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Abstract

In 1904, Prandtl introduced his famous boundary layer in order to describe the behavior
of solutions of incompressible Navier Stokes equations near a boundary as the viscosity
goes to 0. His Ansatz was that the solution of Navier Stokes equations can be described
as a solution of Euler equations, plus a boundary layer corrector, plus a vanishing error
term in L® in the inviscid limit. In this paper we prove that, for a class of smooth
solutions of Navier Stokes equations, namely for shear layer profiles which are unstable
for Rayleigh equations, this Ansatz is false if we consider solutions with Sobolev
regularity, in strong contrast with the analytic case, pioneered by Sammartino and
Caflisch (Commun Math Phys 192(2)433—461, 1998; Commun Math Phys 192(2)463—
491, 1998). Meanwhile we address the classical problem of the nonlinear stability of
shear layers near a boundary and prove that if a shear flow is spectrally unstable
for Euler equations, then it is non linearly unstable for the Navier Stokes equations
provided the viscosity is small enough.

Keywords Prandtl’s boundary layer theory - Instability of shear flows -
Orr-Sommerfeld equations - Green functions - Generators functions - Boundary
viscous sublayers

1 Introduction

In this paper we address the question of the description of solutions of incompress-
ible Navier Stokes equations in a bounded domain, in the case of the zero Dirichlet
boundary condition. More precisely, let 2 be the half plane x € R, y > 0. Let u” be
solutions of incompressible Navier Stokes equations with forcing term f"
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u’ + (- Vyu’ —vAu’ +Vp’ = fY, (1.1)
Vou =0 (1.2)

and Dirichlet boundary condition
=0 on y=0. (1.3)
As the viscosity goes to 0, we expect u” to converge to a solution of Euler equations

dul + @t - vyuf +vpf = f0, (1.4)
V-uf =0 (1.5)

with boundary condition
E _ _
u; =0 on y=0. (1.6)

The justification of this convergence is however very delicate, since the boundary
conditions dramatically change. As a consequence, a boundary layer is expected near
y = 0 in order to describe the transition between Navier Stokes boundary condi-
tions and Euler boundary conditions. To take into account this transition, Prandtl [21]
introduced the following Ansatz

uv(t’x’ )’) = uE(t’-x’ Y) +up(t7x? y/\/;) +0(1)L°°v (17)

where u” describes the behavior of u” in a boundary layer of size O(/v), called the
Prandtl’s boundary layer, and the remainder o(1) ;~ tends to zero in the inviscid limit.
The boundary layer corrector u; = uf (t,x,0) + uf (t, x, Y) is then constructed by
solving the classical Prandtl boundary layer equation

duy 4 w1 dyuy + updyuy = dguy — d, p=(r, x, 0)

(1.8)
Oxuq + dyupr =0

together with the no-slip boundary conditions #; = up = 0 at Y = 0 and the matching

condition u(t,x,Y) — ulE(t, x,0)as Y — oo.

The existence and uniqueness of solutions to the Prandtl equations have been con-
structed for monotonic data by Oleinik [19] in the sixties. There are also recent
reconstructions [1,18] of Oleinik’s solutions via a more direct energy method. For
data with analytic or Gevrey regularity, the well-posedness of the Prandtl equations is
established in [5,22], among others. In the case of non-monotonic data with Sobolev
regularity, the Prandtl boundary layer equations are known to be ill-posed [3,6,14].

Concerning the validity of Prandtl’s Ansatz (1.7), this was established for data
with analytic regularity in the celebrated work of Caflisch and Sammartino [23]. In
particular, it was proven that if a boundary layer Ansatz exists to describe the limiting
behavior of 1", then it must be of the Prandtl’s form (1.7). A similar result were also
obtained by [16] for data whose initial vorticity is compactly supported away from
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the boundary. The stability of shear flows under perturbations with Gevrey regularity
is recently proved in [4].

However, considering analytic or Gevrey initial data is too restrictive, since it pre-
cludes small but high frequencies perturbations, which are more physically relevant.
The first author proved in [7] that the Ansatz (1.7) is nonlinearly unstable with a van-
ishing lower bound of order O (v'/#) for the remainder. Up to now, there were no result
which proved, or disproved, the Ansatz (1.7) for data with Sobolev regularity.

In this paper we give the first result in this direction. Namely we prove that there
exists particular initial data such that (1.7) is wrong. More precisely we will show that
some shear layer profiles are nonlinearly unstable, for these profiles the remainder
in (1.7) reaches order one in the inviscid limit. Proving the instability of order one,
or in fact any order beyond O(vl/ 4) obtained in [7], faces a serious obstruction:
the viscous boundary sublayers which arise from the instability of the main Prandtl’s
layer are themselves unstable, giving rise to thinner and thinner viscous sublayers. The
instability of these thinner sublayers is inevitable due to the linear instability theory
of generic shear flows [2,9] and the fact that the local Reynolds is of order % — 00
whenever the amplitude of sublayers Uy,;, goes beyond v!/4. As a consequence, there
are many instabilities from both the main Prandtl’s layers and the sublayers, and
it remains unclear which sublayers are dominant in the large time. This is the main
limitation of the previous method [7]. For more details of the obstruction, see Section 2.
See also [11] for a further link between the stability of classical Prandtl’s layers and
that of viscous sublayers.

This paper not only proves the invalidity of the Ansatz (1.7), but also constructs a
three-layer solution to Navier—Stokes equations involving an Euler flow (trivial), a clas-
sical Prandtl’s layer with thickness of order /v, and a thinner boundary sublayer with
thickness of order v3/4. This latter sublayer in turn gives rise to thinner sub-sublayers
with thickness of order v’/8, which is confirmed linearly [9]. This paper builds the first
step towards fully justifying the boundary layer cascade developed near the boundary.

Let us mention that if one replaces the classical no-slip boundary condition (1.3)
by a Navier-slip condition, the boundary layers are less violent with a much smaller
amplitude of order /v. As a consequence, the inviscid limit and the boundary layer
Ansatz are established in this case: see for instance [15,17]. The instability observed in
this paper does not apply to these settings. However, when the slip length is of order /v
or smaller, a similar instability up to order one can be obtained via an energy method
[20], adapted from [7]. A crucial difference between the slip and no-slip boundary
conditions is that there are intricate (and unstable) boundary sublayers arising in the
latter case, but not in the former.

1.1 Main Results

Let us now detail our main results of this paper. A shear layer profile is a solution of
the form

Ut x. y) = <U(t, {)/ﬁ))
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that is a solution of both Prandtl and Navier Stokes equations. Here U (¢, y) is a smooth
function with U (¢, 0) = 0 such that U (¢, y) converges when y — 400 to a constant
Euler flow Ux. In this paper we consider two cases

e time dependent boundary layers:
U" —0,,U" =0,

namely U" is a solution of the classical heat equation
e time independent boundary layers: in this case, we add a time-independent forcing
term which compensates for the viscosity. Precisely, we take

The main result of this paper is as follows.

Theorem 1.1 There exists a smooth, analytic function U(0,Y), such that the corre-
sponding sequence of time dependent shear layers

Ut x, y) = (U(”{)/ﬁ)), (1.10)

which are smooth solutions of Navier Stokes, Prandtl, and heat equations satisfies the
following assertion. For any N and s arbitrarily large, there exist og > 0, Co > 0 and
a sequence of solutions u" of Navier Stokes equations (1.1)—(1.3) with forcing terms
fY, on some interval [0, T"], such that

lu?(©) — U O[5 < v,
I oo qo.rv). 1) < vV,
but
[u”(T") — U"(T")|lL> > 0o
and

T = O(/vlogv™").

