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Abstract
Weare concernedwith the globalwell-posedness and large time asymptotic behavior of
strong and classical solutions to the Cauchy problem of the Navier–Stokes equations
for viscous compressible barotropic flows in two or three spatial dimensions with
vacuum as far field density. For strong and classical solutions, some a priori decaywith
rates (in large time) for both the pressure and the spatial gradient of the velocity field
are obtained provided that the initial total energy is suitably small. Moreover, by using
these key decay rates and some analysis on the expansion rates of the essential support
of the density, we establish the global existence and uniqueness of classical solutions
(which may be of possibly large oscillations) in two spatial dimensions, provided the
smooth initial data are of small total energy. In addition, the initial density can evenhave
compact support. This, in particular, yields the global regularity and uniqueness of the
re-normalized weak solutions of Lions–Feireisl to the two-dimensional compressible
barotropic flows for all adiabatic number γ > 1 provided that the initial total energy
is small.
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1 Introduction

We consider the Navier-Stokes equations

{
ρt + div(ρu) = 0,

(ρu)t + div(ρu ⊗ u) − μ�u − (μ + λ)∇divu + ∇ P(ρ) = 0,
(1.1)

for viscous compressible barotropic flows. Here, t ≥ 0 is time, x ∈ � ⊂ R
N (N =

2, 3) is the spatial coordinate, and ρ = ρ(x, t), u = (u1, . . . , uN )(x, t), and

P(ρ) = Rργ (R > 0, γ > 1) (1.2)

are the fluid density, velocity and pressure, respectively. Without loss of generality, it
is assumed that R = 1. The constant viscosity coefficientsμ and λ satisfy the physical
restrictions:

μ > 0, 2μ + Nλ ≥ 0. (1.3)

Let � = R
N and we consider the Cauchy problem for (1.1) with (ρ, u) vanishing at

infinity (in some weak sense) with given initial data ρ0 and u0, as

ρ(x, 0) = ρ0(x), ρu(x, 0) = ρ0u0(x), x ∈ � = R
N . (1.4)

There are huge literatures on the large time existence and behavior of solutions
to (1.1). The one-dimensional problem has been studied extensively, see [9,18,29,30]
and the references therein. For the multi-dimensional case, the local existence and
uniqueness of classical solutions are known in [25,31] in the absence of vacuum and
recently, for strong solutions also, in [3–5,19,28] for the case that the initial density
need not be positive and may vanish in open sets. The global classical solutions were
first obtained by Matsumura-Nishida [24] for initial data close to a non-vacuum equi-
librium in some Sobolev space Hs . In particular, the theory requires that the solution
has small oscillations from a uniform non-vacuum state so that the density is strictly
away from vacuum. Later, Hoff [10,11,13] studied the problem for discontinuous ini-
tial data. For the existence of solutions for arbitrary data, the major breakthrough is
due to Lions [22] (see also Feireisl [6,7]), where the global existence of weak solutions
when the exponent γ is suitably large are achieved. The main restriction on initial data
is that the initial total energy is finite, so that the density vanishes at far fields, or even
has compact support. However, little is known on the structure of such weak solutions,
in particular, the regularity and the uniqueness of such weak solutions remain open.
This is a subtle issue, as Xin [32] showed that in the case that the initial density has
compact support, any smooth solution in C1([0, T ] : Hs(Rd))(s > [d/2] + 2) to the
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Cauchy problem of the full compressible Navier-Stokes system without heat conduc-
tion blows up in finite time for any space dimension d ≥ 1, and the same holds for
the barotropic case (1.1), at least in one-dimension. The assumptions of [32] that the
initial density has compact support and that the smooth solution has finite energy are
removed recently by Xin-Yan [33] for a large class of initial data containing vacuum.
However, this blow-up theory does not apply to the barotropic flows in general, at
least in the case of R3. Indeed, very recently, for the case that the initial density is
allowed to vanish and even has compact support, Huang-Li-Xin [16] established the
quite surprising global existence and uniqueness of classical solutions with constant
state as far field which could be either vacuum or non-vacuum to (1.1)–(1.4) in three-
dimensional space with smooth initial data which are of small total energy but possibly
large oscillations. Moreover, it was also showed in [16] that for any p > 2,

lim
t→∞

(‖P(ρ) − P(ρ̃)‖L p(R3) + ‖∇u‖L2(R3)

) = 0, (1.5)

where ρ̃ is the constant far field density. This not only generalizes the classical results
of Matsumura-Nishida [24], but also yields the regularity and uniqueness of the weak
solutions of Lions and Feireisl [6,7,22] with initial data of small total energy. Then a
natural question arises whether the theory of Huang-Li-Xin [16] remains valid for the
case of R2. This is interesting partially due to the following reasons: First, a positive
answer would yield immediately the regularity and uniqueness of weak solutions of
Lions-Feireisl with small initial total energy whose existence has been proved for
all γ > 1, see [6,7]. Second, this question may be subtle due to the recent blow-up
result in [23] where it is shown that non-trivial two-dimensional spherically symmetric
solution inC1([0, T ]; Hs(R2)(s > 2))with initial compactly supported density blows
up in finite time. Technically, it is not easy to modify the three-dimensional analysis
of [16] to the two-dimensional case with initial density containing vacuum since the
analysis of [16] depends crucially on the a priori L6-bound on the velocity. For two-
dimensional problems, only in the case that the far field density is away from vacuum,
the techniques of [16] can be modified directly since at this case, for any p ∈ [2,∞),

the L p-norm of a function u can be bounded by ‖ρ1/2u‖L2 and ‖∇u‖L2 , and the
similar results can be obtained ([23]). However, when the far field density is vacuum,
it seems difficult to bound the L p-norm of u by ‖ρ1/2u‖L2 and ‖∇u‖L2 for any p ≥ 1,
so the global existence and large time behavior of strong or classical solutions to the
Cauchy problem are much subtle and remain open. Therefore, the main aim of this
paper is to study the global existence and large time behavior of strong or classical
solutions to (1.1)–(1.4) in some homogeneous Sobolev spaces in two-dimensional
space with vacuum as far field density, and at the same time to investigate the decay
rates of the pressure and the gradient of velocity in both two and three dimensional
spaces provided the initial energy is suitably small, which turn out to be one of the
keys for the two-dimensional global well-posedness theory.

Before stating the main results, we first explain the notations and conventions used
throughout this paper. For R > 0 and � = R

N (N = 2, 3), set

BR � {x ∈ �| |x | < R} ,

∫
f dx �

∫
�

f dx .
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Moreover, for 1 ≤ r ≤ ∞, k ≥ 1, and β > 0, the standard homogeneous and
inhomogeneous Sobolev spaces are defined as follows:

⎧⎪⎪⎨
⎪⎪⎩

Lr = Lr (�), Dk,r = Dk,r (�) = {v ∈ L1
loc(�)|∇kv ∈ Lr (�)},

D1 = D1,2, W k,r = W k,r (�), Hk = W k,2,

Ḣβ =
{

f : � → R

∣∣∣∣‖ f ‖2
Ḣβ =

∫
|ξ |2β | f̂ (ξ)|2dξ < ∞

}
,

where f̂ is the Fourier transform of f . Next, we also give the definition of strong
solutions as follows:

Definition 1.1 If all derivatives involved in (1.1) for (ρ, u) are regular distributions,
and equations (1.1) hold almost everywhere in � × (0, T ), then (ρ, u) is called a
strong solution to (1.1).

For � = R
N (N = 2, 3), the initial total energy is defined as:

C0 =
∫

�

(
1

2
ρ0|u0|2 + 1

γ − 1
P(ρ0)

)
dx .

Weconsider first the two-dimensional case, that is,� = R
2.Without loss of generality,

assume that the initial density ρ0 satisfies∫
R2

ρ0dx = 1, (1.6)

which implies that there exists a positive constant N0 such that

∫
BN0

ρ0dx ≥ 1

2

∫
ρ0dx = 1

2
. (1.7)

We can now state our first main result, Theorem 1.1, concerning existence and
large-time behavior of global strong solutions to the problem (1.1)–(1.4).

Theorem 1.1 Let � = R
2 and M > 0, ρ̄ ≥ 1, a > 1, q > 2, and β ∈ (0, 1] be given

numbers. Suppose that the initial data (ρ0, u0) satisfy, in addition to (1.6) and (1.7),

ρ0 ≥ 0, x̄aρ0 ∈ L1 ∩ H1 ∩ W 1,q , u0 ∈ Ḣβ ∩ D1, ρ
1/2
0 u0 ∈ L2, (1.8)

and

ρ0 ≤ ρ̄, ‖u0‖Ḣβ + ‖ρ0 x̄a‖L1 ≤ M, (1.9)

where

x̄ � (e + |x |2)1/2 log2(e + |x |2). (1.10)

123



Global Well-Posedness and Large Time Asymptotic Behavior… Page 5 of 37 7

Then there exists a positive constant ε depending only on μ, λ, γ, a, ρ̄, β, N0, and M
such that if

C0 ≤ ε, (1.11)

the problem (1.1)–(1.4) has a unique global strong solution (ρ, u) satisfying for any
0 < T < ∞,

0 ≤ ρ(x, t) ≤ 2ρ̄, (x, t) ∈ R
2 × [0, T ], (1.12)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ ∈ C([0, T ]; L1 ∩ H1 ∩ W 1,q),

x̄aρ ∈ L∞(0, T ; L1 ∩ H1 ∩ W 1,q),√
ρu, ∇u, x̄−1u,

√
t
√

ρut ∈ L∞(0, T ; L2),

∇u ∈ L2(0, T ; H1) ∩ L(q+1)/q(0, T ; W 1,q),√
t∇u ∈ L2(0, T ; W 1,q),√
ρut ,

√
t∇ut ,

√
t x̄−1ut ∈ L2(R2 × (0, T )),

(1.13)

and

inf
0≤t≤T

∫
BN1(1+t) logα(e+t)

ρ(x, t)dx ≥ 1

4
, (1.14)

for any α > 1 and some positive constant N1 depending only on α, N0, and M .

Moreover, (ρ, u) has the following decay rates, that is, for t ≥ 1,

⎧⎪⎨
⎪⎩

‖∇u(·, t)‖L p ≤ C(p)t−1+1/p, for p ∈ [2,∞),

‖P(·, t)‖Lr ≤ C(r)t−1+1/r , for r ∈ (1,∞),

‖∇ω(·, t)‖L2 + ‖∇F(·, t)‖L2 ≤ Ct−1,

(1.15)

where

ω � ∂1u2 − ∂2u1, F � (2μ + λ)divu − P, (1.16)

are respectively the vorticity and the effective viscous flux, and C(α) depends on α

besides μ, λ, γ, a, ρ̄, β, N0, and M .

Remark 1.1 In addition to μ, λ, γ, a, β, and N0, the energy bound ε depends only on
the constants ρ̄ and M, that is, the L∞-norm of ρ0, Ḣβ of u0, and L1 of ρ0 x̄a,without
any other norms of the data.

Remark 1.2 It should be noted here that the decay rate estimates (1.15) combined
with the estimate on upper bound of the expansion rate of the essential support of the
density (1.14) play a crucial role in deriving the global existence of strong and classical
solutions to the two-dimensional problem (1.1)–(1.4). This is in contrast to the three-
dimensional case ([16]) where the global existence of classical solutions to (1.1)–(1.4)
was achieved without any bounds on the decay rates of the solutions partially due to
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the a priori L6-bounds on the velocity field. As will be seen in the proof, the key
observation is the decay with a rate for the spatial L2-norm of the pressure in (1.15).

