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Abstract
For all ε > 0, we prove the existence of finite-energy strong solutions to the axi-
symmetric 3D Euler equations on the domains {(x, y, z) ∈ R

3 : (1 + ε|z|)2 ≤
x2+y2}which become singular in finite time.The solutionswe construct have bounded
vorticity before a certain timewhen the vorticity becomes unbounded.We further show
that solutions with 0 swirl are always globally regular in the setting we consider. The
proof of singularity formation relies on the use of approximate solutions at exactly
the critical regularity level which satisfy a 1D system which has solutions which
blow-up in finite time. The construction bears similarity to our previous result on the
Boussinesq system Elgindi and Jeong (Finite-time Singularity Formation for Strong
Solutions to the Boussinesq System, 2017) though a number of modifications must be
made due to anisotropy and since our domains are not scale-invariant. This seems to
be the first construction of singularity formation for finite-energy strong solutions to
the actual 3D Euler system.
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1 Introduction

The problem of finite-time singularity formation for solutions to the 3D Euler equa-
tions is one of the classical problems in the study of PDEs and has stood the test of
time for over two centuries. Though the problem has remained open until now, there
have been several fantastic advancements by many authors—especially over the last
few years. The goal of this work is to give a new take on the problem which allows us
to prove finite-time singularity formation for the 3D Euler equations in the “critical”
setting which clearly sets the 3D Euler equations apart from the 2D Euler equations
and similar models. We begin by recalling the incompressible Euler equations and
their salient features.

1.1 The 3D Euler Equations

Recall the n-dimensional incompressible Euler equations:

{
∂t u + u · ∇u + ∇ p = 0, (1.1)

div(u) = 0, (1.2)

for the velocity field u : R × � → R
n and internal pressure p : R × � → R of an

ideal (frictionless) fluid. This system models the evolution of the velocity field of an
ideal fluid through a suitable closed subset� ⊂ R

n .We also impose the no penetration
boundary condition u · n = 0 where n is the outer normal at the boundary of �. We
also supply the system with a divergence-free initial datum u0, which is the velocity
field at time t = 0.

123



Finite-Time Singularity Formation for Strong Solutions... Page 3 of 51 16

It is well known that for any u0 which is sufficiently smooth, there exists a unique
local-in-time solution u to (1.1)–(1.2) with u|t=0 = u0. The amount of smoothness
which is required to establish existence and uniqueness roughly corresponds to the
amount of smoothness required to define each quantity in (1.1)–(1.2) point-wise. We
call such solutions strong solutions. It is known that strong solutions conserve energy.
Indeed, upon multiplying (1.1) by u, integrating over �, and using (1.2) and the no-
penetration boundary condition u · n = 0 on ∂�, we see:

d

dt

∫
�

|u(t, x)|2dx = 0.

Conservation of energy seems to indicate that solutions to (1.1)–(1.2) cannot grow too
much – though it does not preclude growth of∇u or even the sup-norm of u. Moreover,
for systems like the Euler equations, it is usually necessary to have global point-wise
control of∇u to prevent finite-time singularity formation. Due to this “regularity gap”,
the global regularity problem when n ≥ 3 remains a major open problem in the field1:
Global Regularity Problem: Does there exist a solution u of the 3D Euler equations
with finite energy such that u ∈ C∞([0, 1)×�) but lim supt→1 ‖∇u(t, ·)‖L∞ = +∞?
We will consider the following more general problem:
Generalized Global Regularity Problem2: Does there exist a solution u of the 3D
Euler equations with finite energy such that u ∈ W 1,∞([0, t0]×�) for all 0 ≤ t0 < 1
but lim supt→1‖∇u(t, ·)‖L∞ = +∞?
The purpose of this work is to answer this question for the domains�3D

ε = {(x, y, z) :
(1+ε|z|)2 ≤ (x2+ y2)} for any ε > 0 (see Figure 1 and Corollary 1.2). In fact, wewill
prove that there is a local well-posedness class X ⊂ L2 ∩ W 1,∞ and a local solution
u belonging to that class for all t < 1 for which

lim
t→1

∫ t

0
‖(∇ × u)(s, ·)‖L∞ds = +∞.

Moreover, for that solution, ∂t u, u · ∇u, and ∇ p are all (Hölder) continuous in space-
time in [0, 1)×�3D

ε . In this sense, the solution we construct is truly a strong solution.

1.2 PreviousWorks

An important quantity to consider when studying the Euler equations, particularly in
two dimensions, is the vorticityω := ∇ ×u. In three dimensions, the vorticity satisfies
the following equation:

∂tω + u · ∇ω = ω · ∇u.

1 See, for example, http://www.claymath.org/sites/default/files/navierstokes.pdf.
2 It is important to remark that, to avoid ill-posedness issues (as in [23] and [3]), it is necessary to ask that
∇u is bounded on a time-interval and not just at the initial time. In fact, one could simply ask whether
there is a Banach space X ⊂ L2 ∩W 1,∞(R3) where the 3D Euler equations are locally well-posed but not
globally well-posed.
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Fig. 1 Our 2D domain Aε is defined by the region right to the thickened line {1 + εz = r} (left). The 3D
domain is then given by the region exterior to the cylindrical figure (right)

The term on the right hand side is called the vortex stretching term due to its ability
to amplify vorticity. Due to the fact that div(u) = 0, it is actually possible to recover
u from ω and the map ω �→ u is called the Biot–Savart law. In terms of regularity,
ω and ∇u are comparable; however, the difficulty is to understand the geometric
properties of ω · ∇u. Neglecting these geometric properties leads one to believe that
ω · ∇u ≈ ω|ω| so that singularity formation is trivial. On the other hand, in the 2D
case, when u = (u1(x, y), u2(x, y), 0), it is easy to see that ω · ∇u ≡ 0 which then
leads to global regularity. A good understanding of the vortex stretching term and its
interaction with the transport term u · ∇ω is necessary to make progress on the global
regularity problem.

We now collect a few of the important works on the 3D Euler equations and related
models. The relevant literature is quite vast so wewill focus only on four general areas:
local well-posedness and continuation criteria, model problems, weak solutions, and
numerical works.

1.2.1 Local well-posedness and Blow-up Criteria

The existence of local strong solutions to (1.1)–(1.2) in two and three dimensions
is classical and goes back at least to Lichtenstein in 1925 who proved local well-
posedness of finite-energy solutions in the Hölder spaces Ck,α for any k ∈ N and
0 < α < 1. Kato [38] established local well-posedness for velocity fields in the
Sobolev spaces Hs for s > n

2 + 1. The restrictions on α and s in the results of
Lichtenstein and Kato were shown to be sharp in ([2,3,23], and [24]). Local well-
posedness in Besov spaces was established by Vishik [68] and Pak and Park [57]. The
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most well-known blow-up criterion is that of Beale, Kato, and Majda [1] which states
that a C1,α or Hs solution (0 < α < 1 and s > n

2 + 1) loses its regularity at T ∗ if
and only if lim supt→T ∗

∫ t
0 ‖ω(s)‖L∞ds = +∞. In fact, this result is the motivation

for the “Generalized Global Regularity Problem” above. Another important blow-up
criterion is that of Constantin, Fefferman, and Majda [12] which roughly says that
if the vorticity has a well-defined “direction” and if the velocity field is uniformly
bounded, then the 3D Euler solution looks like a 2D Euler solution and no blow-up
can occur. Improvements on these criteria were given in [46] and [18].

1.2.2 Model Problems

Over the years, a number of model problems have been introduced and analyzed to
better understand the dynamics of solutions to the 3D Euler equations. One such 1D
model was studied by Constantin, Lax, and Majda [10] in 1985 where the vorticity
equation was replaced by a simple non-local equation which modeled only the effects
of vortex stretching. In the same paper, the authors established singularity formation
for a large class of data [10]. Thereafter, De Gregorio [15] and then Okamoto-Sakajo-
Wunsch [56] introduced generalizations of the work [10]. It turns out that thesemodels
are almost identical to the equation for scale-invariant solutions to the SQG system
which we studied in [21] and [20]. After important numerical and analytical works of
Hou and Luo [51] and Kiselev and Šverák [43] respectively, a new class of models was
introduced to study the axi-symmetric 3D Euler equations near the boundary of an
infinite cylinder (see [9] and [8]). Another model, coming from atmospheric science,
which has gained much attention is the surface quasi-geostrophic (SQG) system (
[13,14,52]) which can be seen as a more singular version of the 2D Euler equations
and a good model of the 3D Euler equations. Global regularity for strong and smooth
solutions to the SQG equation is still wide open though substantial progress on the
problem of “patch” solutions has been made in [42]. We also mention some of the
works on shell-models where the Euler system on T

3 is seen as an infinite system of
ODE and then all interactions except a few are neglected; in several cases, blow-up
for these models can be derived. See the works of Katz-Pavlovic [39], Friedlander-
Pavlovic [26], Kiselev-Zlatos [44], and Tao ([64] and [63]). Of note is that Tao [63]
recently showed that anyfinite-dimensional bilinear and symmetricODEsystemwith a
certain cancellation property can be embedded into the incompressible Euler equations
on some (high dimensional) compact Riemannian manifold.

Closer to the actual 3D Euler equations are a model introduced by Hou and Lei [33]
which is the same as the axi-symmetric 3D Euler equations without the transport term
(see the next subsection). Singularity formation for this model is conjectured in [33]
though it seems to still be open in settings where solutions have a coercive conserved
quantity.

1.2.3 Weak Solutions

One of the reasons that the global regularity problem for strong solutions to the 3D
Euler equations is important is that there is no good theory ofweak solutions available–
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even3 in 2D. In fact, weak solutions have been shown to exhibit very wild behavior
such as non-uniqueness and non-conservation of energy. See, for example, the works
of Scheffer [60], Shnirelmann [61], De Lellis-Székelyhidi ([16] and [17]), and more
recently Isett [35] and Buckmaster-De Lellis-Székelyhidi-Vicol [5]. We also mention
that Kiselev and Zlatos [45] have shown that in a domain with cusps, the 2D Euler
equations can blow up in the sense that initially continuous vorticity may become
discontinuous in finite time.

1.2.4 Previous Blow-up Results for Infinite-Energy Solutions

We should mention that there have been a number of infinite-energy solutions to the
actual 2D and 3D Euler equations which have been shown to become singular in finite
time. The well-known “stagnation-point similitude” ansatz (which goes back to the
work of Stuart [62] in 1987) takes the following form in 3D:

u(t, x, y, z) = (u1(t, x, y), u2(t, x, y), zγ (t, x, y)). (1.3)

Constantin [11] has shown that smooth initial data of the form (1.3) may blow up in
finite time, shortly after numerical simulations by Gibbon and Ohkitani [55]. In the
2D case, one can take u2 ≡ 0 and u1, γ be independent of y. Blow-up in this case
was shown even earlier (see [7,62]). Similarly, in the usual cylindrical coordinates
(r , θ, z), one may consider the following ansatz (Gibbon-Moore-Stuart [29]):

u(t, r , θ, z) = ur (t, r , θ)er + uθ (t, r , θ)eθ + zγ (t, r , θ)ez, (1.4)

where ur and uθ respectively denote the radial and swirl component of the velocity.
The authors in [29] have found simple and explicit solutions having the form (1.4)
which blow up in finite time. The blow-up is present even in the no-swirl case. Blow-up
for closely related systems was shown using similar ansatz (see for instance Gibbon-
Ohkitani [30] and Sarria-Saxton [59]).

Note that in all these examples, the vorticity is never a bounded function in space
(indeed, it grows linearly at infinity), and it is unclear whether the dynamics of such
solutions arewell-approximated byfinite-energy solutions.Of course, such a statement
cannot bevalid in the 2D Euler or no-swirl axisymmetric setting.Wewill also introduce
a class of infinite-energy approximate solutions. However, sincewe base ours on scale-
invariance and symmetry, they have globally bounded vorticity (before blow-up) and
also are well approximated by compactly supported solutions; in particular, they are
globally regular in the 2D case [21].

3 While Yudovich [69] solutions are usually called weak solutions, we feel that classifying them as such is
slightly misleading in the present context. Besides, the Yudovich theory does not extend to 3D even locally
in time.

123



Finite-Time Singularity Formation for Strong Solutions... Page 7 of 51 16

1.2.5 Numerical Works

It is impossible to do justice to the vast literature on numerical studies of the 3D
Euler equations. We refer the reader to the survey papers of Gibbon [27] and Gibbon,
Bustamante, and Kerr [28] for an extensive list of numerical works on the 3D Euler
equations. In the simulations of Pumir and Siggia [58] dating back to 1992, a 106

increase in vorticity was observed in the axi-symmetric setting. Also very well known
are numerical results using perturbed antiparallel vortex tubes byKerr ([40,41]), which
suggested finite time blow-up of the vorticity. For a further discussion as well as more
refined simulations on Kerr’s scenario, see Hou and Li [34] and Bustamante and Kerr
[6]. We wish to also make mention of more recent works of Luo and Hou ([50,51])
where very large amplification of vorticity is shown for some solutions to the axi-
symmetric 3D Euler equations in an infinite cylinder. Luo and Hou’s paper was the
motivation for a number of recent advances in this direction, including this work.
In fact, the reader may notice that the spatial domains we consider here, {(x, y, z) :
(1 + ε|z|)2 ≤ (x2 + y2)} for ε > 0 is very similar to the setting of [51] (except that
our domain is the exterior of a cylinder). We also mention a recent interesting work
of Larios, Petersen, Titi, and Wingate [48] where singularity in finite time is observed
for spatially periodic solutions to the 3D Euler equations. We end this discussion
with a quote from J. Gibbon regarding the finite-time singularity problem: “Opinion
is largely divided on the matter with strong positions taken on each side. That the
vorticity accumulates rapidly from a variety of initial conditions is not under dispute,
but whether the accumulation is sufficiently rapid to manifest singular behaviour
or whether the growth is merely exponential, or double exponential, has not been
answered definitively.”

