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Abstract
We consider a sequence of approximate solutions to the compressible Euler system
admitting uniform energy bounds and/or satisfying the relevant field equationsmodulo
an error vanishing in the asymptotic limit. We show that such a sequence either (i)
converges strongly in the energy norm, or (ii) the limit is not a weak solution of
the associated Euler system. This is in sharp contrast to the incompressible case,
where (oscillatory) approximate solutions may converge weakly to solutions of the
Euler system. Our approach leans on identifying a system of differential equations
satisfied by the associated turbulent defect measure and showing that it only has a
trivial solution.
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1 Introduction

In [28, Section 4], Greengard and Thomann constructed a sequence {vn}∞n=1 of exact
solutions to the incompressible Euler system in R2, compactly supported in the space
variable, and converging weakly to the velocity field v = 0. As v = 0 is obviously
a solution of the Euler system, this is an example of a sequence of solutions to the
incompressible Euler system defined on the whole space R2 and converging weakly
to another solution of the same problem. We show that such a scenario is impossible
in the context of compressible fluid flows.

Weconsider consider a sequence ofapproximate solutions to the compressibleEuler
system. Motivated by the numerical terminology we distinguish (i) stable approxima-
tion, where the approximate solutions satisfy the relevant uniform bounds, and (ii)
consistent approximation, where the field equations of the Euler system are satisfied
modulo an error vanishing in the asymptotic limit. A prominent example of consistent
approximation is the vanishing viscosity limit, where the approximate solutions satisfy
the Navier–Stokes system. In the light of the recent results [10–13] indicating essential
ill–posedness of the compressible Euler system, the vanishing viscosity limit might
be seen as a sound selection criterion to identify the physically relevant solutions of
systems describing inviscid fluids, although this can be still arguable in view of the
examples collected in the recent survey by Buckmaster and Vicol [6] and Constantin
and Vicol [14]. The principal difficulties of this process, caused in particular by the
presence of kinematic boundaries, are well understood in the case of incompressible
fluids, see e.g. the survey of E [32]. However, much less is known in the compressible
case. Leaving apart the boundary layer issue, Sueur [31] proved unconditional conver-
gence in the barotropic case provided the Euler system admits a smooth solution. A
similar result was obtained for the full Navier–Stokes/Euler systems in [20]. However,
as many solutions of the Euler system are known to develop discontinuities in finite
time, it is of essential interest to understand the inviscid limit provided the target solu-
tion is not smooth. Very recently, Basarić [3] identified the vanishing viscosity limit
with a measure–valued solution to the Euler system on general, possibly unbounded,
spatial domains, which can be seen as a “compressible” counterpart of the pioneering
work of DiPerna and Majda [19] in the incompressible case. The incompressible set-
ting was further studied in space dimension two and for vortex sheet initial data by
DiPerna andMajda [17,18] and Greengard and Thomann [28]. Their results show that
the set, where the approximate solutions do not converge strongly is either empty or
its projection on the time axis is of positive measure.

As the name suggests, numerous consistent approximations can be identified with
sequences of numerical solutions, see e.g. [21,22]. There is a strong piece of evidence,
see e.g. Fjordholm et al. [24–26], that the numerical solutions to the compressible
Euler system develop fast oscillations (wiggles) in the asymptotic limit. The resulting
object is described by the associated Young measure and it is therefore of interest to
know in which sense the limit Euler system is satisfied. In accordance with the seminal
paper by DiPerna and Majda [19], the limit should be identified with a generalized
measure–valued solution of the Euler system. The concept of measure–valued solu-
tion used also more recently in Basarić [3], however, follows the philosophy: the more
general the better, while preserving a suitable weak (measure–valued)/strong unique-
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ness principle. Such an approach is typically beneficial for a number of applications in
numerical analysis. As a matter of fact, a more refined description of the asymptotic
limit can be obtained via Alibert–Bouchitté’s [1] framework employed by Gwiazda,
Świerczewska–Gwiazda, and Wiedemann [29]. Here, similarly to the work by Chen
and Glimm [9], the measure–valued solutions are defined for the density � and the
weighted velocity

√
�u yielding a rather awkward definition of a solution.

Our approach is based on estimating the distance between an approximate sequence
and its limits by means of the so–called Bregman divergence

E
(
U

∣∣∣V
)

=
∫

�

[
E(U) − ξ · (U − V) − E(V)

]
dx, ξ ∈ ∂ E(V), (1.1)

whereU,V are measurable functions on the fluid domain � ⊂ Rd ranging in Rm , and
E : Rm → [0,∞] is a strictly convex function, see e.g. Sprung [30]. In the context of
the Euler system, the function E is the total energy; whence E may be see as relative
energy in the sense of Dafermos [15]. Strict convexity of E is then nothing other than
a formulation of the principle of thermodynamic stability, where the relevant phase
variables are the density �, the momentum m, and the total entropy S, cf. Bechtel,
Rooney, and Forrest [4].

We consider both the full Euler system and its isentropic variant. In the former case,
we show that any stable approximation either converges pointwise or its limit is not a
weak solution of the Euler system. The proof is based mainly on the fact that the total
energy is a conserved quantity for the limit system.The isentropic case ismore delicate,
as the energy conservation is in general violated by the weak solutions. Here, we
consider consistent approximation and show that the energy defect, expressed through
the asymptotic limit of the Bregman distance is intimately related to turbulent defect
measure in the momentum equation. In fact, the defect in the momentum equation
directly controls the defect in the energy. (The converse, meaning the defect in the
energy controls the defect in the momentum equation, is also true and indispensable
but not of direct use in the present setting). Furthermore, the turbulent defect measure
D(t) is for a.e. time given by a (symmetric) positive semidefinite matrix–valued finite
Borel measure on the physical space � ⊂ Rd in the sense that

D(t) : (ξ ⊗ ξ) is a non–negative finite measure on � for any ξ ∈ Rd ,

and it can be identified along with a system of differential equations it obeys. In
particular, we show below that the problem of convergence towards a weak solution
reduces to solving a system of differential equations

divxD(t) = 0. (1.2)

The paper is organized as follows. In Section 2, we recall the concept of
weak solution for both the complete Euler system and its isentropic variant. We intro-
duce the notion of stable and consistent approximations and state the main results. In
Section 3, we study convergence of stable approximations to the full Euler system.
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Section 4 is devoted to the same problem for the isentropic Euler system. Possible
extensions of the results are discussed in Section 5.