Next, if the initial data (ρ0, u0) satisfy some additional regularity and compatibility
conditions, the global strong solutions obtained by Theorem 1.1 become classical, that
is,

Theorem 1.2 Let � = R
2. In addition to the assumptions in Theorem 1.1, assume

further that (ρ0, u0) satisfy

∇2ρ0, ∇2P(ρ0) ∈ L2 ∩ Lq , x̄δ0∇2ρ0, x̄δ0∇2P(ρ0), ∇2u0 ∈ L2, (1.17)

for some constant δ0 ∈ (0, 1), and the following compatibility condition:

− μu0 − (μ + λ)∇divu0 + ∇ P(ρ0) = ρ
1/2
0 g, (1.18)

with some g ∈ L2. Then, in addition to (1.12)–(1.15), the strong solution (ρ, u)

obtained by Theorem 1.1 satisfies for any 0 < T < ∞,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇2ρ, ∇2P(ρ) ∈ C([0, T ]; L2 ∩ Lq),

x̄δ0∇2ρ, x̄δ0∇2P(ρ), ∇2u ∈ L∞(0, T ; L2),√
ρut ,

√
t∇ut ,

√
t x̄−1ut , t

√
ρutt , t∇2ut ∈ L∞(0, T ; L2),

t∇3u ∈ L∞(0, T ; L2 ∩ Lq),

∇ut , x̄−1ut , t∇utt , t x̄−1utt ∈ L2(0, T ; L2),

t∇2(ρu) ∈ L∞(0, T ; L(q+2)/2).

(1.19)

Remark 1.3 The solution obtained in Theorem 1.2 becomes a classical one for positive
time ([19]). Although it has small energy, yet whose oscillations could be arbitrarily
large. In particular, both interior and far field vacuum are allowed. There is no require-
ment on the size of the set of vacuum states. Therefore, the initial density may have
compact support. Moreover, by the strong-weak uniqueness theorem of Lions [22],
Theorems 1.1 and 1.2 can be regarded as uniqueness and regularity theory of Lions-
Feireisl’s weak solutions with small initial energy, whose existence has been proved
for all γ > 1 in [6,22].

Remark 1.4 It is worth noting that the conclusions in Theorems 1.1 and 1.2 are
somewhat surprising since for the barotropic compressible Navier-Stokes equa-
tions (1.1), any non-trivial two-dimensional spherically symmetric solution (ρ, u) ∈
C1([0, T ], Hs)(s > 2) with initial compact supported density blows up in finite
time ([23]). Indeed, as in [32], the key point of [23] to prove the blowup phe-
nomena is based on the fact that the support of the density will not grow in time
in the space C1([0, T ]; Hm). However, in the current case, though the density
ρ ∈ C([0, T ]; H2), yet the velocity u satisfies only ∇u ∈ C((0, T ]; Hk). Note
that the function u ∈ {∇u ∈ Hk} decays much slower for large values of the spatial
variable x than u ∈ Hk+1. Therefore, it seems that it is the slow decay of the velocity
field for large values of the spatial variable x that leads to the global existence of
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smooth solutions (c.f. [27]). Unfortunately, such argument cannot be valid for the full
compressible Navier-Stokes system since the blow-up results of Xin-Yan in [33] work
for any classical solutions with compactly supported initial density.

Finally, for the three-dimensional case, that is, � = R
3, we have the following

results concerning the decay properties of the global classical solutions.

Theorem 1.3 Let � = R
3. For given numbers M > 0, ρ̄ ≥ 1, β ∈ (1/2, 1], and

q ∈ (3, 6), suppose that the initial data (ρ0, u0) satisfy

ρ0, P(ρ0) ∈ H2 ∩ W 2,q , P(ρ0), ρ0|u0|2 ∈ L1, u0 ∈ Ḣβ, ∇u0 ∈ H1, (1.20)

0 ≤ ρ0 ≤ ρ̄, ‖u0‖Ḣβ ≤ M, (1.21)

and the compatibility condition

− μu0 − (μ + λ)∇divu0 + ∇ P(ρ0) = ρ
1/2
0 g, (1.22)

for some g ∈ L2. Moreover, if γ > 3/2, assume in addition that ρ0 ∈ L3/2. Then
there exists a positive constant ε depending on μ, λ, γ, ρ̄, β, and M such that if

C0 ≤ ε, (1.23)

the Cauchy problem (1.1)–(1.4) has a unique global classical solution (ρ, u) in R
3 ×

(0,∞) satisfying for any 0 < τ < T < ∞,

0 ≤ ρ(x, t) ≤ 2ρ̄, x ∈ R
3, t ≥ 0, (1.24)⎧⎪⎨

⎪⎩
ρ, P ∈ C([0, T ]; H2 ∩ W 2,q), P ∈ C([0, T ]; L1),

∇u ∈ L2(0, T ; H2) ∩ L∞(τ, T ; H2 ∩ W 2,q),

∇ut ∈ L2(0, T ; L2) ∩ L∞(τ, T ; H1) ∩ H1(τ, T ; L2).

(1.25)

Moreover, for r ∈ (1,∞), there exist positive constants C(r) (which depends on r
also) and C depending on μ, λ, γ, ρ̄, β, and M such that for t ≥ 1,

⎧⎪⎨
⎪⎩

‖∇u(·, t)‖L p ≤ Ct−1+1/p, for p ∈ [2, 6],
‖P(·, t)‖Lr ≤ C(r)t−1+1/r , for r ∈ (1,∞),

‖∇(∇ × u)(·, t)‖L2 + ‖∇((2μ + λ)divu − P)(·, t)‖L2 ≤ Ct−1.

(1.26)

Remark 1.5 Under some additional conditions on the initial data besides (1.20)–(1.23),
we [16, Theorem 1.1] proves the global existence of classical solutions to the Cauchy
problem (1.1)–(1.4) except (1.26). Therefore, compared with [16, Theorem 1.1], our
Theorem 1.3 not only relaxes the conditions on the initial data but also obtains new
decay rates of the solutions, (1.26).

Remark 1.6 It should be pointed out that the large time asymptotic decay with rates
of the global strong or classical solutions, (1.15) and (1.26), are completely new for
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the multi-dimensional compressible Navier-Stokes equations (1.1) in the presence of
vacuum. They show in particular that the L2-norm of both the pressure and the gradient
of the velocity decay in time with a rate t−1/2, and the gradient of the vorticity and
the effective viscous flux decay faster than themselves. However, whether the second
derivatives of the velocity field decay or not remains open. This is an interesting
problem and left for the future.

We now make some comments on the analysis of this paper. Note that for initial
data in the class satisfying (1.8), (1.9), (1.17), and (1.18) except u0 ∈ Ḣβ, the local
existence and uniqueness of classical solutions to the Cauchy problem, (1.1)–(1.4),
have been established recently in [19]. Thus, to extend the classical solution globally
in time, one needs some global a priori estimates on smooth solutions to (1.1)–(1.4)
in suitable higher norms. It turns out that as in the three-dimensional case [16], the
key issue here is to derive both the time-independent upper bound for the density
and the time-depending higher norm estimates of the smooth solution (ρ, u), so some
basic ideas used in [16] will be adapted here, yet new difficulties arises in the two-
dimensional case. Indeed, the analysis in [16] relies heavily on the basic fact that,
for the three-dimensional case, the L6-norm of v ∈ D1(R3) can be bounded by the
L2-norm of the gradient of v which fails for v ∈ D1(R2). In fact, for two-dimensional
case, some of the main new difficulties are due to the appearance of vacuum at far field
and the lack of integrability of the velocity and its material derivatives in the whole
two-dimensional space. To overcome these difficulties, first, using the L1-integrability
of the density, we observe that the L2-norm in both space and time of the pressure
is time-independent (see (3.18)). This is crucial to show that the H1-norm of the
effective viscous flux decays at the rate of t−1/2 for large time (see (3.61)) which
plays a key role in obtaining the decay property of the L∞-norm of the effective
viscous flux. Then, after some careful estimates of the expansion rates of the essential
support of the density (see (3.39)), we succeed in obtaining that, for large time, the L p-
norm of the gradient of the effective viscous flux (see (1.16) for the definition) can be
bounded by the product of (1+ t)5 and some function g(t)whose temporal L2-norm is
independent of time (see (3.59)). Based on these key ingredients, we are able to obtain
the desired estimates on L1(0,min{1, T }; L∞(R2))-norm and the time-independent
ones on L4(min{1, T }, T ; L∞(R2))-norm of the effective viscous flux (see (3.62)).
Then, motivated by [20], we deduce from these estimates and Zlotnik’s inequality (see
Lemma 2.6) that the density admits a time-uniform upper bound which is the key for
global estimates of classical solutions. The next main step is to bound the gradients
of the density and the velocity. Similar to [14–16], such bounds can be obtained by
solving a logarithmGronwall inequality based on a Beale-Kato-Majda type inequality
(see Lemma 2.7) and the a priori estimates we have just derived, and moreover, such
a derivation yields simultaneously also the bound for L1(0, T ; L∞(R2))-norm of the
gradient of the velocity, see Lemma 4.1 and its proof. Finally, with these a priori
estimates on the gradients of the density and the velocity at hand, one can estimate
the higher order derivatives by using the same arguments as in [14,19] to obtain the
desired results.

The rest of the paper is organized as follows: In Sect. 2, we collect some elementary
facts and inequalities which will be needed in later analysis. Sections 3 and 4 are
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devoted to deriving the necessary a priori estimates on classical solutions which are
needed to extend the local solution to all time. Then finally, the main results, Theorems
1.1–1.3, are proved in Sect. 5.

2 Preliminaries

In this section, for � = R
2, we will recall some known facts and elementary inequal-

ities which will be used frequently later.
We begin with the local existence of strong and classical solutions whose proof can

be found in [19].

Lemma 2.1 Let � = R
2. Assume that (ρ0, u0) satisfies (1.8) except u0 ∈ Ḣβ. Then

there exist a small time T > 0 and a unique strong solution (ρ, u) to the problem
(1.1)–(1.4) in R

2 × (0, T ) satisfying (1.13) and (1.14). Moreover, if (ρ0, u0) satisfies
(1.17) and (1.18) besides (1.8), (ρ, u) satisfies (1.19) also.

Next, the following well-known Gagliardo-Nirenberg inequality (see [26]) will be
used later.

Lemma 2.2 (Gagliardo-Nirenberg) For p ∈ [2,∞), q ∈ (1,∞), and r ∈ (2,∞),

there exists some generic constant C > 0 which may depend on p, q, and r such that
for f ∈ H1(R2) and g ∈ Lq(R2) ∩ D1,r (R2), we have

‖ f ‖p
L p(R2)

≤ C‖ f ‖2L2(R2)
‖∇ f ‖p−2

L2(R2)
, (2.1)

‖g‖
C

(
R2

) ≤ C‖g‖q(r−2)/(2r+q(r−2))
Lq (R2)

‖∇g‖2r/(2r+q(r−2))
Lr (R2)

. (2.2)

The following weighted L p bounds for elements of the Hilbert space D1(R2) can
be found in [21, Theorem B.1].