1.3 Symmetries for the 3D Euler Equations

We nowmove to discuss the present work and its theoretical underpinnings: rotational
and scaling symmetries. It is well known that solutions to many of the canonical equa-
tions of fluid mechanics satisfy certain scaling and rotational symmetries. A common
tool used in many different settings in PDE is to restrict the class of solutions to
those which are invariant with respect to some or all of those symmetries. This usually
allows one to reduce the difficulty of the problem at hand. For example, in manymulti-
dimensional evolution equations, it is commonplace to consider spherically symmetric
data to reduce a given PDE to a 1+1 dimensional problem. This point of view has also
been adopted in the study of the incompressible Euler equations. Indeed, recall that if
λ ∈ R − {0} and O ∈ O(n), the orthogonal group on Rn and if u(t, ·) is a solution to
the incompressible Euler equations, then 1

λ
u(t, λ·) andOT u(t,O·) are also solutions.

Schematically, we may write this as: If

u0(·) �→ u(t, ·),
1

λ
u0(λ·) �→ 1

λ
u(t, λ·),

OT u0(O·) �→ OT u(t,O·)
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for all O ∈ O(n) and λ ∈ R − {0}. In this sense, we say that the Euler equations
satisfies a scaling4 and rotational symmetry.

1.3.1 Rotational Symmetry

It is natural to ask whether one could use the symmetries of the Euler equations to
reduce the 3D system to a lower-dimensional system with possibly less unknowns.
The first attempt may be to search for solutions which are spherically symmetric, i.e.
which satisfy that OT u(Ox, t) = u(x, t) for all x = (x, y, z) ∈ R

3 and all rotation
matrices O. Certainly if we had a nice initial velocity field u0 which was spherically
symmetric, the solution would formally remain spherically symmetric. Unfortunately,
in three dimensions, a spherically symmetric velocity field which is also divergence-
free is necessarily trivial for topological reasons. The next attempt, which is classical,
is to consider axi-symmetric data. That is, we first pick an axis, such as the z-axis,
and we then search for solutions which satisfy that OT u(Ox, t) = u(x, t) for all x
and all rotation matricesO which fix the z-axis. This allows one to reduce the full 3D
Euler system to a two-dimensional system with two components, uθ and ωθ , called
the swirl velocity and axial vorticity respectively ([53]):

D̃

Dt

(ωθ

r

)
= 1

r4
∂z[(ruθ )2], D̃

Dt

(
ruθ

)
= 0, (1.5)

supplemented with

D̃

Dt
= ∂t + ur∂r + uz∂z, ur = ∂zψ

r
, uz = −∂rψ

r
, (1.6)

and

L̃ψ = ωθ

r
, L̃ = 1

r
∂r

(
1

r
∂r

)
+ 1

r2
∂2z , (1.7)

where r = √
x2 + y2.

Once ωθ and uθ are known, the above system closes. Indeed, ωθ determines ψ

through inverting the operator L̃ and ur and uz are determined from ψ . Dynamically,
the axial vorticity ωθ produces a velocity field (ur , uz) in the r and z directions
which advects the swirl uθ . Then a derivative of the swirl component forces the axial
vorticity. It is conceivable that strong advection of uθ causes vorticity growth and this
vorticity growth causes stronger advection and that uncontrollable non-linear growth
occurs until singularity in finite time. Getting hold of this mechanism requires strong
geometric intuition and, seemingly, much more information than what was known
about the system. This scenario of vorticity enhancement by the derivative of an
advected quantity is precisely the situation in the 2D Boussinesq system which we
studied in [19]. To get hold of this mechanism, we will further restrict our attention to
solutions which are locally scale invariant.

4 We are aware that the incompressible Euler equations satisfies a two-parameter family of scaling invari-
ances. However, using the time scaling invariance introduces a number of difficulties which are still not
fully understood.
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1.3.2 Scaling Symmetry

Using the rotational symmetry, we have passed from the full 3D Euler system to the
axi-symmetric 3D Euler system which is a 2D system. We will now explain how
to reduce the 3D Euler system to a 1D system by considering asymptotically scale-
invariant data. Let us first define the axi-symmetric domains �3D

ε for ε > 0 by

�3D
ε := {(x, y, z) : (1 + ε|z|)2 ≤ (x2 + y2)} = {(r , z) : 1 + ε|z| ≤ r}.

In r , z coordinates, �3D
ε is just a sector with its tip at (r , z) = (1, 0). Let us further

pass to (η, z) coordinates where r = η + 1. Thus, �3D
ε , in these coordinates, is just

{(η, z) : ε|z| ≤ η}. Now let us see how the axi-symmetric 3D Euler equation looks in
these coordinates. Since all we have done is shift in r , we get:

D̃

Dt

( ωθ

η + 1

)
= 1

(η + 1)4
∂z[((η + 1)uθ )2], D̃

Dt

(
(η + 1)uθ

)
= 0,

where

D̃

Dt
= ∂t + ur∂η + uz∂z, ur = ∂zψ

η + 1
, uz = − ∂ηψ

η + 1
,

L̃ψ = ωθ

η + 1
, L̃ = 1

η + 1
∂η

(
1

η + 1
∂η

)
+ 1

(η + 1)2
∂2z .

Our goal will be to produce a solution which is concentrated near z = η = 0 which
both belongs to a local well-posedness class andwhich becomes singular in finite time.
Since we are localizing near z = η = 0 we are led to formally set η = 0 wherever η

shows up explicitly in the equation. We are then led to the system:

D̂ωθ

Dt
= 2uθ ∂zu

θ ,
D̂uθ

Dt
= 0,

with

D̂

Dt
= ∂t + ûr∂η + ûz∂z, ûr = ∂zψ, ûz = −∂ηψ,

and finally

�η,zψ = ωθ .

At this point we write: uθ = 1 + ρ and we get:

D̂ωθ

Dt
= 2∂zρ + 2ρ∂zρ,

D̂ρ

Dt
= 0.
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Now we search for a solution to this system for which |ωθ | ≈ 1 and |ρ| ≈ |(η, z)|
near η = z = 0 and we see that the term ρ∂zρ is actually much weaker than ∂zρ as
(η, z) → 0. This leaves us with the system:

D̂ωθ

Dt
= 2∂zρ,

D̂ρ

Dt
= 0.

This system, finally, has a clear scaling and we search for solutions where ωθ is
0-homogeneous and ρ is 1-homogeneous. We then prove that such scale-invariant
solutions become singular in finite time. This gives us a clear candidate for how data
leading blow-up should look as (η, z) → 0.We then take this data localize it and show
that all of the simplifications made above can actually be made rigorous. A heuristic
explanation of this is given in Section 3 and the full proof is given in the remaining
sections.

We close this subsection by remarking that this is not the first case when solu-
tions with scale-invariant data were studied in the context of fluid equations. For the
2D Euler equations Elling [25] recently constructed scale-invariant weak solutions
– though Elling also made use of time-scaling. Scale-invariance has also been used
in various ways in the study of the Navier–Stokes system. Leray [49] conjectured
that such solutions could play a key role in the global regularity problem for the
Navier–Stokes equation. It was later shown that self-similar blow-up for the Navier–
Stokes equation is impossible under some very mild decay conditions in the important
works [54] and [66]. Another example is the work of Jia and Šverák ([36,37]) where
non-uniqueness of the Leray-Hopf weak solution is established under some spectral
assumption on the linearized Navier–Stokes equation around a solution which is ini-
tially − 1 homogeneous in space (see also [67] and [4]).

1.4 Main Results

Now we will state the main results. As we have mentioned earlier, our 3D domain
corresponds to the region

�3D
ε := {(x, y, z) : (1 + ε|z|)2 ≤ (x2 + y2)}

which is obtained from rotating the 2D domain

Aε := {(r , z) : 1 + ε|z| ≤ r}

with respect to the z-axis. Throughout the paper we shall assume that uθ and ωθ are
respectively even and odd with respect to the plane {z = 0}, so that we may work
instead with the 2D domain

�ε := {(r , z) : 0 ≤ z, 1 + εz ≤ r}.

We remark in advance that the solutions we consider can be taken to vanish smoothly
on {z = 0} so that extending a solution on �ε to Aε will not affect smoothness of
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the solution at all. We also define the scale of spaces C̊0,α introduced in [21] and [22]
using the following norm:

‖ f ‖C̊0,α
(1,0)(�ε)

:= ‖ f ‖L∞(�ε) + ‖| · −(1, 0)|α f ‖Cα∗ (�ε).

Functions belonging to this space are uniformly bounded everywhere and are Hölder
continuous away from (1, 0).Werecall someof the properties of this space inSection 2.
This scale of spaces can be used to propagate boundedness of the vorticity, the full
gradient of the velocity field, ∇u, as well as angular derivatives thereof.

Our first main result states that the axisymmetric system (1.5)–(1.7) is locally well-
posed in the scale of spaces C̊0,α .

Theorem A (Local well-posedness) Let ε > 0 and 0 < α < 1. For every ωθ
0 and uθ

0

which are compactly supported in �ε and for which ωθ
0 ∈ C̊0,α

(1,0)(�ε) and ∇uθ
0 ∈

C̊0,α
(1,0)(�ε), there corresponds a time T > 0 depending only on the C̊0,α

(1,0)-norms of

(ωθ
0 , u

θ
0) and the radius of the support of ωθ

0 , and a unique solution pair (ωθ , uθ ) to

the axi-symmetric 3D Euler system (1.5)–(1.7) with ωθ ,∇uθ ∈ C([0, T ); C̊0,α
(1,0)(�ε))

and (ωθ , uθ ) remain compactly supported for all t ∈ [0, T ). The solution can be
continued past T > 0 if and only if

∫ T

0
|ωθ(t, ·)|L∞ + |∇uθ (t, ·)|L∞dt < +∞.

We establish finite time blow-up in this class:

Theorem B (Finite time singularity formation) Let ε > 0 and 0 < α < 1. There
exists compactly supported initial data ωθ

0 and uθ
0 for which ωθ

0 ∈ C̊0,α
(1,0)(�ε) and

∇uθ
0 ∈ C̊0,α

(1,0)(�ε) whose unique local solution provided by Theorem A blows up at
some finite time T ∗ > 0:

lim
t→T ∗

∫ t

0
|ωθ(s, ·)|L∞ + |∇uθ (s, ·)|L∞ds = +∞.

The solutionmaybe extended to thedomain Aε withωθ ,∇uθ ∈ C([0, T ∗); C̊0,α
(1,0)(Aε)).

Remark 1.1 The blow-up of the sum |ωθ |L∞ + |∇uθ |L∞ implies that the full 3D
vorticity ω := curl(u) blows up in the same way as t → T ∗.

An immediate corollary is:

Corollary 1.2 For each ε > 0, there exists a finite-energy solution of the 3D incom-
pressible Euler equation u ∈ W 1,∞([0, t0] × �3D

ε ) for all 0 ≤ t0 < 1 with a vorticity
blow-up at time 1: limt→1

∫ t
0 |(∇ × u)(s, ·)|L∞ = +∞.

On the other hand, as it is expected, the solution is global in time when there is no
swirl velocity.
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Theorem C (Global regularity in the no-swirl case) Under the assumptions of Theo-
rem A, further suppose that initially uθ

0 ≡ 0. Then, uθ ≡ 0 for all time and the solution
ωθ exists globally in time.Moreover, |ωθ(t, ·)|C̊α

(1,0)
grows at most double exponentially

in time:

|ωθ(t, ·)|C̊α
(1,0)

≤ C exp(C exp(Ct))

with C > 0 depending only on ωθ
0 .

Remark 1.3 We give a number of remarks regarding the above statements.

• The compact support assumption on initial data are not necessary and can be
replaced by some weighted L2-assumption (see Section 5 for details).

• In the statements of TheoremA–B, the domain�ε can be replaced by any bounded
domain � with smooth boundary except for a point around which it looks like the
corner in �ε (see Definition 5.3 for the precise requirements).

• In the local well-posedness result, the uniqueness statement does not just hold
within the class of axi-symmetric solutions but in the class of uniformly Lipschitz
and finite energy solutions (to the full 3D Euler equations) in the 3D domain.

1.5 Disclaimer

A few months prior to the completion of this work, we posted two articles where
we claimed to prove singularity formation for the axi-symmetric 3D Euler equation
in the domain {(x, y, z) : z2 ≤ c(x2 + y2)} for c very small. Unfortunately, those
articles contained a major mistake; namely, the system which we were using is not
actually the axi-symmetric 3D Euler equation due to a sign error5 in how we wrote
the Biot–Savart law. Fortunately, this error does not affect our work on the Boussinesq
system nor the present work. We should note, however, that the program of using
scale-invariant solutions to prove blow-up is correct even in that setting; however, it is
not clear whether the 1D system associated to that setting has solutions which become
singular in finite time. In the final section of thiswork,we record the correct 1D system
for that setting–the blow-up problem for which remains open. Upon inspecting that
system, it is clear that there is a mechanism which wants to prevent blow-up. Note
that this mechanism is not present here since we are constructing a singularity near
r = 1 and not r = 0. The domains considered here are also less singular than the ones
considered in the previous work and can be taken to be arbitrarily close to a smooth
cylinder which is the setting of the numerics of Luo and Hou [51].

