case of > 1.
For the first term we have that:

/ / (r— M) (LQ"¢>) - —D Lk g,) - ( Qk2L¢>*) dwdudv
7

k1 +ko=k

S ,3/ f (r — M)_pH(LQk(PZ])Z dwdudv
. JNH
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(%) 2 2
- / f o — M) (L P2 - — M (L Lgy ) dodudv
7 JNH D

<B / ; f (r — M) PN (LQ* $>1)? dwdudv
71

C2 2 4
+ 3— if p € [1,2 — §1] and we get the bound:

1
SB T/ r — M) P (LQ*¢-1)? dwdudv

C224

Wlfpe(o 1),

T

where we used the boundedness estimate (4.79), and the Morawetz decay estimate
(4.41) in the case of p € [1, 2 — 1], and where we used the auxiliary estimate (4.80)
for g = 1 —§; and the Morawetz decya estimate (4.41) in the case of p € (0, 1). Note
that we got better decay than required in both cases as for p € [1,2 — §;] we have
that3 — §; > 3+ 82 — p, and for p € (0, 1) we have that 4 — 351 > 3 + 6, — p due
to the smallness of §; and §,. For the second term we have that

f / (r— M)~ p(LSZk¢>1) -D*. (@M, - (%Lﬂk2¢*) dodudv

ki+ky=

S ,3/ / (r— M)_pH(Lquﬁzl)z dodudv

2
+— > / /NH(r—M)‘”‘lD4-(s2kl¢*)2-<%gszk2¢*> dwdudv

k +ky=

S .3/ / (r— M)—p+1(£9k¢21)2 dodudv

+ = Z r — M)~ "3 QN )% - (LR ¢,)? dwdudv
NH

k1+k2

S ﬁ/ / r — M) P (LQ*¢p-1)? dwdudv

T ii’; 5 Z / f (r — M) PP (LQ"™$,)* dodudy

S .3/ / (r— M)_pH(Lquﬁzl)z dodudv
n JNH

CEge? CEge?
(147278 (14 1)300°

where we used Sobolev’s inequality (A.3), the pointwise estimate (4.54) and the
Morawetz decay estimate (4.41) as p € (0,2 — §1] = 3 — p > 1 4 §;. The resulting
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decay is better than desired as by the smallness of §; we have that 5 —28; > 3+, —p
for p € (0,2 — §1]. For the third term we have that

// (r— M)~ "(Lszk¢>1)
ki+ky=k © ™1

S ﬂ/ [ (r — M) (L p=1)? dwdudv

S D(QY ) - (LQY$,) dodudy

+ - Z (r — M) P DX QN ¢,)? - (L2 ) dvdudy
N

k1 +ky=

N ,3/ f (r— M)_p(Lqu)Z])zdwdudv

4 ii‘:; — Z / / — M)y p,)? dwdudy

s ,3/ /NH (r — M)_p(LQk(])Z])z dwdudv
7] g

CEge? CEge?
(1472731 (1 +177)30°

where we used the pointwise decay estimate (4.54) and the Morawetz decay estimate
(4.41) (as0 < p < 2—41) and as before we note that we get better decay than required
as 5 — 281 > 3+ 8, — p for p € (0,2 — &1]. For the fourth term we have that

/ / (r—M )"(Lsz"¢>1) -D? (M ¢, - (Q2¢,) dodudv

k1+ka=k

S ﬂ/ f r — M) P (LQ*¢p=1)? dwdudv

+ - Z o — M) " D} g,)? - (22 ¢.) dwdudv
N

k1+k2

S ﬂf f r — M) P*H(LQ*p=1)? dwdudv

(1 iif)ez 51 Z/ / (r = M) P77 (Q"¢.)* dwdudv

< /3/ f (r — JW)_IH_I(LQ’QPE)2 dwdudv
7 JNH

CEge? o -
(14 17)%2 4 Z ./ NH (r — M)"PH(Q" L¢,)* dwdudv
m<5 7l v

@ Springer



12 Page800f 124 Y. Angelopoulos et al.

2}
S /3/ f r — M) PN (LQk ¢=1)? dodudv
1 JNH

CEpe? CEpe?
A+ 71)2700 (14 11)387

where we used the pointwise decay estimate (4.54), Hardy’s inequality (A.4), the
Morawetz decay estimate (4.41) (as 0 < p <2 — §;1), and we got again better decay
than required as 5 — 281 > 3+ 6 — p for p € (0, 2 — §1]. For the fifth term we have
that

/ / (r— M)_p(LQk(le) : A -D(YQM g, VO, dwodudv
NH 4r

k1+ky=

S ﬂ/ / (r — M) (LQ*¢p=1)? dwdudv

+ = Z (r — M) P YQN ¢, - V2R, |? dodudv
N

k1+k2

S ﬂf / r — M) (LQ*¢p=1)? dodudv

1 CEpe
r 2+082 Z / / ("_M)_pHWQld)zllzdwdudv
1 3<iI<5 NvH
C’Eje*
248,+34+82—p’
31

153
S /3/ / (r— M)_p+1(LQk¢31)2 dodudv +
n JNH

where we used the pointwise decay estimates (4.54) and the energy decay provided
by the estimates (4.13). Finally the last term

Z / / (r — M) P(LQp=1) - (@K1 AL) - D(QRFE) dwdudv
NI

ki+ky=
k]>1

involves terms that can be treated similarly to the previous terms.

(B1’): We examine the term close to the horizon as the term away from the horizon
can be treated by rather classical methods. Moreover we examine in detail only the
terms involving the product of L and L derivatives since the rest are similar or easier.
These terms are:

/AQ (r = M)~ (L2 D> 1)? - (Leo)” dwdudv,

1

/A,Z (r— M)~ (Lo) - (LD ¢>1)* dwdudv,
T
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> / r = M)~ LY > ) - (LR > ) dwdudy,

ki+ky=

/ L= M) (Le)” - (Lgo)? dardudv
AD
For the first term we have that

/,4 L= M) TILR D) - (Lepo)® devdudv

1

2 2
S / ,2<r—M)—1—5<L9k¢51>2~(Brgﬁo) dadudv

71

2p2.4

< CEOGZ/ (r = M) (LR p>1)? dwdudv S —55—,
Az - L

where we used the boundedness estimate (4.79) and the Morawetz decay estimates
(4.40). For the second term we have that

/AQ (r = M)~ (Lgo)* - (LL ¢>1)* dwdudv

2
5/ = M) (L) DI (Lgk¢>l) dodudv
AP ~

CEge? 14 ) C2E}e* _ C?Elet
< 3/2—51/2/12(r_M) (Lgo)” dwdudv S 9/2-381/2 S e
7 A 7 7

71

where we used the auxiliary estimate (4.80), the Morawetz decay estimate (4.41),
and the fact that §; and §, are small enough. The third and fourth terms can treated
similarly to the first two.

(B3’): We use again the form of F> and we have for subscript * being the angular
frequency localization that adds up to > 1 that:

™
/[ (r—M)*P(Lsz"cbgl)-L(rzsz"le)dwdudv

= / / -y ragtel) - 2 Lahig,)

ki+ky=

2r
| L BLQ 2y dwdudv

+ > f / (r—M)~ P(Lchbf]) 0. (LLQM g,

k1+ko=

D

n _ LA Ay - D
w7 e wrrasrony (K A P)
a0 I

2
( d Lok g, ) dwdudv
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"[ (51)]
QY| (Lo) - | —Lo dwdudv

// (r = LRl 25 p@big,)
71

[\
S

ky+ky=

( (2 )
| L —=LQ%¢, dwdudv
D

A
/ [ (r = M)P LT - 5 - DILRM )
kiHo= NI "

2 k
LR ¢, | dodudv

f / r—M)"P(LQ o))
LA, - A D* A, k 2r
. ( 2r? + 23 4r2 ) @ [q&- <BL¢>:|* dedudv

-2 / /N (r—M)‘P(LQ“DZ)-%-(Lszk'qs*)«Lszkzm)dwdudv

ki+ky=
A
/ [NH (r = M)7PLQ L) -~ QM. - (LLQ ) dodudv
ky+hky=k V1
LA Ay - D
- / f (r—M)”’(LQ"le)-(*r*wL - )~sz’< (6 (L)), dodudy

A
/ / r— M) (LQ* o). = - 2DQN ¢, - (LQ¢.) dwdudv
k|+k2 /T INS r

LA,-D A,-DD’ +A*.DZ
2r2 4r2 2r3

) -Qk[¢%], dwdudv

/ / r— M) "L A, (LYQN ¢y, VR 9,) dwdudy

k1+k2—/\
+ > / / (r— M) P (LR DY) LA, - (VQ" ¢, YO ¢.) dodudv
Ki+ho= &
[[ (r = My L@ o) L (PR @ 4@ F)) dodudo.
k|+k2 o
ki>1

The worst terms from the above are the ones thatinclude L (% Ld)o) , they come from
the first term and the last term of the last expression, and their form is the following:

/ [ r — M)"P(LQ* D)) . (@51 4,)
7]

k1+ka=k

v (£ (i)
(L2, - | L BL% dwdudv. (6.3)
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We have for p = 1 + 5 that:

/ / — My LQR ) - (@Y AL) - (L)

ky+ko=k

: <L (%Qﬁo)) dwdudv

12}
S/ / r— M)~ 2Ll )2 Tﬂdwdudv
1 JNH -

1) 2 2
+> f f (r—M)—l—S%LQ%*)z-(L <—r£¢o>> P dodudy
m=s?1l NH D
1

< — sup (r — M) 2L ol ) dwdu
‘[1 ve(r, 2]
- M 1+B1—62 LO™M 2
3 [ /NH L)

2 2
-D'~ ﬁl/z( <DL¢0)) ' dodudv

1
<5 sup / r— M)~ 'Lk o) dodu

‘L’l velry, 2]

+ CEye? Z / — MY P2 LM g ) PP dwdudu

m<5

< sup r— M) 2L o) dodu

1
? NH
1 ve 'r] Iz

+CE062/ /sup(LQk¢31)2~vl+ﬂ+ﬁl dodv
T] S2 u

<

1
—ﬁ sup / r — M) 172 Lol dwdu + C*EXe*
N =

velty, 1]

where first we used the growth estimate (5.2), we used the auxiliary estimate (5.5) for
m = 0, always choosing S to be bigger than §, and 8 and g to be small enough such
that 8 + B1 < 2 — 81 (note that these two conditions can be simultaneously satisfied
due to the smallness of §; and §7). On the other hand we consider the (out of range)
case of p = 0 and we have that:

/ f (L) (@M Ay) - (LQRe,) - ( (2—FL¢0)> dwdudv
ky+ko=Fk U 71 b

S :3/ / (r — M)(Lqu)fl)zda)dudv
. JNH -
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1 2 _1 " 5 2 2
> [ e e (L(FLm)) doduan

The first term of the above expression can be absorbed by the left hand side that has
the term of interest in (B3’) in its right hand side for any p € (0, 1 + 8>]. For the
second term we have for any v € [t1, 72] that:

2
/ (r—M)_l(LQk¢>zl)2-(L(%L%)) dwdu
NH
2
< / r — M)*(LQ*¢1)? - D'/? (zg(zmo)) dwdu
NH B D=\D

2 22,4
CEge® _ C*Eje
U3—81 ~ v3—51—83 ’

< CEge’v®

where we used the growth estimate (5.2) and the Morawetz decay estimate (4.41), and
for §3 > 0 small enough we now note that using the last estimate we have that:

/ / (r—M)""(LQkp=1)? - ( ( L¢0))2dwdudv ﬂ
- (I+ )20

The required estimate for the term (6.3) now follows by the estimate that was shown
for p = 1 + 8, (which is sharp), the (artificial) p = 0 estimate (which is better than
required as 61 and &3 are small enough so that 2 — §; — §3 > 1 + &), and a standard
interpolation argument. The rest of the terms are of similar difficulty or even easier
and we will not examine them.

(B5’): We have for any k < 5 using the form of F; and using subscript * to denote
the angular frequency localization that adds up to > 1 that:

12
/ / rP(LQFDL ) - (L3 QK Fsy) dwdvdu
, >

2 272
=A. Z / //\/1 rp(Lchplzl) : ;(Lgkl ) - |:L (%LQIQ(I)*)] dwdvdu

ki+ky=

/ /N, rP(LQF L)) - r(Lszklzt:*)-(LLQ%)dwdvdu
ki+tho=k * 1

/ [ rP(LQ* oLl )) - 2(LQM ¢,) - (LR ¢.) dwdvdu
0 Jni

k1+k2
/ /N, rP(LQF L)) 224 ¢,) - (LLQM¢,) dwdvdu
ki+ko=k il
+ Z / /N[ rp(Lqu)Izl) '2(L52k1¢*) . (Lkaqb*) dodvdu
k1+k2 u
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p kg1 D ky 2r2 ko
+ Y / /Nlr(LQ L)+ 5@ | L1200, ) | dodvdu

k1+ka=

+/ / rP(LQEDL ) - O (¢ - Lo)y dwdvdu
1 JN] -
—/Q/ rP(LQ*®L)) - 0 Qk (¢?), dwdvdu

- / / rP(LQfDL,)) - (sz"'m) (LR ¢,) dodvdu
7 JN/

k1+ky=
/ /N, rP(LQEOL)) - O ) (@1 Y ¢y, VLQ*¢,) dwdvdu
k1+/<2 2
f /N[ rP(LQF L) - 5 <sz"1 Y., V2 ¢,) dodvdu
ki+ko=k "1
/ /N, rP(LQ DL ) - (L (1 AN QP F)) dwdvdu.
71
k]]j;kglk

. . 2 .
From the first term we consider the terms that include L (%Lq&o) since the range of
p in the commuted estimates for ¢ at infinity is smaller and we have that

ki 2
Z / / r”(LQk<D’>1)-M(LQk2¢*)-|:L(2LL¢0>} dwdvdu
NI = r D

k1+ko=
Sﬂ/ /lr”_l(LQk@IZ])Zdwdvdu

2

L s o ()
m<5 g

§ﬂ/ / rPHLQF DL ) dwdvdu
7 JN! -

2

2 2
+— Z/ /sup(LquS*)zda)dw sup / rP1 <L (LL¢0)) dv
ISP uelty, ] JN! D

m<5

§ﬂ/ / rP I LQF DL ) dwdvdu
71 /\/;4’ -

CEge> 22 2
b sup / Fp (L <LL¢O>> dv
T ! uelry,r] JN/ D
CEge? CEje?

1)
< p—1 kgl 2
Nﬂfr /N;r (LQ @) dodvdu + (T8 1
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for any 8’ > 0, so choosing 8’ small enough gives us better decay than required due
to the smallness of §;. We used that

> / (L' $)? do < ——— forany (u, v) € BX/SO(2), (6.4)

k<5

which follows from the pointwise decay estimates (4.57) and decay for L¢ which can
be obtained by the fundamental theorem of calculus and the energy decay estimates
(4.19) and (4.20). Note that it was crucial to use the extra — — term so that for p €
(0, 146821 = p—1 < 1—387 dueto the smallness of §1 and 6, in order to apply estimate
(4.3) since the spherically symmetric part has a smaller p range in the commuted
estimates than the non-spherically part.

For the second term we write the L derivative as a sum of the T and L derivatives
and we have that:

f/Ner(Lszkcb’]) L4 ¢, - (LLQ¢,) dodvdu
ki+ho=k * 1

5/3/ / rP N LQr DL ) dwdvdu

+— > / / rPLRY G, (LLR ) dodvdu
1

k1+k2

Sﬂf / rP LRkl ) dodvdu

/ / PR )% (LTQ¢.)? dodvdu
kitky=k 71

22 2
- / / PP 1(LQ"‘¢>)2~<L(%Q"2L¢*)) dodvdu
lgkl—i-kz R
1
- f / rPHLQM )2 - (LR ¢)? dwdvdu
ﬂk.+k2 o N

<ﬁ/ /Irpfl(Lquﬂzl)zdwdvdu

+5 2

m1<5

/ f P~ LT ¢,)* dwdvdu
0 i

/(r2LQm'¢) dw

L°°(B /S0O@3)

2<5

/ / sup(LQ’”%p*)2 dwdu
7] S

2 v
m<5
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12

2

-1 252 m
. Z sup r L —Q" Lo, dwdvdu
m2<5 uelty, m] JN/ D

/ fsup(LQ””(p )2 dwdu
m1<5 u

sup / PN L™ ¢,)? dodvdu
N

my<5 UElt.m2]

2]
Sﬁ/ / rP N LQr DL ) dwdvdu
1 JN/

2 CE062 CE062 CE062 CE062 CE062
— — — VA 17 — _ VA 27 . b
'L'13 81—p Tll §1—06 7, 81—p Tll §1—06 T 81—p

+ CEge

for any 8’ > 0. We used that 2 L¢ is bounded (by the method of characteristics in the
spherically symmetric case and by the energy estimates (4.14) in the non-spherically
symmetric case), the estimate (6.4), and the energy decay estimates (4.20) and (4.21).

The fourth term can be treated similarly.
For the third term we have that

/ /N,r”(mk@il) 2L ¢, - (LM ¢,) dwdvdu
ki+hko=k T

Sﬂ/ [ rP LR 0L )2 dwdvdu

/ / LR )7 - (LR ) dodvdu
71

k1 +ko=

Sﬁ/ / Irf’*l(Lszk@’Zl)zdwdudu

+5 2

f (L™ ¢)* dw

m<5 LB /S0(2)
f / P73 (L™ ¢,)? dwdvdu
mp<5 o NI
CE
< CEge? o€

3-8
7

where we used again the boundedness of the 7> L¢ and the Morawetz decay estimate
(440)as p —3 < =246y < —1 — n for some n > 0 as & is chosen to be small
enough. Terms five to nine can be treated similarly to the above. For the tenth term we

have that

) / /N, rP(LQEL)) - O ) Q1 V¢, - YL ¢,) dwvdvdu

k1+ko=
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12}
5/3/ / rP LR oL ) dwdvdu
. JN/

2
2 2
f / PPk Y, 2 - ‘W%LQ"%* dodvdu
k1+k2 2
Sﬂ/ /N’ rP LRkl ) dwdvdu
T1 u
: >R s " o2 o
4o 1924+ g 12 / / 3y rakg,| dwdvau
ﬂk1+k2=k ~L (B‘[l) 7 M{ D
k1 <2
. D [ Ao Ry / i / PPV, 2 dwdvdu
ﬂk1+k2=k LOC(BT%) T NMI
k1 <2
CE()E CE()E CE()€2
1 ka1 \2 2
</3/ f rP=H (L @) dodvdu + ——— 2+82 T”-i-CEoE -[}"T_p’
l 1 1

where we used the pointwise decay estimate (4.54), the boundedness of r>L¢, and
the energy decay estimates (4.15) and (4.16). Term eleven can be treated in a similar
way, while the last term twelve can be expanded and can be easily seen to comprise
of terms similar to the above.