Lemma 2.3 For m ∈ [2,∞) and θ ∈ (1 + m/2,∞), there exists a positive constant
C such that for all v ∈ D1(R2),

(∫
R2

|v|m
e + |x |2 (log(e + |x |2))−θ dx

)1/m

≤ C‖v‖L2(B1)
+ C‖∇v‖L2(R2). (2.3)

The combination of Lemma 2.3 with the Poincaré inequality yields

Lemma 2.4 For x̄ as in (1.10), suppose that ρ ∈ L∞(R2) is a function such that

0 ≤ ρ ≤ M1, M2 ≤
∫

BN∗
ρdx, ρ x̄α ∈ L1(R2), (2.4)
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for N∗ ≥ 1 and positive constants M1, M2, and α. Then, for r ∈ [2,∞), there exists
a positive constant C depending only on M1, M2, α, and r such that

(∫
R2

ρ|v|r dx

)1/r

≤ C N 3∗ (1 + ‖ρ x̄α‖L1(R2))
(
‖ρ1/2v‖L2(R2) + ‖∇v‖L2(R2)

)
,

(2.5)

for each v ∈ {
v ∈ D1(R2)

∣∣ ρ1/2v ∈ L2(R2)
}
.

Proof First, for f ∈ L1(BN∗), denote the average of f over BN∗ by

fBN∗ � 1

|BN∗ |
∫

BN∗
f (x)dx .

It then follows from (2.4) that

∣∣ρBN∗ vBN∗
∣∣ =

∣∣∣∣∣ 1

|BN∗ |
∫

BN∗

(
ρBN∗ − ρ

)
(v − vBN∗ )dx + 1

|BN∗ |
∫

BN∗
ρvdx

∣∣∣∣∣
≤ 2M1N−1∗ ‖v − vBN∗ ‖L2(BN∗ ) + M1/2

1 N−1∗ ‖ρ1/2v‖L2(BN∗ )

≤ 8M1‖∇v‖L2(BN∗ ) + M1/2
1 N−1∗ ‖ρ1/2v‖L2(BN∗ ),

(2.6)

where in the last inequality one has used the following Poincaré inequality ([8, (7.45)])

‖v − vBN∗ ‖L2(BN∗ ) ≤ 4N∗‖∇v‖L2(BN∗ ). (2.7)

Then, it follows from (2.6) and (2.4) that∣∣vBN∗
∣∣ ≤ C(M1, M2)N 2∗ ‖∇v‖L2(BN∗ ) + C(M1, M2)N∗‖ρ1/2v‖L2(BN∗ ),

which together with (2.7) leads to∫
BN∗

|v|2dx ≤ 2
∫

BN∗
|v − vBN∗ |2dx + 2|BN∗ ||vBN∗ |2

≤ C(M1, M2)N 6∗ ‖∇v‖2L2(BN∗ )
+ C(M1, M2)N 4∗ ‖ρ1/2v‖2L2(BN∗ )

.

(2.8)

Finally, it follows fromHolder’s inequality, (2.3), (2.8), and (2.4) that for r ∈ [2,∞)

and σ = 4/(4 + α) ∈ (0, 1),∫
R2

ρ|v|r dx ≤ ‖(ρ x̄α)σ ‖L1/σ (R2)‖|v|r x̄−ασ ‖L4/(ασ)(R2)‖ρ‖1−σ

L∞(R2)

≤ C
(
1 + ‖ρ x̄α‖L1(R2)

) (
N 3∗

(
‖ρ1/2v‖L2(R2) + ‖∇v‖L2(R2)

))r
,

which gives (2.5) and completes the proof of Lemma 2.4. ��
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Next, for∇⊥ � (−∂2, ∂1), denoting thematerial derivative of f by ḟ � ft +u ·∇ f ,

we state some elementary estimates which follow from (2.1) and the standard L p-
estimate for the following elliptic system derived from the momentum equations in
(1.1):

F = div(ρu̇), μω = ∇⊥ · (ρu̇), (2.9)

where F and ω are as in (1.16).

Lemma 2.5 Let � = R
2 and (ρ, u) be a smooth solution of (1.1). Then for p ≥ 2

there exists a positive constant C depending only on p, μ, and λ such that

‖∇F‖L p(R2) + ‖∇ω‖L p(R2) ≤ C‖ρu̇‖L p(R2), (2.10)

‖F‖L p(R2) + ‖ω‖L p(R2) ≤ C‖ρu̇‖1−2/p
L2(R2)

(‖∇u‖L2(R2) + ‖P‖L2(R2)

)2/p
, (2.11)

‖∇u‖L p(R2) ≤ C‖ρu̇‖1−2/p
L2(R2)

(‖∇u‖L2(R2) + ‖P‖L2(R2)

)2/p + C‖P‖L p(R2).

(2.12)

Proof On the one hand, the standard L p-estimate for the elliptic system (2.9) yields
(2.10) directly, which, together with (2.1) and (1.16), gives (2.11). On the other hand,
since −�u = −∇divu − ∇⊥ω, we have

∇u = −∇(−�)−1∇divu − ∇(−�)−1∇⊥ω. (2.13)

Thus applying the standard L p-estimate to (2.13) shows

‖∇u‖L p(R2) ≤ C(p)(‖divu‖L p(R2) + ‖ω‖L p(R2))

≤ C(p)‖F‖L p(R2) + C(p)‖ω‖L p(R2) + C(p)‖P‖L p(R2),

which, along with (2.11), gives (2.12). The proof of Lemma 2.5 is completed. ��
Next, to get the uniform (in time) upper bound of the density ρ, we need the

following Zlotnik inequality.

Lemma 2.6 ([34]) Let the function y satisfy

y′(t) = g(y) + b′(t) on [0, T ], y(0) = y0,

with g ∈ C(R) and y, b ∈ W 1,1(0, T ). If g(∞) = −∞ and

b(t2) − b(t1) ≤ N0 + N1(t2 − t1) (2.14)

for all 0 ≤ t1 < t2 ≤ T with some N0 ≥ 0 and N1 ≥ 0, then

y(t) ≤ max
{

y0, ζ
}

+ N0 < ∞ on [0, T ],
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where ζ is a constant such that

g(ζ ) ≤ −N1 for ζ ≥ ζ . (2.15)

Finally, the following Beale-Kato-Majda type inequality, which was proved in [1,
17] when divu ≡ 0, will be used later to estimate ‖∇u‖L∞ and ‖∇ρ‖L2∩Lq (q > 2).

Lemma 2.7 For 2 < q < ∞, there is a constant C(q) such that the following estimate
holds for all ∇u ∈ L2(R2) ∩ D1,q(R2),

‖∇u‖L∞(R2) ≤ C
(‖divu‖L∞(R2) + ‖ω‖L∞(R2)

)
log(e + ‖∇2u‖Lq (R2))

+ C‖∇u‖L2(R2) + C .

3 A Priori Estimates(I): Lower Order Estimates

In this section, for � = R
2, we will establish some necessary a priori bounds for

smooth solutions to the Cauchy problem (1.1)–(1.4) to extend the local strong and
classical solutions guaranteed by Lemma 2.1. Thus, let T > 0 be a fixed time and
(ρ, u) be the smooth solution to (1.1)–(1.4) on R

2 × (0, T ] with smooth initial data
(ρ0, u0) satisfying (1.8) and (1.9).

Set σ(t) � min{1, t}. Define

A1(T ) � sup
0≤t≤T

(
σ‖∇u‖2L2

)
+

∫ T

0
σ

∫
ρ|u̇|2dxdt, (3.1)

and

A2(T ) � sup
0≤t≤T

σ 2
∫

ρ|u̇|2dx +
∫ T

0

∫
σ 2|∇u̇|2dxdt . (3.2)

We have the following key a priori estimates on (ρ, u).

Proposition 3.1 Under the conditions of Theorem 1.1, there exists some positive con-
stant ε depending on μ, λ, γ, a, ρ̄, β, N0, and M such that if (ρ, u) is a smooth
solution of (1.1)–(1.4) on R

2 × (0, T ] satisfying

sup
R2×[0,T ]

ρ ≤ 2ρ̄, A1(T ) + A2(T ) ≤ 2C1/2
0 , (3.3)

the following estimates hold

sup
R2×[0,T ]

ρ ≤ 7ρ̄/4, A1(T ) + A2(T ) +
∫ T

0
σ‖P‖2L2dt ≤ C1/2

0 , (3.4)

provided C0 ≤ ε.
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The proof of Proposition 3.1 will be postponed to the end of this section.
In the following, we will use the convention that C denotes a generic positive

constant depending on μ, λ, γ , a, ρ̄, β, N0, and M , and use C(α) to emphasize that
C depends on α.

We begin with the following standard energy estimate for (ρ, u) and preliminary
L2 bounds for ∇u and ρu̇.

Lemma 3.2 Let (ρ, u) be a smooth solution of (1.1)–(1.4) on R
2 × (0, T ]. Then there

is a positive constant C depending only on μ, λ, and γ such that

sup
0≤t≤T

∫ (
1

2
ρ|u|2 + 1

γ − 1
P

)
dx + μ

∫ T

0

∫
|∇u|2dxdt ≤ C0, (3.5)

A1(T ) ≤ CC0 + C sup
0≤t≤T

‖P‖2L2 + C
∫ T

0
σ

∫ (
|∇u|3 + P|∇u|2

)
dxdt, (3.6)

and

A2(T ) ≤ C A1(T ) + C
∫ T

0
σ 2

(
‖∇u‖4L4 + ‖P‖4L4

)
dt . (3.7)

Proof First, the standard energy inequality reads:

sup
0≤t≤T

∫ (
1

2
ρ|u|2 + P

γ − 1

)
dx +

∫ T

0

∫ (
μ|∇u|2 + (μ + λ)(divu)2

)
dxdt ≤ C0,

which together with (1.3) shows (3.5).
Next, multiplying (1.1)2 by u̇ and then integrating the resulting equality over R2

lead to∫
ρ|u̇|2dx = −

∫
u̇ · ∇ Pdx + μ

∫
u · u̇dx + (μ + λ)

∫
∇divu · u̇dx . (3.8)

Since P satisfies

Pt + u · ∇ P + γ Pdivu = 0, (3.9)

integration by parts yields that

−
∫

u̇ · ∇ Pdx =
∫

((divu)t P − (u · ∇u) · ∇ P)dx

=
(∫

divu Pdx

)
t
+

∫ (
(γ − 1)P(divu)2 + P∂i u j∂ j ui

)
dx

≤
(∫

divu Pdx

)
t
+ C

∫
P|∇u|2dx .

(3.10)
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Integration by parts also implies that

μ

∫
u · u̇dx = −μ

2

(
‖∇u‖2L2

)
t
− μ

∫
∂i u j∂i (uk∂ku j )dx

≤ −μ

2

(
‖∇u‖2L2

)
t
+ C

∫
|∇u|3dx,

(3.11)

and that

(μ + λ)

∫
∇divu · u̇dx = −λ + μ

2

(
‖divu‖2L2

)
t
− (λ + μ)

∫
divudiv(u · ∇u)dx

≤ −λ + μ

2

(
‖divu‖2L2

)
t
+ C

∫
|∇u|3dx .

(3.12)

Putting (3.10)–(3.12) into (3.8) leads to

B ′(t) +
∫

ρ|u̇|2dx ≤ C
∫

P|∇u|2dx + C‖∇u‖3L3 , (3.13)

where

B(t) � μ

2
‖∇u‖2L2 + λ + μ

2
‖divu‖2L2 −

∫
divu Pdx (3.14)

satisfies

μ

4
‖∇u‖2L2 − C‖P‖2L2 ≤ B(t) ≤ C‖∇u‖2L2 + C‖P‖2L2 . (3.15)

Then, integrating (3.13) multiplied by σ over (0, T ) and using (3.15) and (3.5)
yield (3.6) directly.

Finally, to prove (3.7), we will use the basic estimates of u̇ due to Hoff [10].
Operating ∂/∂t + div(u·) to (1.1) j

2, one gets by some simple calculations that

ρ(u̇ j )t + ρu · ∇u̇ j − μu̇ j − (μ + λ)∂ j (divu̇)

= μ∂i (−∂i u · ∇u j + divu∂i u
j ) − μdiv(∂i u∂i u

j )

− (μ + λ)∂ j

(
∂i u · ∇ui − (divu)2

)
− (μ + λ)div(∂ j udivu)

+ (γ − 1)∂ j (Pdivu) + div(P∂ j u).