Organization of the Paper

In Section 2, we simply recall the definition of scale invariant Hölder spaces C̊0,α

and as well as a few basic properties. Then in Section 3, we demonstrate heuristically

5 Unfortunately this error appears in a few books and papers in mathematical fluid mechanics. We thank
Dongyi Wei for pointing this out to us.
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that near the point (r , z) = (1, 0), the dynamics of the axisymmetric Euler system for
locally scale-invariant data reduces to that for the 2D Boussinesq system. The proof of
finite time singularity formation for the latter system is reviewed briefly in Section 4.
In Section 5, we prove various elliptic estimates which are essential for the proofs of
Theorems A and C in Section 6 and Theorem B in Section 7.

2 Preliminaries

In this section, let D be some subset of the plane. Then, the scale-invariant Hölder
spaces are defined as follows:

Definition 2.1 Let 0 < α ≤ 1. Given a function f ∈ C0(D\{0}), we define the
C̊0,α(D) = C̊α(D)-norm by

‖ f ‖C̊α(D)
:= ‖ f ‖L∞(D) + ‖| · |α f ‖Cα∗ (D)

:= sup
x∈D

| f (x)| + sup
x,x ′∈D,x �=x ′

||x |α f (x) − |x ′|α f (x ′)|
|x − x ′|α .

Then, for k ≥ 1, we define C̊k,α-norms for f ∈ Ck(D\{0}) by

‖ f ‖C̊k,α(D)
:= ‖ f ‖C̊k−1,1(D)

+ ‖| · |k+α∇k f ‖Cα∗ (D). (2.1)

Here, ∇k f is a vector consisting of all expressions of the form ∂xi1
· · · ∂xik f where

i1, · · · ik ∈ {1, 2}. Finally, we may define the space C̊∞ as the set of functions belong-
ing to all C̊k,α:

C̊∞ := ∩k≥0,0<α≤1C̊
k,α.

Remark 2.2 From the definition, we note that:

• Let D = {(r , θ) : r > 0, θ1 < θ < θ2}. For a radially homogeneous function f of
degree zero, that is, f (r , θ) = f̃ (θ) for some function f̃ defined on [θ1, θ2], we
have

‖ f ‖C̊k,α(D)
= ‖ f̃ ‖Ck,α[θ1,θ2].

Similarly, f ∈ C̊∞(D) if and only if f̃ ∈ C∞[θ1, θ2].
• If f is bounded, then ‖| · |α f ‖Cα∗ < +∞ if and only if (assuming that |x ′| ≤ |x |)

sup
x �=x ′,|x−x ′|≤c|x |

|x |α
|x − x ′|α | f (x) − f (x ′)| < +∞

for some c > 0.
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Lemma 2.3 (Product rule) Let f ∈ Cα with f (0) = 0 and h ∈ C̊α . Then, we have the
following product rule:

‖ f h‖Cα ≤ C‖h‖C̊α‖ f ‖Cα . (2.2)

Proof Clearly we have that ‖ f h‖L∞ ≤ ‖ f ‖L∞‖h‖L∞ . Then, take two points x �= x ′
and note that

f (x)h(x) − f (x ′)h(x ′)
|x − x ′|α = h(x)

f (x) − f (x ′)
|x − x ′|α

+ f (x ′)
|x ′|α ·

( |x |αh(x) − |x ′|αh(x ′)
|x − x ′|α + |x ′|α − |x |α

|x − x ′|α h(x)

)

holds. The desired bound follows immediately. ��
Remark 2.4 Note thatCα �⊂ C̊α since functions belonging to C̊α must, in a sense, have
decaying derivatives. For example, a function f ∈ C̊0,1 if and only if it is uniformly
bounded and satisfies |∇ f (x)| � 1

|x | almost everywhere. Of course, any compactly

supported Cα function belongs to C̊α .

In the remainder of this paper, we shall take D to be either �ε or an “admissible”
domain � (see Definition 5.3) in the (η, z)-coordinates, so that the norm C̊α

(1,0)(�ε)

in the (r , z)-coordinates used in the statements of the main theorems above is simply
the C̊α(�ε)-norm.

3 A heuristic Blow-up Proof

The 3D axisymmetric Euler equations take the following form in terms of velocities
v = (v1, v2) := (ur , uz) and u := uθ :

∂tv + v · ∇v + ∇ p =
(
u2

r
, 0

)

div(rv) = 0

∂t u + v · ∇u = −v1u

r

along with v ·n = 0 on the boundary of the spatial domain where n is the exterior unit
normal. In the above equations, all derivatives are in (r , z) variables. It is easy to see
from this formulation that

d

dt

∫
�

(
|v|2 + u2

)
rdrdz = 0

for smooth enough solutions. Moreover, it is also possible to pass to the vorticity
formulation by dotting the equation for v with (∂z,−∂r ). Then, for ω = ∂zv1 − ∂rv2
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we have

∂t

(ω

r

)
+ v · ∇

(ω

r

)
= 2

r2
u∂zu,

∂t (ru) + v · ∇(ru) = 0.

Since div(rv) = 0, we may write:

rv = (∂zψ,−∂rψ)

with ψ = 0 on the boundary of the domain (which is consistent with u · n = 0 on the
boundary). Now we can recover ψ from ω by observing:

1

r
∂zzψ + ∂r

(
1

r
∂rψ

)
= ω.

Thus we get the following system:

D

Dt

(ω

r

)
= 2u∂zu

r2
,

D

Dt
(ru) = 0.

(3.1)

Here,

D

Dt
:= ∂t + v1∂r + v2∂z (3.2)

with

v1 := ∂zψ

r
, v2 := −∂rψ

r
(3.3)

and finally, ψ is the solution of

L̃ψ = ω

r
, L̃ := 1

r
∂r

(
1

r
∂r

)
+ 1

r2
∂zz . (3.4)

The system (3.1)–(3.4) is the form of the 3D axisymmetric Euler equations that we
will use in the remainder of the paper. Now we will show a heuristic blow-up proof
before giving the details which can be somewhat technical. Let us first set r := η + 1,
θ = arctan( z

η
), R2 = η2 + z2. Notice that the domain {1 + ε|z| ≤ r} becomes

{ε|z| ≤ η}, which is equal to the sector

{(R, θ) : R ≥ 0 and θ ∈ (−π/2 + tan−1 ε, π/2 − tan−1 ε)}.

And the system becomes:

D

Dt

(
ω

η + 1

)
= 2u∂zu

(η + 1)2
, (3.5)
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D

Dt
((η + 1)u) = 0, (3.6)

supplemented with

L̃ψ = ω

η + 1
, L̃ := 1

η + 1
∂η

(
1

η + 1
∂η

)
+ 1

(η + 1)2
∂zz . (3.7)

Our goal will be to look for solutionswhich, near (η, z) = 0, satisfyω ≈ g(t, θ)+ω̃

and u ≈ 1 + RP(t, θ) + ũ with ω̃ and 1
R ũ vanishing at 0 like Rα . Let us plug this

ansatz into the equation and see what equation g and P must satisfy to ensure the high
degree of vanishing of ω̃ and ũ:

D

Dt

(
g

η + 1

)
+ D

Dt

(
ω̃

η + 1

)
= 2

(1 + η)2
(1 + RP + ũ)∂z(RP + ũ)

∂t
g

η + 1
+ vg · ∇ g

η + 1
+ vω̃ · ∇ g

η + 1
+ D

Dt

(
ω̃

η + 1

)
= 2

(1 + η)2
∂z(RP)

+ 2

(1 + η)2

(
∂z ũ + (RP + ũ)∂z(RP + ũ)

)

Now, notice that the third and fourth terms on the left hand side and the second term
on the right hand side all involve quantities which should vanish as R → 0. Thus, the
correct equation for g is:

∂t g + vg · ∇g = 2∂z(RP) (3.8)

where vg is the highest order term in vg . Indeed, we write:

L̃ψg = g

and we believe that ψg = R2G(t, θ) + ψ̃ with ψ̃ = o(R2) as R → 0. Then we
observe:

L̃ψ̃ + L̃(R2G) = g

and L̃(R2G) = 1
(1+η)2

∂zz(R2G) + 1
1+η

∂η(
1

1+η
∂η(R2G)). Now, let us notice that if ∂η

hits the 1
1+η

we will get an error term. Thus we see,

L̃(R2G) = 4G + G ′′ + O(R)

as R → 0 (here and in the following, ′ refers to ∂θ ). So we set 4G + G ′′ = g and
ψ̃ = L̃−1(g− L̃(R2)G) = o(R2).Nowwe see that vg = 1

1+η
∇⊥(R2G)+ 1

1+η
∇⊥(ψ̃)

and we set vg = ∇⊥(R2G)which is equal to vg as R → 0 up to terms which vanish at
a controlled rate. This is the justification for (3.8). Next let’s write down the equation
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for P . In a similar way to the preceding calculation we see that the correct equation
for P is:

∂t (RP) + vg · ∇(η + 1) + vg · ∇(RP) = 0 (3.9)

Now, using that vg = ∇⊥(R2G) = 2(z,−η)G + (η, z)G ′, ∇(η + 1) = (1, 0), and
∇(RP) = 1

R (η, z)P + 1
R (−z, η)P ′, we obtain from (3.9) after dividing by R that

∂t P − 2GP ′ = −G ′P − 2 sin(θ)G − cos(θ)G ′.

Similarly, from (3.8), we get

∂t g − 2Gg′ = 2 sin(θ)P + 2 cos(θ)P ′.

Writing P = Q − cos(θ) gives

∂t Q − 2GQ′ = −G ′Q
∂t g − 2Gg′ = 2 sin(θ)Q + 2 cos(θ)Q′.

Finally, replacing g and Q with −g and −Q respectively gives

∂t Q + 2GQ′ = G ′Q
∂t g + 2Gg′ = 2 sin(θ)Q + 2 cos(θ)Q′,

where

G ′′ + 4G = g.

We have already encountered this equation before. It is the same equation as for the
Boussinesq system and finite time singularity formation for smooth solutions has
already been established.

Remark 3.1 Note that if we had from the beginning realized towrite u = 1
1+η

+RP+ũ
as the correct ansatz, we would not have to have passed from P to Q.

The above calculation was just a heuristic. In Section 7 we will show rigorously
that the “remainder” terms which we dropped at each step can actually be dropped
by establishing various elliptic estimates (Section 5) and local well-posedness results
(Section 6).

4 Blow-up for the 1D System

In this section we recall the results of [19] on the analysis of the 1D system which
was derived (heuristically) above:

{
∂t g + 2G∂θg = 2(sin θ P + cos θ∂θ P), (4.1)

∂t P + 2G∂θ P = P∂θG, (4.2)
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on the interval [0, l] where G is obtained from g by solving ∂θθG + 4G = g subject
to the Dirichlet boundary condition G(0) = G(l) = 0. In order for the ODE relating
G and g to be solvable in general we need to assume l < π

2 . It is then possible to show
that there are smooth solutions to this system which become singular in finite time in
the sense that there exists g0, P0 ∈ C∞([0, l]) so that the unique local-in-time C∞
solution pair (g, P) has a maximal forward-in-time interval of existence [0, T ∗) and
limt→T ∗ |g|L∞ = +∞. The full details are given in [19]. Here we give a sketch of the
proof for the convenience of the reader.

Theorem 1 Take g0 ≡ 0 and P0(θ) = θ2. Then, for any l < π
2 , the unique local

solution to (4.1)–(4.2) cannot be extended past some T ∗ and limt→T ∗ |g|L∞ = +∞.

Proof Assume towards a contradiction that g remains bounded for all time. We will
show that g, g′, P, P ′, P+P ′′ ≥ 0 for all time (recall that ′ refers to ∂θ ). To do this, we
first have to establish a fact about the elliptic problem relating g andG; namely, if g ≥ 0
then G ≤ 0 and consequently G ′′ ≥ g. This is proven by a maximal principle type
argument. It can also be shown that if g′ ≥ 0 also thenwe have−G ′(0),G ′(l),G ′(0)+
G ′(l) ≥ 0 and G ′(l) ≥ c

∫ l
0 g. Since P0 ≥ 0, inspecting (4.2) we see that the solution

P ≥ 0 for all t > 0. Next, upon differentiating (4.2) we see:

∂t P
′ + 2G∂θ P

′ = −G ′P ′ + PG ′′.

Comparing this with the equation for g, (4.1), we see that we can propagate g ≥ 0
and P ′ ≥ 0. Next, we compute the equations for g′ and P ′′ + P and we see:

∂t g
′ + 2G∂θg

′ = −2G ′g′ + 2 cos θ(P + P ′′)
∂t (P + P ′′) + 2G∂θ (P + P ′′) = Pg′ − 3G ′(P + P ′′).

Then it becomes clear that g′ ≥ 0 and P + P ′′ ≥ 0 can be propagated simultaneously.
Next, let us compute d

dt

∫ l
0 g(t, θ)dθ :

d

dt

∫ l

0
gdθ = 2

∫ l

0
∂θGg + 4

∫ l

0
sin(θ)Pdθ + 2P(l) cos(l)

since P(0) = 0 for all t ≥ 0. Now note:

∫ l

0
g∂θGdθ = 1

2
(G ′(l)2 − G ′(0)2) ≥ 0.

Thus,

d

dt

∫ l

0
gdθ ≥ cP(l).
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Now we compute the equation for P(l) and we see:

d

dt
P(l) = G ′(l)P(l) ≥ cP(l)

∫ l

0
gdθ.

It then follows that
∫ l
0 gdθ and P(l) blow up in finite time. This is a contradiction.