2 Approximate solutions to the Euler system, main results

The complete Euler system governing the time evolution of the density � = �(t, x),
the momentum m = m(t, x), and the energy E = E(t, x) of a compressible perfect
fluid reads:

∂t� + divxm = 0,

∂tm + divx

(
m ⊗ m

�

)
+ ∇x p = 0,

∂t E + divx

[
(E + p)

m
�

]
= 0.

(2.1)

We suppose the fluid is confined to a domain � ⊂ Rd with impermeable boundary,

m · n|∂� = 0. (2.2)

Mostly we deal with the admissible weak solutions satisfying the Euler system (2.1)
in the sense of distributions, together with the (renormalized) entropy inequality

∂t (�Z(s)) + divx (Z(s)m) ≥ 0 (2.3)

for any Z ∈ BC(R), Z ′ ≥ 0, cf. e.g. Chen and Frid [8]. Here p is the pressure and s
is the entropy related to the internal energy e through Gibbs’ equation

ϑ Ds = De + pD

(
1

�

)
, where ϑ is the absolute temperature. (2.4)

Introducing the total entropy S = �s, we write all thermodynamic functions in terms
of the basic phase variables [�,m, S],

E = 1

2

|m|2
�

+ �e(�, S), p = p(�, S).

The cornerstone of the forthcoming analysis is the thermodynamic stability hypothesis:

The total energy [�,m, S] ∈ Rd+2 �→ E(�,m, S) ≡ 1

2

|m|2
�

+ �e(�, S) ∈ [0,∞]

is a strictly convex l.s.c. function, where we set

E(�,m, S) = ∞ whenever � < 0, E(0,m, S) = lim
�→0+ E(�,m, S), (2.5)

123



On convergence of approximate solutions... Page 5 of 24 11

cf. Bechtel, Rooney, Forrest [4]. To avoid further technicalities, we suppose the poly-
tropic relation between the pressure and the internal energy

p = (γ − 1)�e, γ > 1, and set e = cvϑ, cv = 1

γ − 1
.

Accordingly, the total energy takes the form

E(�,m, S) =

⎧⎪⎨
⎪⎩

1
2

|m|2
�

+ �γ exp
(

S
cv�

)
if � > 0,

0 for � = 0, m = 0, S ≤ 0,
∞, otherwise

(2.6)

for which the desired convexity has been verified in [5].

Remark 2.1 In what follows, we consider two particular settings, namely, the complete
Euler system and the isentropic Euler system. We study the convergence of stable
approximations of the complete Euler system and consistent approximations for the
isentropic one. For both systems we are interested in fluids confined in a domain � ⊂
Rd . In addition, it turns out that for the isentropic Euler system a much stronger result
can be obtained on the full space, while the counterpart on a bounded domain requires
additional assumption concerning the behavior close to the boundary, cf. Theorem 2.7
and Theorem 5.1. For the complete Euler system this additional assumption is not
necessary but on the other hand we require a stronger assumption on the approximate
initial data, cf. Theorem 2.6.

2.1 Weak solutions to the complete Euler system

Definition 2.2 (Admissible weak solution to complete Euler system) Let � ⊂ Rd ,
d = 1, 2, 3, be a domain with Lipschitz boundary.

We say that [�,m, S] is an admissible weak solution to the Euler system (2.1)–(2.3)
in (0, T ) × � with the initial data [�0,m0, S0], if
• � ≥ 0 a.a. in (0, T ) × �, S = 0 a.a. in the set {� = 0};

• [∫

�

�ϕ dx

]t=τ

t=0
=

∫ τ

0

∫

�

[
�∂tϕ + m · ∇xϕ

]
dx dt, �(0, ·) = �0, (2.7)

for any 0 ≤ τ < T , ϕ ∈ C1
c ([0, T ) × �);•

[∫

�
m · ϕ dx

]t=τ

t=0
=

∫ τ

0

∫

�

[
m · ∂tϕ + 1�>0

m ⊗ m
�

: ∇xϕ + p(�, S)divxϕ

]
dx dt,

m(0, ·) = m0,

(2.8)
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for any 0 ≤ τ < T , ϕ ∈ C1
c ([0, T ) × �), ϕ · n|∂� = 0;•

[∫

�
E(�,m, S)ϕ dx

]t=τ

t=0

=
∫ τ

0

∫

�

[
E(�,m, S)∂tϕ + 1�>0

[
(E(�,m, S) + p(�, S))

m
�

]
· ∇xϕ

]
dx dt,

E(�,m, S)(0, ·) = E(�0,m0, S0),

(2.9)

for any 0 ≤ τ < T , ϕ ∈ C1
c ([0, T ) × �);

• [∫

�

�Z

(
S

�

)
ϕ dx

]t=τ

t=0
≥

∫ τ

0

∫

�

[
�Z

(
S

�

)
∂tϕ + Z

(
S

�

)
m · ∇xϕ

]
dx dt,

�Z

(
S

�

)
(0, ·) = �0Z

(
S0
�0

)
,

(2.10)

for a.a. 0 ≤ τ < T , and any ϕ ∈ C1
c ([0, T )×�), ϕ ≥ 0, and Z ∈ BC(R)∩C1(R),

Z ′ ≥ 0.

In Definition 2.2, we tacitly assume that all quantities under integrals are at least
locally integrable in [0, T ) × �.