(C2’): We have for any k < 5 that

/12/ (r — M)ip(LQkT(Zﬁ) - D(QFTF) dodudv

/ / r—M )”LQ"T(]&) D(LTQk‘qb)( sz’%) dodudv
7]

ki+ky=
/ / (r— M)~ "(LQkT¢)~iz D(LQM ¢) - ( Lszkzw) dwdudv
k1+k7 o 2r
/ / r—M )l’(LQ"Tq)).%.D2 Q“ 1) - ( sz’%) dwdudv
kiHeo=k 7 11 4r
k A 26k 2r ok
/ / (r—M)"P(LQ'T¢) - — - D*( Q" ¢) - (—LQ 2T¢) dodudv
. 473 D
ki+ky= !
Z / / (r—M)’p(LQkTgb)-%-D(Qk1T¢)~(LQk2¢)dwdudv
ki1+ky=k H r
/ / (r— M)~ P(LQkTq)).%-D(lem.(mkzw)dwdudu
ki o=k /1 2r
Z / / (r—M)_p(LSZkT¢)<i-2D2(Qk‘ T$) - (22 ¢) dwdudv
NH 4r3
k1+ky=
/ / r— M)~ p(LQ"Td))-%-D(WQ"‘ T$, YR ¢) dwdudv
7|

ki+ko=k
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+ / f (r — M)"P(LQ*T¢) - (@M A) - (QR T F®) dwdudv
k1 +ko= kk1>0 o

+ ) / / (r — MY P(LQ*T ) - (@M T A) - (22 F°) dwdudv.
k1+ky= N

For the first term we have for any & < 5 that:

> / / (r—M)~ ”(LSZkT¢) - D(LTQM¢) - (DLQ"2¢> dwdudv

k1+ky=

S .3/ / (r — M) PTHLQ*T $)? dwdudv

2
+— > f /NH(r—M)_p_lDZ(LTQk‘¢)2-(%LQ’%&) dwdudv

k1 +ko=

S .3/ / (r — M) "PTYLQ*T $)? dwdudv

+CE0622/ /(r M) P(LTQ ¢)? dwdudv

<5

CE()E

<ﬁ/ / (r — M) P*Y(LQ*T¢)? dwdudv + C Ege? H ,

where we used the boundedness estimate (4.79) and the Morawetz decay estimates
(4.42) as p € (0,2 — 41]. For the second term we have that:

> / / (r—M)”’(Lsszqb)-i2 D(LQ"¢) - ( Qk2T¢> dodudv
NH 2r
k1+ko= v
S / / H(r—M)—"“(Lsz"w)z.U%ﬁdwdudv
2
+ Y / / (r — M)"PD*(LQk ¢)? - ( LQk2T¢) v dwdudv

k1+ky=

5/ / (r — M) P(LQFT¢)? - Tﬁdwdudv

[ /sup(mll(p)2 v dwdv
71

k1+k =k
sup / (r — M) "P(LQ"T¢)? dwdu
velry, ] JNH
1 1 CEge?
< — r— M) P(LQ¥T ¢)? dwdu + CEge? ———— |
~ '[1/3 /\/'UH( ) (_ (b) 1+ﬁ 0 (1 i T1)3+52_p
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where we used Sobolev’s inequality (A.3), the auxiliary estimate (5.5) for m = 0 and
the energy decay estimates (4.21).

The rest of the terms can be treated now as in the case of (A2’) by using the energy
decay estimates (4.21).

(CT’): We deal with the term close to the horizon as the term away from the horizon
can be treated in a rather classical manner. As in (B1’) we examine in detail only the
terms involving L and L derivatives since the rest are either similar or easier. We
consider the terms:

Z / r—Mm~'" 6(L9k]T¢) (LQk2¢)2da)dudv and

ki+ko=

> / — M) LR )AL T$)? dodudv.

ki+ka=

For the first term we have that

/ (r — M) 'L T )2 (LR ¢)? dwdudv

kit+ko=
/ (r M)1+5(LQ/<|T¢) W(Lgb(ﬁ)z dodudv
k1+k2 ( - )
CE()E
~ 326172 (r MY (LQT ) dwdudv
1 1<5

22 4 22 4

C Eje <CEO€
~ 9/2—81/2+8, ~ 3+8,
.L,l/ 1/2+682 _L_1+2

where we used Sobolev’s inequality, the auxiliary estimate (4.80), the Morawetz decay
estimate (4.42), and the fact that §; and §, are small enough.

For the second term we argue similarly this time using the auxiliary estimate (4.81),
the Morawetz decay estimate (4.41), and the fact that §; and §, are small enough and
we have that:

> f (r — M)~ (LQM )2 (LQR T $)? dwdudv

k1+ko=
1
Z f (r — M)l+6(Lle¢)2T)2+25(LQk2T¢)2 dowdudv
k1+k2
CEye?
S Smen 3/2+62/2 Z/ (r — M) (LQ! $)? dwdudv

<5
22, 4 22, 4
C Eje <CEoe

~  9/24682/2—81 ~ 3468,
Tl/+2/ 1 ‘1:1+2
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(C3”): Once again we expand F and due to the commutations with 7' and QF for
k <5, we have the following:

1]
/ / (r — M) P(LTQ*®M) . LG>TQ*F) dodudv

= . / / -y rwrete). L. wrahy)
NH r

ki+ky=

()
| L —=LR%¢ dwdudv
D

+ Y / f (r—M)*P(LTQ"cb”)-é-(LQ%)
N r

ki+ky=

((Geaere))
AL —=LQ®T¢ || dwdudv
D

. / |, =y rreten.

k1+ko=

(LLTQN ¢)

2r k
| =LRQ?¢ | dwdudv
D
A
+ 2 / / (r— M) P(LTQ o). 2 (LLQNg)
NH r
k1+ko= v
2r k
. BLTQ 2¢ dwdudv

> / [, o= rareten. 5 paate)

ky+ko=

. <L (Z—LQ’%&)) dwdudv
D

> f [ o= raretet. 5 ety

ky+ky=

2r
. <£ (BLTQ’Q(]&)) dodudv
A

+ > / /NH(r—M)_”(LTqu)H)~2r2 . D(LTQ" ¢)

ky+ky=

2r k
| —=LR%¢ ) dwdudv
D

/ / r—M )P(LTchDH) ~ - D(LQ"¢) - (DLTQ%) dodudv
7

kl +ko =
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<

/ / (r— M)~ p(LTQkCI)H)~é~@9k'¢)~(LTQk2¢)dwdudv
(LTS ¢) - (L @) dwdudv
(@M ¢) - (LLTQ*¢) dwdudv
A(TQM @) - (LLQ* ¢) dwdudv

2D(T2M ¢) - (L ¢) dwdudv

k1+ko=k
/ / (r— M)~ P(Lm’fcp”)-é
ki4ko=k ¥ 1 r
/ / (r—M)~ P(LTszkcpH)-é
k1+kz g ’
/ / (r— M)~ l’(LTsz’<<1>H)-é
k1+k2 o 4
/ / (r—M)~ P(LTQ’%I)H)-%
kitko=k 0T SN r
/ / (r— M)~ ”(LTQ’“<1>H).% 2D(QM ¢) - (LTQ* ¢) dwdudv
ki o=k d
/ / (r—M)"PLTQDH) . A (LQN V¢, QYT ) dwdudv
k1+k2 o
/ / (r— MY P(LTQ Y. A (LQM Vo, QR TY$) dwdudv
k1+k2 kT

+Fl (QA, Frest,L,T) + F2(QTA: FrfstL) + F3(QL(A, r)» Frest,T)

+F4(QTL(A, 1), Frest).

where Fj includes all terms where some angular derivatives fall on A, F; includes
terms where some angular derivative and the 7 derivative fall on A, F3 includes
all terms where some angular derivatives and the L derivative fall on A or a term
involving r, and the Fy4 includes all terms where some angular derivatives, and the L
and T derivatives fall on A. All these terms are similar or easier than the rest so we

will not examine them in detail.
For the second term we have that for any k < 5 that

k1+1<2

5/ / (r— M)~ LTR o)’ |+ﬁdwdudv
v

+ / [ o= rasher

ki+ko=

2 2
- (L (éLkaTqb)) 1B dwdudv

1

S5 sup / (r — M) P(LTQ*®")? dwdu
7| veln,n] NH

+ sup(LR" )2 - v dwdv
Z/ /S2 up(LE" )

<5
=<5

_ 2r ; 2
- sup r—M)"P(L(—=LR?¢ dwdu
velr, ] NLH D

<8 sup f (r — M)"P(LTQ*®™)? dwdu

ve[r, o] JNH
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/ / (r = M)"P(LTQ ). -(LQ"‘q)) . (L (%Lgkzw)) dodudv
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CEyée?

CEpe? - _—
+ 0 (1+rl)1+52*[7

where we used Sobolev’s inequality (A.3), the auxiliary estimate (5.5) for m = 0, and
the decay provided by the energy estimates (4.21).

For the first term the above process cannot work, as the spherically symmetric
part of the term with two L derivatives admits (r — M)~ P-weighted estimates for
p € (0,1 —61], and not for p € (1 — 81, 1 + 62]. For this purpose we break the first
term in the following two parts:

// (r— M)~ LQfrofy . ~(L§2k'T¢)
thp=k ¢ 1

L —=LR%¢ dwdudv
D
© A 2r
=/ / r— M)~ 72wk rofy. = . (LQFT9) - (L (EM)O)) dwdudv
r

+ Z r— M) LofT o). A (LM T )
NH r

k1+ko=

2r
: (L (BLkaqul)) dwdudv

The last term of the above expression as the second term that was treated above (as
for this one the term with the two L derivatives admits (r — M) ™7 estimates for up to
p = 1 4 87). For the other term instead we have for p = 1 + §; that:

/Q/ (r— M)~ LofToly . A (LQ'T¢) - <L<2—rgp0>) dwdudv
u JNH r

ki

1]
5/ f r = M)~ 2L T M) lidwdudv
H +B
2r 2
[ / (r— M)"'"2LQFT$)? - ( (5@0)) " dwdudv
<— sup / r— M) LT dwdu
T) veln,n] H

/ / M)lJrﬁl*Sz(LQde)) D] /31/2( ( L¢ )) ]+ﬁ dwdudv

<— sup / (r— M)W T ) dwdu
NH

T veln,n]

)
+CEoe2/ / (r — MY"TP=2(LQR T ¢)? TP dwdudv
o JNY

1
< — sup f r— M)k T ) dwdu
NH

T veln,n]

©
+ CE()ez[ / sup(LQk Td))2 BB goodu
T S? u
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1
< — sup / r — M) WQ*T ") dwdu
NH

‘[{3 velry, 1]

+ 2R,

where we used the growth estimate (5.2), the auxiliary estimate (5.5) for m = 0,
always choosing f; to be bigger than §, and 8 and S to be small enough such that
B + B1 < 2 — 51 (note that these two conditions can be simultaneously satisfied due
to the smallness of §; and ). On the other hand we consider the (out of range) case
of p = 0 and we have that:

2 A 2r
/ / (LorTofy. = . (LQFT¢) - (L (—L¢o>> dwodudv
n JNH r D

1)
N ﬂf / (r — M)(LQ*T®")? dwdudv
NH

[ [ tustror (o (o))
+ = (r—M)"NLETY)? (L =Lpo )| dodudv.
B Je JnH D

The first term of the above expression can be absorbed by the left hand side that has
the term of interest in (B3’) in its right hand side for any p € (0, 1 + 83]. For the
second term we have for any v € [t1, 12] that:

2
/ (r—M)_l(LQkT¢)2~(L(%L(ﬁo)) dosdu

2
/ o — MA(LQATd=1)? - D <2r <2£¢0>> dodu
p=\D

k1+k2
22, 4
5 53CE()6 < C Eje

<
CEoev ENESPAS N

where we used the growth estimate (5.2) and the Morawetz decay estimate (4.42), and
for §3 > 0 small enough we now note that using the last estimate we have that:

/Q/ - L9 et (L (2L 2d dud C?Ege’
0 P07\ (Dt ) deddv S e

The required estimate for the second term of (B3’) now follows by the estimate that

was shown for p = 1 + &, (which is sharp), the (artificial) p = 0 estimate (which is

better than required as §3 is small enough), and a standard interpolation argument.
For the fifth term we have for any k < 5 that:

/ / r — LTt e
NH 2r
ki+ka=k v
o (e(peee))
-D(TQ"¢)- (L ELQ 20 ) ) dwdudv
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12}
< 5/ / H(r — M)~ PTHLTQ ") dwdudv

2
/ / M)”]DZ(TQ"‘¢>)2-<L<%LQ"2¢)> dwdudv
Tl

SB /( — M)"PH LT M) dwdudv
NH

71

1
+B Z ||T9k1¢||LOC(Af2/ / — M)~ P3
k

ki+ko=

2r k 2 .
L(5L2%9)) dodudvifk <3

or+% 3 ( sup ]fS2<Tsz’“¢>2(u,v,w>dw)

ki+ko=k u,velt), v
2 2r 2
: / (r — M)~Pt3 (L <—Lsz’<2+2¢)> dwdudv
7 JNH D
ifk; >4

CE()€2 CE0€2
A+ ) (o) e’

12}
< ,3/ fNH (r — M)~ P LT M) dwdudv +

where we used Sobolev’s inequality (A.3), the pointwise estimate (4.57), and the
hierarchy of energy estimates (4.4). The above decay is better than required.
The sixth term (again considered for any k < 5)

// (r— M)~ ”(LTQ"@H)

ki+ky=

-D(Q"1¢) - (; <%LQ"2T¢>) dwdudv

can be treated similarly to the fifth term, by using the pointwise decay (4.54) in the
place of (4.57), and the hierarchy of energy estimate (4.8) in the place of (4.4).
For the seventh term we have for any k < 5 that:

Z / / (r — M)"P(LTQ ). A D(LTQ"‘q))( LQ’%) dwdudv
N 22 b

k1+ko=k
sﬁf / (r — M)"PP' LT D" dwdudv
H
2
+f > / / (r— M) PTIDX(LTQ N ¢)* - ( Lsz%) dwdudv
H
k1+k2

S ﬂ/ / (r — M)"PH LT Q* M) dwdudv
NH
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1
+ —
5 2

2
[ fyow
ki +ko=k L“(-Arz n JN/I

(LTSQM ¢)? dwdudv if ky < 3,

1 2r
or + — E sup f < LQk2¢> (u, v, w)dw
SZ

ki +ep =k Vel T2 b=

(23
/ / (r — M) PP LT ¢)? dwdudv
T JNH

2 Lok

ifkp > 4
2CE0€2

L3+8

2]
< ﬂf /NH (r — M)"PH (LT ®")? dwdudv + CEge
v 1

where we used Sobolev’s inequality (A.3), the pointwise bound (4.79) and the
Morawetz decay estimate (4.42) (as p € (0, 1 + 82]).
For the eighth term we have for any k < 5 that:

> / / r—M)"P(LTQ o). — . DL ¢)- (D sz"ZT¢) dwdudv

k1+ko=k
sﬁ/ f (r — )P (LT o) dwdudv
H
+f 3 / / M)y DALQN $)? - ( ad kap) dodudy
k]+k2 N
§ﬁf f (r — M)y PP LT* D) dodudv
H

2r

2
Z Lok
+\ " Loty

L”(A,l ki+ko=k

2
or + sup / <—rL$2k1¢> (u, v, w)dw-
u,velry, 2] D

/ / — M)~ PR TP)? dodudv
7

/ / (r = MYy P LT ) dwdudv if ky <3,
T

ki+ko=

CEge?
3-8

b /3/ / (r — M) PTLLTQ ") dwdudv + CEye?
NH T

where we used Sobolev’s inequality (A.3), the boundedness estimate (4.79) and the
Morawetz decay estimate (4.42).
For the ninth term we have for any k£ < 5 that:

// (r —M)"P(LTQ*oM)y . -(LQk1¢>)-(LT§2k2¢>)da)dudv
ki +ky=k ¥ T1

Sﬂ/ / (r — M)"PTH LT Q™) dwdudv
NH
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+ - Z (r — M) "P"H (LM )2 - (LTSR2¢)2 dwdudv
N

k1 +ky=.

Sﬂf / (F—M)_p(LTQkCDH)2dwdudv

+—2/

2 2
/ (r — M)=P*3 <—rgsz"l¢> (LTQ*¢)? dwdudv
ok V71 SN D

Sﬁ/ / (r — M) "P(LT*®")? dwdudv
NH

2 o
> [ e
L®(AD) jy thp=k V11 NI

(LTQ*¢)? dwdudv if ki < 3, or

2 2
+ SUP / ( _Qk‘> (u, v, w)dw
u,velr), ] D

n 2rLle¢
D=

/ / — M) PH(LTQ*29)? dodudv if ki > 4
ki+ky= u
CEge?
< _ -p kg H\2 2 0
S ,3/ /./\/'ﬂ(r M) P(LTQR®")* dwdudv + C Eye —(1 )

where we used Sobolev’s inequality (A.3), the pointwise estimate (4.79), and the
Morawetz decay estimate (4.42) as p € (0, 1 4 63].
For the tenth term we have for any k < 5 that:

/[ (r — M)"P(LTQ o™y . ~(LTQk'¢)~(LQk2¢>)dwdudv
k1+k2 T] NH

S/ / (r_M)ip(LTQkCDH) Tﬂdwdudv

+ D f f (r = M) P(LTQN ¢)* - (L2 ¢)* - 0" dwdudv
Ky -+ko=k N

1
< — sup / (r — M)"P(LTSQ*®™)? dwdu
N

‘[{3 velry, ]

+Z/ /(Lszll¢)2.v1+ﬂdwdudv. sup / (r — M)"P(LTQ"2¢)* dwdu
h<5 § velr. ] JNH
<5

CEpe?

1
< AP k g H 2 2
S sup /NUH(r M) P(LTQ®" ) dwdu + CEgye AT s’

‘L’l velt, 2]

where we used Sobolev’s inequality (A.3), the auxiliary estimate (5.5) for m = 0, the
energy decay estimates (4.21). The decay obtained is better than required.
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For the eleventh term we have for any k < 5 that:

Z / /Nﬁ(r—M)—f’@mkqﬂ).é-(szkl(;)).@LTsz’%)dwdudu
k1+ka= v

123
5/ / (r —M)ip(LTde>H)2 ?dwdudv
+8
* / / r—M)" p(Qk1¢)2 (LLTQk2¢)2 ! dwdudv
k1+ky= T
1
< 7, / r — M) P(LT* ") dwdudv
7y veln,nl
/ / — M) P (@) (LT*Q2¢)? - v dwdudv
k1+k2 T
2 2
+ D / /NH(r—M)*f’(sz’”(p)z-D2 (L (BrLQ]QM))) " dwdudv
ki+kr= v

+ ) / f (r—M)"P(@1¢)% . DL TH)? - v P dwdudv
ky+ko= NI

1)
< —/ / r — M)"P(LT*D")2 dwdudv
rﬂ NH

CE

0® r — M)~ P(LT?Q $)? dwdudv
1 —81— /31 2 NH
< v

CE()G —p+4 2l 1 :
151 /3 /; /./\/'L,H(V_M) L DLQ To dwdudv

CE0€ —p+207 ol T5y2
1 5= /3 / /NH(r—M) (LR'TP)” dwdudv

czEge“ C2E}e? C?E}e*
+ + ,
~ _1-81—p+2+6—p—1 1-61—8 1=61—B+3+82—p
7 T 7

where we used Sobolev’s inequality, the pointwise estimate (4.54), and the energy
decay estimates (4.25), (4.22) and (4.21). Note that as we choose § to be small enough,
the obtained decay is better than the one required.

For the twelfth term we have that:

// r— M)y P(LTQ Dy . -(Qk‘T¢)~(LLQk2¢)dwdudv
ky4ky=k * 1

5,3/ / H(r—M)_p+1(LTde>H)2dwdudv

/ / — M)~ P @ Te)? . (LLOR2¢)? dwdudv
k o
1+ko=
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1]
Sﬂ/ / r — M)y P LT o) dwdudv

f /NH r— M) PL @k T)? . (LTQ*¢)? dwdudv

k1+k2
2
+— > / f (r—M)*P*‘DZ(Qk'T@?<L<21Lszk2¢>) dodudv
NH D
k+k v
_ _ —p—1 k 2. k 2
! k-',—Xk: / /NH(’ M)~ P D@1 T¢)? - (L2 ¢)* dodudy.
1 2 v

We look separately at the last three terms of the last expression. For the first one
by using Sobolev’s inequality (A.3), the pointwise decay estimate (4.57), Hardy’s
inequality (A.4) and the energy decay estimates (4.22) we have that

f / (r— M) P7H @M Te)? - (LT ¢)? dwdudv
T1

ki+ky=
CE
S 2-i(-)3€2 Z/ / (r—M)~"~ I(LTQk2¢)2dwdudv
<5
CE
S 2_‘(_); Z/ / r—M)~ p+1( < LTQk2¢)) dwdudv
<5
C?Eje!

N T 2¥etlte—p°
3

For the second one by using Sobolev’s inequality (A.3), the pointwise decay estimate
(4.57) and the energy decay estimates (4.18) (as (r — M)~ P~1D? ~ (r — M)"P*3 50
although p € (0, 1 + §2] we can use the estimates (4.18) as 6 is small) we have that
it is bounded by:

22, 4
C Eje
_L_12+52

For the third one by by using Sobolev’s inequality (A.3), the pointwise decay estimate
(4.57) and the energy decay estimates (4.17) we have that for any v it holds that:

3 / r— M)"P' D@ T$)? - (L ¢)? dwdudv

ki+ky=
CE €
S 2-(:52 Z/ (r — M)"PTH (LR 9)? dwdudv
1<5
C’E}e* " 0 and < 2EZet -
N A8 —pt1 | —p+1=0, an Nmot erwise.
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Integrating in [y, 72] gives us better decay than required.