Thus, the solution could never be global. ��

Remark 4.1 Since our solutions on [0, l] vanish at θ = 0, they can be extended by
symmetry (odd symmetry for g and even symmetry for P), we get smooth solutions
on [−l, l] which become singular in finite time. We should note that there do exist
simple exact blow-up solutions on [0, l] when l < π

2 which start out smooth and blow
up in finite time; however, these solutions cannot be extended to smooth solutions on
[−l, l].

5 Elliptic Estimates

In this section we will establish estimates for the operator L defined by

L(ψ) = ∂zzψ + ∂ηηψ − 1

η + 1
∂ηψ (5.1)

on two types of domains. First, onwhatwe call admissible domains (seeDefinition 5.3)
and then on the domains �ε := {(η, z) : 0 ≤ εz ≤ η} for any ε > 0. Admissible
domains are simply bounded domains which look like �ε near x := (η, z) = (0, 0).

We briefly recall the main results from [19] regarding the Poisson problem on
sectors. Given f ∈ L∞(�ε), we consider the system

�ϒ = f , in �ε,

ϒ = 0, on ∂�ε.
(5.2)

Lemma (see Lemma 3.2 from [19])Given f ∈ L∞(�ε), there exists a unique solution
to (5.2) satisfying ϒ ∈ W 2,p

loc for all p < ∞ and |ϒ(x)| ≤ C |x |2 for some C > 0.

From now on, we denote�−1 = �−1
D to be the operator f �→ ϒ for simplicity. Before

we proceed, we recall a number of important facts regarding this operator:

Remark 5.1 Let f ∈ L∞(�ε) and ϒ be the unique solution provided by the above
lemma.

• The existence statement follows directly from the expression

ϒ(x) = lim
R→+∞

∫
�ε∩{|y|<R}

Gε(x, y)dy, (5.3)
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where Gε is the Dirichlet Green’s function on �ε given explicitly by

Gε(x, y) = 1

2π
ln

|x1/β − y1/β |
|x1/β − y1/β |

, tan(βπ) = ε−1. (5.4)

Here we are viewing x and y as complex numbers, e.g. x = η+i z. The bar denotes
the complex conjugate. Note that we may assume 0 < β < 1/2 and β → 1/2 as
ε → 0+. In the following we shall always assume that 0 < β < 1/2 and it is a
function of ε as in (5.4).

• The kernel for ∇�−1 is given by

Kβ(x, y) := ∂xGβ(x, y) = − x1/β−1

4πβ
· y1/β − y1/β

(x1/β − y1/β)(x1/β − y1/β)
,

so that ∂r�−1 f and ∂z�
−1 f are given by the real and imaginary parts of Kβ ∗ f ,

respectively. We have the following L∞ bound:

|∇�−1 f (x)|
|x | ≤ C | f |L∞

for C = C(ε) > 0.

Given Hölder regularity of f (uniform up to the boundary of �ε), one can show that
the second derivatives of �−1 f belongs to the same Hölder space.

Lemma 5.2 (see Lemmas 3.5 and 3.6, and Corollary 3.8 from [19]) Given 0 < ε and
0 < α < 1, we have the estimates

|∇2�−1 f |L∞(�ε) ≤ Cα,ε | f |L∞(�ε) ln

(
2 + | f |C̊α(�ε)

| f |L∞(�ε)

)
(5.5)

and

|∇2�−1 f |C̊α(�ε)
≤ Cα,ε | f |C̊α(�ε)

. (5.6)

for f in C̊α(�ε). Moreover, if we have in addition that α < 1/β − 2, where 0 < β <

1/2 satisfies tan(βπ) = ε−1, we then have

|∇2�−1 f |C̊α∩Cα(�ε)
≤ Cα,ε | f |C̊α∩Cα(�ε)

(5.7)

for f ∈ C̊α ∩ Cα(�ε).

5.1 Estimates for the Laplacian on Admissible Domains

We begin by defining our concept of “admissible domains.”
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Definition 5.3 A bounded spatial domain � ⊂ R
2 is said to be admissible if

1. � ⊂ {η ≥ 0}.
2. ∂� is a simple closed curve
3. 0 ∈ ∂� and there exists a δ > 0 and a C3 diffeomorphism � : Bδ(0) → Bδ(0)

so that �(0) = 0, ∇�(0) = I d, and ∂�({(η, z) : 0 ≤ εz ≤ η} ∩ Bδ(1, 0)) =
� ∩ Bδ(0)) for some ε > 0.

4. ∂� − Bδ(0) is C3.

Remark 5.4 All our results will work equally well for similar domains which are not
simply connected.

Let� be an admissible domain inR2.Using Grisvard’s shift theorem [32], we have
that the Dirichlet problem for the Laplacian:

�ψ = f

ψ |∂� = 0

is uniquely solvable for given f ∈ L p(�) and D2�−1
D : L p(�) → L p(�) for all

p < ∞ is a bounded linear operator. We will now show that D2�−1
D : C̊0,α(�) →

C̊0,α(�) :
Lemma 5.5 Let � be an admissible domain and let 0 < α < 1. Then, there exists a
constant C > 0 so that for all f ∈ C̊0,α(�) the unique W 2,2(�) solution ψ of the
Dirichlet problem:

�ψ = f

ψ |∂� = 0

on � satisfies:

|D2ψ |C̊0,α ≤ C | f |C̊0,α .

Proof Let ε, δ, and� be as in Definition 5.3. Let us first notice thatψ ∈ C2,α(�\{0})
using the standard global Schauder estimates [47] since f ∈ Cα(�\{0})∩ L∞. In the
proof we will actually be proving the a-priori estimate assuming that D2ψ belongs to
C̊0,α(�). To show that D2ψ actually belongs to C̊0,α all we have to do is exclude a
small ball of radius ε around 0 in all our estimates and then send ε to 0 by observing that
all estimates will be independent of ε. We leave that step to the reader. Now we show
how to get the a-priori estimates. First, let us consider the case where �(x) = x for
all x ∈ Bδ(0). Let φ ∈ C∞(R2) be such that φ ≡ 1 on Bδ/2(0) and φ ≡ 0 on Bδ(0)c.
Let ψ̃ = φψ extended to be identically 0 outside of Bδ(0). Then, |�ψ̃ |C̊0,α(�ε)

≤
Cδ,ε,α| f |C̊0,α(�)

. Moreover, ψ̃ = 0 on ∂�ε . Thus, using Lemma 5.2,

|D2ψ |C̊0,α(Bδ/2(0))
≤ |D2ψ̃ |C̊0,α(�ε)

� | f |C̊0,α(�)
.
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This establishes the estimates near the corner. Now we notice: | f |Cα(�\B δ
8
(0)) �

| f |C̊0,α(�)
. Now we use the global Schauder estimates (see [47]) on � \ B δ

8
(0) using

the equation for ψ to deduce:

|D2ψ |Cα(�\B δ
4
(0)) � | f |C̊0,α(�)

.

This establishes the theorem in the case where �(x) = x for all x ∈ Bδ(0). Notice
that the proof above just consisted of two cases: the region near 0 and the region away
from 0. The estimate for the region away from 0 will not change when � is variable
coefficient. However, near zero we will just have to use the usual method of freezing
the coefficients. Now, since the Laplacian commutes with rotations, we might as well
assume that �(x) = x + �(x) with � ∈ C3 and �(0) = ∇�(0) = 0. Next we will
let ψ̃ = φ(ψ ◦ �) extended to be 0 outside of Bδ(0). Note that ψ̃ vanishes on ∂�ε .
By studying �ψ̃ we see that if ζ < δ we have

|�ψ̃ |C̊0,α(Bζ )
≤ | f |C̊0,α(�)

+ Cδζ |D2ψ̃ |C̊0,α(Bζ )
+ Cδ|∇ψ̃ |C̊0,α(Bζ )

.

Since ψ̃ vanishes on ∂�ε , we have that |D2ψ̃ |C̊0,α(�ε)
≤ Cε |�ψ̃ |C̊0,α(�ε)

.Notice also

that since ψ̃ vanishes on ∂�ε we must have |∇ψ̃ |C̊0,α(Bζ )
≤ Cζ |D2ψ̃ |C̊0,α(Bζ )

. Thus,
taking ζ small enough (depending only on ε, δ, and α), we have:

|�ψ̃ |C̊0,α(Bζ )
≤ | f |C̊0,α(�)

+ Cζ |D2ψ̃ |C̊0,α(Bc
ζ )

.

But we already know that |D2ψ̃ |C̊0,α(Bc
ζ )

≤ C | f |C̊0,α(�)
. Thus we get:

|�ψ̃ |C̊0,α(Bζ )
≤ C | f |C̊0,α(�)

.

This finishes the proof of the estimate

|D2ψ |C̊0,α(�)
≤ C | f |C̊0,α(�)

.

��
The exact same proof yields classical Cα estimates on admissible domains when
α < 1/β − 2 (recall that tan(βπ) = ε−1) using the corresponding estimates for the
Laplacian on the sectors �ε and freezing the coefficients as above.

Lemma 5.6 Let�be anadmissible domainwith ε as inDefinition5.3. Letα < 1/β−2.
Then, there exists a constant C > 0 so that for all f ∈ C0,α(�) the unique W 2,2(�)

solution ψ of the Dirichlet problem:

�ψ = f

ψ |∂� = 0
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on � satisfies:

|D2ψ |C0,α ≤ C | f |C0,α .

5.2 Estimates for L on Admissible Domains

Nowwemove to establish estimates on the axi-symmetric Biot–Savart operator. Recall
that the operator L was defined by by

L(ψ) = �ψ − 1

r + 1
∂rψ.

Lemma 5.7 Let � be an admissible domain and let 0 < α < 1. Then, there exists a
constant C > 0 so that for all f ∈ C̊0,α(�) the unique W 2,2(�) solution ψ of the
Dirichlet problem:

L(ψ) = f

ψ |∂� = 0

on � satisfies:
|D2ψ |C̊0,α ≤ C | f |C̊0,α .

Proof For existence of a W 2,2 solution we are relying on Grisvard’s shift theorem
[32]. However one could avoid using the shift theorem by using the a-priori estimates
we will now prove along with the continuity method (for more details see the proof
of Lemma 5.11 in the next subsection). Using the standard Schauder theory, we have,
for any ζ > 0,

|D2ψ |C̊0,α(Bc
ζ )

≤ C | f |C̊0,α(�)

for some C > 0 depending on ζ and α. In fact, in this estimate, we could have the
Cα norm on the left side of the inequality. Notice, however, that |∂rψ |C̊0,α(B2ζ )

≤
10ζ |D2ψ |C̊0,α(B2ζ )

since ψ = 0 on ∂�. Thus, as before,

|D2ψ |C̊0,α(�)
≤ C�,α|�ψ |C̊0,α(�)

≤ C�,α| f |C̊0,α(�)
+ C�,α

∣∣∣∣ 1

1 + r
∂rψ

∣∣∣∣
C̊0,α(�)

≤ C�,α,ζ | f |C̊0,α(�)
+ C�,αζ |D2ψ |C̊0,α(�)

,

where the first inequality uses Lemma 5.5, the second inequality uses L(ψ) = f , the
third inequality uses that � ⊂ {r ≥ 0}, and the last inequality uses the estimate for
D2ψ on Bc

ζ above. Notice that the first constant in the last inequality may depend
non-trivially on ζ (in fact, it will become unbounded as ζ → 0) while we make the
dependence on ζ explicit in the second constant. Now we take ζ small depending on
C�,α from the last inequality and we are done. ��
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Similarly, we have the full Schauder estimates for L−1 which is the content of the
following lemma.

Lemma 5.8 Let� be an admissible domain with ε as in Definition 5.3. Let 0 < α < ε.

Then, there exists a constant C > 0 so that for all f ∈ C0,α(�) the unique W 2,2(�)

solution ψ of the Dirichlet problem:

L(ψ) = f

ψ |∂� = 0

on � satisfies:

|D2ψ |C0,α ≤ C | f |C0,α .

We leave the details to the reader. Next, we observe the following simple corollary
which is of great importance.

Corollary 5.9 (Lψ vanishing to order α impliesψ vanishes to order 2+α) Let� be an
admissible domain with ε as in Definition 5.3 and assume that f ∈ Cα(�)with α < ε.
Assume ψ is the unique solution of Lψ = f with ψ = 0 on ∂� from Lemma 5.8.
Then, if f (0) = 0, D2ψ(0) = 0. In particular, |ψ(x)| ≤ Cα,�| f |Cα |x |2+α for x ∈ �.

Proof Assume � is an admissible domain and let ε, δ,� be as in Definition 5.3. Let
φ ∈ C∞(R2) be such that φ ≡ 1 on Bδ/2(0) and φ ≡ 0 on Bδ(0)c. By Lemma 5.8,
ψ ∈ C2,α(�). Define ψ̃ = φ(ψ ◦ �) extended to be 0 outside of Bδ(0). Let’s notice
that inside of B δ

2
(0), L(ψ̃ ◦ �−1) = f and that ψ̃ vanishes along z = 0 and εz = r .

This already implies that � vanishes quadratically and that ∂rrψ and (∂z + ε∂r )
2ψ

vanish at 0. Now we will use that Lψ vanishes at 0 to conclude that ∂r zψ and ∂zzψ

both vanish at 0 which then will conclude the proof. Notice that ∇ψ̃(0) = 0.

f = L(ψ̃ ◦ �−1) = �(ψ̃ ◦ �−1) − 1

r + 1
∂r (ψ̃ ◦ �−1).

Thus, evaluating at 0 and using that ∇ψ̃(0) = 0 and ∇�−1(0) = I d we see:

0 = div(∇�−1∇ψ̃ ◦ �−1)|x=0 = �ψ̃(0).