2.2 Weak solutions to the isentropic Euler system

The isentropic Euler system is formally obtained from (2.1) by requiring the entropy
s = s to be constant. The total energy given by (2.6) simplifies to

E = E(�,m) = 1

2

|m|2
�

+ P(�), P(�) ≡ a

γ − 1
�γ , p = p(�) = a�γ , a > 0.

(2.11)

We consider the isentropic Euler system on the whole space Rd , with the far field
boundary conditions

� → �∞ ≥ 0, m → m∞ = �∞u∞ as |x | → ∞, (2.12)

where �∞ and u∞ are give constant fields. Consequently, it is more convenient to
replace E by the relative energy

E
(
�,m

∣∣∣ �∞,m∞
)

= 1

2

|m|2
�

− m · u∞ + 1

2
�|u∞|2 + P(�) − P ′(�∞)(� − �∞) − P(�∞)

= 1

2
�

∣∣∣∣
m
�

− u∞
∣∣∣∣
2

+ P(�) − P ′(�∞)(� − �∞) − P(�∞).
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As pointed out in the introductory part, the relative energy is nothing other than the
Bregman divergence associated to the convex function E , cf. (1.1).

Definition 2.3 (Weak solution to isentropic Euler system) We say that [�,m] is a weak
solution to the Euler system in (0, T ) × Rd , with the initial data [�0,m0] and the far
field conditions (2.12), if

• � ≥ 0 a.a. in (0, T ) × Rd ;

•
[∫

Rd
�ϕ dx

]t=τ

t=0
=

∫ τ

0

∫

Rd

[
�∂tϕ + m · ∇xϕ

]
dx dt, �(0, ·) = �0, (2.13)

for any 0 ≤ τ < T , ϕ ∈ C1
c ([0, T ) × Rd);

• [∫

Rd
m · ϕ dx

]t=τ

t=0
=

∫ τ

0

∫

Rd

[
m · ∂tϕ + 1�>0

m ⊗ m
�

: ∇xϕ + p(�)divxϕ

]
dx dt,

m(0, ·) = m0,

(2.14)

for any 0 ≤ τ < T , ϕ ∈ C1
c ([0, T ) × Rd , Rd).

We say that a weak solution is admissible, if, in addition, the energy inequality

∫

Rd
E

(
�,m

∣∣∣ �∞,m∞
)

(τ, ·) dx ≤
∫

Rd
E

(
�0,m0

∣∣∣ �∞,m∞
)

dx (2.15)

holds for any 0 ≤ τ < T .

Note that the total energy balance (2.9) that is an integral part of the weak for-
mulation for the complete Euler system has been replaced by the integrated energy
inequality (2.15) that plays the role of admissibility condition similar to the entropy
inequality (2.10). In (2.15), we tacitly assume that the initial (relative) energy is finite,
meaning that the initial data satisfy the far field conditions (2.12).

2.3 Stable and consistent approximations

The following two definitions are motivated by the terminology used in the numerical
analysis.

Definition 2.4 (Stable approximation of the full Euler system) We say that a sequence

{�n,mn, Sn}∞n=1

is a stable approximation of the full Euler system in (0, T ) × �, with the initial data
[�0,m0, S0], if:

�n ≥ 0, ess sup
τ∈(0,T )

∫

�

�n(τ, ·) dx ≤ M,

ess inf
τ∈(0,T )

∫

�

Sn(τ, ·) dx ≥ S

(2.16)
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uniformly for n → ∞;

ess sup
τ∈(0,T )

∫

�

E(�n,mn, Sn) dx ≤
∫

�

E(�0,m0, S0) dx + en for all n = 1, 2, . . .(2.17)

where en → 0 as n → ∞.

Note that both (2.16) and (2.17) obviously hold for any admissible weak solution
in the sense of Definition 2.2.

Next, we introduce the concept of consistent approximation of the isentropic Euler
system in (0, T ) × Rd supplemented with the far field conditions (2.12).

Definition 2.5 (Consistent approximation of isentropic Euler system) We say that a
sequence {�n,mn}∞n=1 is a consistent approximation of the isentropic Euler system in
(0, T ) × Rd , with the far field conditions (2.12) if:

• �n ≥ 0 a.a. in (0, T ) × Rd;

•
∫ τ

0

∫

Rd

[
�n∂tϕ + mn · ∇xϕ

]
dx = e1n(τ, ϕ) (2.18)

for any ϕ ∈ C∞
c ((0, T ) × Rd), 0 ≤ τ ≤ T ;

• ∫ τ

0

∫

Rd

[
mn · ∂tϕ + 1�n>0

mn ⊗ mn

�n
: ∇xϕ + p(�n)divxϕ

]
dx dt = e2n(τ,ϕ)

(2.19)

for any ϕ ∈ C∞
c ((0, T ) × Rd , Rd), 0 ≤ τ ≤ T ;

• ∫

Rd
E

(
�n,mn

∣∣∣ �∞,m∞
)

(τ, ·) dx ≤ c (2.20)

uniformly for 0 ≤ τ ≤ T , n = 1, 2, . . . ;
•

e1n(τ, ϕ) → 0, e2n(τ,ϕ) → 0 as n → ∞ (2.21)

for any fixed 0 ≤ τ ≤ T , ϕ ∈ C∞
c ((0, T ) × Rd), ϕ ∈ C∞

c ((0, T ) × Rd; Rd).

Note carefully the difference between stable and consistent approximation. Stable
approximation only satisfies the relevant a priori bounds and approaches the energy
of the initial data in the asymptotic limit. Consistent approximation satisfies the weak
formulation of the field equations modulo a small error vanishing in the asymptotic
limit.

2.4 Main results

We start by the result concerning stable approximation to the complete Euler system.
Recall that the only uniform bounds available result from the hypothesis (2.16), and the
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energy inequality (2.17). In particular, aswe shall see below, the uniformbounds (2.16),
(2.17) guarantee only L1-integrability of the phase variables (�n,mn, Sn)with respect
to the x-variable. Accordingly, we consider the concept of biting limit in the sense of
Ball and Murat [2] to describe the asymptotic behavior of a stable approximation to
the complete Euler system. The result reads as follows.