(3.16)

Multiplying (3.16) by u̇ and integrating the resulting equation over R2 lead to

(∫
ρ|u̇|2dx

)
t
+ μ

∫
|∇u̇|2dx ≤ C‖∇u‖4L4 + C‖P‖4L4 , (3.17)

which multiplied by σ 2 gives (3.7) and completes the proof of Lemma 3.2. ��
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Remark 3.1 It is easy to check that the estimates (3.13) and (3.17) also hold for� = R
3.

Next, we give a key observation that pressure decays in time.

Lemma 3.3 Let (ρ, u) be a smooth solution of (1.1)–(1.4) on R
2 × (0, T ] satisfying

(3.3). Then there exists a positive constant C(ρ̄) depending only on μ, λ, γ, and ρ̄

such that

A1(T ) + A2(T ) +
∫ T

0
σ‖P‖2L2dt ≤ C(ρ̄)C0. (3.18)

Proof First, it follows from (2.12), (3.5), and (3.3) that

∫ T

0
σ 2

(
‖∇u‖4L4 + ‖P‖4L4

)
dt

≤ C
∫ T

0
σ‖ρu̇‖2L2

(
σ‖∇u‖2L2 + σ‖P‖2L2

)
dt + C

∫ T

0
σ 2‖P‖4L4dt

≤ C(ρ̄) (A1(T ) + C0)

∫ T

0
σ‖ρ1/2u̇‖2L2dt + C(ρ̄)

∫ T

0
σ 2‖P‖2L2dt .

(3.19)

To estimate the last term on the right-hand side of (3.19), noticing that (1.1)2 gives

P = (−�)−1div(ρu̇) + (2μ + λ)divu, (3.20)

we obtain from Hölder’s and Sobolev’s inequalities that

∫
P2dx ≤ C‖(−�)−1div(ρu̇)‖L4γ ‖P‖L4γ /(4γ−1) + C‖∇u‖L2‖P‖L2

≤ C‖ρu̇‖L4γ /(2γ+1)‖ρ‖1/2
L1 ‖ρ‖γ−1/2

L2γ + C‖∇u‖L2‖P‖L2

≤ C‖ρ1/2‖L4γ ‖ρ1/2u̇‖L2‖ρ‖1/2
L1 ‖ρ‖γ−1/2

L2γ + C‖∇u‖L2‖P‖L2

≤ C‖P‖L2‖ρ1/2u̇‖L2 + C‖∇u‖L2‖P‖L2 ,

where in the last inequality, one has used

∫
ρdx =

∫
ρ0dx = 1, (3.21)

due to the mass conservation equation (1.1)1. Thus, we arrive at

‖P‖L2 ≤ C‖ρ1/2u̇‖L2 + C‖∇u‖L2 , (3.22)

which, along with (3.6), (3.7), (3.19), (3.5), and (3.3) gives

A1(T ) + A2(T ) ≤C(ρ̄)C0 + C(ρ̄)

∫ T

0
σ‖∇u‖3L3dt . (3.23)
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Then, on the one hand, one deduces from (2.12), (3.5), and (3.3) that

∫ σ(T )

0
σ‖∇u‖3L3dt ≤ C

∫ σ(T )

0
σ‖ρ1/2u̇‖L2

(
‖∇u‖2L2 + ‖P‖2L2

)
dt + C(ρ̄)C0

≤ C A1/2
2 (σ (T ))

∫ σ(T )

0

(
‖∇u‖2L2 + ‖P‖2L2

)
dt + C(ρ̄)C0

≤ C(ρ̄)C0.

(3.24)

On the other hand, Hölder’s inequality, (3.19), (3.3), and (3.22) imply

∫ T

σ(T )

σ‖∇u‖3L3dt ≤ δ

∫ T

σ(T )

‖∇u‖4L4dt + C(δ)

∫ T

σ(T )

‖∇u‖2L2dt

≤ δC(ρ̄)A1(T ) + C(δ)C(ρ̄)C0.

(3.25)

Finally, putting (3.24) and (3.25) into (3.23) and choosing δ suitably small lead to

A1(T ) + A2(T ) ≤ C(ρ̄)C0,

which together with (3.22) and (3.5) gives (3.18) and completes the proof of Lemma
3.3. ��

Next, we derive the rates of decay for ∇u and P , which are essential to obtain the
uniform (in time) upper bound of the density for large time.

Lemma 3.4 For p ∈ [2,∞), there exists a positive constant C(p, ρ̄) depending only
on p, μ, λ, γ, and ρ̄ such that, if (ρ, u) is a smooth solution of (1.1)–(1.4) on R

2 ×
(0, T ] satisfying (3.3), then

sup
σ(T )≤t≤T

(
t p−1(‖∇u‖p

L p + ‖P‖p
L p ) + t2‖ρ1/2u̇‖2L2

)
≤ C(p, ρ̄)C0. (3.26)

Proof First, for p ≥ 2, multiplying (3.9) by pP p−1 and integrating the resulting
equality over R2, one gets after using divu = 1

2μ+λ
(F + P) that

(‖P‖p
L p

)
t + pγ − 1

2μ + λ
‖P‖p+1

L p+1 = − pγ − 1

2μ + λ

∫
P p Fdx

≤ pγ − 1

2(2μ + λ)
‖P‖p+1

L p+1 + C(p)‖F‖p+1
L p+1 ,

(3.27)

123



Global Well-Posedness and Large Time Asymptotic Behavior… Page 17 of 37 7

which together with (2.11) gives

2(2μ + λ)

pγ − 1

(‖P‖p
L p

)
t + ‖P‖p+1

L p+1 ≤ C(p)‖F‖p+1
L p+1

≤ C(p)
(
‖∇u‖2L2 + ‖P‖2L2

)
‖ρu̇‖p−1

L2 .

(3.28)

In particular, choosing p = 2 in (3.28) shows

(
‖P‖2L2

)
t
+ 2γ − 1

2(2μ + λ)
‖P‖3L3 ≤ δ‖ρ1/2u̇‖2L2 + C(δ)

(
‖∇u‖4L2 + ‖P‖4L2

)
.

(3.29)

Next, it follows from (3.13) and (2.12) that

B ′(t) +
∫

ρ|u̇|2dx ≤ C‖P‖3L3 + C‖∇u‖3L3

≤ C1‖P‖3L3 + C‖ρu̇‖L2

(
‖∇u‖2L2 + ‖P‖2L2

)
≤ C1‖P‖3L3 + δ‖ρ1/2u̇‖2L2 + C(ρ̄, δ)

(
‖∇u‖4L2 + ‖P‖4L2

)
.

(3.30)

Choosing C2 ≥ 2 + 2(2μ + λ)(C1 + 1)/(2γ − 1) suitably large such that

μ

4
‖∇u‖2L2 + ‖P‖2L2 ≤ B(t) + C2‖P‖2L2 ≤ C‖∇u‖2L2 + C‖P‖2L2 , (3.31)

adding (3.29) multiplied by C2 to (3.30), and choosing δ suitably small lead to

2
(

B(t) + C2‖P‖2L2

)′ +
∫ (

ρ|u̇|2 + P3
)

dx ≤ C‖P‖4L2 + C‖∇u‖4L2 , (3.32)

which multiplied by t, together with Gronwall’s inequality, (3.31), (3.18), (3.5), and
(3.3) yields

sup
σ(T )≤t≤T

t
(
‖∇u‖2L2 + ‖P‖2L2

)
+

∫ T

σ(T )

t
∫ (

ρ|u̇|2 + P3
)

dxdt ≤ C(ρ̄)C0.

(3.33)

Next, multiplying (3.17) by t2 together with (2.12) gives

(
t2

∫
ρ|u̇|2dx

)
t
+ μt2

∫
|∇u̇|2dx

≤ 2t
∫

ρ|u̇|2dx + C(ρ̄)t2‖ρu̇‖2L2

(
‖∇u‖2L2 + ‖P‖2L2

)
+ C̃(ρ̄)t2‖P‖4L4 .

(3.34)
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Choosing p = 3 in (3.28) and adding (3.28) multiplied by (C̃ + 1)t2 to (3.34) lead to(
t2

∫
ρ|u̇|2dx + 2(2μ + λ)(C̃ + 1)

3γ − 1
t2‖P‖3L3

)
t

+ μt2‖∇u̇‖2L2 + t2‖P‖4L4

≤ Ct
∫ (

ρ|u̇|2 + P3
)

dx + C(ρ̄)t2‖ρ1/2u̇‖2L2

(
‖∇u‖2L2 + ‖P‖2L2

)
,

which combined with Gronwall’s inequality, (3.33), and (3.3) yields

sup
σ(T )≤t≤T

t2
∫ (

ρ|u̇|2 + P3
)

dx +
∫ T

σ(T )

t2
(
‖∇u̇‖2L2 + ‖P‖4L4

)
dt ≤ C(ρ̄)C0.

(3.35)

Finally, we claim that for m = 1, 2, . . . ,

sup
σ(T )≤t≤T

tm‖P‖m+1
Lm+1 +

∫ T

σ(T )

tm‖P‖m+2
Lm+2dt ≤ C(m, ρ̄)C0, (3.36)

which together with (2.12), (3.33), and (3.35) gives (3.26). We shall prove (3.36) by
induction. In fact, (3.33) shows that (3.36) holds for m = 1. Assume that (3.36) holds
for m = n, that is,

sup
σ(T )≤t≤T

tn‖P‖n+1
Ln+1 +

∫ T

σ(T )

tn‖P‖n+2
Ln+2dt ≤ C(n, ρ̄)C0. (3.37)

Multiplying (3.28) where p = n + 2 by tn+1, one obtains after using (3.35)

2(2μ + λ)

(n + 2)γ − 1

(
tn+1‖P‖n+2

Ln+2

)
t
+ tn+1‖P‖n+3

Ln+3

≤ C(n, ρ̄)tn‖P‖n+2
Ln+2 + C(n, ρ̄)C0

(
‖∇u‖2L2 + ‖P‖2L2

)
.

(3.38)

Integrating (3.38) over [σ(T ), T ] together with (3.37) and (3.18) shows that (3.36)
holds for m = n + 1. By induction, we obtain (3.36) and finish the proof of Lemma
3.4. ��

Next, the followingLemma3.5 combinedwith Lemma2.4will be useful to estimate
the L p-norm of ρu̇ and obtain the uniform (in time) upper bound of the density for
large time.

Lemma 3.5 Let (ρ, u) be a smooth solution of (1.1)–(1.4) on R
2 × (0, T ] satisfying

the assumptions in Theorem 1.1 and (3.3). Then for any α > 1, there exists a positive
constant N1 depending only on α, N0, and M such that for all t ∈ (0, T ],∫

BN1(1+t) logα(1+t)

ρ(x, t)dx ≥ 1

4
. (3.39)
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Proof First, multiplying (1.1)1 by (1 + |x |2)1/2 and integrating the resulting equality
over R2, we obtain after integration by parts and using both (3.5) and (3.21) that

d

dt

∫
ρ(1 + |x |2)1/2dx ≤ C

∫
ρ|u|dx

≤ C

(∫
ρdx

)1/2 (∫
ρ|u|2dx

)1/2

≤ C .