This theorem proves that Prandtl Ansatz is false in L* in very small times, of order
Vvlogv~!. The same theorem holds true for the time independent boundary layer
with a forcing term (1.9). In particular, it is proved that the convergence of Navier—
Stokes solutions to Euler solutions, plus a boundary layer, fails in L in the inviscid
limit. We remark that this however does not prevent the convergence to hold in L? for
p < oo.

In addition, as will be clear from the construction, the Navier—Stokes solutions
obtained in Theorem 1.1 involve not only the Prandt’s layer of size /v, but also a
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viscous sublayer of size v3/4. Moreover, it is important to note that the instability
occurs in the vanishing time 7 of order /v logv™!.

In the proof of Theorem 1.1, we introduce the following hyperbolic rescaling

1
(T.X,Z)=—(t,x,2).
v

%

Theorem 1.1 is thus a direct consequence of the scaling and the following theorem,
which also addresses the classical stability problem of shear layers in the inviscid
limit.

Theorem 1.2 Let U(y) be a smooth and analytic function which converges exponen-
tially fast at infinity to a constant, with U(0) = 0 and assume that it is spectrally
unstable for linearized Euler equations, with a simple eigenvalue. Then it is nonlin-
early unstable for Navier Stokes equations in L*°, provided v is small enough, in the
following sense. For any s arbitrarily large, there exist oy > 0, Co > 0 and a sequence
of solutions u® of Navier Stokes equations (1.1)—~(1.3) with forcing terms f°, on some
interval [0, T®], such that, as § — 0,

u®(0) — UY(0) | s <8,

I £2 Loo o, o1, 1) < 8,
but
1’ (T%) = U*(TY) e = 00, Vp €1, 00]
and
T% = O(logs™"),
where UV (t, y) is the solution of heat equation with diffusivity v and initial data U (y).

Let us now discuss this result. Up to the best of our knowledge it is the first rigorous
result of instability of a shear layer profile near a boundary for Navier Stokes equa-
tions. According to Rayleigh’s criterium the profile U" will have an inflection point.
Physically, this may correspond to a reverse flow and thus rules out the exponential
profile Us, (1 —e™>/€). The Prandtl equation is well posed for U and for neighboring
analytic profiles. However we do not know whether the Prandtl equation is well posed
for nearby profiles with only Sobolev regularity.

Notations

For o € R we define
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and
Vo = (ia, 3y).

In particular Vg = (—a?, 83). The three dimensional case is exactly similar to the two
dimensional one, therefore we restrict ourselves to the two dimensional case.

2 General Strategy

The proof of Theorem 1.1 relies on the complete construction of the instability u".
The first step is to make an isotropic change of variables in #, x and y; namely, we
define
r=", x=" y="2
IRV VTV

Of course, the Navier Stokes equations remain unchanged, except the viscosity which
is now +/v. From now on, we abuse the notation by denoting by ¢, x and y the new
variables 7', X and Y.

The starting point is the choice of the shear layer profile (1.10). We will choose
a shear profile Uy = (U (y), 0) which is unstable with respect to linearized Euler
equations. More precisely, we start from Uy, such that there exists an exponentially
growing solution to the following linearized Euler equations

v+ WUy-V)v+ (v-V)Uy+ Vp =0, 2.1
V.v=0, 2.2)
1p=0 on y=0. (2.3)

The study of the linear stability of a shear layer profile is a classical issue in fluid
mechanics. The classical strategy to address this question is to introduce the stream
function of v and to take its Fourier transform in the tangential variable x (with dual
Fourier variable o) and the Laplace transform in time (with dual variable A = —iac).
Precisely, we look for v of the form

v=vt (ei“(x’”’)tﬁ(y)> + complex conjugate. 2.4)

Putting (2.4) in (2.1), we get the classical Rayleigh equation for the stream function

v

U =)@ =Dy =U"Y, 2.5)
ey (0) = Tim ¥(y)=0. (2.6)

The study of the linear stability of U reduces to a spectral problem: find ¢ and ¥,
solutions of Rayleigh equations, with J(ac) > 0. Following the classical Rayleigh

@ Springer



L®® Instability of Prandtl Layers Page70f36 18

criterium, if such an instability exists, then U must have an inflection point. Such
smooth unstable profiles do exist (see, for instance, [7]). We choose the most unstable
mode, namely the largest |aJc|. Starting with such an instability, we can construct an
instability for the following linearized Navier Stokes equations

v+ (Uo-VIv+ (- VYU — VAV +Vp =0, 2.7
V.-v=0, 2.8)
v=0 on y=0. 2.9

The analogs of the Rayleigh equations (2.5)—(2.6) are the Orr Sommerfeld equations
which read

—£(0; — &)Y + (U — )@ — oDy =U"y, (2.10)
ay(0) = ¥'(0) = ylilfoo Y (y) =0, (2.11)
where
_
T ia

Such a spectral formulation of the linearized Navier—Stokes equations near a bound-
ary layer shear profile has been intensively studied in the physical literature. We in
particular refer to [2,24] for the major works of Heisenberg, Tollmien, C.C. Lin, and
Schlichting on the subject. We also refer to [8—10] for the rigorous spectral analysis
of the Orr—Sommerfeld equations.

Now starting from an unstable mode (/°, ¢°) of the Rayleigh equation for some
positive «, it is possible to construct an unstable mode (", ¢”) for Navier Stokes
equations, provided v is small enough, such that

v’ =y =00, (2.12)
¢’ = =o', (2.13)
Let
Ao = ac’.

This has been proved rigorously in [10] through a complete analysis of the Green
function of Orr Sommerfeld equation. More precisely, the proof of (2.12)—(2.13) relies
on the complete description of all four independent solutions of the fourth order
differential equation (2.10). It can be proven that two of them go to 400 as y — +o0.
These two solutions can be forgotten in the construction of an unstable mode. The other
two converge to 0 as y — +00. One, called ¥, has a “fast” behavior, namely behaves
like exp(—Cy/+/¢) for large y. The other one, called v/, has a “slow” behavior and
behaves like exp(—C|a|y). The second one, 5, comes from the Rayleigh mode, and
is a small perturbation of 1/°. Then the unstable mode " is a combination of v/ rand
Yy and is of the form
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Y=oy + Bl (2.14)

The two relations ¥"(0) = 9,y"(0) = 0 give the dispersion relation. Using the fact
that v is an approximate eigenmode for Rayleigh equation, (2.12) and (2.13) can be
proved using an implicit function theorem (see [ 10] for complete details). We also get,
for every positive k, that

Ce  _ _
Dk () < = CY/INEl 4 Cpe (2.15)

for some positive S. Note that ¥V has a boundary layer behavior. This is natural
since there is a change of boundary conditions between Rayleigh and Orr Sommerfeld
equations. The size of the boundary layer is of order £!/? ~~ v1/4 (for fixed «), which
is introduced to balance 833 and 83. This sublayer is known as “viscous sublayer” in
the physical literature [2]. Note that v/ and ¥ are analytic on a strip |[Jy| < op for
some og > 0.

Once the linear instability is constructed, we may construct an approximate solution
of the form

M
wPP(t,x, y) =y vVl (t,x, y) (2.16)
j=1
starting from the maximal unstable eigenmode
ul (t, X, y) — m(wvel’(x(X*c"l))'

The construction of such an approximate solution is routine work, and involves suc-
cessive resolutions of linearized Navier Stokes equations

qu" + (Ug-VIu" + (" - VYUg — VvAU" +Vp" = F,,
V-u =0, 2.17)

together with the zero initial data and zero Dirichlet boundary conditions, with

F,=— Z ! - Vyu" .

I<j<n-1

Note that by construction [7], u“PP solves Navier Stokes equations, up to a very small
term RM, of order vNM+DoM+DINt \ith A, = —iac”, the maximal unstable
eigenvalue.