Theorem 2.6 (Asymptotic limit of stable approximation) Let � ⊂ Rd be a bounded
Lipschitz domain. Let {�n,mn, Sn}∞n=1 be a stable approximation of the complete Euler
system in the sense of Definition 2.4, with the initial data

�0 > 0, m0, S0 ≥ �0s, where s ∈ R. (2.22)

Then there exists a subsequence (not relabeled for simplicity) enjoying the following
properties:

ess sup
τ∈(0,T )

[‖�n(τ, ·)‖L1(�) + ‖mn(τ, ·)‖L1(�;Rd ) + ‖Sn(τ, ·)‖L1(�)

] ≤ c; (2.23)

the sequence {�n,mn, Sn}∞n=1 admits a biting limit [�,m, S],

[�,m, S] ∈ L∞(0, T ; L1(�; Rd+2)).

If, moreover, [�,m, S] is an admissible weak solution to the complete Euler system
specified in Definition 2.2, then

�n → �, mn → m, Sn → S a.a. in (0, T ) × �.

Our second result concerns the asymptotic behavior of a consistent approximation
to the isentropic Euler system on Rd . The corresponding result on a bounded domain
� ⊂ Rd is formulated in Theorem 5.1.

Theorem 2.7 (Asymptotic limit of consistent approximation) Let {�n,mn}∞n=1 be a
consistent approximation of the isentropic Euler system in (0, T )× Rd in the sense of
Definition 2.5.

Then there exists a subsequence (not relabeled for simplicity) enjoying the following
properties:

(�n − �) → 0 weakly-(*) in L∞(0, T ; Lγ + L2(Rd)),

(mn − m) → 0 weakly-(*) in L∞(0, T ; L
2γ

γ+1 + L2(Rd; Rd)),
(2.24)

where

ess sup
τ∈(0,T )

E
(
�,m

∣∣∣ �∞,m∞
)

< ∞.
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If, moreover, [�,m] is a weak solution to the isentropic Euler system specified in
Definition 2.3, then

∫ T

0

∫

K
E

(
�n,mn

∣∣∣�,m
)

dx dt → 0, for any compact K ⊂ Rd ,

in particular,

�n → � in Lq(0, T ; Lγ
loc(Rd)),

mn → m in Lq(0, T ; L
2γ

γ+1
loc (Rd; Rd)),

for any 1 ≤ q < ∞. Thus, for a suitable subsequence,

�n → �, mn → m a.a. in (0, T ) × Rd .

We point out that the results stated in Theorems 2.6, 2.7 require extracting a suitable
subsequence. In both cases, the convergence is necessarily strong (pointwise a.a.) as
soon as the limit is an admissible weak solution to the system.

3 Convergence of stable approximations to the full Euler system

Our goal is to prove Theorem 2.6. We start by establishing uniform bounds for the
stable approximation.

3.1 Uniform bounds

We establish the uniform bounds claimed in (2.23). To see this, we choose an arbitrary
point [�̃, 0, S̃] ∈ Rd+2, �̃ > 0, and consider the quantity

0 ≤ E(�n,mn, Sn) − ∂ E(�̃, 0, S̃)

∂�
(�n − �̃) − ∂ E(�̃, 0, S̃)

∂m
· (mn − m̃) − ∂ E(�̃, 0, S̃)

∂S
(Sn − S̃)

− E(�̃, 0, S̃) = 1

2

|mn |2
�n

+ �ne(�n, Sn) − ∂(�e)(�̃, S̃)

∂�
(� − �̃) − ∂(�e)(�̃, S̃)

∂S
(S − S̃) − �̃e(�̃, S̃).

Seeing that ∂ E
∂S = ϑ > 0, we conclude

∫

�

[
E(�n,mn, Sn) − ∂ E(�̃, 0, S̃)

∂�
(�n − �̃) − ∂ E(�̃, 0, S̃)

∂m
· (mn − m̃) − ∂ E(�̃, 0, S̃)

∂S
(Sn − S̃)

− E(�̃, 0, S̃)
]
dx ≤ c(�̃, S̃)

(
1 +

∫

�

E(�n,mn, Sn) dx +
∫

�

�n dx −
∫

�

Sn dx

)

≤ c(�̃, S̃)

(
1 +

∫

�

E(�0,m0, S0) dx + M − S + en

)
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As E is strictly convex at [�̃, 0, S̃], we have

E(�n,mn, Sn) − ∂ E(�̃, 0, S̃)

∂�
(�n − �̃) − ∂ E(�̃, 0, S̃)

∂m
· (mn − m̃) − ∂ E(�̃, 0, S̃)

∂S
(Sn − S̃)

− E(�̃, 0, S̃)
>∼ |�n − �̃| + |mn | + |Sn − S̃|

as soon as

|�n − �̃| + |mn| + |Sn − S̃| ≥ 1.

Since � is bounded, the estimates (2.23) follow.

3.2 Strong convergence

We shall systematically extract various subsequence keeping the labeling of the orig-
inal sequence. In view of (2.17), (2.23), the sequence {�n,mn, Sn}∞n=1 generates a
Young measure

V ∈ L∞
weak−(∗)((0, T ) × �;P(Rd+2)), Rd+2 =

{
(�̃, m̃, S̃) ∈ Rd+2

}
.

Moreover, Vt,x possesses finite first moments for a.a. (t, x) and we can set

�(t, x) = 〈Vt,x ; �̃〉, m(t, x) = 〈Vt,x ; m̃〉, S(t, x) = 〈Vt,x ; S̃〉.