The thirteenth and fourteenth terms can be shown to have better decay than required
by using the decay for the bulk term involving angular derivatives of the energy decay
estimates (4.17), (4.18), (4.21) and (4.22) (depending on which part is hit by the
largest number of angular derivatives, as if a term has six angular derivatives we are
forced to use the aforementioned energy decay estimates, as it was done for the other
bootstraps).

(D1’): We examine first the term close to the horizon for any £ < 5 and we have
that:

L= M)~ D2 |1Q*T? F1? dwdudv

71

S Z /fz (r— M)1+8(LleTml¢’)2'(LkaTm2¢)2dwdudv
k1+ky=

mi+mpy= 2

+ — M@ T )2 (LT )2 dwodudy
k1+ko= rl

m1+m2—2

+ Y / r = M@ T p)? - (LQOT™¢)? dwdudv
k1+ko=

m1+m2—2

+ > / r — M) (@R ™M ) - (2T ¢)? dwdudv
k1+ko=

m1+m2_2

+ > — My Qb T2 YRR T ¢ dwdudy.
k1+ko= TI

m1+m2_2

For the first term for any k < 5, we have for the case of m; = 0 and m, = 2, for any
v, and since § < §, that:

Z [ M)1+5 —— (LM ¢)? - (LR T?¢)? dwdu
k1+ko=
CE()6 k ) C2E864
N o2t Z/NH W(LQ 2! @) dwdu < S e

where we used Sobolev’s inequality (A.3), the pointwise decay estimates (4.57) and
the energy decay estimates (4.9) for p = 1+ § < 1 + &,. This implies that:

> / — (LM ¢)? - (LQ*T?¢)? dwdudv

o _ A 1te

btk JAZ M)
2 2

5/’2 C2Eoe4 C2E0€4

dv < .
V3+82 ~ t12+62

T
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For the case of m; = 1 and m, = 1 we have for any v (and again since § < §,) that:

1
Z — (LN TP (LT ¢)? dwdu
vl .//\/H (r — M)+

CE()6 ; 2 2E(2)€4
S i Z/ " (r — M)1+5 oo LT dodu S — 5,

where we used Sobolev’s inequality (A.3), the pointwise decay estimates (4.60) and
the energy decay estimates (4.8) for p = 1+ § < 1 + &,. This implies that:

Y oo
bk AR (r M)
22 4 22 4
5/'TZCEOG <CE0€
1

v .
3+ ~ _L,12+32

— (LN TP)? (L T¢)? dwdudv

For the case m| = 2 and m, = 0 we have for any v (and again since § < &) that:

> e

k1+ko= Afl

r — )1+5 —— - (LQ"T?¢)* - (LQ"¢)* dwdudv

2
s > / M)33(LQk1T2¢)2-<2—rLQk2¢> dwdudv
k1+k2 D
2E264
< CEOGZZ / (r — M* 3 (LN T?¢)? dwdudv <

248,
1<5 7

where we used Sobolev’s inequality (A.3), the pointwise boundedness estimates (4.79)
and the Morawetz decay estimate (4.43).

(D2’): We use (6.1) for m = 2. The last term of (6.1) for m = 2 is similar to the
rest so we will not examine it in detail. For the first term we have for £ < 5 that:

> / = ML) 2L (hmg)
ki+ky=
mi+my= 2
. (2—rgsz’<2Tm2¢> dodudv
D
= 2 - ety 2L e
R r
k1+ka=k 7]
. (2—FLS2"2T2¢>> dodudv
D
+ ¥ f = P22y 2L (LahiTy)

ky+ky=
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2
. (EFLQ]Q T¢>) dwdudv

+ ) / (r — My P LR T3) - P (ol T
k1+ko=
: (%LQ’%&) dwdudv. (6.5)

For the first term of the last expression after using Cauchy-Schwarz, we get the fol-
lowing term:

& 12 \?
> (/ (/ r — M) P(LQM ¢)? - (LR T2g)? da)du) dv) :
ki+ko=k 71 NvH

We look at the endpoint cases p = 2 and p = 0. In both situations we use that L¢ is

integrable in v (using the estimates (4.57)). For p = 2 we get after applying Sobolev’s
inequality (A.3) that:

T 2
> ( [ (r—M)_Z(Lletzﬁ)z'(LQk2T2¢)2dwdu)l/2dv>
ki tho=k N7 N

pE— 2
(/ l(ii(/); [ (r —M)_Z_JZ(LQkZthﬁ)zdwdu)l/zdv)

k]+k2<k k1<3
2

1+82/2

/ VCEOE f (fM)_Z_SZ(LQ"HZT%)Zdwdu)Uzdu)

k1+k2<k ki>4 (

2 CEpe C2E%e*
S (/ 1+Oa dv) N 20
7 v 2 ] 2

On the other hand, using again Sobolev’s inequality (A.3) and the energy decay esti-
mates (4.9) we get that:

© 12 \?
> ( / ( f (LQk1¢)? - @Qk2T2¢)2da)du> dv)
T /\/UH

k1+ky=k 1
2
VCE 1/2
< ( f . MZ‘/)ZG / (Lkathﬁ)zdwdu) dv>
k|+k2<kk|<3 UH
2
CE 1/2
o T (e )
k1+k2<k k>4 v NH

o [7 CEe P_ CEje _ CPERe
~ p2+a2 v ~ (1+ 1—1)2+252 ~ (1+ ‘51)2“‘52'

The rest of the estimates for p € (0, 2 + §2) follow by interpolation.
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For the second term of (6.5) we have to control again a similar term to the previous
ones after using Cauchy-Schwarz. For p = 2 we have after using Sobolev’s inequality
(A.3), the pointwise decay estimate (4.60) and the energy decay estimates (4.8) that:

2

> < / ; ( f/\/ (r = M)"2(LQN T)? - (LQk2T¢)2dwdu)]/ 2dv>

k1+ky=k

<

\/CE()E 2 L ) 172 2
/ V12522 /H(r—M) (LQ2T ) da)du) dv

k1+k2<k k1 <3 (

R 2
+ (/ CEOE / (r — M)"2(LQR 2T ¢)? dwdu)l/zdv>

l/2+52/2
k1+k2<k k1>4

2 CEpe C2E2e4
S (/ 14(:5 dv) S 250 ’
T vz 7] 2

1

and for the case of p = 0 using again the same tools as before we have that:

" k 2 k 2 1/2 :
> (/ (/ (LM T$)? - (LT ) da)du) dv)
7 NH

k1 +ko=k
«/CEoe oo 12 \?
< (/ AT /H(Lszzw) dodu) " dv
k1+k2<kk1<3 U
2
2 JCE 1/2
+ N ( [, L2 T9) dodu) dv
/ +52/2 NH
k1+k2<k ki>4 v

_ /fz CEe | P_ CERe
———dv —_—
R R (R N

and finally as before the rest of the p estimates follow by interpolation.
Finally for the third term of (6.5) we have that

Z (= M)"P(LQFT?¢) - ZA—;D (LM T?9) - (%LQ’%&) dodudv
2 r

ki+ky=k Rfl

1
< _ —p k2 0\2
S /;z?(r M) " P(LQET*¢) e dwdudv

+ > f r— M)~ pDz(LleTqu)z( LQk2¢) " dwdudv

k1+ko=

sup f (r — M)"P(LQFT?¢)? - L ddu
/\/‘H

1
S i
velt), ] +h

B
31
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12
+ > f (LQMT2T20)2 1 dewdv
fiHo=k’T /S

sup f (r — M) P(LS"¢)dwdu if k < 3, or
N

velTy, 2]
1
5 _ﬁ sup f (I" - M)_p(LQszd))z . Tﬂdwdu
7| velr,n] JN] v
%)
+ 2 / / (LNT?¢)? v dowdv
ki o=k 7T S
sup f (r — M)_p(£9k2+2¢)2da)du ifk >4
velr,m] YN/
1
SJ B sup / (r— M)_p(LQkTZ(p)Z CTIEB dwdu
7| velr,n] JN] v

vin[t],72]

+CEpe®  sup / (r — M) P(LQ"¢)’dwdu,
N{

where we used Sobolev’s inequality and the auxiliary estimate (5.5) for m = 2. In
the last term of the last expression for the case p = 2 4+ §, we use Hardy’s inequality
(A.4) and we have that

CEye’ Z / (r — M) (L") dwdu
NH

m<5

2 2 CEe?
< CEge Z/ (L (ém’%)) dwdu < CEge® 1%
NH 7,

m=<5 v

by using the energy decay estimates (4.1). On the other hand for the same term for
p = 0 we have that

, CEge?

3-8
T

CEpe® ) / (LQ"$)dwdu < CEge
N

m<5

where we used the energy decay estimates (4.1). Both of the last two estimates are
better than desired, and the rest of the p range follows by interpolation.
(D3’): This can be done similarly to (A3’), (B3’) and (C3’).
(A6’), (C5’) and (D5’): All these terms can be treated similarly to the (BS”) term.
(ET1’): We deal first with the term close to the horizon and we have that:

/ (r — M) " DHQFT3F)? dwdudv
12
gl
1
S Y[ o TR LA dududy
k1+ka=k 7]

mi+my=3
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+ > / r — M@ T $)2 . (L2 T™ )2 dwdudv
ki+ko=
mi+my= 3

+ > / (r — M@K T™ )2 . (LQRT™ ¢)? dwdudv
ki+ky=
my+my= 3

+ Z M)775 (Qk] Tm1¢)2 . (Qk2 Tm2¢)2 dwdudv

k1+ky= "471
mi+my= 3

+ Y / (r — M) yQkirmig? |y QR T ¢ dwdudv.

k1+ky=k
mi+my=3

For the first term of the above estimate we have for m; = 0 and my = 3, for § < §,
and for any v that:

2 /N m(mk‘@z (LT?9) dodu

k1+ko=

CEoe 13 12 C2E}e
S e Z/ " (r — M)1+s e LT dodu S —3 05—

where we used Sobolev’s inequality (A.3), the pointwise decay estimate (4.57), and
the energy decay estimates (4.10) for p = 1 + 8 < 1 + ;. This implies that

Y tha=r S m([dﬂk' $)? - (LQRT3¢)? dwdudv

202 4 2024
< [ C-Ege dv < C-Eje
~ Jr 2+ ~ _L_11+52 .