This gives

sup
0≤s≤t

∫
ρ(1 + |x |2)1/2dx ≤ C(M)(1 + t). (3.40)

Next, for ϕ(y) ∈ C∞
0 (R2) such that

0 ≤ ϕ(y) ≤ 1, ϕ(y) =
{
1 if |y| ≤ 1,

0 if |y| ≥ 2,
|∇ϕ| ≤ 2,

multiplying (1.1)1 by ϕ(y) with y = δ̃x(1+ t)−1 log−α(e + t) for small δ̃ > 0 which
will be determined later, we obtain

d

dt

∫
ρϕ(y)dx =

∫
ρ∇yϕ · yt dx + δ̃

(1 + t) logα(e + t)

∫
ρu · ∇yϕdx

≥ − C δ̃

(1 + t)2 logα(e + t)

∫
ρ|x |dx − C δ̃

(1 + t) logα(e + t)

≥ − C(M)δ̃

(1 + t) logα(e + t)
,

where in the last inequality we have used (3.40). Since α > 1, this yields

∫
ρϕ (y) dx ≥

∫
ρ0(x)ϕ(x δ̃)dx − C(α, M)δ̃ ≥ 1

4
, (3.41)

where we choose δ̃ = (N0 + 4C(α, M))−1.

Finally, it follows from (3.41) that for N1 � 2δ̃−1 = 2(N0 + 4C(α, M)),

∫
BN1(1+t) logα(e+t)

ρdx ≥
∫

ρϕ
(
δ̃x(1 + t)−1 log−α(e + t)

)
dx ≥ 1

4
,

which finishes the proof of Lemma 3.5. ��
Next, to obtain the upper bound of the density for small time, we still need the

following lemma.
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Lemma 3.6 Let (ρ, u) be a smooth solution of (1.1)–(1.4) on R
2 × (0, T ] satisfying

(3.3) and the assumptions in Theorem 1.1. Then there exists a positive constant K
depending only on μ, λ, γ, a, ρ̄, β, N0, and M such that

sup
0≤t≤σ(T )

t1−β‖∇u‖2L2 +
∫ σ(T )

0
t1−β

∫
ρ|u̇|2dxdt ≤ K (ρ̄, M). (3.42)

Proof First, set

ν � min

{
μ1/2

2(1 + 2μ + λ)1/2
,

β

1 − β

}
∈ (0, 1/2].

If β ∈ (0, 1), Sobolev’s inequality implies∫
ρ0|u0|2+νdx ≤

∫
ρ0|u0|2dx +

∫
ρ0|u0|2/(1−β)dx

≤ C(ρ̄) + C(ρ̄)‖u0‖2/(1−β)

Ḣβ ≤ C(ρ̄, M).

(3.43)

For the case that β = 1, one obtains from (2.5) that

∫
ρ0|u0|2+νdx ≤ C(ρ̄)

(∫
ρ0|u0|2dx +

∫
|∇u0|2dx

)(2+ν)/2

≤ C(ρ̄, M).

(3.44)

Then, multiplying (1.1)2 by (2+ν)|u|νu and integrating the resulting equation over
R
2 lead to

d

dt

∫
ρ|u|2+νdx + (2 + ν)

∫
|u|ν

(
μ|∇u|2 + (μ + λ)(divu)2

)
dx

≤ (2 + ν)ν

∫
(μ + λ)|divu||u|ν |∇u|dx + C

∫
ργ |u|ν |∇u|dx

≤ 2 + ν

2

∫
(μ + λ)(divu)2|u|νdx + (2 + ν)μ

4

∫
|u|ν |∇u|2dx

+ C
∫

ρ|u|2+νdx + C
∫

ρ(2+ν)γ−ν/2dx,

which together with Gronwall’s inequality, (3.43), and (3.44) thus gives

sup
0≤t≤σ(T )

∫
ρ|u|2+νdx ≤ C(ρ̄, M). (3.45)

Next, as in [12], for the linear differential operator L defined by

(Lw) j � ρw
j
t + ρu · ∇w j − (μ�w j + (μ + λ)∂ jdivw)

= ρẇ j − (μ�w j + (μ + λ)∂ jdivw), j = 1, 2,
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let w1 and w2 be the solution to:

Lw1 = 0, w1(x, 0) = w10(x), (3.46)

and

Lw2 = −∇ P(ρ), w2(x, 0) = 0, (3.47)

respectively. A straightforward energy estimate of (3.46) shows that:

sup
0≤t≤σ(T )

∫
ρ|w1|2dx +

∫ σ(T )

0

∫
|∇w1|2dxdt ≤ C(ρ)

∫
|w10|2dx . (3.48)

Then, multiplying (3.46) byw1t and integrating the resulting equality overR2 yield
that for t ∈ (0, σ (T )],

1

2

(
μ‖∇w1‖2L2 + (μ + λ)‖divw1‖2L2

)
t
+

∫
ρ|ẇ1|2dx

=
∫

ρẇ1(u · ∇w1)dx

≤ C(ρ̄)‖ρ1/2ẇ1‖L2‖ρ1/(2+ν)u‖L2+ν ‖∇2w1‖2/(2+ν)

L2 ‖∇w1‖ν/(2+ν)

L2

≤ 1

2

∫
ρ|ẇ1|2dx + C(ρ̄, M)‖∇w1‖2L2 ,

(3.49)

where in the last inequality we have used (3.45) and the following simple fact:

‖∇2w1‖L2 ≤ C‖ρẇ1‖L2 ,

due to the standard L2-estimate of the elliptic system (3.46). Gronwall’s inequality
together with (3.49) and (3.48) gives

sup
0≤t≤σ(T )

‖∇w1‖2L2 +
∫ σ(T )

0

∫
ρ|ẇ1|2dxdt ≤ C(ρ̄, M)‖∇w10‖2L2 , (3.50)

and

sup
0≤t≤σ(T )

t‖∇w1‖2L2 +
∫ σ(T )

0
t
∫

ρ|ẇ1|2dxdt ≤ C(ρ̄, M)‖w10‖2L2 . (3.51)

Since the solution operator w10 �→ w1(·, t) is linear, by the standard Stein-Weiss
interpolation argument ([2]), one can deduce from (3.50) and (3.51) that for any θ ∈
[β, 1],
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sup
0≤t≤σ(T )

t1−θ‖∇w1‖2L2 +
∫ σ(T )

0
t1−θ

∫
ρ|ẇ1|2dxdt ≤ C(ρ̄, M)‖w10‖2Ḣ θ , (3.52)

with a uniform constant C independent of θ.

Finally, we estimate w2. It follows from a similar way as for the proof of (2.10)
and (2.12) that

‖∇((2μ + λ)divw2 − P)‖L2 + ‖∇(∇⊥ · w2)‖L2 ≤ C‖ρẇ2‖L2 , (3.53)

and that for p ≥ 2,

‖∇w2‖L p ≤ C(‖(2μ + λ)divw2 − P‖L p + C‖P‖L p + ‖∇⊥ · w2‖L p

≤ δ‖ρẇ2‖L2 + C(ρ̄, p, δ)‖∇w2‖L2 + C(ρ̄, p, δ)C1/p
0 .

(3.54)

Multiplying (3.47) by w2t and integrating the resulting equation overR2 yield that for
t ∈ (0, σ (T )],

1

2

(
μ‖∇w2‖2L2 + (μ + λ)‖divw2‖2L2 − 2

∫
Pdivw2dx

)
t
+

∫
ρ|ẇ2|2dx

=
∫

ρẇ2(u · ∇w2)dx −
∫

Ptdivw2dx

≤ C(ρ̄)‖ρ1/2ẇ2‖L2‖ρ1/(2+ν)u‖L2+ν ‖∇w2‖L2(2+ν)/ν −
∫

Ptdivw2dx

≤ C(ρ̄, M)δ‖ρ1/2ẇ2‖2L2 + C(δ, ρ̄, M)
(
‖∇w2‖2L2 + ‖∇u‖2L2 + 1

)
,

(3.55)

where in the last inequality we have used (3.54), (3.45), and the following simple fact:

−
∫

Ptdivw2dx = − 1

2μ + λ

∫
Pu · ∇((2μ + λ)divw2 − P)dx

+ 1

2(2μ + λ)

∫
P2divudx + (γ − 1)

∫
Pdivudivw2dx

≤ C‖Pu‖L2‖ρẇ2‖L2 + C‖P2‖L2‖∇u‖L2 + C‖∇u‖L2‖∇w2‖L2

≤ δ‖ρ1/2ẇ2‖2L2 + C(δ, ρ̄)
(
‖∇u‖2L2 + ‖∇w2‖2L2 + 1

)
,

due to (3.9) and (3.53). Gronwall’s inequality together with (3.55) gives

sup
0≤t≤σ(T )

‖∇w2‖2L2 +
∫ σ(T )

0

∫
ρ|ẇ2|2dxdt ≤ C(ρ̄, M). (3.56)

Taking w10 = u0 so that w1 + w2 = u, we then derive (3.42) from (3.52) and (3.56)
directly. Thus, we finish the proof of Lemma 3.6. ��
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We now proceed to derive a uniform (in time) upper bound for the density, which
turns out to be the key to obtain all the higher order estimates and thus to extend the
classical solution globally. We will use an approach motivated by our previous study
on the two-dimensional Stokes approximation equations ([20]), see also [16].

Lemma 3.7 There exists a positive constant ε0 = ε0(ρ̄, M) depending on μ, λ, γ,

a, ρ̄, β, N0, and M such that, if (ρ, u) is a smooth solution of (1.1)–(1.4) onR2×(0, T ]
satisfying (3.3) and the assumptions in Theorem 1.1, then

sup
0≤t≤T

‖ρ(t)‖L∞ ≤ 7ρ̄

4
, (3.57)

provided C0 ≤ ε0.

Proof First, we rewrite the equation of the mass conservation (1.1)1 as

Dtρ = g(ρ) + b′(t), (3.58)

where

Dtρ � ρt + u · ∇ρ, g(ρ) � − ργ+1

2μ + λ
, b(t) � − 1

2μ + λ

∫ t

0
ρFdt .

Next, it follows from (2.10), (3.40), (3.39), and (2.5) that for t > 0 and p ∈ [2,∞),

‖∇F(·, t)‖L p ≤ C(p)‖ρu̇(·, t)‖L p

≤ C(p, ρ̄, M)(1 + t)5
(
‖ρ1/2u̇(·, t)‖L2 + ‖∇u̇(·, t)‖L2

)
,

(3.59)

which, together with the Gagliardo-Nirenberg inequality (2.2) for q = 2, yields that
for r � 4 + 4/β and δ0 � (2r + (1 − β)(r − 2))/(3r − 4) ∈ (0, 1),

|b(σ (T ))|

≤ C(ρ̄)

∫ σ(T )

0
σ (β−1)(r−2)/(4(r−1))

(
σ 1−β‖F‖2L2

)(r−2)/(4(r−1)) ‖∇F‖r/(2(r−1))
Lr dt

≤ C(ρ̄, M)

∫ σ(T )

0
σ−(2r+(1−β)(r−2))/(4(r−1))

(
σ 2‖∇F‖2Lr

)r/(4(r−1))
dt

≤ C(ρ̄, M)

(∫ σ(T )

0
σ−δ0dt

)(3r−4)/(4(r−1)) (∫ σ (T )

0
σ 2‖∇F‖2Lr dt

)r/(4(r−1))

≤ C(ρ̄, M)

(∫ σ(T )

0

(
σ 2‖ρ1/2u̇‖2L2 + σ 2‖∇u̇‖2L2

)
dt

)r/(4(r−1))

≤ C(ρ̄, M)Cr/(4(r−1))
0 ,
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where in the second, fourth, and last inequalities one has used respectively (3.42),
(3.59), and (3.18). Combining this with (3.58) gives

sup
t∈[0,σ (T )]

‖ρ‖L∞ ≤ ρ̄ + C(ρ̄, M)C1/4
0 ≤ 3ρ̄

2
, (3.60)

provided

C0 ≤ ε1 � min{1, (ρ̄/(2C(ρ̄, M)))4}.