As observed by Ball and Murat [2], the trio [�,m, S] corresponds to the biting limit of
the sequence {�n,mn, Sn}∞n=1. Finally, in view of the energy bound (2.17), we have

E(�n,mn, Sn) → E(�,m, S) weakly-(*) in L∞
w∗(0, T ;M+(�)),

where the symbol M+ denotes the set of non–negative Borel measures. In view of
the hypothesis (2.17),

∫

�

E(�0,m0, S0) dx ≥
∫

�

dE(�,m, S)(τ, ·), (3.1)

and

E(�,m, S)(τ, ·) ≥ 〈Vτ,·; E(�̃, m̃, S̃)〉 ≥ E(�,m, S)(τ, ·) for a.a. τ ∈ (0, T ) (3.2)

in the sense of non–negative measures on �. Note that the first inequality in (3.2)
follows from lower semi–continuity of the energy, while the second one follows from
its convexity, see e.g. [23, Section 3.2]. In particular, the biting limit [�,m, S] belongs
to the class

[�,m, S] ∈ L∞(0, T ; L1(�; Rd+2)).
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Finally, suppose that [�,m, S] is an admissible weak solution of the Euler system in
the sense of Definition 2.2. In particular, the total energy balance (2.9) holds; whence

∫

�

E(�,m, S)(τ, ·) dx =
∫

�

E(�0,m0, S0) dx for any 0 ≤ τ ≤ T . (3.3)

Moreover, as the entropy equation (2.10) is satisfied in the renormalized sense, we can
deduce from the hypothesis (2.22) the entropy minimum principle,

S(t, x) ≥ �(t, x)s for a.a. (t, x), (3.4)

see [7].
Going back to (3.2) we conclude

∫

�

E(�0,m0, S0) dx =
∫

�

dE(�,m, S)(τ, ·),
E(�,m, S) = 〈V; E(�̃, m̃, S̃)〉 = E(�,m, S).

(3.5)

The second equality, specifically,

E(�,m, S) = 〈V; E(�̃, m̃, S̃)〉

means that the concentration defect associated to the sequence {E(�n,mn, Sn)}∞n=1
vanishes, specifically,

E(�n,mn, Sn) → 〈V; E(�̃, m̃, S̃)〉 = E(�,m, S) weakly in L1((0, T ) × �),

cf. [23].
The third equality, together with (3.4), implies the desired pointwise convergence.

To see this, we need the following result that may be of independent interest.

Lemma 3.1 (Sharp form of Jensen’s inequality) Suppose that E : Rm → [0,∞] is an
l.s.c. convex function satisfying:

• E is strictly convex on its domain of positivity, meaning for any y1, y2 ∈ Rm such
that 0 < E(y1) < ∞, E(y2) < ∞, y1 �= y2, we have

E

(
y1 + y2

2

)
<

1

2
E(y1) + 1

2
E(y2).

• If y ∈ ∂Dom[E], then either E(y) = ∞ or E(y) = 0, in other words,

E(y) = 0 whenever y ∈ Dom[E] ∩ ∂Dom[E]. (3.6)

Let ν ∈ P[Rm] be a (Borel) probability measure with finite first moment satisfying

E(〈ν; ỹ〉) = 〈ν; E(ỹ)〉 < ∞. (3.7)
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Then (i) either

ν = δY , Y = 〈ν; ỹ〉 ∈ Dom[E], E(Y ) > 0,

(ii) or

supp[ν] ⊂
{

y ∈ Rm
∣∣∣ E(y) = 0

}
.

Proof First observe that, obviously, 〈ν; ũ〉 ∈ Dom[E], and, by virtue of (3.7) and
positivity of E ,

ν
{

Rm \ Dom[E]} = 0.

(i) Suppose first that Y ≡ 〈ν; ỹ〉 ∈ int[Dom[E]], E(Y ) > 0. Then there exists

� ∈ ∂ E(Y )

such that

E(y) ≥ E(Y ) + � · (y − Y ) for any y ∈ Rm .

As E is strictly convex in Dom[E] ∩ {E > 0}, however, we claim that the above
inequality must be sharp:

E(y) − E(Y ) − � · (y − Y ) > 0 for all y ∈ Rd , y �= Y .

Now it follows from (3.7) that

〈
ν; E(ỹ) − E(Y ) − � · (ỹ − Y )

〉
= 0

which yields the desired conclusion (i).
(ii) Suppose that Y = 〈ν; ỹ〉 ∈ Dom[E] ∩ ∂Dom[E] or E(Y ) = 0. In accordance

with the hypothesis (3.6), we have in both cases

E(Y ) = 0.

Consequently, we get from (3.7),

〈ν; E(ỹ)〉 = 0

which implies that ν is supported by zero points of E as E ≥ 0 which is the alternative
(ii). ��
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In accordance with (3.5),

〈V; E(�̃, m̃, S̃)〉(t, x) = E(�,m, S)(t, x) for a.a. (t, x).

Clearly, E satisfies the hypotheses of Lemma 3.1; whence either Vt,x is a Dirac mass,
specifically,

Vt,x = δ�(t,x),m(t,x),S(t,x), (3.8)

or

supp[Vt,x ] ⊂ {
�̃ = 0, m̃ = 0, S̃ ≤ 0

}
,

which, combined with (3.4), yields again (3.8). Indeed (3.4) means that the barycenter
of Vt,x is located above the line S̃ = �̃s. As the Young measure is a Dirac mass,
we conclude the sequence {�n,mn, Sn}∞n=1 converges in measure; whence a suitable
subsequence converges a.a. We have proved Theorem 2.6.

4 Convergence of consistent approximations to the isentropic Euler
system

Our goal is to show Theorem 2.7. It turns out the proof is more complicated than that
of Theorem 2.6 as the weak solution satisfies merely the field equations (2.13), (2.14).

4.1 Turbulent defect measures

In the following, we pass several times to suitable subsequences in the vanishing
viscosity sequence without explicit relabeling. However, it is easy to see that it is
enough to show the conclusion of Theorem 2.7 for a subsequence once the limit
[�,m] has been fixed.