For the case m1 = 1 and m, = 2 for any v we have that (again as § < §»):

Z / n(r — M)1+5 ——— = (LQNT ) - (L T$)” dwdu

k1+ko=

S Z/NH —(r T LT dodu S =

where we used Sobolev’s inequality (A.3), the pointwise decay estimates (4.60), and
the energy decay estimates (4.9). This implies that

> f — (LN TP (L T?¢)? dwdudv
A (r—M)““S
k1+ky= 7]

- /TZ C2E§64 C2E§e4

dv <
v2+62 ~ Tll+52

7
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For the case m; = 2 and m| = 1 for any v we have that (again as § < §3):

Z / = )1+5(LQ’€1T2¢)2-(Lgkzw)zdwdu
k1+ko= N

o CEoé? o n . CEge
S Jiars Z/NH o — )1+<3(Ls2 T¢)" dedu 5 5

where we used Sobolev’s inequality (A.3), the pointwise decay estimates (4.60), and
the energy decay estimates (4.9). This implies that

2. / 2 (- s LT (LR T P dodudy
ki+ky=
212 4 22 4
< 2 C Eje U<CE06
~ 19/4+62 AR
1

the last estimate being better than desired. Finally for m; = 3 and m> = 0 we have
that

— (LN T3¢)? - (L2 ¢)? dwdudv

Z ‘/-/411 (r — M)H—S

k1+ky=
S ) /,2(V—M)3 SLQkT3g)? . ( LQ’%) dodudv
k1+k2
2E2€4
< CEoezz/ (r = MY (LQY T $)? dodudv S —5—,
<5 T

where we used Sobolev’s inequality (A.3), the boundedness estimate (4.79), and the
Morawetz decay estimate (4.44).

(E2’): Now we use (6.1) for m = 3 and we have for any k < 5 for the first term
that:

3 / = ML) 2L (rahrmg)
ky+ky=
mi+my= '3
. (2—rgszk2Tm2¢> dodudv
= Y / =y LRt 22 (Lakg)

ki+ko=k

2r
-<5LQ’QT3¢>> dwdudv

@ Springer



Nonlinear Scalar Perturbations of Extremal... Page 107 0f 124 12

+ > / (r — M) P(LQFT39) - A(LQMTg)

k1+ko=

2
( rLQk2T2¢> dodudv

+ > / (r— M) "P(LQFT3¢) - ZA;D-(LleTzqﬁ)

ki+ky=

2r k
. BLQ 2T¢ | dwdudv

> /Q“— my et P ety

k1+ko=

(2; sz%) dwdudv. (6.6)

For the first term of the last expression after applying Cauchy-Shcwarz we get the
following term for p = 1 + §5:

- 12 \2
Z </ (/NH (r — M)—1—82(L9k1¢)2 . (LQkZ T3¢)2 dwdu) dv)
k1+ka=k 2! v

<

~

2
4/;CE 12
(/ 1+52(;; / H(r—M)‘1‘52@Qk2T3¢)2dwdu) / dv)
k1+k2<k k1<3 u

+
k1+k2<k k1>4

2

n CE()E 2.2 4
< Lroe <
~ (/ﬂ NER2Yp) d”) S CTEpe,

where we used Sobolev’s inequality (A.3), the pointwise decay estimates (4.57), and
the energy decay estimates (4.10). On the other hand using the same estimates we
have for the p = O case that:

/ 2
1/2
( / lif;?; / = )7Lk 2736) dodu) ! dv)

" ki 112 ka3 32 12 \?
) (/ (/NH(LQ '9) - (LT 9) dodu dv)

kithko=k YT
2
VCE e 1/2
< ( / v / (LQk2T3¢)2dwdu) dv)
~ V118272 "
k1+k2<k k1<3 v
2
2 JCE e 1/2
+ 0 (LQk2+2T3¢)2da)du) dv
v1+52/2 e
k1+k2<k k1>4 N
5} 2 2752 4 22 4
_ CEpe? _ CEjet . CPEje
~> 03/2+8 S A+ )B4+ o)
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and the rest of the p range follows by interpolation.
For the second term of (6.6) we work similarly and for p = 1 + &, we get the term:

" 1-5 ki 2 ko2 02 12 \?
Z (f (/NH(F—M)_ 2 (LN T ) - (LM T?¢) da)du) dv)
k1+ky=k u v

2
< ( f VCEOE /NH( —M)_l_az(LQ]QTzqﬁ)zdwdu)l/zdv>

1/2+82/2
k1+kz <k,k1<3

2
> /CEy 12
+ 0¢ r — M)~1 72 (L@ *272¢)2 dwdu) 2
2452 /2+52/2 n
k1+k2 <k,k1>4 v

2
2 CEge 2.2 4

< <
N([l’l v1+62/2dv> S CoEpeT,

where we used Sobolev’s inequality, the pointwise decay estimate (4.60) and the energy
decay estimates (4.9). Using the same estimates we get for p = 0 that:

£2) 172 2
3 < / ( fNH(LQk‘ch)z-(LQk2T2¢)2dwdu) dv)

k1+kao=k
\/CE()G ko D 412 12 2
s </ YRy (/NH(LQ *T°¢) dwdu) dv
k1+k2<k k1<3 v
A/ 2
" / mrel / (LRET2)? dodu) dv
2/2\ nru
k1+k2<k k1 =4 b

_ /fz CEpe? . CER _ CPERe
U b
~ o v3/2+82 ~ _|_.L-1)1+281 ~ +‘L’1)1+‘31

and the rest of the p range follows by interpolation.

For the third term of (6.6) we work similarly using Cauchy-Schwarz, Sobolev’s
inequality (A.3), the pointwise decay estimate (4.63) and the energy decay estimates
(4.8) and we have for p = 1 + § that:

2 2
by (/ (/ (r —M)”*‘SZ(LQ"IT%)”(LQ"ZTa&dedu)]/zdu)
al NH

k1 Ho=k
«/CEoe s ' 5 12 \?2
</ sy / L~ M)TTRLRETY) dwdu) dv
k|+k2<k k1 <3 v

DI/AT8/2

2
CE 1/2
/ Hé / (r—M)’I’BZ(LQ"”ZT%)Zdwdu) dv)
H

k]+k2<k ki>4 (

_ /fz CEye?  \'_  C’Ege
——dv —
~\ U, v S U+ o) /H52
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which is better than desired. By using the same estimates for p = 0 we have that:

1] 1/2 2
3 ( / ( / (LleTqu)z-(LQ’QTd))zdwdu) dv)
71 NH

o1 +hy =k
«/CEoe oo 12\’
< (/ ey /H(Lszzw) dodu) " dv
k1+k2<k k1 <3 U
2
2 JCE 1/2
+ o 06( (LQ’Q“TZ(p)Zdwdu) dv
[4+82/2 NH
k1+k2<k ki>4 v

([ CEe 2< C2EZet  _ CPERe
~\ Sy o ) S e S (g

and the rest of the p range follows by interpolation.
For the term

Z / (r— M) P(LQFT3p)  =— = (LQk‘T3¢) ( LQ’%) dwdudv

ki+ky=

we work similarly as for the third term of (6.5), now using the auxiliary estimate (5.5)
form = 3.

(E3’): We examine in detail only the term involving the L and L derivatives (since
the rest are either better os similar) which is bounded by:

> f r = M)2(LQNT™ ) (LQPT™¢)* v dwdudv,

ki+ko=
mi+my= 3

and for which we have that

> r — M)2(LQNT™ 9)? - (L2 T™¢)? - 1P dwdudv
koot AT
mi+my=3
< Z f / sup(LQT™ ¢)? - v dwdv
11<5,b<5
mi+my=3

sup [ (r — M) (LT ¢)? dwdu
N

veE[T), 2]
< CPERE,

where we used the auxiliary estimates of (5.5) form =0, 1,2,3 (as B < &), the
energy decay estimates (4.17), (4.21), (4.25) for p = 2, and the energy boundedness
estimate (4.30).
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(F1’): We examine the part close to the horizon and for any k < 5 we have that:

1
— _D*QT*F|? dwdudv
A2 (r = M)
S Z /r T anite ———— (LQMT™¢)? . (LQRT™¢)? dwdudv
k1+ko= i (r )
m1+m2—4
+ ) — M@ T ) - (L T™¢) dwdudy
k1+ko= fl
m1+m2—4
+ Z / (V _ M)3 5(Qk1 Tn11¢)2 (Lka Tm2¢)2 dwdudv
k1+ko=
m1+m2—4
+ Z / r — M) (@ T )? - (QRT™¢)? dwdudv
k1+ko=
m1+m2_4
+ Y — Myl T g YRR T2 dwdudv.
ki+ky= rl
m1+m2_4
For the first term of the above expression for m; = 0 and m, = 4 we have for any v
and since § < §; that:

2 /N mmkl@ (LR T) dwdu

k1+ko=

- CEgé? It 2 C2E}e
S e Z/ " (r —M)1+5 e LT dodu S —3 05—

where we used Sobolev’s inequality (A.3), the pointwise decay estimate (4.57), and
the energy decay estimates (4.11). This implies that:

> / ————(LQ"¢)* - (LT ¢)? dwdudv
AR (r = )+
ki1+ky=k
- /fz C’Eget _ C’Eget _ C2E§e4_

v ~J ~Y
- U2+52 _L_ll +482 7]

For the case m; = 1 and m, = 3 we have that:

1
§ / — (LM TP (LT3 ¢)? dwdudv
A2 (r — M)t -
k1+ko=k 7
- L rahTe? . wabTie)? . VP rodudy
- it a2 (r — M)1+3 = pltB
1+ko= 1
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< Z/ / sup(LQ“Td))2 P dwdv
S

<5 2o
l2<5
ko 3 1\2
. sup / U e L dwau
velry, ] NH (’/._1‘4)1-‘“s I—HS

1 1
< CEpe? - —75 Sup /NH W(LQ’QT%ﬁdwdu

T velry, ]
C2E}e* _ C?Ele*
T11+'B ~ 7] ’

where we used Sobolev’s inequality (A.3), the auxiliary estimate (5.5) form = 1, and
the energy decay estimates (4.10).