Next, it follows from (2.10) and (3.26) that for t ∈ [σ(T ), T ],
‖F(·, t)‖H1 ≤ C

(‖∇u(·, t)‖L2 + ‖P(·, t)‖L2 + ‖ρu̇(·, t)‖L2
)

≤ C(ρ̄)C1/2
0 t−1/2,

(3.61)

which together with (2.2) and (3.59) shows

∫ T

σ(T )

‖F(·, t)‖4L∞dt

≤ C
∫ T

σ(T )

‖F(·, t)‖35/9
L72 ‖∇F(·, t)‖1/9

L72dt

≤ C(ρ̄, M)C35/18
0

∫ T

σ(T )

t−25/18(‖ρ1/2u̇‖L2 + ‖∇u̇‖L2)1/9dt

≤ C(ρ̄, M)C35/18
0 ,

(3.62)

where in the last inequality, one has used (3.3). This shows that for all σ(T ) ≤ t1 ≤
t2 ≤ T ,

|b(t2) − b(t1)| ≤ C(ρ̄)

∫ t2

t1
‖F(·, t)‖L∞dt

≤ 1

2μ + λ
(t2 − t1) + C(ρ̄, M)

∫ T

σ(T )

‖F(·, t)‖4L∞dt

≤ 1

2μ + λ
(t2 − t1) + C(ρ̄, M)C35/18

0 ,

which implies that one can choose N1 and N0 in (2.14) as:

N1 = 1

2μ + λ
, N0 = C(ρ̄, M)C35/18

0 .

Hence, we set ζ̄ = 1 in (2.15) since for all ζ ≥ 1,

g(ζ ) = − ζ γ+1

2μ + λ
≤ −N1 = − 1

2μ + λ
.
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Lemma 2.6 and (3.60) thus lead to

sup
t∈[σ(T ),T ]

‖ρ‖L∞ ≤ 3ρ̄

2
+ N0 ≤ 7ρ̄

4
, (3.63)

provided

C0 ≤ ε0 � min{ε1, ε2}, for ε2 �
(

ρ̄

4C(ρ̄, M)

)18/35

.

The combination of (3.60) with (3.63) completes the proof of Lemma 3.7. ��
With Lemmas 3.3 and 3.7 at hand, we are now in a position to prove Proposition

3.1.

Proof of Proposition 3.1 It follows from (3.18) that

A1(T ) + A2(T ) +
∫ T

0
σ‖P‖2L2dt ≤ C1/2

0 , (3.64)

provided

C0 ≤ ε3 � (C(ρ̄))−2.

Letting ε � min{ε0, ε3}, we obtain (3.4) directly from (3.57) and (3.64) and finish
the proof of Proposition 3.1. ��

4 A Priori Estimates (II): Higher Order Estimates

Form now on, for smooth initial data (ρ0, u0) satisfying (1.8) and (1.9), assume that
(ρ, u) is a smooth solution of (1.1)–(1.4) on R

2 × (0, T ] satisfying (3.3). Then, we
derive some necessary uniform estimates on the spatial gradient of the smooth solution
(ρ, u).

Lemma 4.1 There is a positive constant C depending only on T , μ, λ, γ, a, ρ̄, β, N0,

M, q, and ‖ρ0‖H1∩W 1,q such that

sup
0≤t≤T

(
‖ρ‖H1∩W 1,q + ‖∇u‖L2 + t‖∇2u‖2L2

)

+
∫ T

0

(
‖∇2u‖2L2 + ‖∇2u‖(q+1)/q

Lq + t‖∇2u‖2Lq

)
dt ≤ C .

(4.1)

Proof First, it follows from (3.32), (3.31), Gronwall’s inequality, and (3.5) that

sup
t∈[0,T ]

‖∇u‖2L2 +
∫ T

0

∫
ρ|u̇|2dxdt ≤ C, (4.2)
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which together with (2.12) shows

∫ T

0
‖∇u‖4L4dt ≤ C . (4.3)

Multiplying (3.17) by t and integrating the resulting inequality over (0, T ) combined
with (4.2) and (4.3) lead to

sup
0≤t≤T

t
∫

ρ|u̇|2dx +
∫ T

0
t‖∇u̇‖2L2dt ≤ C . (4.4)

Next, we prove (4.1) by using Lemma 2.7 as in [15]. For p ∈ [2, q], |∇ρ|p satisfies

(|∇ρ|p)t + div(|∇ρ|pu) + (p − 1)|∇ρ|pdivu

+ p|∇ρ|p−2(∇ρ)t∇u(∇ρ) + pρ|∇ρ|p−2∇ρ · ∇divu = 0.

Thus,

d

dt
‖∇ρ‖L p ≤ C(1 + ‖∇u‖L∞)‖∇ρ‖L p + C‖∇2u‖L p

≤ C(1 + ‖∇u‖L∞)‖∇ρ‖L p + C‖ρu̇‖L p ,

(4.5)

due to

‖∇2u‖L p ≤ C (‖ρu̇‖L p + ‖∇ P‖L p ) , (4.6)

which follows from the standard L p-estimate for the following elliptic system:

μ�u + (μ + λ)∇divu = ρu̇ + ∇ P, u → 0 as |x | → ∞.

Next, it follows from the Gargliardo-Nirenberg inequality, (4.2), and (2.10) that

‖divu‖L∞ + ‖ω‖L∞ ≤ C‖F‖L∞ + C‖P‖L∞ + C‖ω‖L∞

≤ C(q) + C(q)‖∇F‖q/(2(q−1))
Lq + C(q)‖∇ω‖q/(2(q−1))

Lq

≤ C(q) + C(q)‖ρu̇‖q/(2(q−1))
Lq ,

(4.7)

which, together with Lemma 2.7, yields that

‖∇u‖L∞ ≤ C (‖divu‖L∞ + ‖ω‖L∞) log(e + ‖∇2u‖Lq ) + C‖∇u‖L2 + C

≤ C
(
1 + ‖ρu̇‖q/(2(q−1))

Lq

)
log(e + ‖ρu̇‖Lq + ‖∇ρ‖Lq ) + C

≤ C (1 + ‖ρu̇‖Lq ) log(e + ‖∇ρ‖Lq ).

(4.8)
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Next, it follows from the Hölder inequality and (3.59) that

‖ρu̇‖Lq ≤ ‖ρu̇‖2(q−1)/(q2−2)
L2 ‖ρu̇‖q(q−2)/(q2−2)

Lq2

≤ C‖ρu̇‖2(q−1)/(q2−2)
L2

(
‖ρ1/2u̇‖L2 + ‖∇u̇‖L2

)q(q−2)/(q2−2)

≤ C‖ρ1/2u̇‖L2 + C‖ρ1/2u̇‖2(q−1)/(q2−2)
L2 ‖∇u̇‖q(q−2)/(q2−2)

L2 ,

which combined with (4.2) and (4.4) implies that

∫ T

0

(
‖ρu̇‖1+1/q

Lq + t‖ρu̇‖2Lq

)
dt

≤ C
∫ T

0

(
‖ρ1/2u̇‖2L2 + t‖∇u̇‖2L2 + t−(q3−q2−2q−1)/(q3−q2−2q)

)
dt

≤ C .

(4.9)

Then, substituting (4.8) into (4.5) where p = q, we deduce from Gronwall’s
inequality and (4.9) that

sup
0≤t≤T

‖∇ρ‖Lq ≤ C,

which, along with (4.6) and (4.9), shows

∫ T

0

(
‖∇2u‖(q+1)/q

Lq + t‖∇2u‖2Lq

)
dt ≤ C . (4.10)

Finally, taking p = 2 in (4.5), one gets by using (4.10), (4.2), and Gronwall’s
inequality that

sup
0≤t≤T

‖∇ρ‖L2 ≤ C,

which, together with (4.6), (4.4), and (4.10), yields (4.1). The proof of Lemma 4.1 is
completed. ��
Lemma 4.2 There is a positive constant C depending only on T , μ, λ, γ, a, ρ̄, β,

N0, M, q, and ‖∇(x̄aρ0)‖L2∩Lq such that

sup
0≤t≤T

‖x̄aρ‖L1∩H1∩W 1,q ≤ C . (4.11)

Proof First, it follows from (2.3), (3.40), (3.39), and (2.8) that for any η ∈ (0, 1] and
any s > 2,

‖ux̄−η‖Ls/η ≤ C(η, s). (4.12)
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Multiplying (1.1)1 by x̄a and integrating the resulting equality over R2 lead to

d

dt

∫
ρ x̄adx ≤ C

∫
ρ|u|x̄a−1 log2(e + |x |2)dx

≤ C‖ρ x̄a−1+8/(8+a)‖L(8+a)/(7+a)‖ux̄−4/(8+a)‖L8+a

≤ C
∫

ρ x̄adx + C,

which gives

sup
0≤t≤T

∫
ρ x̄adx ≤ C . (4.13)

Then, one derives from (1.1)1 that v � ρ x̄a satisfies

vt + u · ∇v − avu · ∇ log x̄ + vdivu = 0,

which, together with some estimates as for (4.5), gives that for any p ∈ [2, q]
(‖∇v‖L p )t ≤C(1 + ‖∇u‖L∞ + ‖u · ∇ log x̄‖L∞)‖∇v‖L p

+ C‖v‖L∞
(
‖|∇u||∇ log x̄ |‖L p + ‖|u||∇2 log x̄ |‖L p + ‖∇2u‖L p

)
≤ C(1 + ‖∇u‖W 1,q )‖∇v‖L p

+ C‖v‖L∞
(
‖∇u‖L p + ‖ux̄−2/5‖L4p‖x̄−3/2‖L4p/3 + ‖∇2u‖L p

)
≤ C(1 + ‖∇2u‖L p + ‖∇u‖W 1,q )(1 + ‖∇v‖L p + ‖∇v‖Lq ),

(4.14)

where in the second and the last inequalities, one has used (4.12) and (4.13). Choosing
p = q in (4.14), we obtain after using Gronwall’s inequality and (4.1) that

sup
0≤t≤T

‖∇(ρ x̄a)‖Lq ≤ C . (4.15)

Finally, setting p = 2 in (4.14), we deduce from (4.1) and (4.15) that

sup
0≤t≤T

‖∇(ρ x̄a)‖L2 ≤ C,

which combined with (4.13) and (4.15) thus gives (4.11) and finishes the proof of
Lemma 4.2. ��
Lemma 4.3 There is a positive constant C depending only on T , μ, λ, γ, a, ρ̄, β, N0,

M, q, and ‖∇(x̄aρ0)‖L2∩Lq such that

sup
0≤t≤T

t
(
‖ρ1/2ut‖2L2 + ‖∇u‖2H1

)
+

∫ T

0
t‖∇ut‖2L2dt ≤ C . (4.16)
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Proof Differentiating (1.1)2 with respect to t gives

ρutt + ρu · ∇ut − μ�ut − (μ + λ)∇divut

= −ρt (ut + u · ∇u) − ρut · ∇u − ∇ Pt .
(4.17)

Multiplying (4.17) by ut and integrating the resulting equation over R2, we obtain
after using (1.1)1 that

1

2

d

dt

∫
ρ|ut |2dx +

∫ (
μ|∇ut |2 + (μ + λ)(divut )

2
)

dx

= −2
∫

ρu · ∇ut · ut dx −
∫

ρu · ∇(u · ∇u · ut )dx

−
∫

ρut · ∇u · ut dx +
∫

Ptdivut dx

≤ C
∫

ρ|u||ut |
(
|∇ut | + |∇u|2 + |u||∇2u|

)
dx + C

∫
ρ|u|2|∇u||∇ut |dx

+ C
∫

ρ|ut |2|∇u|dx + C(δ)‖Pt‖2L2 + δ‖∇ut‖2L2 .