Then, using that ∂rr ψ̃(0) = (∂z + ε∂r )
2ψ(0) = 0 we get that ∂rr ψ̃(0) = ∂r zψ̃(0) =

∂zzψ̃(0) = 0. Thus, D2ψ(0) = D2ψ̃(0) = 0. Then, since ψ ∈ C2,α , |ψ(x)| �
| f |Cα |x |2+α and we are done. ��

Remark 5.10 The above proof breaks down when ε = 0 since one could only say that
∂rrψ(0) = ∂zzψ(0) = 0.
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5.3 Estimates onÄ�

Estimates for L on�ε are slightlymore cumbersome than on admissible domains since
�ε is unbounded. In fact, while we showed that D2�−1 : C̊0,α(�ε) → C̊0,α(�ε) for
all ε > 0, it may not be true that D2L−1 satisfies the same property. We shall impose
some mild L2-type decay assumption on the vorticity to achieve this.

Fix some ε > 0 and 0 < α < 1. In the remainder of this section, we shall suppress
from writing out the dependence of multiplicative constants on ε and α. Let us define
the space B by the collection of functions ψ defined in �ε , twice differentiable in
�ε\{0}, satisfying
• ψ = 0 on ∂�ε ,
• ∇2ψ ∈ C̊0,α(�ε),
• (1 + |x |)�ψ(x) ∈ L2(�ε),

• ∇ψ(x) ∈ L2(�ε),
• (1 + |x |)−1ψ(x) ∈ L2(�ε).

We simply define the norm on B by

|ψ |B := |∇2ψ |C̊0,α(�ε)

+ |(1 + |x |)�ψ(x)|L2(�ε)
+ |∇ψ(x)|L2(�ε)

+ |(1 + |x |)−1ψ(x)|L2(�ε)
.
(5.8)

On the other hand, we define V be the space of bounded functions f in �ε satisfying

• f ∈ C̊0,α(�ε),
• (1 + |x |)| f (x)| ∈ L2(�ε).

Then, we set

| f |V := | f |C̊0,α(�ε)
+ |(1 + |x |) f (x)|L2(�ε)

. (5.9)

Note that the spaces B and V are Banach spaces. This is clear for V , and to see this
for B, let {ψn}n≥1 be a Cauchy sequence with respect to the B-norm. Then, for some
function g ∈ V , we have convergence �ψn → g in the norm C̊0,α(�ε). At this point,
we know that there exists a uniqueψ which satisfies the Dirichlet boundary condition,
�ψ = g, and ∇2ψ ∈ C̊0,α(�ε). It only remains to show the L2 bounds for ∇ψ and
(1 + |x |)−1ψ , and this part is included in the proof of Lemma 5.11 below.

We consider for t ∈ [0, 1] the family of operators

Lt = � − t

1 + r
∂r ,

so that L0 = � and L1 = L . It is clear that Lt defines a bounded linear operator from
B to V . In the lemma below, we shall obtain the following estimate

|ψ |B ≤ C |Ltψ |V (5.10)

where the constant C > 0 is independent of t ∈ [0, 1].
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Lemma 5.11 Fix some 0 < α < 1 and 0 < ε. For any f ∈ V , there exists a unique
solution ψ ∈ B for Lψ = f satisfying

|ψ |B ≤ C | f |V (5.11)

with some constant C > 0.

Proof We begin by noting that the uniqueness and existence is immediate once we
prove the uniform estimate (5.10). Indeed, this estimate guarantees invertibility of Lt

for all t ∈ [0, 1] by the method of continuity (see [31, Theorem 5.2]), once we prove
the invertibility in the case t = 0 (Case (i) below). We let f ∈ V and ψ ∈ B satisfy

Ltψ = �ψ − t
1

1 + r
∂rψ = f , (5.12)

and first deal with the Laplacian case.
(i) Case of the Laplacian t = 0.
In this special case t = 0, to obtain the bound (5.10), it suffices to prove that

|∇ψ |L2 + |(1 + |x |)−1ψ |L2 ≤ C |(1 + |x |)�ψ |L2 . (5.13)

We first note that

∣∣∣∣
∫

�ε

ψ�ψ

∣∣∣∣ ≤ |(1 + |x |)−1ψ |L2 |(1 + |x |)�ψ |L2

so that the integral on the left hand side is well-defined for ψ ∈ B. Next, we write
∫

�ε

ψ�ψ = lim
R→+∞

∫
�ε∩B0(R)

ψ�ψ

= − lim
R→+∞

∫
�ε∩B0(R)

|∇ψ |2 + lim
R→+∞

∫
∂(�ε∩B0(R))

ψ∂nψ.

Using the boundary condition for ψ , the last integral term reduces to

lim
R→+∞

∫
�ε∩∂(B0(R))

ψ∂nψ

and then using the L2-bounds for (1 + |x |)−1ψ and ∇ψ it is possible to extract a
sequence Rn → +∞ such that the above boundary integral decays to zero in absolute
value. This justifies the integration by parts formula

∫
�ε

ψ�ψ = −
∫

�ε

|∇ψ |2
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for ψ ∈ B. In particular, we obtain

|∇ψ |2L2 ≤ |(1 + |x |)−1ψ |L2 |(1 + |x |)�ψ |L2 . (5.14)

Next, we compute

|(1 + r)−1ψ |2L2 =
∫

�ε

(1 + r)−2|ψ(x)|2 =
∫

�ε

−∂r (1 + r)−1|ψ(x)|2

=
∫

�ε

(1 + r)−12ψ∂rψ ≤ 2|(1 + r)−1ψ |L2 |∇ψ |L2

(integration by parts can be justified similarly as above) so that

|(1 + |x |)−1ψ |L2 ≤ c|(1 + r)−1ψ |L2 ≤ C |∇ψ |L2 . (5.15)

In the above we have used that c′|x | ≤ r ≤ |x | on �ε . Estimates (5.14) and (5.15)
imply

c|(1 + |x |)−1ψ |L2 ≤ |∇ψ |L2 ≤ C |(1 + |x |)�ψ |L2 .

This finishes the proof of (5.10) in the special case t = 0.
(ii) General case.
We now treat the case t > 0. We proceed in a number of steps.
Step 1: H1 -estimates
Multiplying both sides of (5.12) by ψ and integrating we see:

−
∫

�ε

|∇ψ |2 − t

2

∫
�ε

1

(r + 1)2
ψ2 =

∫
�ε

f ψ.

Notice again that L2-assumptions on ψ and ∇ψ in the definition of B justify applying
integration by parts. Now using the Cauchy–Schwarz inequality gives

|∇ψ |2L2 ≤ | f |V |(1 + |x |)−1ψ |L2 .

Recalling (5.15) gives

c|(1 + |x |)−1ψ |L2 ≤ |∇ψ |L2 ≤ C | f |V

and then using the equation gives

|(1 + |x |)�ψ |L2 ≤ C |∇ψ |L2 + C |(1 + |x |) f |L2 ≤ 2C |(1 + |x |) f |L2 .

Step 2: H2 estimates
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We now use a well known inequality which holds in convex domains (see [65] and
[32]). For simplicity, we will only give the calculation in the case ε = 1. Notice that:

0 =
∫

∂�1

(∂rψ − ∂zψ)∂r∇⊥ψ · n,

where n is the unit exterior normal to ∂�ε . This follows from the vanishing of ψ on
∂�ε . This implies

0 =
∫

�1

div
(
(∂rψ − ∂zψ)∂r∇⊥ψ

)

= −
∫

�1

∇∂zψ · ∇⊥∂rψ =
∫

�1

∂zzψ∂rrψ − (∂r zψ)2.

In particular,

∫
�1

∂zzψ∂rrψ =
∫

�1

(∂r zψ)2.

Then, |D2ψ |L2 ≤ |�ψ |L2 ≤ C |(1 + |x |) f |L2 . (The assumption ψ ∈ B was again
used to justify convergence of the integrals as well as integration by parts.) Note that
the estimates given above only improve in convex domains where the boundary has
non-zero curvature (see [65] and [32]). This concludes the H2 estimates.

Step 3: 1
1+r ∂ψ ∈ L4

We nowmove to prove higher integrability of ∂rψ . While we could use the Sobolev
embedding theorem for domains with corners as in Grisvard [32], we wish to keep
this work as self-contained as possible. Observe that

∫
�ε

1

(1 + r)4
(∂rψ)4 =

∫
�ε

div

(
(∂rψ)3(ψ, 0)

1

(1 + r)4

)

−3
∫

�ε

(∂rψ)2∂rrψψ + 4
∫

�ε

(∂rψ)3ψ
1

(1 + r)5

= −3
∫

�ε

(∂rψ)2

(1 + r)4
∂rrψψ + 4

∫
�ε

(∂rψ)3ψ
1

(1 + r)5
,

since ψ = 0 on ∂�ε . Now using the Cauchy–Schwarz inequality we get:

∫
�ε

(∂rψ)4

(1 + r)4
≤ C

∫
�ε

(∂rrψ)2
ψ2

(1 + r)4
.

Next we see:

∣∣∣∣ ψ

(r + 1)2

∣∣∣∣
L∞

≤
∫

�ε

∣∣∣∣∂r z ψ

(r + 1)2

∣∣∣∣ ≤ |∇ψ |H1 ≤ C |(1 + |x |) f |L2 ,
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where the first inequality follows from writing:

f (r , z) =
∫ z

0
∂2 f (r , w)dw = −

∫ ∞

r

∫ z

0
∂12 f (u, w)dwdu

for f → 0 at ∞. This is reminiscent of the well known embedding of W 2,1(R2) into
L∞. Now we see:

∣∣∣∣ 1

1 + r
∂rψ

∣∣∣∣
L4

≤ C |(1 + |x |) f |L2 .

Step 4: �−1
D : L2 ∩ L4 → Ẇ 1,∞

Next we will show that solutions to �ψ = g with g ∈ L2 ∩ L4 must satisfy
1

1+r ∂rψ ∈ L∞. Recall from Section 3.1 of [19] that

∇ψ(x) =
∫

�ε

K (x, y)g(y)dy,

where K satisfies

|K (x, y)| ≤ C

|x − y|
as well as

|K (x, y)| ≤ C |x |
|y|2

in the region |y| � |x |. In particular, estimating separately the regions |x − y| ≤ |x |/2
and |x − y| > |x |/2 we get

∣∣∣∣ 1

1 + r
∇ψ

∣∣∣∣
L∞

≤ |g|L2∩L4 .

Now applying this to our situation, we get from

�ψ = f + t

r + 1
∂rψ

that

∣∣∣∣ 1

1 + r
∇ψ

∣∣∣∣
L∞

� | f |L2∩L4 +
∣∣∣∣ 1

1 + r
∇ψ

∣∣∣∣
L2∩L4

� | f |L∞ + |(1 + |x |) f |L2 .

Now we study solutions of the Dirichlet problem with bounded right-hand-side.
Step 5: 1

1+r ∇�−1
D : L∞ → C̊0,α
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First, we know from [19] (Lemma 3.2 there and its proof) that

∣∣∣∣ 1

1 + r
∇�−1

D g

∣∣∣∣
L∞

�
∣∣∣∣1r ∇�−1

D g

∣∣∣∣
L∞

� |g|L∞ .

Next we prove the C̊0,α estimate. It suffices to show that for |a1 − a2| < 1 and
|a2| ≤ |a1|, we have:

1 + |a1|α
1 + |a1|

∫
�ε

(K (a1, b) − K (a2, b))g(b)db � |a1 − a2|α

for any α < 1 where (recall that tan(βπ) = ε−1)

K (a, b) = −a
1
β
−1

4πβ

b1/β − b1/β

(a1/β − b1/β)(a1/β − b1/β)
.