Let u” be the solution of Navier Stokes equations with initial data u*P? (0). A natural
next step is to try to bound the difference v := u” — u? in L*> norm. However, we
only get

d
Euvniz < C(L+ [Vu™P|| L) w3, + IRM]]3,.
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As there is a boundary layer in u“’P, || Vu? | ;~ is unbounded as v — 0, and thus,
this energy inequality is useless when u®?P — U is of order greater than v!/4. Using
only energy estimates, we cannot obtain O (1) instability in L, and are limited to
O (v'/*) instability (this is the main limitation of [7]).

The reason of this failure is that the viscous sublayer becomes linearly unstable in the
inviscid limit [2,9]. The next natural idea is to work with analytic initial data and to hope
that analyticity will kill sublayer instabilities, exactly as in Caflisch and Sammartino
work [23], where the authors used analyticity to kill any instability of Prandtl’s layers.
However in the current setting, we want to get control over time intervals of order
log v™!, namely on unbounded time intervals. As the analyticity radius decreases with
time, it becomes small, of order 1/¢ as f increases, and is therefore too small to control
instabilities in large times. This strategy therefore fails.

In this paper, we will directly prove that the series (2.16) converges as M goes to
00, in analytic spaces. This leads to a direct construction of a genuine solution of
Navier Stokes equations, defined by

+o00
Wt x,y)=U+Y vMul@ x y) (2.18)
j=1

The underlying idea is the following: if we try to control the difference between
the true solution and an approximate one, we have to bound solutions of linearized
Navier Stokes equations. However because of the shear, vertical derivatives of such
solutions increase polynomially in time, simply because of the term d; +U (y)dx, which
generates high normal derivatives. This polynomial growth can not be avoided, except
if we are working with a finite sum of eigenmodes. For eigenmodes, we simply have an
exponential growth, without polynomial disturbances. As a matter of fact, all the terms
appearing in (2.18) are driven by eigenmodes through Orr Sommerfeld equations.

The proof of the convergence of (2.18) relies on the accurate description of the
Green function of Orr Sommerfeld equations, detailed in [10], and on the introduction
of so called generator functions. Generator functions combine all the norms of all the
u/, and can be seen as a time and space depending norm. We prove that these generator
functions satisfy a Hopf inequality, which allows us to get analytic bounds which are
uniform in M.

The plan of this paper is the following. We begin with the definition of generator
functions. We then study the generator function of solutions of Laplace equations, and
then of Orr Sommerfeld equations. We then detail the construction of u/ and derive
uniform bounds on the generator functions, which ends the proof.

3 Generator Functions
3.1 Definition

Let f(x, y) be a smooth function. For z, zp > 0, we define the following two func-
tions, called in this paper “generator functions”
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0
Z
Geno(f)(@1,22) =D 3 e o] fulleo

ae€Z £>0 (3'1)

¢
z
Gens(f)(z1.22) = Y _ ¥ |9 fo IIZ,aE—%,

aeZ £>0

in which f, (y) denotes the Fourier transform of f(x, y) with respect to the x variable.
In these sums,

I fulleo = sup (M| fu I
y

-1
I falle,s = sup<p(y)‘3|fa(y)|<3—le—y/8 i 1) ’
y

where

Y
</>(y)——1+y

and where the boundary layer thickness § is equal to

5= yov't

for some sufficiently large yo > 0. More precisely, yp will be chosen so that
)/0_1 < /MNho/2, where Ag is the maximal unstable eigenvalue of the linearized Euler
equations around U.

Note that Geng, Gens and all their derivatives are non negative for positive z;
and z5. These generator functions Geng(-) and Geng(-) will respectively control the
velocity and the vorticity of the solutions of Navier Stokes equations.

For convenience, we introduce the following generator functions of one-dimensional

functions f = f(y):

4
Genoo(f)@2) =Y ||a§f||e,o%,

>0 32)

Gens.a(f)z2) = 3 10L flles TR

>0

Of course, it follows that

Geno(f) = Z ezllalGenO,a(fa)

o€l

for functions of two variables f = f(x, y), and similarly for Gens.
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3.2 Properties

For any ¢, ¢’ > 0, we have

Iflles < 1 flleos N fllerrs = N flless

(3.3)
Il felles < I flleollgle—e.s-

Next, we have the following Proposition

Proposition 3.1 Let f and g be two functions. For non negative z1 and z», there hold

Gens(fg) < Geno(f)Gens(g),
Gens(dx f) = d;,Gens(f),  Gens(d; f) = 02 Gens(f),
Gengs(@dy f) < Codz, Gens(f),

for some universal constant Cy, provided |z2| is small enough.

Proof First, note that

(fQa = Z Jor8a—as

o'eZ

and

W fa=Y. . ﬂ,,(ﬁ ﬁ), 0 [P g

oa'€Z0<p'<p
Thus,

Gens(fg)(z1,22)

=> > e “'“‘uaﬁ(fg)au,eaﬁ,

a€Z p=0

<ZZZ Z z1|a\||3/5 fur ||ﬂ/0||8ﬂ ﬂga o llg—p'. 5ﬂ/|(ﬂ BH!

a€eZ B>0a’€Z0<p'<p

ﬂzﬂ B
Z Z Z zle] 2 le— otlHa/fi fu ||ﬂ/0||8ﬂ ﬁga wllp_p aﬂ/'iﬁz o
a,a’'€Z B=0 p=p’

< Geno(f)(z1,22)Gens(g)(z1, 22)-
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Next, we write

Gens (3, f) = ZZeZ"“‘naa‘fan“—

a€Z >0

l
Z
=0z ) ) N0y fullesy = 0z Gens(f),

aeZ =0

and similarly for Gens (3)% /). Finally, we compute

v
Zz
Gens(pdy f) =) _ > e} (9dy felles

a€Z =0

loe]y a b al—t'+1
<Y D0 Y oy oy fau“y,@ ar

aeZ >0 0<0/'<t

z 14
=(1+ Y n0y ¢||00E) 35 T g, 5—2),
= a€Z L—1'>0
= Cod;,Gens(f),

where we distinguished the cases ¢ = 0 and ¢/ > 0. As ¢ is analytic,
M >0 ||3§ <p||o,0z§ /€ converges provided z; is small enough. The Proposition fol-
lows. O
3.3 Generator Function and Divergence Free Condition
Note that for any functions «# and g, Proposition 3.1 yields

Gens(udyg) < Geno(u)o;, Gens(g). (3.4)

This is not true for Gens(vdy g), due to the boundary layer weight. We will investigate
Gens(vdyg) when (u, v) satisfies the divergence free condition, namely

Ayt + dyv = 0.

Precisely, we will prove the following Proposition.

Proposition 3.2 For |z2| < 1, there holds
Gengs(vdyg) < C(Geno(v) + 0z, Geno(u)) 9;,Gens(g).

This Proposition is linked to the deep structure of Navier Stokes equations, namely
to the precise link between the transport operator and the incompressibility condition.
Note that we “loose” one derivative: our bound involves 0 u.
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Proof We compute

B
4
Gens(vdyg) =y Y el ||a;?<vayg>a||,3,aﬂ—2!,

€ >0
in which
—f'+1
Fwiyga=Y_ Y ﬂ"(ﬂ ﬂ )'35 v g,
oa'€eZ0<p'<p
For B’ > 0, using the divergence-free condition 0yvy = —iauy, we estimate

108 00 08P+ ge_arlips < ll'df ~Muarllp—1.0108 P+ goarllp—prir.s-

On the other hand, for 8’ = 0, we estimate

-1

Sa—a’ ”,B,S =< ||(,0

1
llvg 35+

Vor 0,010 ga—allpr1.5-
We note that for y > 1, ¢(y) > 1/2 and hence
Ixy=1¢" " varllo,0 < 2llverllo.o-

When y < 1, using again the divergence-free condition, we write

y 1
Vo (¥) = —l'Ol// uo/(y/)dy/ = _ia/y/ Ug (x,0y)do.
0 0
Therefore, ¢(y) vy (y)] < sup,, la’ug (y)| for y < 1. This proves that

-1
o™ varllo,o < 2l1verllo,0 + ller'ug llo.o-

Combining these inequalities for any o € Z and 8 > 0, we obtain

197 W3y @allps < D Cllverllo.o + lle uerllo.0) 105 gl pr1.5

o'€l

+ Y0 D 1 e llp—1.0l9 P g llpprirs
o'e€Z1<p'<p

__p
BB — B

It remains to multiply by e“'"“zzﬁ/ﬁ! and to sum all the terms over «, o, 8 and B’.