For the case m| = 2 and my = 2 we work as in the previous case now using the

2E2€4

. . . C
auxiliary estimate (5.5) form = 2. In this case we get even better decay of rate —3

For m| = 3 and m, = 1 we have that:

2 /A (r—M)1+8(LQk1T3¢)2'(LQk2T¢)2dwdudU
k1 +ko= 7

< D> /Q(r— MM T3¢)? - < sszqu) dwdudv

k1+k2
2E2€4

< CEoezz/ r — ML T3¢)? dwdudv <

1+, *
<5 7

where we used Sobolev’s inequality (A.3), the boundedness estimate (4.78), and the
Morawetz decay estimates (4.44), as § < &5 is small enough. For the case m; = 4 and
mo = 0 we have that:

Z /fz (r — M)1+5(L9k1T4¢)2 (LQ*¢)? dwdudv

ky+ky=
3-5 i o2 (2 ok g
Z /12 — M)} Te) ~(BLQ 245) dwdudv
k1+k2
C2E2€4
< CEOEZZ/ (r — M* (LR T*¢)? dwdudv < T—,
1

<5

where we used Sobolev’s inequality (A.3), the boundedness estimate (4.79), and the
Morawetz decay estimates (4.45), as § < & is small enough.
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(F2’): We examine the part close to the horizon and for any k < 5 we have that:
1
/ — DT F? v dwdudv
o (r — M)I+3

< ki rmy ko rma l+ﬂ
~ Z /TZ (I" M)1+3(LQ T ¢) (LQ T ¢) dwdudv

ki+ky=
n11+m2_4

+ ) / r = M@ T )2 (LR T™¢)? v dwdudy

ki+ky=.
m1+m2_4

+ Y / (r — M>3(@ ™M @) (LR T ) P dwdudv

ki+ky=
m1+m2_4

+ ) — M) @ )2 (@R T )2 v dwdudy

k1+ky= 'ATI
m1+m2—4

+ Y / r — M) iyQkiTm )2 |y QR T ) 0P dodudv.

ki+ko=
m1+m2—4

For the first term of the last expression when m| = 4 and m, = 0 we use the auxiliary
estimate (4.80) and we have for 8 small enough that:

1
/Sz o L (v 0y do v S CEe,

which implies after using Sobolev’s inequality, and the Morawetz boundedness esti-
mate (4.45), that we have for any k < 5 and for any v that:

ki+ky= ATI (r—

SCE ) / (r — M) (LQN T$)? dwdudv < C?Eje?.
<5

)1+5 ——— 5 (LN T¢)? - (LQ2¢)? ' dwdudv

For m; = 1, my = 3 we use Sobolev’s inequality (A.3), the auxiliary estimate (5.5)
and the energy boundedness estimate (4.10) for p = 1 4 & as we have that § < &7,
and we have for any k < 5:

2 /A (r— M)1+5 s (LQNTY)? - (LR T¢)? v dwdudv
k1+ky= 11

< Zf / sup(LQllT¢)2 P dwdv
S*ou

h<5
12 <5
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sup (L2 T3¢)? - v dwdu

velr, ] ./NH (r - M)l+8
< CPESe*.

For m; = 2 and my = 2 we use Sobolev’s inequality (A.3), the auxiliary estimate
(5.5) for m = 2 and the energy decay estimate (4.9) for p = 2 and we have for any
k < 5 that:

Z f m(LQk‘T $)? - (LR T%¢)? dwdudv
ki+ky=

< Z/ / sup(LSleTzd))2 " dwdv
S u

h<5
12<5

su (L T?¢)? dwdu

[
velry, ] JNH (r _M)H—(S
23t
_L_11+52*8 '

For m; = 3 and my = 1 we work as in the case above where we use the auxiliary
estimate (5.5) for m = 3. In the end we have that

2524

ki 3 42 ka7 632 < CTEqge

§ 1+6(Lsz T3¢)? - (L T¢)? dwdudv < ——"—.
otk JAT = M) LI

For m; = 0 and my = 4 we use Sobolev’s inequality (A.3), the pointwise decay
estimates (4.57) and (4.78), and the energy boundedness estimates (4.34) (since § < §1)
and we have for any v that:

Z / (ﬁ(m%)z (L2 T*)? - v dwdu
NH r

k1+ko=
CE()E Ld
S rp > /TZ (r_M)HS(LQ T*$)? dwdu
1<5,L<5
C’E}e*
pl+o—=p"’

and by choosing 8 < 8, we get in the end that:

> / M)H(S(Lszqus)2 (LT ) v dwdudv
A2
k1+ko= 71

193 1 C2E2€4
< C2E264 < 0 < C2E2€4
R A e B
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(F3’): The case p = 1 is being covered by the bootstrap (F2”). We consider the
other endpoint case p = 0 and by using the same methods as in the case of the (F2”)
bootstrap we get for any k < 5 that

C2E2¢*
/ DT F? dwdudv < 0"
2 7

1

The rest of the p range — p € (0, 1) — follows now by interpolation.

(AS’), (B4’), (C4’), (D4’), (E4’) and (F4’): All these terms can be treated in a rather
classical manner and we will not examine them here in detail, apart from the second
term of (A5’), i.e. the estimate:

2

1/2
) CEpe?

/ / P2 Fol? dwdv du| < TP gy pE€2,3-41]
. NI 1+ 7:1)378'717

1

We write once again the nonlinearity F in terms of ¢, and we note that close to infinity
we have that:

1 1 1 1 1
IFI2~ = (L§)*(L9)* + 0> (Ld)* + 7 (Le)* + 0" + — VoI
r r r r r

We note that as L¢ decays with respect to r as » 2 at infinity, while ¢ and L¢ are
just bounded, the term with the worst r decay of F is the one involving the product
¢ - (L¢), and more specifically as we are considering F{y we examine in detail only
the term involving the product ¢y - (L¢p) which has also the worst u decay. Noticing

that L decays at infinity with rate C'/2 Eé/zeu_l_‘sﬂ_”/2 we have that:

CE0€2
p—4.2 2 p—4 .2
//\/M’ P - (Lepo)” dwdv S—Mmrn /Nu’ rP™ ¢y dwdv

CEoe? _
Sl /N, g0 dedv S

u

C2E§e4
ulté2—81—n—p’

where we used Hardy’s inequality (A.5) after noticing that p — 4 € (=2, —1 — §1].
The result is better than required due to the smallness of §1, > and 7. The rest of the
terms can be treated similarly.

(D6’), (E5’) and (F5’): These follow from the interior decay for sz (QFT™y)? dow
for k < 5 and m < 4 (via the use of the elliptic estimates (A.6)) and the Morawetz
decay estimates (4.41), (4.42), (4.43), (4.44) and (4.45).
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(G1’): We examine the part close to the horizon and for any £ < 5 we have that:

1
/ . WD2|QkT5F|2-v]+ﬁdwdudv
AR (r—
S > f ! M)1+3 — (LQNT™$)? - (LQPT™¢) - o' dedudy
Az (r—
k1+k
m}+m22 =5
+ Z / (l" _ )3 S(leTml(P)Z (LkaT’n2¢)2 148 dwdudv
k1+k
m:+m22—5

+ 0y / r — M@ Tmg)? . (LQRT™¢)? v dwdudv
k1+ko=
m1+m2—5

+ Z / r— M)~ S(Qk]Tm'qﬁ)z (kaTm2¢)2 v dwdudv
ki+ky=
m1+m2—5

+ ) / r — M| yQh T )2 YR T ) v dwdudy.

k1+ko=
m|+m2—5

For the case m; = 0 and m, = 5 we have that:

Z / 2> (r — M)]+5 ————(LQM¢)? - (LQ2T9)? - v dwdudv
k1+ko= fl

<Z/ /sup(m’lqs)z-v”ﬁdwdv- sup / (LQ'T>$)? dwdu
L<5 S? u velry, ] JN/
h<5

< CERe!

where we used Sobolev’s inequality (A.3), the auxiliary estimate (5.5) for m = 0 (or
the pointwise decay estimates (4.57)), and the energy boundedness estimates (4.12).
For the casesm; = 1l andmy =4, m; = 2and my = 3, m; = 3 and mp = 2, we
argue as above but now using the auxiliary estimates (5.5) form = 1, m = 2 and
m = 3 respectively.

For the case m| = 5 and my = 0 we use the additional estimate (4.80) and we have
that:

Z /:4 (r—M)1+a(LQk1T¢)2 (L2R2¢)? - 0! dwdudv
ki+ky= I1

SCEeE) / (r — MY LQ' T $)? dwdudv
<5
< C2E5€4,
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where moreover we used Sobolev’s inequality (A.3) and the Morawetz boundedness
estimate (4.46). For the case m| = 4 and my = 1 we argue similarly using now the
auxiliary estimate (4.81) and we have that:

Z / 2 r — )1+5 (Lle T5¢)2 : (L9k2¢)2 " dwdudv
ki+ko=
S CEpe’ Y / — M) (LT ¢)? dewdudv
<5
C2E§e4

)

A

71
where moreover we used Sobolev’s inequality (A.3) and the Morawetz decay estimate

(4.45).
For the term which is away from the horizon and away from infinity

o 1/2
/ / QTIFdus | dr
71 S AWHUNT)

we note that the inner integral can be bounded by the following by use of the elliptic
estimates (A.6):

2

sup [ (Q’lw)zdw+/2(sth¢)2dw}./ JTIQBT Y] g dus

11, <5 T \WHUNT) LIS? S 5,
hL<5
3<5
+Y 0 sup (Q’1T2¢)2dw./ JTIQRTHY] - ny dus
I1=5 S \WHAUNT) IS PN
1225
> sup @73 y)dw - f JTQPT3 Y] ny dus ©.7)
I1=5 T \WHAUNT) IS? .
h<5
+ ) s QT do - / JTQRy] npdps
<5 SO\WHUND)JS? =
1<l <5
C2E8€4
~ 2428,

using Sobolev’s inequality (A.3), the pointwise decay and boundedness estimates in
the interior (4.56), (4.59), (4.62), (4.65), (4.71), and the decay and boundedness of the
T-fluxes for ¥, T34y, T*y and T given by (4.7), (4.10), (4.11), (4.12).
(G2’): This estimate follows now directly by using the last computation (6.7) and
integrating it in 7.
O
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The proof of the main Theorem 1.1 now follows by a standard bootstrap argument
and choosing € to be small enough and smaller than €’ (from Theorem 4.1), €’ (from
Theorem 5.1) and €¢ (from Theorem 5.2).