Now we see:
|K (a1, b) − K (a2, b)|

�
∣∣∣b̄ 1

β − b
1
β

∣∣∣
∣∣∣∣∣∣∣∣

a
1
β
−1

1(
a

1
β

1 − b
1
β

) (
a

1
β

1 − b
1
β

) − a
1
β
−1

2(
a2

1
β − b

1
β

) (
a

1
β

2 − b
1
β

)
∣∣∣∣∣∣∣∣

�
|a1|

1
β
−2|a1 − a2|

∣∣∣b̄ 1
β − b

1
β

∣∣∣∣∣∣∣a
1
β

1 − b
1
β

∣∣∣∣
∣∣∣∣a

1
β

1 − b
1
β

∣∣∣∣

+
|a1|

1
β
−1

∣∣∣∣
(
a

1
β

1 − b̄
1
β

) (
a

1
β

1 − b
1
β

)
−

(
a

1
β

2 − b̄
1
β

)(
a

1
β

2 − b
1
β

)∣∣∣∣
∣∣∣b 1

β − b̄
1
β

∣∣∣
∣∣∣∣a

1
β

1 − b̄
1
β

∣∣∣∣
∣∣∣∣a

1
β

1 − b
1
β

∣∣∣∣
∣∣∣∣a

1
β

2 − b̄
1
β

∣∣∣∣
∣∣∣∣a

1
β

2 − b
1
β

∣∣∣∣
.s

The first term is easy to deal with while, for the second term, we use:

∣∣∣∣
(
a

1
β

1 − b̄
1
β

)(
a

1
β

1 − b
1
β

)
−

(
a

1
β

2 − b̄
1
β

) (
a

1
β

2 − b
1
β

)∣∣∣∣
=

∣∣∣a1/β1 − a1/β2

∣∣∣
∣∣∣a1/β1 + a1/β2 − b̄1/β − b1/β

∣∣∣
≤

∣∣∣a1/β1 − a1/β2

∣∣∣ (
∣∣∣a1/β1 − b̄1/β

∣∣∣ +
∣∣∣b 1

β − a1/β2

∣∣∣)

=
∣∣∣a1/β1 − a1/β2

∣∣∣α ∣∣∣a1/β1 − a1/β2

∣∣∣1−α (∣∣∣a1/β1 − b̄1/β
∣∣∣ +

∣∣∣b 1
β − a1/β2

∣∣∣)

� |a1 − a2|α|a1|α(1/β−1)
(∣∣∣a1/β1 − b1/β

∣∣∣1−α

+
∣∣∣a1/β2 − b1/β

∣∣∣1−α
) (∣∣∣a1/β1 − b̄1/β

∣∣∣ +
∣∣∣b 1

β − a1/β2

∣∣∣) .
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And then we see:

|a1|
1
β

−1
∣∣∣∣
(
a

1
β

1 − b̄
1
β

) (
a

1
β

1 − b
1
β

)
−

(
a

1
β

2 − b̄
1
β

) (
a

1
β

2 − b
1
β

)∣∣∣∣
∣∣∣b 1

β − b̄
1
β

∣∣∣
∣∣∣∣a

1
β

1 − b̄
1
β

∣∣∣∣
∣∣∣∣a

1
β

1 − b
1
β

∣∣∣∣
∣∣∣∣a

1
β

2 − b̄
1
β

∣∣∣∣
∣∣∣∣a

1
β

2 − b
1
β

∣∣∣∣
� |a1|(α+1)

(
1
β

−1
) ∣∣∣b 1

β − b̄
1
β

∣∣∣
|a1 − a2|α

(∣∣∣a1/β1 − b1/β
∣∣∣1−α +

∣∣∣a1/β2 − b1/β
∣∣∣1−α

)(∣∣∣a1/β1 − b̄1/β
∣∣∣ +

∣∣∣b 1
β − a1/β2

∣∣∣)
∣∣∣∣a

1
β

1 − b̄
1
β

∣∣∣∣
∣∣∣∣a

1
β

1 − b
1
β

∣∣∣∣
∣∣∣∣a

1
β

2 − b̄
1
β

∣∣∣∣
∣∣∣∣a

1
β

2 − b
1
β

∣∣∣∣
which consists of four terms. A typical term is of the form:

|a1|(α+1)
(
1
β

−1
) ∣∣∣b 1

β − b̄
1
β

∣∣∣ |a1 − a2|α
∣∣∣a1/β1 − b1/β

∣∣∣1−α ∣∣∣a1/β1 − b̄1/β
∣∣∣∣∣∣∣a

1
β

1 − b̄
1
β

∣∣∣∣
∣∣∣∣a

1
β

1 − b
1
β

∣∣∣∣
∣∣∣∣a

1
β

2 − b̄
1
β

∣∣∣∣
∣∣∣∣a

1
β

2 − b
1
β

∣∣∣∣
= |a1|(α+1)

(
1
β

−1
) ∣∣∣b 1

β − b̄
1
β

∣∣∣ |a1 − a2|α∣∣∣∣a
1
β

1 − b
1
β

∣∣∣∣
α ∣∣∣∣a

1
β

2 − b̄
1
β

∣∣∣∣
∣∣∣∣a

1
β

2 − b
1
β

∣∣∣∣

≤ |a1|(α+1)
(
1
β

−1
)
|a1 − a2|α

⎛
⎜⎜⎝ 1∣∣∣∣a

1
β

1 − b
1
β

∣∣∣∣
α ∣∣∣∣a

1
β

2 − b
1
β

∣∣∣∣
+ 1∣∣∣∣a

1
β

1 − b
1
β

∣∣∣∣
α ∣∣∣∣a

1
β

2 − b̄
1
β

∣∣∣∣

⎞
⎟⎟⎠ ,

using the Cauchy–Schwarz inequality. Now we notice:

∫
�ε

1∣∣∣∣a
1
β

1 − b
1
β

∣∣∣∣
α ∣∣∣∣a

1
β

2 − b̄
1
β

∣∣∣∣
db � (|a1|2 + 1)(|a1|−(α+1)/β)

where we use that β < 1
2 . Now collecting the terms we have estimated and similarly

estimating the terms we have left out, we get:

∫
�ε

|K (a1, b) − K (a2, b)|db � |a1 − a2|α|a1|1−α. (5.16)

This implies that 1
1+|a|∇�−1 : L∞ → C̊α for all α < 1.

Now taking 1
1+r ∂rψ as a source term and using that D2�−1

D is a bounded operator

on C̊0,α(�ε), we finally obtain that

|D2�−1
D ψ |C̊α ≤ C | f |V

and this finishes the proof. ��
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We now state the Hölder version of the previous lemma.

Lemma 5.12 In addition to the assumptions of Lemma 5.11, assume further that f ∈
Cα(�ε) and 0 < α < 1/β − 2 where 0 < β < 1/2 with tan(βπ) = ε−1. Then, for
the solution ψ of Lψ = f , we have

|D2ψ |Cα(�ε) ≤ C(| f |V + | f |Cα(�ε)) (5.17)

with C = C(α, ε) > 0.

To prove the above lemma, it is only necessarily to obtain the a priori bound

∣∣∣∣ 1

1 + r
∇�−1ψ

∣∣∣∣
Cα(�ε)

≤ C | f |L∞ ,

which follows readily from the estimate (5.16). We omit the details. Finally, as a
corollary of Lemma 5.12, we obtain

Corollary 5.13 Under the assumptions of Lemma 5.12, if f (0) = 0, we have that

|D2ψ(x)| ≤ Cα,ε |x |α(| f |V + | f |Cα(�ε)).

The proof is parallel to the one given for Corollary 5.9 above.

5.4 Further Estimates onÄ�

In this subsection we give some estimates which are useful for the global well-
posedness of zero-swirl solutions as well as getting the blow-up criterion (of
Beale-Kato-Majda type) in the general case.

Lemma 5.14 Let ω ∈ C̊0,α(Aε) be compactly supported. Letψ be the unique solution
to

1

r
∂zzψ + 1

r
∂rrψ − 1

r2
∂rψ = ω

on Aε so that ψ = 0 on ∂Aε constructed using Lemma 5.11. Then, there exists a
constant Cα,ε depending only on α and ε (but independent of the radius of the support
of ω) so that

∣∣∣∣ 1

1 + |x |2∇ψ

∣∣∣∣
L∞

≤ Cα,ε

(
|ω|L1 +

∣∣∣ω
r

∣∣∣
L∞ +

∣∣∣∣∇ψ√
r

∣∣∣∣
L2

)
, (5.18)

∣∣∣∣1r D2ψ

∣∣∣∣
C̊0,α

≤ Cα,ε

( ∣∣∣ω
r

∣∣∣
C̊0,α

+ |ω|L1 +
∣∣∣∣∇ψ√

r

∣∣∣∣
L2

)
, (5.19)

and
∣∣∣∣1r D2ψ

∣∣∣∣
L∞

≤ Cα,ε

(
|ω|L1 +

∣∣∣ω
r

∣∣∣
L∞ +

∣∣∣∣∇ψ√
r

∣∣∣∣
L2

)
log

(
2 +

∣∣∣ω
r

∣∣∣
C̊0,α

)
(5.20)

holds.
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Remark 5.15 Note that the term |∇ψ√
r
|L2 is just ||v|√r |L2 which is controlled by the

total kinetic energy.

Proof In the proof we will suppress writing out the dependence of multiplicative
constants on α, ε.

Recall that �ψ = rω + 1
r ∂rψ. Thus,

∇ψ =
∫

K (x, y)y1ω(y)dy +
∫

K (x, y)
1

y1
∂y1ψdy

with |K (x, y)| ≤ C
|x−y| , so that

|∇ψ | ≤ C

(∫ |y1|
|x − y| |ω(y)|dy +

∫ |∂y1ψ |
|y1||x − y|dy

)
.

We estimate each term separately. Regarding the first integral, by writing y1 = (y1 −
x1) + x1 and taking absolute values, we see that it is bounded by

|ω|L1 + |x |
∫ |y|

|x − y|
|ω(y)|

|y| dy.

Splitting the second integral into pieces |x − y| ≤ 1 and |x − y| > 1, we see that it is
bounded by

C(1 + |x |2)
(

|ω|L1 +
∣∣∣∣ω(y)

|y|
∣∣∣∣
L∞

)

Regarding the second term,

∫ |∂y1ψ |
|y1||x − y| =

∫
|x−y|<δ

|∂y1ψ |
|y1||x − y|dy +

∫
|x−y|>δ

|∂y1ψ |
|y1||x − y|dy,

where δ ≤ 1 is a constant to be chosen later. In the region where |x − y| < δ we
estimate:

∫
|x−y|<δ

|∂y1ψ |
|y1||x − y|dy

≤
∫

|x−y|<δ

|x − y| + |x |
|x − y|

|∂y1ψ |
|y|2 dy ≤ Cδ(1 + |x |)

∣∣∣∣ ∇ψ

1 + |x |2
∣∣∣∣
L∞

.

Next, we estimate

∫
|x−y|>δ

|∂y1ψ |
|y1||x − y|dy ≤

∣∣∣∣ ∇ψ√
y1

∣∣∣∣
L2

√∫
|x−y|>δ

1

|y1||x − y|2 ≤ Cδ

∣∣∣∣ ∇ψ√
y1

∣∣∣∣
L2

.
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Now putting all this together we get:

|∇ψ(x)| ≤ C(1 + |x |2)
(

|ω|L1 +
∣∣∣∣ω(y)

|y|
∣∣∣∣
L∞

)

+Cδ(1 + |x |)
∣∣∣∣ ∇ψ

1 + |x |2
∣∣∣∣
L∞

+ Cδ

∣∣∣∣ ∇ψ√
y1

∣∣∣∣
L2

.

Dividing both sides by 1+ |x |2 and choosing δ > 0 to be a sufficiently small constant
(possibly depending on α, ε), we conclude that

∣∣∣∣ ∇ψ

1 + |x |2
∣∣∣∣
L∞

≤ C

(∣∣∣∣∇ψ√
r

∣∣∣∣
L2

+ |ω|L1 +
∣∣∣ω
r

∣∣∣
L∞

)
.

We now proceed as in Step 5 of the proof of Lemma 5.11 to conclude (5.19) and (5.20)
from (5.18) and (5.5). ��

6 Local Well-Posedness

We are now ready to precisely state and prove the local well-posedness theorem in
C̊α(�ε) for the system (3.1)–(3.4). For simplicity we shall assume that the initial data
is compactly supported in space.

Theorem 2 Let ε > 0 and 0 < α < 1. For every ω0 and u0 which are compactly
supported in �ε and for which ω0 ∈ C̊0,α(�ε) and ∇u0 ∈ C̊0,α(�ε), there exists a
T > 0 depending only on |ω0|C̊0,α , |∇u0|C̊0,α , and the radius of the support of ω0 so
that there exists a unique solution (ω, u) to the axi-symmetric 3D Euler system (3.1)–
(3.4) with ω,∇u ∈ C([0, T ); C̊0,α(�ε)) and (ω, u) remain compactly supported for
all t ∈ [0, T ). Finally, (ω,∇u) cannot be continued as compactly supported C̊0,α

functions past T ∗ if and only if

lim sup
t→T ∗

∫ T ∗

0
|ω(t, ·)|L∞ + |∇u(t, ·)|L∞dt = +∞. (6.1)

Remark 6.1 Before we proceed to the proof, we note that for a compactly supported
vorticity ω(t, ·), we have the following estimate

|∇v|C̊α(�ε)
≤ CM |ω|C̊α(�ε)

(6.2)

as an immediate consequence of Lemma 5.11, where M > 0 is the radius of the
support of ω(t, ·).
Proof To prove the local well-posedness result, we proceed in four steps: a priori
estimates, existence, uniqueness, and lastly the blow-up criterion. In the following,
we shall stick to the variables (η, z) and use the system (3.5)–(3.7). We begin with
obtaining an appropriate set of a priori estimates for the axi-symmetric Euler system.
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(i) A priori estimates
We assume that there is a solution (ω, u) satisfying u(0, ·) = u0, ω(0, ·) = ω0 as

well asω(t, ·),∇u(t, ·) ∈ C̊α(�ε) for some interval of time [0, T ). We further assume
that the supports of ω and u on [0, T ) are contained in a ball B0(M) for some fixed
M > 0 (we shall suppress fromwriting out the dependence of multiplicative constants
on M momentarily). Then, from the elliptic estimate (6.2), we see in particular that
the velocity v is Lipschitz for 0 ≤ t < T , and hence there exists a Lipschitz flow
map �t (·) = �(t, ·) : �ε → �ε with Lipschitz inverse �−1

t , defined by solving
d
dt �(t, x) = v(t,�(t, x)) and �(0, x) = x . We have v · n = 0 where n is the

outwards unit normal vector on ∂�ε , and therefore �t and �−1
t maps ∂�ε to itself

and fixes the origin.
First, evaluating the u-equation at (η, z) = (0, 0), we have that u(t, 0) = u0(0) for

all time. Next, we write the equations for ω and ∇u along the flow: we have

d

dt
(ω ◦ �) =

(
2u∂zu + v1ω

1 + η

)
◦ �, (6.3)

d

dt

(
∂ηu ◦ �

) =
(

−∂η

(
v1u

1 + η

)
− ∂ηv1∂ηu − ∂ηv2∂zu

)
◦ �, (6.4)

and

d

dt
(∂zu ◦ �) =

(
−∂z(v1u)

1 + η
− ∂zv1∂ηu − ∂zv2∂zu

)
◦ �. (6.5)

From (6.3), we obtain

∣∣∣∣ ddt |ω|L∞
∣∣∣∣ ≤ C |∇u|L∞(1 + |∇u|L∞) + |∇v|L∞|ω|L∞ ,

where C > 0 depends only on u(t, 0), which is constant in time. Proceeding similarly
for (6.4) and (6.5), we obtain

∣∣∣∣ ddt |∇u|L∞
∣∣∣∣ ≤ C |∇v|L∞(1 + |∇u|L∞).