The second term in the right hand side is bounded by the product of

ﬂ+1

ZZ |a|71||a8ﬂua||ﬂ0(ﬁ+1)'

o B
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which is bounded by Geng(d,u) provided |z3| < 1 and of

1 Zg
DD e gl g
a B ’3

which equals d;, Gens(g). The first term is similar, which ends the proof. O
Let us now bound derivatives of the transport term udy g + vdyg.

Proposition 3.3 Let
A= (Id + 0., + BZZ)Geng
and
B = Geng(u) + Geng(v) + 37, Geng(u) + A(g).
Then
A(udcg +vdyg) < CBI;, B+ CBI,B.

Note that all the terms in A are non negative, since all the derivatives of generator
functions are non negative.

Proof Let us successively bound all the terms appearing in A(udyg + vdyg). First,
Gengs(udyx g + vdyg) has been bounded in (3.4) and in the previous proposition. Next
we compute

3z, Gens(udyg) = Gens(dx(udyg)) = Gens(9,udyg + udyg)

(3.5)
< 0;,Gengp(u)d;, Gens(g) + Geno(u)azz1 Gens(g).

Moreover, using Proposition 3.2,

07, Gens(voyg) = Geng(0x(v3yg)) = Gens(0xvdyg + v0y0xg)
< C(9;,Geng(v) + 8?1 Geng(u))d,,Gens(g)
+ C(Gengp(v) 4+ 9;,Geno(u))9;,0;, Gens(g).

Let us now bound the term 9., Gens(vdy g). Precisely, we have to bound

) 1an+1 ) 1 2
;H(/”H 8;1,+ (Ua’ayga—a’)HO,S = ;”‘/)n+ 8;(8yv(x’ayga—a’ + va’aygo(—a’)HO,é

n
Z ) n+1qk+1 n+1—k n+1qk n+2—k
< m ||§0 8y voc’ay Sa—a' + (Y ay Ua’ay So—ao’ ”0,8-

0<k<n
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Let us split this sum in two. The first sum equals, using the divergence free condition,

n
) k ok 1—k an+1—k
> T A A P [

Y
0<k=<n k)
Zk Zn—k
2 kak 2 1=k qnt+1—k
< Y Plle* oy dualloo " 0y ™ g —arllo.s-
k! o — k!
0<k<n

Multiplying by e!®/?1 and summing over « and &', the sum is bounded by
Genp(0xu)d, Gens(g) = 0;,Geng(u)d;, Gens(g).

On the other hand, the second sum equals to

5 .
Z k'(n 2_ k)! ”(pn-’_laf’Ua/ 3;1+2 kgozfa/HO,a- 3.6)
O<k<n ’

We follow the proof of the previous Proposition. First, for k > 0, this sum equals to

n
22 k—1ok—1 2—k an+2—k
E K —k)! [[% 8y OxlUy’ ‘Pn+ a;l+ 8a—a'll0,5-
I<k<n :

Multiplying by e!®/?1 | the corresponding sum is bounded by
9z, Geno(u)d, Gens(g),
provided that |z2| < 1. It remains to bound the term k = 0 in (3.6):

n n
) 1 2 / ) 20042
2" v 8 2 gaarllos < (2vllon + lo'uarllo0) Zle" 231+ gearllos

Multiplying by e/®?1 | the corresponding sum is bounded by
(Geng(v) + 95, Geno(u))angeng(g).

This leads to

0,,Gens(voyg) < 3;, Genp(u)d;, Gens(g)
+ Co(Gengp(v) + azlGeno(u))szGeng(g).

The bound on 9;, Gens(1dy g) is similar which ends the proof of this Proposition. O

@ Springer



18 Page 160f 36 E. Grenier, T.T. Nguyen

4 Laplace Equations

In this section we focus on the classical Laplace equation which is much easier than
Orr Sommerfeld equations. We will apply the same arguments on Orr Sommerfeld in
the next section.

4.1 In One Space Dimension

We consider the classical one-dimensional Laplace equation
— 52 24—
Ao = 02p —a’p = f 4.1

on the half line y > 0, with Dirichlet boundary condition ¢(0) = 0 and
limy_, ;o0 ¢(y) = 0. We recall that || f]lo,0 = sup,~ | f(y)]. Let us first recall the
following classical result:

Proposition 4.1 (L°° bounds). Let ¢ solve the one-dimensional Laplacian problem
(4.1), with Dirichlet boundary condition. There holds

@llgllo.o + lel 1dy@llo.0 + 135¢l0.0 < Cll £llo.o- (4.2)

where the constant C is independent of the integer a # 0.

Note that (4.2) states that we gain two derivatives by inverting the Laplace operator:
a control on the maximum of f gives a control on the maximum of the first two
derivatives of ¢.

Proof We will only consider the case @ > 0, the opposite case being similar. The
Green function of 8)2, —a?is

1
Gr.y) = =g (e - emoin)

and its absolute value is bounded by & ~'e~** | The solution ¢ of (4.1) is explicitly
given by

b(y) = /0 G(x, ) f(x)dx. 4.3)
A direct bound leads to

o0
lo] < a1 fllo.0 /0 e~ dx < Ca™| fllo.o

in which the extra ! factor is due to the x-integration. Splitting the integral formula
(4.3)in x < y and x > y and differentiating it, we get

8y llo.0 < Ca™ | fllo.0-
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We then use the equation to bound 8y2¢, which ends the proof of (4.2). O

Next, in the case when f has a boundary layer behavior, we obtain the following
result:

Proposition 4.2 (Boundary layers norms) Let ¢ solve the one-dimensional Laplacian
problem (4.1) with Dirichlet boundary condition. Provided |$a*| < 1, there hold

IVa@llo.0 = Cli fllo.s 4.4)

and

e lIgllo.o + 195¢ll0.s < Cll fllo.s 4.5)
where the constant C is independent of the integer .

Note that in the case of boundary layer norms, we only gain “one” derivative in
supremum norm, but the usual two derivatives in boundary layer norm.

Proof Using (4.3), we estimate

o0
B <o Il [ e (1457

o0
<o liflos(ot 457 [ e a)
0

which yields the claimed bound for a¢. The bound on 9y, ¢ is obtained by differentiating
4.3).

Let us turn to (4.5). Note that |0:G(x,y)] < 1. As G(0,y) = O this gives
|G (x, y)| < |x|. Therefore

|G (x, y)| < min(a~le™@F 1 |x]),

and hence

oo
BN =1 flns [ minlel,a~le = (57160 4 1)
0

< Cllflos (8 +a72)

which gives the desired bound when |8a?| < 1. We then use the equation to get the
bound on [[85¢l0.5- o

4.2 Laplace Equation and Generator Functions

In this section, we will study the generator functions, introduced in Section 3.1, of
solutions to the Laplace equation A¢ = w. In the sequel, it is important to keep in
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mind that, in the application to Prandtl boundary layer stability, » will have a boundary
layer behavior, namely will behave like ' e~€¥/3 whereas the stream function ¢ will
be bounded in the limit.