It follows from the bounds imposed by the energy inequality (2.20) that we may
suppose

(�n − �∞) → (� − �∞) weakly-(*) in L∞(0, T ; (Lγ + L2)(Rd)),

(mn − m∞) → (m − m∞) weakly-(*) in L∞(0, T ; (L
2γ

γ+1 + L2)(Rd ; Rd)).(4.1)

In particular, we get (2.24). Indeed, as the total energy E(�,m) is a strictly convex
function of (�,m), it is easy to check that

E(�,m|�∞,m∞)
>∼ (� − �∞)2 + (m − m∞)2 for

1

2
�∞ ≤ � ≤ 2�∞,

1

2
|m∞| ≤ |m| ≤ 2|m∞|, >∼ 1 + �γ + |m|2

�
otherwise;

(4.2)
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whence the desired bounds follow from the energy inequality (2.24).

4.1.1 Internal energy and pressure defect

Next, recall that the sequence

0 ≤ P(�n) − P ′(�∞)(�n − �∞) − P(�∞), n = 1, 2, . . . ,

is bounded in L∞(0, T ; L1(Rd)) uniformly in n by (2.24). It holds

L∞(0, T ; L1(Rd)) ⊂ L∞
w∗(0, T ,M(Rd)),

where the symbol M(Rd) denotes the set of finite Borel measures on Rd and
L∞

w∗(0, T ;M(Rd)) stands for the space of weak-(*)-measurable mappings ν :
[0, T ] → M(Rd) such that

ess sup
τ∈[0,T ]

‖ν(τ)‖M(Rd ) < ∞.

In addition, L∞
w∗(0, T ,M(Rd)) is the dual of L1(0, T , C0(Rd)) hence passing to a

suitable subsequence as the case may be, there is P ∈ L∞
w∗(0, T ;M(Rd)) such that

P(�n) − P ′(�∞)(�n − �∞) − P(�∞) → P weakly-(*) in L∞
w∗(0, T ;M(Rd)).

As the function P is convex and the approximate internal energies are non–negative,
we deduce by weak lower semicontinuity that

Re ≡ P − [
P(�) − P ′(�∞)(� − �∞) − P(�∞)

] ∈ L∞
w∗(0, T ;M+(Rd)),

where M+(Rd) denotes the set of non–negative finite Borel measures on Rd . This
defines the internal energy defect measure Re. It is important to note that

∫ T

0

∫

Rd
ψ(t)ϕ(x) dRe(t) dt = lim

n→∞

∫ T

0

∫

�

ψ(t)ϕ(x) (P(�n) − P(�)) dx dt

for any ψ ∈ L1(0, T ), ϕ ∈ Cc(Rd),

(4.3)

which will be used later.

4.1.2 Viscosity defect

Writing

Cn ≡ 1�n>0

[
mn ⊗ mn

�n
− u∞ ⊗ mn − mn ⊗ u∞ + �nu∞ ⊗ u∞

]
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we obtain the existence of C ∈ L∞
w∗(0, T ;M+(Rd; Rd×d

sym )), where M+(Rd; Rd×d
sym )

is the set of finite symmetric positive semidefinite matrix–valued (signed) Borel mea-
sures, such that

Cn → C weakly-(*) in L∞
w∗(0, T ;M+(Rd; Rd×d

sym )).

More specifically, each component Ci, j is a finite signed measure on Rd , Ci, j = C j,i ,
and

C(t) : (ξ ⊗ ξ) ∈ M+(Rd) for any ξ ∈ Rd and a.a. t ∈ (0, T ). (4.4)

The viscosity defect measure is then defined by

Rv ≡ C − 1�>0

[
m ⊗ m

�
− u∞ ⊗ m − m ⊗ u∞ + �u∞ ⊗ u∞

]
∈ L∞

w∗ (0, T ;M(Rd ; Rd×d
sym )).

Now, a simple but crucial observation is that the Rv is positive semidefinite. To see
this, we compute

Rv : (ξ ⊗ ξ) = lim
n→∞ 1�n>0

mn ⊗ mn

�n
: (ξ ⊗ ξ) − 1�>0

m ⊗ m
�

: (ξ ⊗ ξ)

= lim
n→∞

|mn · ξ |2
�n

− |m · ξ |2
�

in D′((0, T ) × B)

for any bounded ball B ⊂ Rd ; whence the desired conclusion follows from the weak

lower semicontinuity of the convex function [�,m] �→ |m·ξ |2
�

, ξ ∈ Rd . We conclude
that

Rv ∈ L∞
w∗(0, T ;M+(Rd; Rd×d

sym )).

Finally, similarly to (4.3), we note that

∫ T

0

∫

Rd
ψ(t)ϕ(x) : dRv(t) dt

= lim
n→∞

∫ T

0

∫

�

ψ(t)ϕ(x) :
(
1�n>0

mn ⊗ mn

�n
− 1�>0

m ⊗ m
�

)
dx dt

for any ψ ∈ L1(0, T ), ϕ ∈ Cc(Rd; Rd×d)).

(4.5)

4.1.3 Total defect

We introduce the total defect measure

D ≡ Rv + (γ − 1)ReI ∈ L∞
w∗(0, T ;M+(Rd; Rd×d

sym )), (4.6)
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which describes the defect in the momentum equation. Moreover, we get for the total
energy

E(�n,mn|�∞,m∞) → E(�,m|�∞,m∞) + 1

2
trace[Rv] + Re (4.7)

weakly-(*) in L∞
w∗(0, T ;M+(Rd; Rd×d

sym )). In other words, we have a precise relation
of the defect in the momentum equation and the defect of the energy. Finally, we get
from (4.7) that

∫ T

0

∫

�

ψ(t)ϕ(x)

(
1

2

|mn|2
�n

− 1

2

|m|2
�

+ P(�n) − P(�)

)
dx dt

→
∫ T

0
ψ(t)ϕ(x) d

(
1

2
trace[Rv(t)] + Re(t)

)
dt

for any ψ ∈ L1(0, T ) and any ϕ ∈ Cc(Rd).