Next, to obtain estimates for the C̊α-norm, one takes two points x �= x ′ and simply
computes

d

dt

( |�(t, x)|αω(�(t, x)) − |�(t, x ′)|αω(�(t, x ′))
|�(t, x) − �(t, x ′)|α

)
,
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and similarly for ∂ηu and ∂zu. After straightforward computations (one may refer to
the proof of [19, Theorem 1] for details), one obtains

d

dt
|ω|C̊α ≤ C

(|∇v|L∞|ω|C̊α + (1 + |∇u|L∞)|∇u|C̊α

)
,

d

dt
|∇u|C̊α ≤ C

(|∇v|L∞|∇u|C̊α + (1 + |∇u|L∞)|∇v|C̊α

)
.

(6.6)

Given the above estimates, once we set

|ω(t)|C̊α + |∇u(t)|C̊α = A(t)

on the time interval [0, T ), we have the inequality

d

dt
A ≤ C(1 + A2). (6.7)

Here, C = C(M) > 0 can be taken to be a continuous non-decreasing function of M .
Let us set

M(t) = sup
{x :ω(t,x) �=0 or u(t,x) �=0}

|x |,

and then from

d

dt
�(t, x) = v(t,�(t, x)),

we see that
∣∣∣∣ ddt M(t)

∣∣∣∣ ≤ |∇v(t, ·)|L∞M(t). (6.8)

Then, equations (6.7) and (6.8) imply that there exists T1 = T1(M(0), |ω(0)|C̊α , |∇
u(0)|C̊α , |u(0)|) > 0 such that

sup
[0,T1]

(A(t) + M(t)) ≤ 2(A(0) + M(0)). (6.9)

At this point, we have deduced (formally) that the solution can be continued past
T ∗ > 0 if and only if

sup
t∈[0,T ∗]

(|ω(t, ·)|C̊α + |∇u(t, ·)|C̊α + M(t)
)

< +∞.

(ii) Existence
We sketch a proof of existence based on a simple iteration scheme. Given the initial

data (ω0, u0) with compact support, we take the time interval [0, T1] where T1 > 0 is
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provided from the a priori estimates above (see (6.9)). We shall define a sequence of
approximate solutions {(ω(n), u(n), �(n))}n≥0 such that we have uniform bounds

sup
t∈[0,T1]

(
A(n)(t) + M (n)(t)

)
≤ C

for all n ≥ 0. Here,

A(n)(t) := |ω(n)(t)|C̊α + |∇u(n)(t)|C̊α

and

M (n)(t) := sup
{x :ω(n)(t,x) �=0 or u(n)(t,x) �=0}

|x |,

The initial triple (ω(0), u(0), �(0)) is defined by simply setting ω(0) ≡ ω0, u(0) ≡
u0, and letting �(0) to be the flow associated with v(0) which is simply the time-
independent velocity from ω0. Given (ω(n), u(n), �(n)) for some n ≥ 0, we define
(ω(n+1), u(n+1), �(n+1)) as follows: first, we obtain u(n+1) from solving the ODE

d

dt
u(n+1)(t,�(n)(t, x)) =

(
−v

(n)
1 (t, x)u(n+1)(t, x)

1 + η

)
◦ �(n)(t, x),

for each x ∈ �ε , and then ω(n+1) is defined similarly as the solution of

d

dt
ω(n+1)(t,�(n)(t, x))

=
(

v
(n)
1 (t, x)ω(n+1)(t, x) + 2u(n+1)(t, x)∂zu(n+1)(t, x)

1 + η

)
◦ �(n)(t, x),

respectively on the time interval [0, T1]. Here, v(n) is simply the associated velocity
of ω(n). It is straightforward to check that the sequence {(ω(n), u(n))}n≥0 satisfies the
desired uniform bound, arguing along the lines of the proof of the a priori estimates
above.

By passing to a subsequence, we have convergence ω(n) → ω and ∇u(n) → ∇u in
L∞([0, T1]; L∞(�ε)) for some functions ω,∇u belonging to L∞([0, T1]; C̊α(�ε)).
It is then straightforward to check that ω,∇u is a solution with initial data ω0,∇u0.

(iii) Uniqueness
For the proof of uniqueness, we return to the velocity formulation of the axisym-

metric Euler equations:

∂tv + v · ∇v + ∇ p = 1

r

(
u2

0

)
,

∂t u + v · ∇u = −v1u

r

123



16 Page 38 of 51 T. M. Elgindi, I.-J. Jeong

supplemented with

div(rv) = 0.

We assume that for some time interval [0, T ], there exist two solutions (v(1), u(1)) and
(v(2), u(2)) to the above system with the same initial data (v0, u0). It is assumed that

sup
t∈[0,T ]

(
|∇v(i)|L∞ + |∇u(i)|L∞

)
≤ C

for i = 1, 2. Setting

V = v(1) − v(2), U = u(1) − u(2), P = p(1) − p(2),

we obtain

∂t V + v(1) · ∇V + V · ∇v(2) + ∇P = 1

r

(
U (u(1) + u(2))

)

and

∂tU + v(1) · ∇U + V · ∇u(2) = −1

r

(
v

(1)
1 U − V1u

(2)
)

.

Multiplying last two equations by V and U respectively and integrating against the
measure rdrdz on �ε , we obtain after using the divergence-free condition that

d

dt
E(t) ≤ C

(
1 + |∇u(1)|L∞ + |∇u(2)|L∞ + |∇v(1)|L∞ + |∇v(2)|L∞

)
E(t)

holds, with

E(t) :=
(∫

�ε

(U 2 + V 2)rdrdz

)1/2

.

Since E(0) = 0, we have E ≡ 0 on [0, T ]. This finishes the proof of uniqueness.
(iv) Blow-up criterion
We now use estimates from Lemma 5.14 to establish the blow-up criterion (6.1).

For this we assume that

∫ T ∗

0
|ω(t, ·)|L∞ + |∇u(t, ·)|L∞dt ≤ C . (6.10)

To begin with, from the equation for u, we see that

|u(t, x)| ≤ C(1 + |x |)
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for all t ≥ 0 with constant C > 0 depending only on the initial data. Using this
observation on the equation for ω, we see that

∣∣∣∣ ddt
∣∣∣ω
r

∣∣∣
L∞

∣∣∣∣ ≤ C

∣∣∣∣u∂zu

r2

∣∣∣∣ ≤ C |∇u|L∞

and from (6.10) we see

sup
t∈[0,T ∗]

∣∣∣∣ω(t, ·)
r

∣∣∣∣
L∞

≤ C .

On the other hand,
∣∣∣∣ ddt |ω|L1

∣∣∣∣ ≤ C

∣∣∣∣u∂zu

r

∣∣∣∣
L1

≤ C |∇u|L∞|ur1/2|L2 .

Here |ur1/2|L2 is bounded by the kinetic energy, which is finite for all time. Hence we
also obtain that

sup
t∈[0,T ∗]

|ω(t, ·)|L1 ≤ C .

Applying this on the estimates (5.18), (5.19), and (5.20), we first see from |v(x)| ≤
C(1+ |x |) (with C > 0 depending only on the initial data) that the size of the support
remains uniformly bounded on the time interval [0, T ∗]. Moreover, we obtain

|∇v(t, ·)|L∞ ≤ C(1 + log(2 + |ω(t, ·)|C̊α ))

and

|∇v(t, ·)|C̊α ≤ C(1 + |ω(t, ·)|C̊α ).

Then, returning to the proof of a priori estimates in the above we obtain this time the
inequality

∣∣∣∣ ddt A
∣∣∣∣ ≤ C(|ω|L∞ + |∇u|L∞)(1 + A) log(2 + A),

where A(t) := |ω(t, ·)|C̊α + |∇u(t, ·)|C̊α . Using Gronwall’s inequality, it is straight-
forward to show that supt∈[0,T ∗] A ≤ C . The proof is now complete. ��

6.1 Global Regularity in the No-Swirl Case

Here we prove that the unique local solution we have constructed above is global in
the no-swirl case, i.e. when u ≡ 0. In this case, the system simply reduces to

∂t

(ω

r

)
+ v · ∇

(ω

r

)
= 0. (6.11)

123



16 Page 40 of 51 T. M. Elgindi, I.-J. Jeong

Proof of Theorem C We first note from (6.11) that |ω/r |L∞ and |ω|L1 are both con-
served in time. The latter follows from the fact that div(rv) = 0. From the estimate
(5.18) it follows that |v(t, x)| ≤ Cr for all time, where C > 0 only depends on α, ε

and the initial data ω0. From

d

dt
(ω ◦ �) =

(v1ω

r

)
◦ �,

we obtain that

|ω(t, ·)|L∞ ≤ |ω0|L∞ exp(Ct).

From the blow-up criterion (6.1), it follows that the solution is global in time. We note
that using the estimate (5.20) we have

|∇v(t, ·)|L∞ ≤ C(1 + log(2 + |ω(t, ·)|C̊α ))

and from this it is easy to deduce that the norm |ω(t, ·)|C̊α can grow at most double
exponentially in time. ��

7 Proof of Blow-Up

Here we show that the local solutions we constructed can actually become singular in
finite time.As in Section 3,wewrite r = η+1 and let R2 = η2+z2 and θ = arctan( z

η
).

Then, in (R, θ)-coordinates, the domain �ε is a sector {(R, θ) : R ≥ 0, 0 ≤ θ ≤ l}
with l = tan−1(ε−1) < π/2.

Theorem 3 Take any smooth initial data g0, P0 ∈ C∞([0, l]) whose local solution to
the Boussinesq system for radially homogeneous data (7.2)–(7.3) blows up in finite
time, and let φ ∈ C∞(�ε) be a radial cut-off function with φ(R) = 1 in R ≤ 1 and
φ(R) = 0 for R ≥ 2. Then, the unique local solution to the axi-symmetric 3D Euler
system (3.1)–(3.4) provided by Theorem 2 corresponding to the initial data

ω0(R, θ) := g0(θ)φ(R)

u0(R, θ) :=
(

1

1 + η
+ RP0(θ)

)
φ(R)

(7.1)

blows up in finite time in the class ω(t, ·),∇u(t, ·) ∈ C̊α(�ε) for any 0 < α < 1.

Remark 7.1 As we have discussed already in the introduction, from our previous work
on 2D Boussinesq system [19], we may take g0 = 0 and P0 = θ2 and g and P will
become singular at some T ∗ < +∞.

Proof For simplicity we shall assume that |φ′|, |φ′′|, |φ′′′| ≤ 100. Moreover, we just
assume that g0, P0 ∈ C2,α([0, l]) in (7.1). Note first that ω0 and u0 defined in (7.1)
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are compactly supported and ω,∇u ∈ C̊0,α for all 0 ≤ α ≤ 1. By local well-
posedness, we know that there is a unique local solution ω, u. Let us assume, towards
a contradiction, that this solution is global. Next, let’s define g(t, θ) and P(t, θ) to be
the unique solutions to the following system:

∂t g + 2G∂θg = 2(sin(θ)P + cos(θ)∂θ P), (7.2)

∂t P + 2G∂θ P = ∂θGP, (7.3)

with G the unique6 solution to the elliptic boundary value problem

∂θθG + 4G = g, G(0) = G(tan−1(ε−1)) = 0.

Let us take T ∗ < +∞ to be the blow-up time for (g, P) before which they retain
initial smoothness. We will now show that for all t < T ∗,

lim
(r ,z)→(1,0)

|ω − gφ| = 0.

This will imply that ω and u must become singular in finite time. To see this through,
we must first study the equation for ω̃ := ω − gφ and ũ := u − (RP + 1

1+η
)φ. Notice

that ω̃0,∇ũ0 ∈ Cα for every 0 ≤ α ≤ 1 and that ω̃0(0) = ∇ũ0(0) = 0 we want to
propagate this at least for some α > 0.

7.1 The Equations for the Error Terms

Now let us see what evolution equations ω̃ and ũ satisfy. We begin with ω̃. Recall first
that ω satisfies:

∂t
ω

η + 1
+ v · ∇ ω

η + 1
= 1

(η + 1)2
∂z(u

2)

v = 1

η + 1
∇⊥ψ

with

L̃ψ := 1

(η + 1)2
Lψ = 1

(η + 1)2

(
∂ηηψ − 1

η + 1
∂ηψ + ∂zzψ

)
= ω

and ψ = 0 on ∂�ε = {0 ≤ εz ≤ η}. Next we substitute:
ω = ω̃ + gφ

and

u = ũ + φ

(
1

η + 1
+ RP

)
.

6 Note that arctan 1
ε < π

2 for every ε > 0.
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Direct substitution gives:

D

Dt

( ω̃ + gφ

η + 1

)
= 2

∂z(ũ + φ
1+η

+ RPφ)(ũ + φ
1+η

+ RPφ)

(1 + η)2
.

We set

I := 2
(∂z ũ + ∂z(RPφ))(ũ + RPφ)

(1 + η)2
+ 2

∂z ũφ

(1 + η)3
+ 2

RPφ∂zφ

(1 + η)3
+ 2

φ2

(1 + η)3
∂z(RP)

− φ

(1 + η)
∂z(RP) − g

D

Dt

( φ

η + 1

)
+ 2∂zφ

(1 + η)3

(
ũ + φ

1 + η
+ RPφ

)

so that the equation for ω̃ becomes

D

Dt

( ω̃

η + 1

)
+ φ

η + 1

Dg

Dt
= I + φ

η + 1
∂z(RP).