(4.18)

Each term on the right-hand side of (4.18) can be estimated as follows:
First, the combination of (4.12) with (4.11) gives that for any η ∈ (0, 1] and any

s > 2,

‖ρηu‖Ls/η + ‖ux̄−η‖Ls/η ≤ C(η, s). (4.19)

Moreover, it follows from (2.5), (3.40), and (3.39) that

‖ρ1/2ut‖L6 ≤ C‖ρ1/2ut‖L2 + C‖∇ut‖L2 , (4.20)

which together with (4.19), (4.2), and Holder’s inequality yields that for δ ∈ (0, 1),

∫
ρ|u||ut |

(
|∇ut | + |∇u|2 + |u||∇2u|

)
dx

≤ C‖ρ1/2u‖L6‖ρ1/2ut‖1/2L2 ‖ρ1/2ut‖1/2L6

(
‖∇ut‖L2 + ‖∇u‖2L4

)
+ C‖ρ1/4u‖2L12‖ρ1/2ut‖1/2L2 ‖ρ1/2ut‖1/2L6 ‖∇2u‖L2

≤ C‖ρ1/2ut‖1/2L2

(
‖ρ1/2ut‖L2 + ‖∇ut‖L2

)1/2 (
‖∇ut‖L2 + ‖∇2u‖L2 + 1

)
≤ δ‖∇ut‖2L2 + C(δ)

(
‖∇2u‖2L2 + ‖ρ1/2ut‖2L2 + 1

)
.

(4.21)
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Next, Holder’s inequality, (4.19), and (4.20) lead to

∫
ρ|u|2|∇u||∇ut |dx +

∫
ρ|ut |2|∇u|dx

≤ C‖ρ1/2u‖2L8‖∇u‖L4‖∇ut‖L2 + ‖∇u‖L2‖ρ1/2ut‖3/2L6 ‖ρ1/2ut‖1/2L2

≤ δ‖∇ut‖2L2 + C(δ)
(
‖∇2u‖2L2 + ‖ρ1/2ut‖2L2 + 1

)
.

(4.22)

Next, it follows from (4.19), (4.2), and (4.11) that

‖Pt‖L2 ≤ C‖x̄−au‖L2q/(q−2)‖ρ‖γ−1
L∞ ‖x̄a∇ρ‖Lq + C‖∇u‖L2 ≤ C . (4.23)

Finally, putting (4.21)–(4.23) into (4.18) and choosing δ suitably small, we obtain
after using (4.6) and (4.1) that

d

dt

∫
ρ|ut |2dx + μ

∫
|∇ut |2dx ≤ C

∫
ρ|ut |2dx + C

∫
ρ|u̇|2dx + 1. (4.24)

It follows from (4.6) and (4.19) that

‖∇u‖H1 + ‖ρ1/2u · ∇u‖L2

≤ C + C‖ρ1/2u̇‖L2 + C‖ρ1/2u‖L6‖∇u‖2/3
L2 ‖∇2u‖1/3

L2

≤ C + C‖ρ1/2u̇‖L2 + 1

2
‖∇2u‖L2 ,

which together with (4.2) shows

‖∇u‖H1 + ‖ρ1/2ut‖L2 ≤ C‖ρ1/2u̇‖L2 + C . (4.25)

This combined with (4.24), (4.2), and Gronwall’s inequality gives (4.16) and finishes
the proof of Lemma 4.3. ��

From now on, assume that (ρ, u) is a smooth solution of (1.1)–(1.4) on
R
2 × (0, T ] satisfying (3.3) for smooth initial data (ρ0, u0) satisfying (1.8),

(1.9), (1.17), and (1.18). Moreover, in addition to T , μ, λ, γ, a, ρ̄, β, N0, M, q,

and ‖∇(x̄aρ0)‖L2∩Lq , the generic positive constant C may depend on ‖∇2u0‖L2 ,

‖x̄δ0∇2ρ0‖L2 , ‖x̄δ0∇2P(ρ0)‖L2 , δ0, and ‖g‖L2 , with g as in (1.18).

Lemma 4.4 It holds that

sup
0≤t≤T

(
‖ρ1/2ut‖L2 + ‖∇u‖H1

)
+

∫ T

0
‖∇ut‖2L2dt ≤ C . (4.26)

Proof Taking into account on the compatibility condition (1.18), we can define

√
ρu̇(x, t = 0) = g. (4.27)
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Integrating (3.17) over (0, T ) together with (4.27) and (4.3) yields directly that

sup
0≤t≤T

‖ρ1/2u̇‖2L2 +
∫ T

0
‖∇u̇‖2L2dt ≤ C,

which, along with (4.25) and (4.24), gives (4.26) and finishes the proof of Lemma 4.4.
��

The following higher order estimates of the solutions which are needed to guarantee
the extension of local classical solution to be a global one are similar to those in [19],
so we omit their proofs here.

Lemma 4.5 The following estimates hold:

sup
0≤t≤T

(
‖x̄δ0∇2ρ‖L2 + ‖x̄δ0∇2P‖L2

)
≤ C, (4.28)

sup
0≤t≤T

t‖∇ut‖2L2 +
∫ T

0
t
(
‖ρ1/2utt‖2L2 + ‖∇2ut‖2L2

)
dt ≤ C, (4.29)

sup
0≤t≤T

(
‖∇2ρ‖Lq + ‖∇2P‖Lq

)
≤ C, (4.30)

sup
0≤t≤T

t
(
‖ρ1/2utt‖L2 + ‖∇3u‖L2∩Lq + ‖∇ut‖H1 + ‖∇2(ρu)‖L(q+2)/2

)

+
∫ T

0
t2

(
‖∇utt‖2L2 + ‖utt x̄

−1‖2L2

)
dt ≤ C . (4.31)

5 Proofs of Theorems 1.1–1.3

With all the a priori estimates in Sects. 3 and 4 at hand, we are ready to prove the main
results of this paper in this section.

Proof of Theorem 1.1 By Lemma 2.1, there exists a T∗ > 0 such that the Cauchy
problem (1.1)–(1.4) has a unique strong solution (ρ, u) on R

2 × (0, T∗]. We will use
the a priori estimates, Proposition 3.1 and Lemmas 4.1–4.3, to extend the local strong
solution (ρ, u) to all time.

First, it follows from (3.1), (3.2), and (1.8) that

A1(0) + A2(0) = 0, ρ0 ≤ ρ̄.

Therefore, there exists a T1 ∈ (0, T∗] such that (3.3) holds for T = T1.
Next, set

T ∗ = sup{T | (3.3) holds}. (5.1)

Then T ∗ ≥ T1 > 0. Hence, for any 0 < τ < T ≤ T ∗ with T finite, one deduces from
(4.16) that for any q ≥ 2,
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∇u ∈ C([τ, T ]; L2 ∩ Lq), (5.2)

where one has used the standard embedding

L∞(τ, T ; H1) ∩ H1(τ, T ; H−1) ↪→ C
([τ, T ]; Lq)

, for any q ∈ [2,∞).

Moreover, it follows from (4.1), (4.11), and [21, Lemma 2.3] that

ρ ∈ C([0, T ]; L1 ∩ H1 ∩ W 1,q). (5.3)

Finally, we claim that

T ∗ = ∞. (5.4)

Otherwise, T ∗ < ∞. Then by Proposition 3.1, (3.4) holds for T = T ∗. It follows from
(3.5), (4.11), (5.2) and (5.3) that (ρ(x, T ∗), u(x, T ∗)) satisfies (1.8) except u(·, T ∗) ∈
Ḣβ. Thus, Lemma 2.1 implies that there exists some T ∗∗ > T ∗, such that (3.3) holds
for T = T ∗∗, which contradicts (5.1). Hence, (5.4) holds. Lemmas 2.1 and 4.1–4.3
thus show that (ρ, u) is in fact the unique strong solution defined on R

2 × (0, T ] for
any 0 < T < T ∗ = ∞. The proof of Theorem 1.1 is completed. ��
Proof of Theorem 1.2 Similar to the proof of Theorem 1.1, one can prove Theorem 1.2
by using Lemma 2.1, Proposition 3.1, and Lemmas 4.1–4.5.

To prove Theorem 1.3, we need the following elementary estimates similar to those
of Lemma 2.5 whose proof can be found in [16, Lemma 2.3]. ��
Lemma 5.1 Let � = R

3 and (ρ, u) be a smooth solution of (1.1). Then there exists a
generic positive constant C depending only on μ and λ such that for any p ∈ [2, 6]

‖∇F‖L p + ‖∇ω‖L p ≤ C‖ρu̇‖L p , (5.5)

‖F‖L p + ‖ω‖L p ≤ C‖ρu̇‖(3p−6)/(2p)

L2

(‖∇u‖L2 + ‖P‖L2
)(6−p)/(2p)

, (5.6)

‖∇u‖L p ≤ C (‖F‖L p + ‖ω‖L p ) + C‖P‖L p , (5.7)

where F = (2μ + λ)divu − P and ω = ∇ × u are the effective viscous flux and the
vorticity respectively.

Proof of Theorem 1.3 It suffices to prove (1.26). In fact, it follows from [16, Proposition
3.1 and (3.6)] that there exists some ε depending only on μ, λ, γ, ρ̄, β, and M such
that

sup
1≤t<∞

(
‖∇u‖L2 + ‖ρ‖Lγ ∩L∞ + ‖ρ1/2u̇‖L2

)

+
∫ ∞

1

(
‖∇u‖2L2 + ‖ρ1/2u̇‖2L2 + ‖∇u̇‖2L2

)
dt ≤ C,

(5.8)

provided C0 ≤ ε.
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Then, one deduces from (1.1)2 that

P = (−�)−1div(ρu)t + (−�)−1divdiv(ρu ⊗ u) + (2μ + λ)divu,

which together with (3.9) gives∫
P2dx = d

dt

∫
(−�)−1div(ρu)Pdx + (γ − 1)

∫
(−�)−1div(ρu)Pdivudx

−
∫

Pu · ∇(−�)−1div(ρu)dx +
∫

(−�)−1divdiv(ρu ⊗ u)Pdx

+ (2μ + λ)

∫
Pdivudx

≤ d

dt

∫
(−�)−1div(ρu)Pdx + C‖(−�)−1div(ρu)‖L∞‖P‖L2‖∇u‖L2

+ C‖P‖L3/2‖u‖2L6 + C‖P‖L2‖∇u‖L2

≤ d

dt

∫
(−�)−1div(ρu)Pdx + 1

2
‖P‖2L2 + C‖∇u‖2L2 ,

(5.9)

where in the last inequality one has used

sup
1≤t<∞

‖(−�)−1div(ρu)‖L∞ ≤ C sup
1≤t<∞

‖(−�)−1div(ρu)‖W 1,6

≤ C sup
1≤t<∞

(
‖ρ1/2u‖L2 + ‖∇u‖L2

)
≤ C .