Proposition4.3 Let ¢ = A(;la)a on Ry with the Dirichlet boundary condition
¢a|y=0 = 0. For |8a2| < 1, there are positive constants Cy, 0y so that

Gené,a (V§¢a) + GenO,a(v¢a) = COGen(S,a (o), (4.6)

for all z; so that |z2] < 0.
Moreover if = A~ w and if wy = 0 for all « such that |8a®| > 1, then

Geng(Vo) < CGens(w), 4.7
0;,Genog(Ve) < Co;,Gens(w), 4.8)
0;,Genog(Vep) < Co,,Gens(w) + Gens(w). “4.9)

Proof For n > 1, from the elliptic equation Ay, = wy, Wwe compute
Ao(@" 0} pe) = Q"0 wa + 20,(0")01 o + 93 (9™ -
Note that
3y (@M by = ng'e" 31 g,

and hence the ||.||p,s norm of this term is bounded by n ™! 8;+1¢a llo.s. Moreover,
02090 = (101 — D"+ ng"¢" ") 31g4

whose ||.[l0,s norm is bounded by n(n — 1) ||go”’28§?¢>a llo.s. Using Proposition 4.2, we
get

219" 07 e ll0.0 + 1195 (0" 9 b 0.6 + | Ve (" 0 be) 10,0
< Cll¢" 8} wullo,s + Cnlle" '3} dullo.s + Cnln — D)ll¢" > dullo.s-

Expanding the left hand side, we get

19" 3 dallo.o + 19" 3 > dallos + 19" 3} Vadelloo
< Coll¢" 3} wallo.s + Conlle”" 93 dullos (4.10)
+ Con(n — D¢" ) dallo.s + Conlle" " 9} llo.0.

Let

An = lal*llg" e llo.o + 19" 83 e llo.s + 19”9} Vadallo.o-
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Multiplying by z5 /n! and summing over n, we get

n
> A <X I oo s +C0 Y A

n>0 n>0 n>1

+‘COZE:AH 2 —-ZV

n>2

which ends the proof of (4.6), provided |z;| is small enough.

Next (4.7) is a direct consequence of (4.6), just summing in «. If we multiply (4.6)
by |«| before summing it, this gives (4.8). Now we multiply (4.10) by zg_l /(n — 1)!
instead of 25 /n!. This gives

n—1 n—l

ZAn(ZZ i < oan oallos s, + OZ T

n>1

n—1

2

+CoY n(n— 1)An_2m.

n>2

The terms in the right hand side may be absorbed by the left hand side provided z; is
small enough, except Co Ao, which is bounded by Gens o (@, ). This ends the proof of
the Proposition. O

5 Orr-Sommerfeld Equations
5.1 Introduction
In this section, we study the Orr—Sommerfeld equations
Orry.c(¢) == —eAiqﬁ + U —c)Agp —U"¢p = f, 5.1
together with the boundary conditions
?l,— =0, Ao, =0, (5.2)

and¢p — Oasy — +oo, with Ay, = 8)2, — 2. We shall focus on the case when « # 0;
the @« = 0 case will be treated in Section 5.5. The Orr—Sommerfeld problem is the
resolvent problem of the linearized Navier—Stokes equations around a shear profile
U, written in terms of the stream function ¢. We shall study the generator functions
of Orr—Sommerfeld solutions.

Throughout this paper, |Jc| will always be larger than 391y /2, where Ao is the
speed of growth of the linear instability. In particular, Jc will be bounded away from
0. Moreover we will restrict ourselves to o < €~!/3, or precisely

lea’ logv| < 1. (5.3)
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Let us first describe Orr Sommerfeld equations in an informal way. For small €, Orr
Sommerfeld equations are a viscous perturbation of Rayleigh equations

Rayo,c(¢) = (U —)Aep —U"¢ = , (5.4)

with boundary conditions ¢ (0) = 0 and limy, 1 0 ¢ (y) = 0. Note that the equation
Rayy (¢) = 0 may be rewritten as

U//
U—-c

@ — o) — ¢ =0.

As y — 400, it therefore simplifies into 8y2¢ — a?¢ = 0. Hence this equation has
two independent solutions ¢y +, with respective asymptotic behaviors e*1ly  Note
that c is an eigenvalue if and only if ¢s _(0) = 0. We have to bound these solutions
uniformly in |¢| > 1 and ¢, with |Jc| > 30RAo/2. As a goes to 0o, ¢, 4 converge
to e*1?1¥ Moreover, U” /(U — ¢) is bounded since |Jc| > 390 Ao/2 is bounded away
from 0, therefore this term may be handled as a regular perturbation.

When we add the viscous term eAgzb, these two solutions are slightly perturbed,
but give birth to two independent solutions of Orr Sommerfeld with a ’slow” behavior,
which behave like eT*1Y. Two additional solutions, called ¢ .+, appear, with a fast
behavior. For these solutions the viscous term is no longer negligible and is of the
same order as the Rayleigh one. At leading order, ¢ ¢ 4 are solutions to

— &+ (U —c +a’e)dj¢ = 0. (5.5)

U-c
pr) = o+ ——,

taking the positive real part. Then at first order ¢ 7 + behaves like et i nr@dz,
Let G4,¢(x, y) be the Green function of the Orr—Sommerfeld problem. This Green
function may be decomposed in a ’slow part” G, and a “fast part” G ¢, such that

Let

Goc(x,y) = Gs(x,y) + Gr(x, y).
We recall the following theorem, which is the main result of [10, Theorem 2.1].

Theorem 5.1 Let «, ¢ be arbitrary, so that |3c| is bounded away from 0 and |a3c| >
3MAo/2. Then, there are universal positive constants Cy, 6y so that

C ,
|Gy(x, )| < MT‘M(WOM"‘—“ + o) (5.6)
)
|G r(x, y)| < #—fﬁcb(e_%mﬂx_y‘ + e_eomf|x+y|> 5.7
f A
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forall x,y > 0, in which

s =la|l, my= irylf-‘ﬁuf(y), (5.8)

U-—-c
rr(y) =,/a? + p

taking the positive real part. Similar bounds hold for derivatives, namely for k > 0
and !l > O withk +1 < 3,

with

Cr,i

Ty (IR )]
Cr.

m}:k—l(l + 3¢

1050, Gs (x, y)| < (e—(’ouslx—yl n e—ewsqu) (59

050G (x, y)| < (e*eomf"x*y' + e fomy '”y‘) (5.10)

In the sequel, Jc will always be bounded away from 0, but can be very large. This
theorem is the main result of [ 10, Theorem 2.1]. However, for the sake of completeness
we sketch in the following lines the computation of the Green function, at a formal
level. The Green function G (x, y) is constructed through the representation

D dg -+ Y @b (y), y>x>0

G ( ) k=s,f k=s,f

a,cX,y) =
DA -+ D @), 0<y<x
k=s,f k=s,f

where the first sum takes care of the boundary condition and the second one of the
singularity of the Green function near x = y.

It remains to compute di, ex and fi, so that G . is continuous, together with its
first two derivatives, so that 88‘3) Gqo.c has aunitjump at y = x and so that G . satisfies
Dirichlet boundary condition together with its first derivative. The main contribution
in 83; Gg,c comes from fast modes since p s > . In order to get a unit jump at
y = x we have to choose, at leading order,

RGN RN
YO e T e
Note that
1 1

ey e+ U—c

and is therefore bounded by C/(1 + |3c|) for large |Jc|. With this choice of e and
f¢, atleading order, G . and its second derivatives are equal at x ™ and x ~. To match
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the first derivative we use ¢;(y). Note that

1 1 1
0 (er08r-) ~ 5=y =5 —
) 2ep 2eac+U—c

The jump of the first derivative of fast modes is therefore bounded by C/(1 + |Jc|)~!
for large |3c|. This jump is compensated by the slow modes. As a consequence, as the
jump in the first derivatives of 1Y is ||, e, (x) and f; (x) are of order 1/|a|(1+|3c¢])
for large |Jc|. The bounds on di can be obtained in a similar way.