4.1.4 Bounded domain

The above construction of the turbulent defect measure D as well as the proof of its
properties can be carried out the same way on a bounded domain� ⊂ Rd , while using
the dualities

L1(0, T ; C(�))∗ ∼= L∞
w∗ (0, T ;M(�)) and L1(0, T ; C0(�; Rd×d ))∗ ∼= L∞

w∗ (0, T ;M(�; Rd×d )),

respectively, where M(�) is the set of bounded Borel measures on � (and similarly
for the matrix–valued case).

4.2 Asymptotic limit

Using (4.3), (4.5) we may perform the asymptotic limit in the momentum equation
(2.19) obtaining

∫ T

0

∫

�

[
∂tψm · ϕ + ψ1�>0

m ⊗ m
�

: ∇xϕ + ψ p(�)divxϕ
]
dx dt

= −
∫ T

0
ψ

[
∇xϕ : dRv(t) + (γ − 1)divxϕ dRe(t)

]
dt

for any ψ ∈ C1
c (0, T ), ϕ ∈ C1

c (Rd; Rd).

(4.8)

Thus, if the limit is a weak solution of the Euler system, then the left hand side of
(4.8) vanishes. Hence, in view of the definition of the total defect measure (4.6), we
obtain

∫

Rd
∇xϕ : dD(t) = 0 for any ϕ ∈ C1

c (Rd ; Rd) for a.a. t ∈ (0, T )
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which is nothing else than (1.2).

4.2.1 Equation divxD = 0 in Rd

The following result, which can be regarded as a version of Liouville’s theorem, is
crucial in the proof of Theorem 2.7.

Proposition 4.1 Let D ∈ M+(Rd ; Rd×d
sym ) satisfy

∫

Rd
∇xϕ : dD = 0 for any ϕ ∈ C1

c (Rd; Rd). (4.9)

Then D ≡ 0.

Remark 4.2 The assumption that the matrixD is positive semidefinite (or alternatively
negative semidefinite, as a matter of fact), is absolutely essential. Indeed, De Lellis
and Székelyhidi in their proof of the so-called oscillatory lemma in [16] showed the
existence of infinitely many smooth fieldsD ∈ C∞

c (Rd; Rd×d
sym ) satisfying divxD = 0.

Proof of Proposition 4.1 The proof relies on the extension of (4.9) to all functions
ϕ ∈ C1(Rd ; Rd) with ∇xϕ ∈ L∞(Rd; Rd×d), which is possible since D is a finite
measure. This then permits to test (4.9) by linear functions ϕ and the conclusion
follows from the positive semidefinitness of D.

To this end, let us consider a sequence of cut–off functions

ψn ∈ C∞
c (Rd ), 0 ≤ ψ ≤ 1, ψn(x) = 1 for |x | ≤ n, ψn(x) = 0 for |x | ≥ 2n, |∇xψ | <∼ 1

n

uniformly for n → ∞.
For ϕ ∈ C1(Rd ; Rd), with ∇xϕ ∈ L∞(Rd ; Rd×d), we have

|ϕ(x)| <∼ (1 + n) for all x ∈ suppψn;

whence

0 =
∫

Rd
∇x (ψnϕ) : dD =

∫

Rd
ψn∇xϕ : dD +

∫

Rd
(∇xψn) ⊗ ϕ : dD

=
∫

|x |≤n
∇xϕ : dD +

∫

n<|x |<2n
ψn∇xϕ : dD +

∫

n<|x |<2n
(∇xψn) ⊗ ϕ : dD

Seeing that

|ψn∇xϕ(x)| + |(∇xψn) ⊗ ϕ| <∼ 1 whenever n ≤ |x | ≤ 2n
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we may use the fact that D is a finite (signed) measure together with Lebesgue’s
dominated convergence theorem to let n → ∞ and conclude that

∫

Rd
∇xϕ : dD = 0 for any ϕ ∈ C1(Rd; Rd), ∇xϕ ∈ L∞(Rd; Rd×d). (4.10)

Finally, given a vector ξ ∈ Rd , we may use

ϕ(x) = ξ(ξ · x)

as a test function in (4.10) to obtain

∫

Rd
(ξ ⊗ ξ) : dD = 0 for any ξ ∈ Rd .

As D is positive semidefinite in the sense of (4.4), i.e. (ξ ⊗ ξ) : D is a non–negative
finite measure on Rd , this yields (ξ ⊗ ξ) : D = 0 for any ξ ∈ Rd . Thus for any
g ∈ Cb(Rd), g ≥ 0, and the matrix

∫
Rd g dD is positive semidefinite and we may

infer
∫

Rd
g dDi, j = 0 for any i, j .

As g was arbitrary, this yields the desired conclusion D ≡ 0. ��

4.2.2 Equation divxD = 0 in a bounded domain

A trivial example of a constant–valuedmatrix shows that Proposition 4.1 does not hold
if Rd is replaced by a bounded domain � unless some extra restrictions are imposed.
In addition to the hypotheses of Proposition 4.1, we shall assume that D vanishes
sufficiently fast near the boundary ∂�.

Proposition 4.3 Let � ⊂ Rd be a bounded domain. LetD ∈ M+(�; Rd×d
sym ) satisfying

∫

Rd
∇xϕ : dD = 0 for any ϕ ∈ C1

c (�; Rd), (4.11)

and

1

δ

∫

{x∈�;dist[x,∂�]≤δ}
d(trace)[D] → 0 as δ → 0. (4.12)

Then D ≡ 0.

Proof Similarly to the proof of Proposition 4.1, it is enough to show that (4.11) can
be extended to a suitable function ϕ ∈ C1(�; Rd), whose gradient is constant.
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It is a routine matter, cf. e.g. Galdi [27], to construct a sequence of cut–off functions
ψn enjoying the following properties:

ψn ∈ C1
c (�), 0 ≤ ψn ≤ 1, ψn(x) = 1 whenever dist[x, ∂�] >

1

n
, |∇xψn| <∼ n.