(5.10)

Combining (5.8)–(5.10) leads to

∫ ∞

1
‖P‖2L2dt ≤ C . (5.11)

Next, similar to (3.27), for p ≥ 2, we have

(‖P‖p
L p

)
t + pγ − 1

2μ + λ
‖P‖p+1

L p+1 = − pγ − 1

2μ + λ

∫
P p Fdx, (5.12)

which together with Holder’s inequality yields

(‖P‖p
L p

)
t + pγ − 1

2(2μ + λ)
‖P‖p+1

L p+1 ≤ C(p)‖F‖p+1
L p+1 . (5.13)

Next, for B(t) defined as in (3.14), it follows from (3.13) and (5.7) that

B ′(t) +
∫

ρ|u̇|2dx ≤ C‖P‖3L3 + C‖∇u‖3L3

≤ C1‖P‖3L3 + C‖F‖3L3 + C‖ω‖3L3 .

(5.14)

123



7 Page 34 of 37 J. Li, Z. Xin

Choosing C2 ≥ 2 + 2(2μ + λ)(C1 + 1)/(2γ − 1) suitably large such that

μ

4
‖∇u‖2L2 + ‖P‖2L2 ≤ B(t) + C2‖P‖2L2 ≤ C‖∇u‖2L2 + C‖P‖2L2 , (5.15)

setting p = 2 in (5.13), and adding (5.13) multiplied by C2 to (5.14) yield that for
t ≥ 1,

(
B(t) + C2‖P‖2L2

)′ +
∫ (

ρ|u̇|2 + P3
)

dx

≤ C‖F‖3L3 + C‖ω‖3L3

≤ 1

2
‖ρ1/2u̇‖2L2 + C

(
‖∇u‖4L2 + ‖P‖4L2

)
,

(5.16)

where in the second inequality we have used (5.6) and (5.8). Multiplying (5.16) by t,
along with Gronwall’s inequality, (5.15), (5.8), and (5.11), gives

sup
1≤t<∞

t
(
‖∇u‖2L2 + ‖P‖2L2

)
+

∫ ∞

1
t
∫ (

ρ|u̇|2 + P3
)

dxdt ≤ C . (5.17)

Then, multiplying (3.17) by t2 together with (5.7) gives

(
t2

∫
ρ|u̇|2dx

)
t
+ μt2

∫
|∇u̇|2dx

≤ 2t
∫

ρ|u̇|2dx + Ct2‖F‖4L4 + Ct2‖ω‖4L4 + C̃t2‖P‖4L4 .

(5.18)

Setting p = 3 in (5.13) and adding (5.13) multiplied by 2(2μ+λ)(C̃ +1)t2/(3γ −1)
to (5.18) lead to

(
t2

∫
ρ|u̇|2dx + 2(2μ + λ)(C̃ + 1)

3γ − 1
t2‖P‖3L3

)
t

+ μt2‖∇u̇‖2L2 + t2‖P‖4L4

≤ Ct
∫ (

ρ|u̇|2 + P3
)

dx + Ct2‖F‖4L4 + Ct2‖ω‖4L4

≤ Ct
∫ (

ρ|u̇|2 + P3
)

dx + Ct2‖ρ1/2u̇‖3L2

(‖∇u‖L2 + ‖P‖L2
)

≤ Ct
∫ (

ρ|u̇|2 + P3
)

dx + Ct2‖ρ1/2u̇‖2L2

(
‖ρ1/2u̇‖2L2 + ‖∇u‖2L2 + ‖P‖2L2

)
,

where in the second inequalitywehaveused (5.6).Combining this,Gronwall’s inequal-
ity, (5.17), (5.8), and (5.11) yields
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sup
1≤t<∞

t2
∫ (

ρ|u̇|2 + P3
)

dx +
∫ ∞

1
t2

(
‖∇u̇‖2L2 + ‖P‖4L4

)
dt ≤ C, (5.19)

which together with (2.12) gives (1.26) provided we show that for m = 1, 2, . . . ,

sup
1≤t<∞

tm‖P‖m+1
Lm+1 +

∫ ∞

0
tm‖P‖m+2

Lm+2dt ≤ C(m). (5.20)

Finally, we will prove (5.20) by induction. Since (5.17) shows that (5.20) holds for
m = 1, we assume that (5.20) holds for m = n, that is,

sup
1≤t<∞

tn‖P‖n+1
Ln+1 +

∫ ∞

1
tn‖P‖n+2

Ln+2dt ≤ C(n). (5.21)

Setting p = n + 2 in (5.12) and multiplying (5.12) by tn+1 give

2(2μ + λ)

(n + 2)γ − 1

(
tn+1‖P‖n+2

Ln+2

)
t
+ tn+1‖P‖n+3

Ln+3

≤ C(n)tn‖P‖n+2
Ln+2 + C(n)tn+1‖P‖n+2

Ln+2‖F‖L∞ .

(5.22)

It follows from the Gagliardo-Nirenberg inequality, (5.5), and (5.19) that

∫ ∞

1
‖F‖L∞dt ≤ C

∫ ∞

1
‖F‖1/2

L6 ‖∇F‖1/2
L6 dt

≤ C
∫ ∞

1
‖ρu̇‖1/2

L2 ‖ρu̇‖1/2
L6 dt

≤ C
∫ ∞

1
t−1/2‖∇u̇‖1/2

L2 dt

≤ C,

which, along with (5.22), (5.21), and Gronwall’s inequality, thus shows that (5.20)
holds for m = n + 1. By induction, we obtain (5.20) and finish the proof of (1.26).
The proof of Theorem 1.3 is completed. ��

References

1. Beale, J.T., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3-D Euler
equations. Commun. Math. Phys. 94, 61–66 (1984)

2. Bergh, J., Lofstrom, J.: Interpolation Spaces, An Introduction. Springer, Berlin (1976)
3. Cho,Y., Choe,H.J.,Kim,H.:Unique solvability of the initial boundary value problems for compressible

viscous fluid. J. Math. Pures Appl. 83, 243–275 (2004)
4. Cho, Y., Kim, H.: On classical solutions of the compressible Navier–Stokes equations with nonnegative

initial densities. Manuscr. Math. 120, 91–129 (2006)
5. Choe, H.J., Kim, H.: Strong solutions of the Navier–Stokes equations for isentropic compressible

fluids. J. Differ. Equ. 190, 504–523 (2003)
6. Feireisl, E.: Dynamics of Viscous Compressible Fluids. Oxford University Press, New York (2004)

123



7 Page 36 of 37 J. Li, Z. Xin

7. Feireisl, E., Novotny, A., Petzeltová, H.: On the existence of globally defined weak solutions to the
Navier–Stokes equations. J. Math. Fluid Mech. 3(4), 358–392 (2001)

8. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of SecondOrder, 2nd edn. Springer,
Berlin (1983)

9. Hoff, D.: Global existence for 1D, compressible, isentropic Navier–Stokes equations with large initial
data. Trans. Am. Math. Soc. 303(1), 169–181 (1987)

10. Hoff, D.: Global solutions of the Navier–Stokes equations for multidimensional compressible flow
with discontinuous initial data. J. Differ. Equ. 120(1), 215–254 (1995)

11. Hoff, D.: Strong convergence to global solutions for multidimensional flows of compressible, viscous
fluids with polytropic equations of state and discontinuous initial data. Arch. Rational Mech. Anal.
132, 1–14 (1995)

12. Hoff, D.: Dynamics of singularity surfaces for compressible, viscous flows in two space dimensions.
Commun. Pure Appl. Math. 55(11), 1365–1407 (2002)

13. Hoff, D.: Compressible flow in a half-space with Navier boundary conditions. J. Math. Fluid Mech.
7(3), 315–338 (2005)

14. Huang, X.D., Li, J., Xin, Z.P.: Blowup criterion for viscous barotropic flows with vacuum states.
Commun. Math. Phys. 301(1), 23–35 (2011)

15. Huang, X.D., Li, J., Xin, Z.P.: Serrin type criterion for the three-dimensional compressible flows. SIAM
J. Math. Anal. 43(4), 1872–1886 (2011)

16. Huang, X.D., Li, J., Xin, Z.P.: Global well-posedness of classical solutions with large oscillations and
vacuum to the three-dimensional isentropic compressible Navier–Stokes equations. Commun. Pure
Appl. Math. 65, 549–585 (2012)

17. Kato, T.: Remarks on the Euler and Navier–Stokes equations in R2. In: Proceedings of Symposia in
Pure Mathematics, vol. 45, pp. 1–7. American Mathematical Society, Providence (1986)

18. Kazhikhov, A.V., Shelukhin, V.V.: Unique global solutionwith respect to time of initial-boundary value
problems for one-dimensional equations of a viscous gas. Prikl. Mat. Meh. 41, 282–291 (1977)

19. Li, J., Liang, Z.: On classical solutions to the Cauchy problem of the two-dimensional barotropic
compressible Navier–Stokes equations with vacuum. J. Math. Pures Appl. (9) 102(4), 640–671 (2014)

20. Li, J., Xin, Z.: Some uniform estimates and blowup behavior of global strong solutions to the Stokes
approximation equations for two-dimensional compressible flows. J. Differ. Equ. 221(2), 275–308
(2006)

21. Lions, P.L.: Mathematical Topics in Fluid Mechanics: Volume 1: Incompressible Models. Oxford
University Press, New York (1996)

22. Lions, P.L.: Mathematical Topics in Fluid Mechanics: Volume 2: Compressible Models. Oxford Uni-
versity Press, New York (1998)

23. Luo, Z.: Global existence of classical solutions to two-dimensional Navier–Stokes equations with
Cauchy data containing vacuum. Math. Methods Appl. Sci. 37(9), 1333–1352 (2014)

24. Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of viscous and
heat-conductive gases. J. Math. Kyoto Univ. 20(1), 67–104 (1980)

25. Nash, J.: Le problème de Cauchy pour les équations différentielles d’un fluide général. Bull. Soc.Math.
France 90, 487–497 (1962)

26. Nirenberg, L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa 13, 115–162
(1959)

27. Rozanova, O.: Blow up of smooth solutions to the compressible Navier–Stokes equations with the data
highly decreasing at infinity. J. Differ. Equ. 245, 1762–1774 (2008)

28. Salvi, R., Straskraba, I.: Global existence for viscous compressible fluids and their behavior as t → ∞.
J. Fac. Sci. Univ. Tokyo Sect. IA. Math. 40, 17–51 (1993)

29. Serre, D.:: Solutions faibles globales des équations de Navier-Stokes pour un fluide compressible. C.
R. Acad. Sci. Paris Sér. I Math. 303, 639–642 (1986)

30. Serre, D.: Sur l’équation monodimensionnelle d’un fluide visqueux, compressible et conducteur de
chaleur. C. R. Acad. Sci. Paris Sér. I Math. 303, 703–706 (1986)

31. Serrin, J.: On the uniqueness of compressible fluid motion. Arch. Rational. Mech. Anal. 3, 271–288
(1959)

32. Xin, Z.P.: Blowup of smooth solutions to the compressible Navier–Stokes equation with compact
density. Commun. Pure Appl. Math. 51, 229–240 (1998)

33. Xin, Z.P., Yan, W.: On blowup of classical solutions to the compressible Navier–Stokes equations.
Commun. Math. Phys. 321(2), 529–541 (2013)

123



Global Well-Posedness and Large Time Asymptotic Behavior… Page 37 of 37 7

34. Zlotnik, A.A.: Uniform estimates and stabilization of symmetric solutions of a system of quasilinear
equations. Differ. Equ. 36, 701–716 (2000)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Global Well-Posedness and Large Time Asymptotic Behavior of Classical Solutions to the Compressible Navier–Stokes Equations with Vacuum
	Abstract
	1 Introduction
	2 Preliminaries
	3 A Priori Estimates(I): Lower Order Estimates
	4 A Priori Estimates (II): Higher Order Estimates 
	5 Proofs of Theorems 1.1–1.3
	References