5.2 Pseudoinverse

We will also be interested in the case when Orry . is not invertible. In this case,
Im(Orry,) is of codimension 1, and the equation Orry (¢) = f may be solved
only if (f, ¢o.c)r2 = 0, where ¢, . spans the orthogonal of Im(Orry ). In [10] we
show that we can construct an inverse of Orry, on Im(Orry,) through a kernel
G = G, + G which satisfies the same bounds as in Theorem 5.1. Moreover, the
eigenmode of Orry, . does not lie in Im(Orrg, ). More precisely

Theorem 5.1 [10] Let « be fixed. Let co be a simple eigenvalue of Orrg, . with corre-
sponding eigenmode ¢y c,. Then there exists a bounded family of linear forms [V and
a family of pseudoinverse operators Orr~" such that for any stream function ¢,

Orrec (0™ (@) =& ~ 1" @)aco:

Moreover, Orr~—" may be defined through a Green function G = Gy + G ¢ which
satisfies (5.6) and (5.7).

5.3 Bounds on Solutions of Orr Sommerfeld Equations

Proposition 5.2 (L°° norms) Let ¢ solve the Orr—Sommerfeld problem (5.1)—(5.2).
For |6a3| <1, |aSc| > 3RAo/2 and |Sc| bounded away from 0, there hold

Co

2 2
\% \% < —
lae*lI¢llo.0 + lallVadllo.o + 1 Vedlloo = T 13¢]

Il f1lo,0 (5.11)
and

IVeVadlloo + lleVasllo.o < Col fllo.o- (5.12)

Equations (5.11) and (5.12) express a classical regularity result: Orr Sommerfeld
equation is a small fourth order elliptic perturbation of a second order elliptic equation.
Therefore we gain the full control on two derivatives of the solution, and partial controls
on third and fourth derivatives, with prefactors /¢ and .
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Proof By construction, the solution ¢ is of the form

¢(y)=/0 Go,c(x, y) f(x) dx. (5.13)

Hence,

oo( e fonslx—yl e bom rlx—y )
B < Co/ A ) r d
b Uaasmed T mrasisa

o0, p=bouslx+yl e—fom plx+y
+ Co/ ( — + ~ )f(x) dx
0o Mus(L+[3cl)  myp(1 4 [3cl)

< Coll flloo(s* +m ) (1 + [3eh™

We recall that uy = || and that eu? = ea? + (U — ¢). Hence,

)

2
T 1+aU —o)/(ead)

S

which is bounded since |aJc| > RAg and |ea®| < 1. This proves that

lle*@llo.o < Co(1 + 13D £ lo0-
To get the bounds on «dy ¢ and 8)2,¢, we differentiate (5.13) with respect to y, splitting

the integral in x < y and x > y, and fulfill similar computations.
Similarly, we compute

o0
|a$¢(y)| < C()(l + |SC|)—1\/ (M%e—go,uﬂx—ﬂ +m§e—9()Mf‘x—y‘)f(x) dx
0
o0
+ Co(1 +|3cp~! f (Mfe—ews'”yl + m?e—eomf'xﬂ")f(x) dx
0
< Co(ps +m )1+ 13Dl £llo,0-
As J/lella] <1, {/|elpus < C and
VIelus = Wea + U —c| < C(1 +|3c)),

which yields the estimate for /€ 8y3 ¢. For 68;1 ¢, we directly use the Orr—Sommerfeld
equation Orry (¢p) = f. O

Proposition 5.3 (Boundary layer norms) Let ¢ solve the Orr—Sommerfeld problem
(5.1)—~(5.2), with source f having a boundary layer behavior. For |eo’ logv| < 1,
laIc| > 3R Ao /2 and |Sc| bounded away from 0, there holds

1+ 13D (IVadllo + 19201105 ) + el IV los < Coll flos.  (5.14)
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Proof Let x (y) be a non negative function which equals 1 for 0 < y < 1 and O for
y > 1. Let us split the forcing term f in its boundary layer term and in its “inner
term”

f=/f+f

with
(Y
fo(y) = x(alogaq ).
Note that || fillo,o < C|| fllo,s and

| fo()] < Clifllo.sd ™ e™7°.

Let ¢p and ¢; be the solutions of Orr(¢p) = fp» and Orr(¢;) = f;. Note that ¢;
satisfies (5.14), thanks to the previous Proposition.

It remains to bound ¢y. For this we split the Green function in its fast part G y and
its slow part G,. For the fast part we have to bound G s fj,, which is a convolution
between an exponentially decreasing kernel and a exponentially decreasing source. It
is therefore bounded by C| f|l0.s6~'e™>/? provided myg > 28!, which is the case
provided yy is large enough.

Let us turn to the slow part Gs. Let us first assume that G4(0, y) = 0 for any
positive y. Then 8§G‘Y (0, y) = 0 for any positive y. As

s

920,Gy(x,y)| < C——5—
| y Ox s(x y)| =0 F13¢)

we have

Culx
302G, (x, y)| < —5—
193G, | = 755

noting the x factor on the right hand side. By convolution between G and f}, we have

|52 |
92 <C—— ,
105 dp ()| = I+ 5] Il fllo,s

which leads to the desired bound, taking into account that |8a?| < C, provided that

G4(0, y) = 0 for any positive y.
However, it is not the case that G4(0, y) = 0 for y > 0, but we rather have

G0,y) =Gs(0,y) +Gs(0,y) =0.
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Therefore ayst ©,y) = —3y2Gf(O, y). For y > ﬁ logm 7, we get

Comy¢  _pom.v Co
32G,(0, y)| < ——L—¢~t0msy < .
195G O = 7750 =1+ 13¢
On the other hand, for y < 9()+n_,- logm r, we use
Cou?
33G4(0, y)| < s
9365001 = 73
to get
Co Comj_clu? logm ¢

32G4(0, y)| <
0y GO = T s T T e

which is bounded by a constant divided by (1 + |3c|), upon recalling m y > 26~!and

using the assumption a” /v log % < 1. This ends the proof of the bound on 83@,. The
bounds on ¢, and d,¢; are similar. m]

5.4 Generator Functions
In this section, we study the generator of solutions to the Orr—Sommerfeld problem.
Proposition 5.4 Let ¢ solve the Orr—Sommerfeld problem (5.1)—(5.2), with source

term f. For lea®logv| < 1, |aSc| > 3RAro/2 and for |Sc| bounded away from 0,
there are positive constants Cy, 0y (independent on € and «) so that

Geng o (Vo) + Gens o (V2¢) <

G , 5.15
TF 13 ens.o(f) (5.15)

for all 75 so that 0 < zo < 0. Moreover, provided f, = 0 if |ea’ logv| > 1,

Geno(u) + Geng(w) < Gens(f), (5.16)
14 |3¢|
C
9., Geno(u) + 9, Geng(w) < Tr)%'am Gens(f), (5.17)

and

C
9., Geno(u) + 9., Gens(w) < Tﬁsq[a@&”( £) + Gens( f)]. (5.18)
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Proof We estimate each term in the generator functions. The term n = 0 is already
treated in Proposition 5.3. Forn > 1, we compute
Orra,c(@"9]¢) = ¢" 3] f — 3e0,0" 3} — 660790 ¢
—3edy¢" ) p — €0)¢"0p
+4ca’0,¢" T + 260707 ¢" 0 ¢
+ U — 0)82g0"8”¢ +2(U — 0)dyg" Mg
k —k kyrman—k
+ Y k,( —i? 0" (U0 nee — 05U 0 E0).