Thus, plugging ψnϕ, ϕ ∈ C1(�; Rd) in (4.11) we get

0 =
∫

�

∇x (ψnϕ) : dD =
∫

�

ψn∇xϕ : dD +
∫

�

(∇xψn) ⊗ ϕ : dD

=
∫

dist[x,∂�]> 1
n

∇xϕ : dD +
∫

dist[x,∂�]≤ 1
n

ψn∇xϕ : dD +
∫

dist[x,∂�]≤ 1
n

(∇xψn) ⊗ ϕ : dD

Now, we observe that

|ψn∇xϕ(x)| + |(∇xψn) ⊗ ϕ(x)| <∼ n whenever dist[x, ∂�] ≤ 1

n
,

which due to (4.12) allows to pass to the limit as n → ∞ in the second and the third
term on the right hand side. The convergence of the first term follows from the fact
that by (4.12) the defect vanishes on the boundary, i.e.

∫

∂�

d|D| = 0,

and in the interior of�we have pointwise convergence of the corresponding integrand.
��

4.3 Strong convergence

Applying Proposition 4.1 in the situation of Theorem 2.7 we obtain that Rv ≡ 0 and
Re ≡ 0. In accordance with (4.7), this yields

E(�n,mn|�∞,m∞) → E(�,m|�∞,m∞) (4.13)

weakly-(*) in L∞
w∗(0, T ;M+(Rd)). We show that this implies the strong convergence

claimed in Theorem 2.7.
First, we recall that both kinetic and internal energy are convex functions of the

density and the momentum so from (4.13) we obtain

∫

B

[ |mn |2
�n

− 2mn · u∞ + �n |u∞|2
]
dx dt →

∫

B

[ |m|2
�

− 2m · u∞ + �|u∞|2
]
dx dt,

∫

B
P(�n) − P ′(�∞)(�n − �∞) − P(�∞) dx dt

→
∫

B
P(�) − P ′(�∞)(� − �∞) − P(�∞) dx dt, (4.14)
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for every compact set B ⊂ [0, T ] × Rd .
Accordingly, choosing B = [0, T ] × K for a compact set K ⊂ Rd , we obtain the

convergence of the norms of �n in Lγ ([0, T ] × K ), hence the strong convergence

�n → � in Lγ ([0, T ] × K ).

Let us now establish the strong convergence of the momenta on [0, T ]× K . To this
end, we recall that by the energy bounds it holds (up to a subsequence)

hn ≡ mn√
�n

→ h weakly in L2([0, T ] × K ; Rd)

for some h ∈ L2([0, T ] × K ; Rd), and by (4.1)

mn → m weakly in (L
2γ

γ+1 )([0, T ] × K ; Rd).

We shall show that

h = 1�>0
m√
�
a.a. in [0, T ] × K .

Combining the weak convergence of hn with the strong convergence of �n and the
weak convergence ofmn we obtain

√
�nhn = mn → m = √

�h weakly in L1([0, T ] × K ; Rd);

whence it is enough to prove that h = 0 whenever � = 0. By weak lower semiconti-
nuity of the L2-norm together with (4.14), we obtain

∫

�<δ

1K |h|2 dx dt ≤ lim
n→∞

∫

�<δ

1K
|mn|2
�n

dx dt =
∫

�<δ

1K
|m|2
�

dx dt .

Now, it is enough to observe that in the limit δ → 0, the left hand side converges to

∫

�=0
1K |h|2 dx dt,

whereas the right hand side vanishes, since due to the integrability of the kinetic energy
|m|2
�

it holds that the set, where � = 0 andm �= 0, is of zero Lebesgue measure. Thus
h = 0 whenever � = 0.

To summarize, we have shown that

mn√
�n

→ 1�>0
m√
�
weakly in L2([0, T ] × K ; Rd)
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and hence strongly due to (4.14), which implies the strong convergence

mn = √
�n

mn√
�n

→ m in L
2γ

γ+1 ([0, T ] × K ; Rd).

Finally, a tightness argument as for the density above implies the desired strong con-
vergence

mn → m in L
2γ

γ+1
loc ([0, T ] × Rd; Rd).

The convergence of the energies in L1 is then a consequence of the strong con-
vergence of |mn |√

�n
and �n together with (3.2) and Vitali’s theorem. This completes the

proof of Theorem 2.7.

5 Concluding remarks

We conclude the paper by a short discussion on possible extensions of Theorem 2.7.
As indicated in Proposition 4.3, the conclusion of Theorem 2.7 remains valid on
bounded Lipschitz domains provided some extra assumptions about the behavior of
the consistent approximation near the boundary is assumed. The relevant result can
be stated as follows.

Theorem 5.1 (Asymptotic limit of consistent approximation in bounded domains) Let
{�n,mn}∞n=1 be a consistent approximation of the isentropic Euler system in (0, T )×�

in the sense of Definition 2.5, where � ⊂ Rd is a bounded Lipschitz domain, and where
we have set �∞ = u∞ = 0 in the relative energy.

Then there exists a subsequence (not relabeled for simplicity) enjoying the following
properties:

�n → � weakly-(*) in L∞(0, T ; Lγ (�)),

mn → m weakly-(*) in L∞(0, T ; L
2γ

γ+1 (�; Rd)).

Suppose, in addition, that

lim sup
n→∞

∫

x∈�;dist[x,∂�]<δ

(E(�n,mn) − E(�,m)) (τ, ·) dx

is of order o(δ) as δ → 0. Then if [�,m] is an admissible weak solution to the isentropic
Euler system, then

∫ T

0

∫

�

E
(
�n,mn

∣∣∣�,m
)

dx dt → 0, (5.1)
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in particular,

�n → � in Lq(0, T ; Lγ (�)),

mn → m in Lq(0, T ; L
2γ

γ+1 (�; Rd)),

for any 1 ≤ q < ∞. Thus, for a suitable subsequence,

�n → �, mn → m a.a. in (0, T ) × �.

The hypothesis (5.1) is satisfied if, for instance,

lim
n→∞ ‖E(�n,mn) − E(�,m)‖L1((0,T )×U) = 0,

where U is an open neighborhood of ∂�.
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