7 Asymptotic Instabilities on the Horizon

In this section we will show that the estimate (5.2) is sharp on the horizon for § = 1. We
will work similarly as in Section 11 of [3], to show that % L (%r Lq&) diverges to infinity

on H* growing like v. Moreover we observe that 2 L¢ exhibits no decay along H*.
We note that both of these instabilities (that have no analogues in the sub-extremal
setting) come from the spherically symmetric part of the wave.

Theorem 7.1 For a solution of (1.2) with data as in the main Theorem 1.1 that was
obtained in the previous sections, we have that:

—qu(v a))‘ - —L¢(vo,a)) ~ Ci€?, (7.1)
H+

and
2r 2r .
—L|—=Lo | (v,w) >~ Ciev for all v > v; > 1y where vy is large enoughl.2)
D D HE

Remark 7.1 In the above Theorem, we use the terminology

fi=f
for some functions fi, f>, means that there are constants ¢, C such that

chr S fi SCha.

Proof For estimate (7.1) we use equation (4.74) for ¢9 and we evaluate it on the
horizon r = M, from which we get for any v > vy = 79 that:

—L(b Vo, W + ' | - L(i) —L(b dl}/
—L(b Vo, W + ' L(ZS —L(b d'l)/

Note that as %Lq& is bounded by C!/ zEé/ %¢ and L¢ has integrable decay in v, we
note that the second term can be bounded by:

2r L
B_¢0 (v, w)

[

H+

CE()62
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and as € is small enough the size of %’Ld)g(v, a))|H+ is comparable to the size of

2 Lo (v, @) |H+'
For estimate (7.2) we use equation (5.3) for ¢, evaluate it on the horizon r = M,
and then integrate it in v. On the other hand as we have that:

2r 2r
< L¢> (v, w)‘ (5L¢> (vo, w)
HJr

vor ,
+ —Lo(v, w)dv
w D H+

0

3

H+

+/ (oo + N) dv'
vo

where AV involves all the nonlinear terms from (5.3), we note that the major contribution
of the above expression comes from the term involving %qﬁo which from estimate (7.1)
gives us that:

~ Cre(v — vg) =~ Crev,

vor ,
/—cho(v,w)dv
w D H+

0

for some constant C;. We finally observe that as the nonlinear terms " can be bounded
1/2

cl2 /
by C Ege>v ™" for some 17 > 0 and as ¢ can be bounded by %1/2 the last two terms
can be bounded by (ci€e + czez)v”/ for some constant ¢y, ¢ and some ' € (0, 1),
hence for v large they can be neglected due to the term mvolvmg L L¢o. This finishes

the proof of estimate (7.2). m]

Remark 7.2 Itis worth noticing that if we consider the standard null form g*# -9, -9 Y
in equation (1.1), then the following quantity is actually conserved on the horizon:

1
Hy [y (v) = / [e‘”(”’M"“)arw(v,M,w)+—<1_ew(v,M,w))} dw‘
s? M HF

Similar quantities are conserved on the horizon for the more general nonlinearities of
equation (1.1), the derivation and the investigation of the properties of such quantities
will be pursued in future work of the authors of the present paper.

8 Remarks on Other Nonlinearities

Due to the relation of the r”-weighted estimates at infinity which can be derived for sub-
extremal black holes as it was done in [9] in the linear case, and the (r — M) ~P-weighted
estimates at the horizon, our method is robust enough to deal with nonlinearities at
infinity with growing weights in . A model example can be the following nonlinear
problem:

1 1
Dgsubw = X{FZR>R]1} ;(L¢)(£¢) + ;|V¢| ) (81)
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for U ,, the d’Alembertian operator on a sub-extremal Reissner—Nordstrom space-
times, for x{,>r>g,} a cut-off function supported in the region {r > R > R} where
Ry, is the value of the radial variable r on the event horizon, for ¢ = rir, and for small
enough data on a spacelike-null hypersurface X,. Note that the aforementioned non-
linearity has an extra r weight on the (L¢) - (L¢) term compared to the classical null
form. To deal with such a problem and defining B’ as in the extremal case, we will
have to separate the spherically symmetric part of the solution from the non-spherically
symmetric one, derive the same range of r”-weighted estimates as for Theorem 1.1
where the corresponding bootstraps will need the following estimates

U
/ / sup  (LT"Q*¢)? - u'*® dwdu < €2, (8.2)
ug JS?

ve[vra, V]

forall U, forany0 < § <2 —§1ifm =0, forany 0 < § < 2+ & if m = 1, for any
O0<déd<l4+8ifm=2forany0 < § < & if m = 3, forany ug ,, U, V in the
region B?g’ (where vg , is on the hypersurface r = R), for m € {0, 1, 2, 3}, and for
any k < 5, which are the analogues of estimates (5.5), the boundedness estimate

PP L|(u, v, ) S e,
in B3 which is the analoge of (4.72), and the growth estimate
L2 L) | (u, v, w) < eu® forany § € (0, 1],

in BZ which is the analogue of (5.2).

Finally we note that due to the robustness of our methods we plan to investigate
in future work how to derive precise asymptotics for solutions of nonlinear wave
equations satisfying the null condition both on extremal and sub-extremal Reissner—
Nordstrom black holes spacetimes.

Appendix A.
A.1.The Couch-Torrence Conformal Isometry

An extremal Reissner—Nordstrom spacetime of mass M admits a conformal isometry
called the Couch-Torrence first introduced in [25] that in ingoing Eddington-
Finkelstein coordinates is given by

(v, r, w) = (u =v,r =M+ M*(r — M)_l,a)),

and through it H™ is mapped onto Z.
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A.2.The d’Alembertian in Different Coordinates

The nonlinearity of (1.1) can be written as follows in double null coordinates (where

¢ =ry):

off 4
g% ¥ - 0p¥ =1 - (LY) - (Ly) + Yy I
4
=52 (L) (L¢)—— ¢ - (L9)
2
+50- (L ¢)—— ¢+ 2|Y7¢I2 (A1)
2@ L b L
=3 (L) - (5_¢>—r—4'¢'<3_¢>

2 D 1
+ 50 (L) — 97+ IVl

Equation (1.1) can then be written in terms of ¢ = ry as follows in double null
coordinates:

aLL =phs - 2Py
2A D 2r A - D? 2r
(L¢) - (5@)— 5 -¢-<3L¢) (A.2)
2A-D A D? A-D
+E (L) - 9+ VoI

A.3. Basic Inequalities

We record some basic inequalities. The first is the Sobolev inequality on the sphere
from which we have that for any smooth function f:

f do < Zf QM2 dw. (A3)

k<2

The second one is Hardy’s inequality, which close to the horizon it has the following
form for a smooth function f and for any s # 1 and forany M <r; < rp; < o0:

url(w( - £ d 1 u,1<v>( -2 PR
/Mm oM Gy / R Ly
+2(r1 — MY 2 (upy (v), v), (A4)
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and close to infinity it gives us that for any M < r; < rp < 00:

o 1 vry W) §+2 2 s+1 42
rfrdvs — T dv + 20T [ (u, vy, (0)), (AS)
vy (1) (I+s) vry ()

where in the case of the horizon if | = M then the last term is considered as:
2 1im (r — M)~ 2 ur (),
u— 00
and in the case of infinity if r, = oo then the last term is considered as:
2 lim ~f2(u, v 0).
vV—> 00
For proofs of these inequalities see [7].

A.4. Elliptic Estimates

We record as well the following basic elliptic estimate from [11]:

/ (Ba0py)dps S / JIy) nzdps
X.N{r=ro>M} :N{r=ro}

(A.6)
+/ JiITy]-nzdps +/ |FPdpsx.
ZNfr=ro} ZN{r=ro}

for any fixed ro > M, and any 9,, dp € {L, L, 9y, 05}

A.5. Additional Norms

For any smooth function f : M — R we define for any t € [tp, 00) the norm:

Et[f]i/)C fzdﬂ>:,+2/2 JTIQAT ] ng, dus,
T k<57
<5

2
[y ot [ 6= (L (L)) dods

T T

2
2r2
3-8 2 1-4 -
+/er P378U(Lfo) dwdv+/N1r (L( - Lfo)) dodv

T

> [ [ = 7L o) dd

—1-s 2r ok :
+/NH(r—M) 2<L<5LQ le)) dwdu

T

2
2 2
+/ r3+52(LQkf>1)2dwdv+/ plto2 (L <rLQkf>1)> dwdv
NI - N/ D -

@ Springer



12 Page 122 of 124 Y. Angelopoulos et al.

+/ r — M) 3"2(LQKT £)? dwdu
_/\/'H

T

2 2
+ / (r—m)~1=% (L (lLQ"Tf» dodu
NH b
2r2 g
+/ r3+62(LQka)2dwdv+/ pl+o (L (LQ"Tf)> dwdv
NI NI b

+ f r — M)272(LQ*T? £)? dwdu
/\/’H

T

+/ r— M)~ (L (erQszf>)2 dodu
NH —\D™

2
2, 2
+/ r2+52(Lsz’<T2f)2dwdv+/ o2 <L <rLQkT2f>> dwdv
N N b

+ / r — M) 2(LQ¥T3 £)? dowdu + / r2(LQ¥T3 £)? dwdv
NH N

+/ r — MY 12 (LQK T £)? dwdu + / P12 (LK T £)? dwdv
NH NI

+/ (r—M)_I_SZ(LQkTSf)zdwdu—F/ P12 (LK TS £)2 dwdv.
NH N

Moreover we also define the standard Sobolev norms for any s € N as:

it = Y ([ @ nans) " aa isig = ( A m(a“f)zduw) ,

o] <s | <s T

where 0 € {T', Y, dg, 0y}.
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