1<k<n

(5.19)

Let us estimate each term on the right. For convenience, we set
An = ll@" 03 Vadlloo + 19" Vadllos + el (1 +3ch ™ 19" Vadllo.s.
forn > 0, and A, = 0 for negative n. As ¢ = y/(1 4+ y), we compute

13£0,¢" 00 ¢ + 66059 012 + 30, ¢" 91§ + €079" 0 pllo.s

ks

<C0(1—|-|~SC|)Z k), An—

||4£0528y§0n3;'+1¢ + 2602028 ll0.s = Cea[n Ayt +nn— DA,
and
I(U = ©)dy@" 0 pllo.s < Co(l + [SchnAn_
IV = 029" 0 llos < Col + e[ nAut +nn = D A2 .
Finally, we treat the summation in (5.19). Set
B, = 1135 Ullo.o + 115U  ll0.0-

We estimate

n'
> Pl @ U™ A — U3 B) 0.5
I<k<n

n! —k an—k
<C Y i (15U loole" 81~ Augl

1<k<n

+||a§U”||o,o||¢"—"a’?"‘¢>||o )

= Co Z k'( BkAn k-
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Thus, applying Proposition 5.3 to (5.19), we obtain, using |ea?| < 1,

Ve (9" 33 #)ll0,0 + |IV2(<p”3”¢) lo.s + lel(1 4 13¢) 1V (0" 3 p)lo.s

n!

llo" 3"f||05+COZ An v +Co Yy mBkAn k-
I<k=<n

_1+|“I

Expanding the left hand side, we thus have

An <

!
An r+ Co Z —Bk-An—k

" 3"f||03+CoZ e

1+|‘”| )

for all n > 0. Multiplying the above equation by z7 /n! and summing up the result in
n > 0, we obtain

34, Zz‘sHm aa<f)+COZZ A2

n>0 n>0 k= 1

+C022k1( sy By An— k

n>0 k=1

(5.20)

Since |z2| < 1, we compute

Zz(n TR 4122“4” al’

n>0 k=1 n>0

which can be absorbed into the left hand side of (5.20), for sufficiently small z,.
Similarly,

ZZk!(n o1 DkAn—k Ly <COZA"ZZZB_

n>0 k=1 n>0 n>1

which is again absorbed into the left of (5.20), upon using the assumption that U is
analytic, and that the sum of 53, begins on n > 1. This ends the proof of (5.15).
Summing (5.15) gives (5. 16) Multiplying by |«| before summing (5.15) we get

(5.18). Now multiplying by z} / (n — 1)! instead of - o we get

Co 25!
Z-An _1)'_ 1+ 3| zzGeHSa(f)+COZZ —k)‘A n—1)!

n>1 n>1k= 1

+COZZk|( _k)'Bk-An k

n>1 k=1
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If z5 is small enough, the right hand side may be absorbed in the left hand side, excepted
the terms involving A, which are bounded by Gengs(f). This ends the proof of the
Proposition. o

5.5 The a = 0 Case

In this section, we treat the case when o = 0. In this case, the resolvent equation of
the linearized Navier—Stokes equations simply becomes the resolvent equation for the
heat equation

n — ﬁaf,)uo = F, (5.21)

with ug = 0 at y = 0, where u( denotes the Fourier mode of the first component of
velocity u at « = 0. We have the following simple proposition.

Proposition 5.5 Let ug solve (5.21) and let wy = dyuq be the corresponding vorticity.
For RA > 3NAg/2, we have

en u
0,040) = 1 N

en w
5,0l0) = 1 N

Geng o(Fp),
(5.22)

(Geno.o(Fo) + Gens.o(0 Fo))

forall zo > 0.

Proof The solution ug to (5.21) with the zero boundary condition satisfies

uo(y) =/0 Go(y, 2)Fo(z) dz

where Go(y, z) denotes the Green function for (A — /v ayz) with the Dirichlet boundary
condition. In particular, we have

|Gy, )| = v a7 e VAL
In particular, for A > 30Xy /2, we estimate

o0 _ _ _,,—1/4q s
luo(y)| s/ y VA 12 A2l B 2)] dz
0

< Co(1 + R0~ Lsup [Fo(y)l.
y

The estimates for derivatives are obtained in the same way as done in the previous
section for the Orr—Sommerfeld equations. The proposition follows. O
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6 Construction of the Instability
6.1 Iterative Construction

Let us now describe the iterative construction of u" and »" and of the infinite
series which defines the solution (2.18). We start with the most unstable eigenmode
(Yo, g, co) to the Orr—Sommerfeld problem; namely, we start with a solution of

Orroto,co (Vo) =0,

with the zero boundary conditions on y = 0, such that «gJcg is maximum. In fact
we just need to start from a mode such that «pcg is strictly larger than half of this
maximum. Up to a change of sign we may assume that og > 0. Up to a rescaling we
may also assume that ap = 1.

This mode corresponds to a complex solution V- (e/*0*=<00 vy (y)) of the lin-
earized Navier Stokes equations. We have to take the real part of this solution in order
to deal with real valued solutions. Note that (1&0, —ay, Cp) is also an eigenmode. We
therefore sum up the two unstable eigenmodes corresponding to «g and —«g and
define

w] (t, x, y) — eiot()(xfﬂicol)+a0?\cotwo(y) + e*iao(xfﬂicot)Jra()Scot&O(y)'

Let 1/;& be the Fourier transform of ¥ ! in x variable. Then all the 1//011 vanish, except
two of them, namely « = a9 = £1. We then iteratively solve the resolvent equation
of the linearized Navier—Stokes problem (2.17) for u” = V14", In term of vorticity
" = AY", the problem reads

B0+ Udso" — U0 y" — vAw" == Y (! V)",

1<j<n—1

6.1)

together with the zero boundary condition on u” = V11", Precisely, we search for
Y™ under the form

I//n — Z I)/fgtleiclc()c—.‘ﬁcot)en%c‘ot’ (62)

lee]<n

where the sum runs on all the o which are multiples of «g. This yields, forn > 2,

1 ; nei
OrraeWi) =3 D (g Vadwy . (6.3)

o 1<j<n—1

in which u}, = V¢ and wj = A4V, together with the zero boundary conditions
on ¢" and d,v¥", and in which

. Qo
c = Neog + in—cy.
o
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Note that a o ~! factor appears in front of the source term, since Orr Sommerfeld is
obtained by taking the vorticity of Navier Stokes equations and dividing by «. Note
also that all but a finite number of ¥} vanish. Again the sum runs on all the « which
are multiple of «g. Note also that |Sc| > |Scp| and is thus bounded away from 0.

As Proposition 5.4 only holds for |a*¢| < 1 or equivalently |o| < v=1/4, we will
only retain the |o| < v~1/% in the construction of ¥ and restrict (6.2) to

wn — § : 1'nglzemt(x—.‘hcot)en\scot.

loe|<v=1/4

This leads to the introduction of the force

=3 3N Wl Vel

le|>v=1/4 o' 1<j=n—1

that will be estimated below.

6.2 Bounds on y/"
We prove the following.

Proposition 6.1 Introduce the iterative norm

G" = Geng(u") + Geno(v") + 9;, Genp(u™)
+Gens(@") + 9;,Gens (") + 9,,Gens(@"), (6.4)

for n > 1. Then, G"(z1, z2) are well-defined for sufficiently small z1, z2, and in
addition, there exists some universal constant Cy so that

C . . , .
¢ = Y (¢80 4 Gla,6n). 65)
I<j<n-1

Note that the derivatives appearing in (6.4) are non negative.