Now notice:

Dg

Dt
= ∂t g + v · ∇g.

Define

vg := ∇⊥(R2G)

where 4G + G ′′ = g as above. Then,

Dg

Dt
= ∂t g + vg · ∇g + (v − vg) · ∇g.

Note now that ∂t g + vg · ∇g = ∂z(RP) (this is simply (7.2)). Thus,

D

Dt

( ω̃

η + 1

)
= I − φ

η + 1
(v − vg) · ∇g.

Wewill soon show that all the terms in I and (v −vg) ·∇g belong to Cα(�ε) and also
vanish at 0. The latter, in turn, will use Corollary 5.13 which is the crucial component
in the proof besides observing that the 1D system governing g and P is the effective
system near the origin. Before going through the estimates for I and (v − vg) · ∇g,
let us perform a similar calculation to get the equation for ũ.

Recall that

D

Dt

(
(η + 1)u

)
= 0.
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Now we substitute u = ũ + φ
( 1
1+η

+ RP
)
and we get:

D

Dt

(
ũ(η + 1)

)
+ D

Dt

(
φ + RP(η + 1)φ

)
= 0.

Next, we expand:

D

Dt

(
ũ(η + 1)

)
= −Dφ

Dt
− D

Dt
(RP)φ(η + 1) − RP

D

Dt
(φ(η + 1)).

As before, let’s note:

D

Dt
(RP) = R∂t P + v · ∇(RP).

Recalling vg = ∇⊥(R2G), we write:

D

Dt
(RP) = R∂t P + vg · ∇(RP) + (v − vg) · ∇(RP).

Since

R∂t P + vg · ∇(RP) = 0,

(this is just the same as (7.3)) we obtain

D

Dt

(
ũ(η + 1)

)
= −Dφ

Dt
− RP

D

Dt
(φ(η + 1)) − (v − vg) · ∇(RP)(η + 1)φ.

Thus, to this point we have that ω̃ and ũ satisfy:

D

Dt

( ω̃

η + 1

)
= I − φ

η + 1
(v − vg) · ∇g,

D

Dt

(
ũ(η + 1)

)
= I I − (v − vg) · ∇(RP)(η + 1)φ,

where we define

I I := −Dφ

Dt
− RP

D

Dt
(φ(η + 1)).

We have left the transport terms out of the definitions of I and I I in order to emphasize
their difference with I and I I . Indeed, those terms are where the non-locality of the
problem is clearest.
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7.2 Estimates on I and II

We now proceed to prove the following a-priori Cα estimates on I and C1,α estimates
on I I .

Claim: For t < T ∗,

|I |Cα � 1 + |ω̃|Cα + |ũ|C1,α (7.4)

and

|I I |C1,α � 1 + |ω̃|Cα + |ũ|C1,α . (7.5)

Note that the implicit constants may depend upon the C̊0,α norms of ω and∇u (which
are assumed to be finite for all t ≥ 0) as well as the C2,α([0, l]) norms of g and P
and this is why we restrict our attention to t < T ∗. Note also that we cannot allow for
quadratic terms on the right hand side in |ũ|C1,α or |ω̃|Cα since we wouldn’t be able to
rule out ũ becoming singular before T ∗ whichwould just mean that our decomposition
ceased to be valid. However, we cannot avoid terms like |ũ|C1,α |∇ũ|L∞ , for example.
In this case, we simply write: |∇ũ|L∞ ≤ |∇u|L∞ + |∇(φ( 1

1+η
+ RP))|L∞ which are

both bounded for all t < T ∗, the former since we assume there is no blow-up at all
and the latter since (g, P) does not blow-up until T ∗.

We will now proceed to prove the claim. Recall that

I = 2
(∂z ũ + ∂z(RPφ))(ũ + RPφ)

(1 + η)2
+ 2

∂z ũφ

(1 + η)3
+ 2

RPφ∂zφ

(1 + η)3
+ 2

φ2

(1 + η)3
∂z(RP)

− φ

(1 + η)
∂z(RP) − g

D

Dt

( φ

η + 1

)
+ 2∂zφ

(1 + η)3
(ũ + φ

1 + η
+ RPφ).

The only terms which may be dangerous are ones in which P appears since all other
functions are localized and belong to Cα , which is an algebra. We will only give the
details for those potentially dangerous terms. First observe that,

|ũ| ≤ |∇ũ|Cα |x |1+α

since ũ(0) = ∇ũ(0) = 0. Next

∣∣∣∣ 1

(1 + η)2
∂z(RPφ)ũ

∣∣∣∣
Cα

≤
∣∣∣∣∂z(RP)

ũφ

(1 + η)2

∣∣∣∣
Cα

+
∣∣∣∣∂zφ RPũ

(1 + η)2

∣∣∣∣
Cα

≤ C |P|C1,α([0,l])|∇ũ|Cα

for some universal constant C . Next,

∣∣∣∣ φ

(1 + η)3
∂z(RP) − φ

(1 + η)
∂z(RP)

∣∣∣∣
Cα

=
∣∣∣∣φ∂z(RP)

η(2 + η)

(1 + η)3

∣∣∣∣
Cα

≤ C |φ∂z(RP)η|Cα ≤ C |P|C1,α([0,l]).
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Next recall the following simple fact: if f ∈ C̊0,α and g ∈ Cα satisfies g(0) = 0, then
| f g|Cα ≤ 2| f |C̊0,α |g|Cα . Now we turn to

∣∣∣g D

Dt

( φ

η + 1

)∣∣∣
Cα

=
∣∣∣gv · ∇ φ

η + 1

∣∣∣
Cα

≤ C |g|Cα([0,l])|ω|C̊0,α .

The rest of the terms in I can be handled similarly and we leave the details to the
interested reader. Next, we turn to I I , which must be controlled in C1,α this time:

I I = −Dφ

Dt
− RP

D

Dt
(φ(η + 1)).

Both of these terms are handled similarly so we focus on the most difficult part:

∣∣∣∣RPφ
D

Dt
(η + 1)

∣∣∣∣
C1,α

= |RPφv1|C1,α .

Note that neither RP nor v1 belong to C1,α but their product does. Indeed, first we
compute the gradient:

|∇(RPφv1)|Cα ≤ |∇(RP)φv1|Cα + |RP∇φv1|Cα + |RPφ∇v1|Cα

≤ C |P|C1,α([0,l])|∇v|C̊0,α ≤ C |P|C1,α([0,l])|ω|C̊0,α .

The C1,α estimate for Dφ
Dt is bounded similarly. This completes the proof of the claim.

7.3 Estimates on the Transport Terms

We now move to control the transport terms. Claim:

∣∣∣∣ φ

η + 1
(v − vg) · ∇g

∣∣∣∣
Cα

� 1 + |ω̃|Cα

and

|(v − vg) · ∇(RP)(η + 1)φ|C1,α � 1 + |ω̃|Cα ,

where the implicit constants may depend on P and g.
Notice, as in the above, that the∇g in the first inequality is homogeneous of degree

−1 so we will need to show that v − vg vanishes to order R1+α as R → 0 to prove
the Cα estimate. In fact, the proof of both inequalities follows from the following:

|φ(v − vg)|C1,α + |φ(η, z)(v(η, z) − vg(η, z))|
R1+α

� 1 + |ω̃|Cα (7.6)

for all η, z.
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To prove this inequality, we need to use Corollary 5.13. Recall that v = ∇⊥ L̃−1ω

and vg = ∇⊥(R2G). Let’s compute L̃(φ(L̃−1ω − R2G)) :

L̃(φ(L̃−1ω − R2G)) = φ L̃(L̃−1ω − R2G)

+ L̃(φ)(L̃−1ω − R2G) + 2

(1 + η)2
∇φ · ∇(L̃−1ω − R2G)

The main term is the first one:

L̃(L̃−1ω − R2G) = ω − 1

η + 1
∂η

(
1

η + 1
∂η(R

2G)

)
− 1

(1 + η)2
∂zz(R

2G)

= ω − 1

(η + 1)2
(∂ηη(R

2G) + ∂zz(R
2G)) + 1

(η + 1)3
∂η(R

2G)

= ω̃ + g

(
φ − 1

(η + 1)2

)
+ 1

(η + 1)3
∂η(R

2G).

Thus, collecting all the terms, we get:

L̃(φ(L̃−1ω − R2G)) = φω̃ + φ

(
g(φ − 1

(η + 1)2
) + 1

(η + 1)3
∂η(R

2G)

)

+ L̃(φ)(L̃−1ω − R2G) + 2

(1 + η)2
∇φ · ∇(L̃−1ω − R2G).

Thus, it is easy to see that L̃(φ(L̃−1ω − R2G)) is compactly supported, Cα , and
vanishing at 0. Moreover,

|L̃(φ(L̃−1ω − R2G))|Cα � 1 + |ω̃|Cα

where the constant depends upon |ω|C̊0,α and |g|Cα([0,l]). Noting that the function

φ(L̃−1ω − R2G) vanishes on the boundary of �ε , the claim then follows easily from
Corollary 5.13.

7.4 Closing the A-Priori Estimates on the Error Terms

Now we will combine the estimates from the preceding subsections to close and
estimate on ω̃ in Cα and ũ in C1,α . Collecting those estimates, we see:

∣∣∣ D
Dt

( ω̃

η + 1

)∣∣∣
Cα

+
∣∣∣ D
Dt

(
(η + 1)ũ

)∣∣∣
C1,α

� (1 + |ω̃|Cα + |ũ|C1,α ) (7.7)

where the implicit constant dependson |ω|C̊0,α , |∇u|C̊0,α , |g|C1,α([0,l]), and |P|C2,α([0,l])
which are all finite for t < T ∗. Let � be the Lagrangian flow map associated to the
full transport velocity field v. By assumption, the Lipschitz norm of v is bounded for
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all time since |v|Lip � |ω|C̊0,α . Now let � be the Lagrangian flow map associated to
v:

d

dt
� = v ◦ �,

�|t=0 = I d.

It is easy to show that

|∇�|L∞ + |∇�−1|L∞ ≤ exp(
∫ t

0
|∇v(s, ·)|L∞ds).

Next, notice that

∂t

(
ω̃

η + 1
◦ �

)
=

[ D

Dt

( ω̃

η + 1

)]
◦ �.

Now using (7.7) and the Lipschitz bound on �, we see:

d

dt
|ω̃|Cα � (1 + |ω̃|Cα + |ũ|C1,α ).

Now we move to prove a similar bound for |ũ|C1,α . We proceed in a completely
analagous fashion except that we first differentiate D

Dt ((η + 1)ũ) in space. Indeed, if
∂ denotes any spatial derivative (either in η or z)

D

Dt
((η + 1)∂ ũ) = ∂

D

Dt
((η + 1)ũ) − D

Dt
(ũ∂η) − ∂v · ∇((η + 1)ũ).

As above, by using the flowmap of� it suffices to show that the right hand side above
can be bounded in Cα . The first term belongs to Cα and its Cα norm is bounded using
(7.7). Next, the last term ∂v · ∇(η + 1)ũ can be controlled in the following way:

|∂v · ∇((η + 1)ũ)|Cα � |∂v|C̊0,α |∇((η + 1)ũ)|Cα � |ũ|C1,α .

the first inequality being since ∇ũ(0) = 0. Now we turn to estimating the term
D
Dt (ũ∂η). Notice that ∂η ≡ 1 or ∂η ≡ 0 depending on what kind of derivative ∂ is.
Let us look at the former case. Then,

D

Dt
ũ = ∂t ũ + v · ∇ũ.

It is easy to see that both of these terms are bounded in Cα by |ũ|C1,α multiplied by a
constant (again, which may depend on |ω|C̊0,α ) since D

Dt ((η + 1)ũ) is already known
to be in Cα . We omit the details. Thus we get, finally:

d

dt
(|ω̃|Cα + |ũ|C1,α ) � 1 + |ω̃|Cα + |ũ|C1,α .
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Thus, so long as t < T ∗, and so long as ω,∇u remain bounded for t < T ∗,

ω̃ = ω − gφ ∈ Cα

and ω̃(0) = 0. Thus, for t < T ∗,

|ω|L∞ ≥ lim sup
(η,z)→0

|ω(η, z)| = lim sup
(η,z)→0

|ω̃ + gφ| = |g|L∞ .

However, we know that lim supt→T ∗ |g|L∞ = +∞. This is a contradiction. ��

8 Futher Results

We close this paper with a question regarding the 3D Euler equation on the domains
�c := {(x, y, z) : 0 ≤ z ≤ c

√
x2 + y2}. A direct calculation just assuming that the

velocity field is 1-homogeneous in space and axi-symmetric on�c gives the system:

∂t g − 3G∂θg = (
G ′ + 2 tan θG

)
g + 2

(
tan θ P + P ′) P,

∂t P − 3G∂θ P = − (
2G ′ + tan θG

)
P,

(8.1)

supplemented with

6G − (tan θG)′ + G ′′ = g, G(0) = G(βπ) = 0, (8.2)

with β depending on c sufficiently small. Are smooth solutions to this 1D system
global? If singularity formation is possible, then finite energyW 1,∞ blow-up solutions
can be found on �c. Establishing blow-up for this 1D system seems to be more
challenging than for the system (7.2)–(7.3). Global regularity for this system would
also be very interesting since it would indicate a regularizing mechanism at the axis
in the axi-symmetric Euler equation (since we have established blow-up away from
the axis in this paper).
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