Proof Applying Proposition 5.4 to the Orr—Sommerfeld equation (6.3), using || <
v~ /4 and summing over o, we get

AW < % A( » (u‘/.v)wn—f), (6.6)

I<j<n-1
Moreover, using Proposition 4.3
Geng(u") + Geng(v") < CGeng(o™)
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and
9;,Genog(u") < Cd; Geng(o").
Proposition 3.2 then gives the desired bound. O

6.3 Bounds on the Generator Function
Theorem 6.1 Forn > 1, let G"(z1, z2) be defined as in (6.4). Then, the series

“+o00

G(t,z1,22) = Z G"(z1, z22)T" !

n=I
converges, for sufficiently small T, z1, and z5.
Proof For N > 1, let us introduce the partial sum

N
Gn(T,z1,22) =y G"(z1, 227",

n=I1
for 7, z1,z2 > 0. Note that Gy is a polynomial in 7, and thus well-defined for all
times T > (0. We also note that all the coefficients G" (z;, z2) are positive. In particular,
Gn (7, 21, 22) is positive, and so are all its time derivatives (when z; > 0 and z» > 0).

Moreover, Gy (1, z1, 22), and all its derivatives, are increasing in N. We also observe
that, at t = 0,

Gn(0,z1,22) = G'(z1, 22),
for all N > 1, and hence,

G(0,z1,22) = lim Gy(0,71,22) = G'(z1, 22).
N—o00

Next, multiplying (6.5) by 7”2 and summing up the result, we obtain the following
partial differential inequality

0:Gy < CGNBZ, Gy + CGNazzGN,
for all N > 1. Therefore the generator function satisfies an Hopf-type equation, or
more precisely an Hopf inequality.
As G isincreasing in z1 and z», we focus on the diagonal z; = z», and introduce

Fy(t,2) = Gn(T,0(1)z,0(1)2)
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for 7, z > 0, where 6 (-) will be chosen later, with 6(0) = 1. It follows that Fy satisfies
0. Fy < QCFy +0'(1)2)3,Fy. 6.7)

Note that Fy isincreasingin N. Att =0, Fy(0,2) = Gn(0,z,z2) = G'(z, z), which
is independent on N. Let p > 0 be small enough such that

My = sup G'(z,2)

0<z=p
is well defined. We now define 6 () in such a way that
4CMo+6'(t)p <0,

with 6(0) = 1. For instance, we take

0(t)=1—6CMyp 'z
We will work on a time interval where 6(t) > 1/2, namely on [0, Tp] where Ty =
p/12C My. Let Ty be the largest time < Tp suchthat Fy (t, z) < 2My,for0 <t < Ty
and 0 < z < p. Note that Ty exists and is strictly positive, since Fy is well defined
for all the positive times, and continuous in time. It remains to prove that inf x> Ty

is positive.
Let us define the characteristics curves X (7, z) by solving

8‘L’)(]V(‘I:’ Z) = _ZCFN(Ts XN(Tv Z)) - 9/(T)XN(T9 Z)v
together with Xy (0, z) = z. Observe that the characteristics are outgoing at z = 0

and z = p. Therefore the characteristics completely fill [0, Tx] x [0, p]. Let us now
introduce

Fy(r.2) = Fy(1. Xy (1. 2)).
It follows from (6.7) that
9 Fn(t,2) = 8 Fy + 8; Xy 9. Fy <O0.
As a consequence,

sup Fy(t,z) < sup Fy(0,2) = sup G'(z,2) = M.

0<z=p 0=<z=p 0=<z=p

Therefore Ty > Ty, forall N > 1, and Fy is bounded uniformly on [0, 7] % [0, p]. We
can therefore take the limit N — +-o00. This leads to the convergence of Gy (7, z1, 21)
as N — oofor) <t < Tpandfor0 < z; < p. Since Gy(z, 21, 22) is increasing in
71, Z2, the convergence of Gy (7, z1, z2) as N — oo follows. O
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6.4 End of Proof

It remains to bound the force term f”. For this we note that the cut off occurs for
|| > v~!/# where the corresponding modes are exponentially small. The force term
is therefore exponentially small itself, and therefore arbitrary small in any Sobolev
space.

Now ), " t" converges for T small enough. Let

r = vNeao;xcot.

Then as long as T remains small, namely as long as f remains small than C log v—! for
some constant C, this series converges and defines a solution of the full incompressible
Navier Stokes equations. Note that the series defining # and v also converges in the
same way. This prove Theorem 1.2. Then Theorem 1.1 follows by a simple rescaling

(T.X,Z)= v 't x,2).
7 Time Dependent Shear Flow

We now turn to the case where the shear flow U, depends on time. Let 23 be the
corresponding vorticity. Note that Uy is a solution of

9 Uy — vy, Us =0

and hence depends on t through ./v:. We put this dependency in the notation
U, (y/vt, y). The perturbation satisfies

I + (Us(0).V)o + .V)2(0) — VvAw

= —w.V)o — Q1(vvh)w — Q2 (+/vi)u D
where
01V = (Us (i) = Us(0) ) oo
and
02 (Vv = V) (R (Vir) = 2,(0)).
Note that

M
Us (Wi, y) = Us(0) + Y (Vv U () + 0 (VoM.

k=1

As we are interested in times of order log v, and keeping in mind that 9, w is always
bounded by v™1/4, we can put the O() in the forcing term.
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We will fulfill a perturbative analysis and look for solutions of (7.1) of the form

w(h X, y) _ Z Z Z Z en?scottpﬁqeia(x—mcot)w&l,p,q(y). (7.2)

n>1 p>0¢>0acZ

In fact it is sufficient to bound g by some large integer M, since we allow a small
forcing term.
Putting (7.2) in (7.1) we get

ia Orra, (W ") + (p + D P+ = Q" Pd 4 1P (7.3)
where
S S S
o 1<j<n—10<k<p0<i<q
and

anq_laZUk n,p—k,q—k _ lazwnp k,q— ka Qk

with the convention that a quantity vanishes if one of its indices is negative. Note that

Q" P9 only 1nvolvesw , R R withn’ <n
and p’ < pandq’ < gq.

We will solve this equation by recurrence on the power of /v, namely on g. We

withn’ < n.Next, L"-?:9 involves l/f ,

begin with the leading order ¢ = 0. All the v/5,'” 0 vanish, except when p = 0. System
(7.2) then reduces to (6.3)

0.0 _
Vo =V

which are constructed in the previous section, up to any arbitrarily large n.
We then turn to ¢ = 1. The first terms wg’o'o create an “error term” L involving

ﬁktk for 1 < k < M. Let us first focus on the case k = 1. For k = 1, the
corresponding L™ 1! term is

io (U0 - g0, 9}).
Forn = 1 and ¢ = £1 we note that Orrqy . is not invertible. This operator may also

be non invertible for other values of « (in finite number). To simplify the discussion
we assume that this does not occur (the general case is similar).

If (n, &) # (1, £1), we take ¥'"*" = 0 for p > 1. This leads to

k.k i, 1=k, 1—k
i@Orrg (g =" 3" 3wl Ve, +Lm0 (7.4)

o 1<j<n—1k=0,1
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which is a linearized version of (6.3).

For (n, a) = (1, £1), we note that Orr, . is not invertible. Let A be the right hand

side of (7.4). Thanks to Theorem 5.1 we define

yilt = orrl(4),

1,2,1

and we use ¥';" to handle the remainder

20yt = 1" (A1 g

Now to bound w(’x“’l*l we introduce the corresponding generator function G' and
proceed as in the previous section. This leads to the following inequality

%G' < G%,,G' + G%.,,G' + G'8,G° + G'9,,G° + €3, G° + CG°.

Using the same arguments as in the previous section, we obtain bound uniform bounds
on G'. The recurrence can be continued using similar arguments.
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